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A B S T R A C T

Background: Malaria is a critical and potentially fatal disease caused by the Plasmodium parasite and is
responsible for more than 600,000 deaths globally. Early and accurate detection of malaria parasites is crucial
for effective treatment, yet conventional microscopy faces limitations in variability and efficiency.
Methods: We propose a novel computer-aided detection framework based on deep learning and attention
mechanisms, extending the YOLO-SPAM and YOLO-PAM models. Our approach facilitates the detection and
classification of malaria parasites across all infection stages and supports multi-species identification.
Results: The framework was evaluated on three publicly available datasets, demonstrating high accuracy
in detecting four distinct malaria species and their life stages. Comparative analysis against state-of-the-art
methodologies indicates significant improvements in both detection rates and diagnostic utility.
Conclusion: This study presents a robust solution for automated malaria detection, offering valuable support
for pathologists and enhancing diagnostic practices in real-world scenarios.
1. Introduction

Malaria is a critical and potentially fatal disease caused by the
Plasmodium parasite. It is primarily transmitted through the bites
of infected female Anopheles mosquitoes. According to WHO’s 2023
World Malaria Report, an annual assessment of global trends in malaria
control and elimination, the estimated number of global malaria cases
in 2022 exceeded pre-COVID-19 pandemic levels in 2019. The report
highlights several threats to the global response to malaria, including
climate change [1].

In 2022, there were an estimated 249 million reported cases and
608,000 deaths occurring globally. Of the 249 million cases noted in
2022, 233 million (around 94%) were in the WHO African Region.
More than 50% of all deaths occurred in just four countries—Nigeria
(31%), the Democratic Republic of the Congo (12%), Niger (6%), and
Tanzania (4%). Around 70% of the global malaria burden is concen-
trated in 11 countries belonging to the African region, referred to
as ‘‘High Burden to High Impact’’ (HBHI); in 2022, there were an
estimated 167 million cases (67% of the global total) and 426,000
deaths (73% of the global total) in the original HBHI countries [1].

The Plasmodium parasites that cause malaria in humans include five
species: Plasmodium falciparum (Pf), Plasmodium vivax (Pv), Plasmod-
ium ovale (Po), Plasmodium malariae (Pm), and Plasmodium knowlesi
(Pk), with Pf and Pv posing the most significant threat [2,3]. The
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life cycle of the malaria parasite within the human host involves
several distinct stages, including the ring, trophozoite, schizont, and
gametocyte stages. Understanding these different stages is crucial for
developing effective treatments and prevention strategies.

The WHO characterizes human malaria as both preventable and
treatable if diagnosed promptly. Delayed diagnosis can lead to severe
complications, including disseminated intravascular coagulation, tissue
necrosis, and splenic hypertrophy [2,4]. Thus, accurate and timely
diagnosis is essential for effective treatment.

Malaria diagnosis can be achieved through various techniques,
including microscopic blood smear analysis, rapid diagnostic tests
(RDTs), and real-time polymerase chain reaction (PCR). These methods
are crucial, as malaria symptoms can often be misinterpreted as those
of other diseases, such as viral hepatitis or dengue fever [5]. While
PCR offers heightened accuracy, it is not always practical in program-
matic settings due to its requirement for specialized laboratory facili-
ties. Consequently, the WHO recommends that all suspected malaria
cases be confirmed through microscopy or RDT prior to treatment,
acknowledging the risks associated with false-negative results.

Microscopy remains the preferred diagnostic method among pathol-
ogists [6–8], particularly in endemic regions, due to its sensitivity,
cost-effectiveness, and capacity to identify specific parasite species and
densities [5,9,10]. The traditional methodology involves analyzing a
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peripheral blood smear (PBS) on a glass slide to detect malaria parasites
and their developmental stages. However, this technique is not without
limitations. Challenges include: (i) difficulty in detecting infections
during early stages, necessitating skilled microscopists; (ii) a shortage
f qualified microscopists, substandard quality control, and misdiag-

nosis due to low parasitemia or mixed infections in some endemic
egions; (iii) limited access to microscopy in rural health facilities;
(iv) challenges in accurately identifying different Plasmodium species,
which can lead to misdiagnosis and implications for epidemiological
understanding [9,10]; (v) technical expertise required for slide prepara-
ion; (vi) potential lysis of red blood cells, altering parasite morphology
nd complicating identification; (vii) variability in microscope quality
nd illumination; (viii) variability in staining procedures; (ix) influence
f parasitemia levels on detection accuracy [5].

Furthermore, controlling infectious diseases remains imperative,
particularly in underdeveloped countries lacking adequate medical in-
frastructure [4].

Accurate and timely diagnosis of malaria is vital for effective treat-
ment and prevention of severe complications. While conventional mi-
roscopy is still regarded as the gold standard, advancements in deep

learning (DL) techniques, particularly Convolutional Neural Networks
CNNs), have shown promise in enhancing malaria cell image analysis.

Recent studies have successfully applied CNNs for single-cell
malaria diagnosis, underscoring the importance of accurately determin-
ing whether a cell is infected [11–13]. However, reliance on mono-
centric cell image datasets assumes an idealized scenario where salient
and highly discriminative features are easily extracted from the images.
This ideal condition is typically achieved through preliminary steps of
detection or segmentation of the full-size images.

In practical applications, however, systems are fully automated,
and the images may not always be perfectly centered or accurately
cropped. These variations can lead to suboptimal detection and, conse-
uently, reduced diagnostic precision. Nevertheless, previous research

has demonstrated the effectiveness of detection systems in real-world
scenarios for computer-aided diagnosis (CAD) systems, particularly
those that are robust enough to accommodate these image quality
hallenges [14–18].

Nevertheless, additional challenges remain, including the differ-
entiation of various Plasmodium species and addressing complexities
associated with low parasitemia levels and asymptomatic infections.

onsequently, achieving precise localization of parasites within cells is
crucial for thorough investigations and accurate diagnostics [8,19,20].

In response to these challenges, we propose a novel CAD approach
to automated early and already in-progress identification of malaria
arasites and quantification of parasitemia. This dual-purpose system
eeks to aid pathologists while addressing the limitations associated
ith conventional microscopy.

Our contributions to the field of malaria parasite detection are
outlined as follows:

(i) We extend YOLO-SPAM [21] and YOLO-PAM [22] by proposing
a novel deep learning-based detection framework that provides
a more comprehensive approach to facilitate the detection of
malaria parasites across all stages of infection, from early to
mature. By incorporating specialized attention-based heads, our
model significantly improves the recognition of small ring-stage
parasites critical markers for early-stage infection surpassing
previous state-of-the-art methods.

(ii) Our method can accurately perform multi-species detection on
four distinct species of malaria, thereby accommodating both
mixed infections and intra-species detection scenarios. By
demonstrating strong performances across species, our models
could be applied in the future due to the unavailability of such
annotated data, to effectively detect multiple species in blood
2

smear images
(iii) We introduce the ability to classify the various life stages of
the four malaria species, enhancing the diagnostic utility of
our approach in an end-to-end framework. By leveraging color
and geometric-based augmentations we mitigate the stage class
imbalance.

(iv) We conduct a comprehensive evaluation of our method across
three publicly available datasets, providing a comparative anal-
ysis against state-of-the-art (SOTA) methodologies in the field.
Our novel contribution improves drastically upun the perfor-
mances of full CNN based methodologies [23] up to 23% in
Average Precision

Using the You Only Look Once (YOLO) architecture, which has
hown remarkable results in our prior research [21,22,24], we have

implemented enhancements to improve its accuracy for detecting small-
o-mature parasites. This enables not only early but also late infection

diagnosis, as well as multi-species detection and life-stage classifi-
cation of malaria parasites. The choice of the YOLO architecture,
combined with strategically positioned attention mechanisms and a
limited number of trainable parameters, enables our proposed models
to be effectively deployed in low-resource settings. Notably, our largest
model, YOLO Para AP, requires only 47,2 additional milliseconds per
image compared to the YOLOv8 medium model.

The remainder of this article is organized as follows. First, a back-
ground about the task at hand and an overview of the literature is given
in Section 2. Then, materials and methods are described in Section 3,
while Section 4 describes the proposed architectures. The experimental
evaluation and the obtained results follow in Section 5. A detailed
discussion and a description of the limitations are given in Section 6.
Finally, conclusions are drawn in Section 7.

2. Background

CAD systems in medicine extend beyond specific domains, finding
ignificant applications in hematology. Numerous CAD solutions have

been proposed for the automated detection of malaria parasites, which
mitigate manual analysis errors and provide consistent interpretations
of blood samples. This technological advancement ultimately leads
to reduced diagnostic costs and improved efficiency in healthcare
delivery [7,20].

The research of CAD methods is not limited to hematology but spans
ifferent fields such as COVID detection [53,54], detection of mem-

brane proteins [55,56], or sensing in MRI [57]. The integration of CAD
echnology into hematology aims to enhance both the accuracy and
peed of diagnoses, thereby improving patient outcomes and optimizing
ealthcare systems [58–63]. The current landscape of malaria parasite
etection encompasses both traditional image processing methods and
dvanced DL techniques. Traditional approaches typically involve the
etection or segmentation of parasites, feature extraction, and subse-
uent classification, either as independent tasks or as an interconnected

pipeline. In contrast, end-to-end deep learning frameworks consolidate
these processes, a shift driven by innovations such as AlexNet [64].

Conventional methodologies have employed mathematical mor-
phology techniques for preprocessing and segmentation [14,15]. Ad-
ditionally, handcrafted feature extraction has been utilized to train
machine learning classifiers [17]. Over the past decade, DL approaches
have gained prominence, with a substantial body of literature demon-
trating their efficacy in improving detection accuracy and efficiency

compared to traditional methods [8,11,13,20,65].
The existing literature on malaria parasite analysis from blood

smear images can be categorized into four primary areas:

• parasite detection and classification from full-size images (Sec-
tion 2.1);

• parasite classification from single-cell images (Section 2.2);
• domain generalization methods from high- to low-cost devices

(Section 2.3);
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Table 1
The table provides a comprehensive summary of the studies identified in the literature, including the authors, publication year, specific task faced, techniques employed, datasets
used, number of images, and performance measures. These measures are abbreviated with mAP for mean Average Precision, A for Accuracy, SA for Segmentation Accuracy, F1
for F1-score, and DSC for Dice Similarity Coefficient.

Authors Task Methods Dataset Images Performance (%)

Zhao et al. [25] (2020)
Chibuta and Acar [26]
(2020) Pf detection

SSD300
Modified YOLOv3

BBBC041v1 [27] 1364 mAP: 90.40
Dataset A [26] 2703 mAP: 88.00
Quin et al. [28] 1182 mAP: 90.20

Abdurahman et al. [29]
(2021)

Modified YOLOv4 Quin et al. [28] 1182 mAP: 96.32

Zedda et al. [23] (2022) YOLOv5 MP-IDB [30] 104 mAP: 87.2

Zhao et al. [25] (2020)
Pf classification

VGG-16 NIH [12] 27,558 A: 96.53
Setyawan et al. [31]
(2022)

Morphology and texture MP-IDB [30] 250 A: 82.67

Zedda et al. [23] (2022) DarkNet-53 MP-IDB [30] 1297 F1: 95.58

Penas et al. [32] (2017) Pf and Pv species
detection

InceptionV3 Private 363 A: 87.90

Maity et al. [8] (2020) Pf and Pv
segmentation Capsule Network MP-IDB [30] 210 SA: 99.10

Private 38 SA: 98.70

Rahman et al. [33] (2021)

Differentiate
healthy and
infected RBCs

Custom CNN
BBBC041v1 [27] 1364 A: 99.35
NIH [12] 27,558 A: 99.35
MP-IDB [30] 229 F1: 84.82

Loh [34] (2021) Mask R-CNN BBBC041v1 [27] 15,144 A: 94.57
Li et al. [35] (2021) CNN DTGCN BBBC041v1 [27] 15,144 A: 98.50

Acherar et al. (2020) [36] VGG-19 Private 1250 A: 99.70
EfficientNet-B7 NIH [12] 27,558 A: 98.80

Silka et al. [37] (2022) Custom CNN BBBC041v1 [27] 1364 A: 99.68
Kumar et al. [38] (2024) Hybrid Capsule Network NIH [12] 27,558 A: 99.07

Krishnadas et al. [39]
(2022)

Detect the four
malaria parasite
species

Scaled YOLOv4 MP-IDB [30] 172 mAP: 83.0

Mukherjee et al. [40]
(2021)

Custom CNN MP-IDB [30] 210 DSC: 95.0

Nautre et al. [41] (2022) U-Net MP-IDB [30] 21 A: 99.4

Nanoti et al. [42] (2016)
Classify the four
malaria parasite
species

SVM Private 300 A: 90.17
Var and Tek [43] (2018) VGG-19 Private 654 A: 87.50
Abbas [44] (2020) Random Forest Malaria-Detection-2019 [44] 263a A: 82.00

Chaudhry [45] (2024) Custom CNN
MP-IDB [30] 275 A: 96.00
IML [46] 86 A: 92.00
Malaria-Detection-2019 [44] 263a A: 82.00

Hung and Carpenter [47]
(2017) Classify the

parasite’s life
stages

Faster R-CNN BBBC041v1 [27] 1364 A: 72.00

Manku et al. [48] (2020) Faster R-CNN BBBC041v1 [27] 560 A: 82.00
Loddo et al. [49] (2022) CNN MP-IDB [30] 140 A: 99.40
Arshad et al. [46] (2021) ResNet50v2 IML with RBC [46] 669 A: 95.63
Sengan et al. [50] (2022) ViT IML [46] 669 A: 90.03

Li et al. [51] (2021)
Classify WBCs vs.

Custom CNN BBBC041v1 [27] 1364 A: 98.30healthy RBCs vs.
Pv life stages

Yang et al. [52] (2020) Pv detection Cascaded YOLO Private 2567 mAP: 79.22
Sultani et al. [20] (2022) Faster R-CNN M5 [20] 1257 mAP: 66.80

a Indicates that only ring, trophozoite, and schizont classes are available.
c

l
a
u

• methods for low-cost sensor image devices (Section 2.4).

Table 1 provides a comprehensive summary of the most relevant
works in the several tasks of malaria parasites analysis.

2.1. Parasite classification from full-size images

Detecting malaria parasites from blood smear images presents con-
siderable challenges, particularly in settings with limited clinical re-
sources, such as underdeveloped countries [17]. The analysis of full-size
mages is essential for near real-time diagnosis, but distinguishing par-
sites from similarly structured cell components, such as white blood
ells and platelets, complicates identification. Microscopic evaluation of

peripheral blood smears can take over 15 min per slide, and recognizing
he various life cycle stages of Plasmodium adds another layer of
omplexity [66].

A meticulous analysis is vital for accurate diagnoses of conditions
like malaria and leukemia, necessitating robust segmentation [67] and
3

detection techniques to delineate regions of interest (ROIs) before
lassification [68]. Some studies focus directly on classifying full-size

images using CNNs or traditional machine learning techniques trained
on either handcrafted features or those extracted from pre-trained
CNNs. For instance, Vijayalakshmi et al. [6] employed a Support Vec-
tor Machine (SVM) trained with features from a VGG-19 network to
differentiate infected from non-infected malaria images.

Recent advancements have introduced DL methods that streamline
the multi-stage pipeline. Arshad et al. [65] proposed a framework
that combines U-Net segmentation with watershed algorithms, fol-
owed by binary classification to identify healthy versus infected cells,
nd further classification of the life cycle stages of the infected cells,
tilizing ResNet50v2. Similarly, Maity et al. [8] implemented a se-

mantic segmentation approach followed by a Capsule Network for
classifying Plasmodium falciparum rings. Conversely, Sultani et al. [20]
compared various off-the-shelf object detectors, including Faster R-
CNN, RetinaNet, and YOLO, specifically for the life stages of P. vivax.
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Additionally, Lin et al. [35] and Manescu et al. [69] developed custom
object detection pipelines aimed at malaria diagnosis.

Our research has identified four additional studies employing YOLO
or parasite detection, including YOLOv3 and YOLOv4 for thick blood
mears [26,29,70] or thin ones [71].

The current state of the art is increasingly incorporating attention-
based architectures across various fields, including malaria detection.
Fu et al. [72] demonstrated that attention mechanisms, combined

ith self-supervised learning, can substantially enhance performance
in malaria detection. Similarly, works such as [21,22] have shown
hat integrating attention mechanisms within the YOLO architecture

improves detection accuracy. These benefits are not limited to malaria
identification [73]; Zhu et al. [74] illustrated how these methods
are effective for detecting small objects in drone imagery. Despite
the performance gains offered by attention mechanisms over tradi-
tional CNN architectures, these techniques often come with significant
memory demands, especially in the case of self-attention [75], which
scales quadratically with input size, making naive implementations
nsuitable for resource-limited environments. Lightweight attention
echanisms, such as Convolutional Block Attention Module and Nor-
alized Attention Module [76,77], are computationally efficient and

equire fewer trainable parameters, making them more viable for low-
resource settings. Typically, low-resource attention mechanisms are
applied to feature maps with larger spatial dimensions, while more
complex mechanisms can be used in later stages of computation near
the prediction heads [21,22].

2.2. Parasite classification from single-cell images

Given that malaria parasites primarily affect red blood cells (RBCs),
methods targeting the classification of individual cells have emerged,
aiming to differentiate between parasitized and healthy erythrocytes
[11–13,33,38,78]. These studies often utilize the NIH dataset [12]
or benchmarking. Recent investigations have begun to explore the

application of vision transformer within the same dataset, exemplified
y Sengar et al. [79], reflecting a growing interest in the potential of

transformers in deep learning-based malaria research.
Specific solutions include ad-hoc designed CNN architectures [11],

transfer learning on CNNs pre-trained on ImageNet, such as ResNet-
50 [12] and VGG-19 [33], and ensemble approaches combining VGG-
19 with SqueezeNet [13]. Notably, Diker et al. [78] introduced a
esidual CNN architecture optimized through Bayesian methods to
xtract critical features, subsequently inputting these features to an
VM classifier.

2.3. Domain generalization methods from high- to low-cost devices

In the realm of computer-aided medical image analysis, machine
earning techniques frequently encounter the domain shift issue aris-

ing from discrepancies between source and target data distributions.
Domain adaptation has garnered attention as a viable solution to this
challenge [80,81].

Sultani et al. [20] addressed the difficulties of acquiring images
n resource-limited areas by compiling a dataset using both low-cost

and high-cost microscopy. They evaluated various domain adaptation
techniques, aiming to effectively apply high-cost microscope images as
the source domain and low-cost images as the target.

Further exploration of domain adaptation tasks remains necessary,
uch as the capability to classify different Plasmodium species based

solely on knowledge of one species (e.g., recognizing P. malariae, P.
ivax, and P. ovale when only P. falciparum data is available).

Contrastive learning techniques have shown strong performances in
itigating the variability across high-to-low-cost devices, Dave

et al. [82] show this leveraging domain adaptive contrastive loss as
part of the training procedure.
4

2.4. Methods for low-cost sensor image devices

Low-cost mobile devices, including smartphones and tablets
equipped with microscope cameras, have been increasingly leveraged
or image acquisition and analysis. Applications specifically designed

for smartphones, often utilizing pre-trained or customized CNNs and
standard preprocessing techniques such as contrast enhancement [83],
have been developed to facilitate automated malaria diagnosis [17,84],
achieving impressive classification rates in as little as ten seconds [84].

The proliferation of affordable mobile devices has proven partic-
larly beneficial in resource-limited countries, where high malaria

mortality rates coincide with a lack of specialized diagnostic per-
sonnel and equipment [84]. This technological advancement offers a
cost-effective solution for accurate malaria diagnosis [66].

2.5. Limitations of the existing literature

Despite the progress in analyzing full-size images, several limita-
tions persist in the existing literature. Direct classification using CNNs
or traditional machine learning approaches may oversimplify the diag-
nostic task, risking the loss of fine-grained details essential for accurate
disease identification. Consequently, some studies resort to off-the-
shelf object detectors on custom datasets. However, past research on
malaria parasite detection has predominantly concentrated on thick
blood smears, raising concerns about generalizability due to dataset
nd feature variations that can significantly impact model performance.
oreover, there is a noticeable gap in the analysis of multiple malaria

species and life stages, as most studies tend to focus on a specific
species.

Our investigation emphasizes the analysis of three publicly avail-
ble thin blood smear image datasets. This strategic choice enables
 detailed examination of fine-grained features within the images,
acilitating the identification and detection of different species and life
tages from both quantitative and qualitative perspectives.

Furthermore, as illustrated in Fig. 1, the three datasets exhibit
distinct intrinsic characteristics, including variations in coloration, il-
lumination conditions, composition, and parasite types. This diversity
underscores the proposed method’s ability to address the detection of
small-to-large parasites and the identification and classification of their
pecies and life stages within the broader context of malaria infections.

3. Materials and methods

The methodology proposed in this work is a deep learning-based
ramework to detect and classify malaria parasites in full-sized mi-
roscopic blood smear images. Specifically, our approach builds upon
tate-of-the-art object detection architectures, leveraging the YOLO
ramework with enhancements in terms of attention mechanisms for
mproved feature representation. Three publicly available datasets con-
aining images of infected RBCs were used. This section describes the
atasets employed in Section 3.1 and gives an overview of the state-of-

the-art object detectors in Section 3.3. Furthermore, it delves into the
concept of attention and its applications in the field (Section 3.4).

3.1. Datasets

This subsection analyzes and describes the datasets used in this
work. Sections 3.1.1 to 3.1.3 report specific information for each
dataset, including the instrumentation used to acquire the images,

hile Section 3.1.4 provides an overview of the differences existing in
the different parasite life stages. Representative images of the different
datasets are depicted in Fig. 1, while a brief comparative analysis to
emphasize the distinctive characteristics is given in Table 2. Every
dataset involved in this study comprises Giemsa-stained microscopic
images.
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Fig. 1. Examples of full-size images from the M5, IML, and MP-IDB datasets. From top to bottom: Figs. 1(a) to 1(d) are samples from M5 (P. Falciparum only), Figs. 1(e) to 1(h)
are from IML (P. Vivax only), and Figs. 1(i) to 1(l) are from MP-IDB (P. Falciparum, P. Malariae, P. Ovale, and P. Vivax, respectively).
Table 2
Comparison of the malaria datasets exploited in this study.

Dataset Multi-stage Samples Species Magnifications

M5 [85] Yes 20,331 1 100×, 400×, 1000×
IML [46] Yes 529 1 100×
MP-IDB [30] Yes 172 4 –

3.1.1. M5
The M5 dataset [85], also known as the Multi Microscope Multi

Magnification Malaria Dataset, contains 1257 images of thin blood
smears. The same regions were monitored and captured on two differ-
ent microscopes at three different magnifications (100×, 400×, 1000×)
using a high-cost microscope and a low-cost microscope. The resolu-
tions of the images are varied and not reported for simplicity.

3.1.2. IML
The IML dataset [46] comprises 345 images of blood samples

from individuals infected with P. Vivax malaria in Pakistan’s Punjab
province. Each image contains an average of 111 blood cells and
corresponding ground truth labels for the life stages and red blood cells.
The images have a resolution of 1280 × 960 pixels and a 24-bit color
depth and were taken using a microscope-attached camera magnified
at 100×.

3.1.3. MP-IDB
The Malaria Parasite Image Database for Image Processing and

Analysis (MP-IDB) [30] includes 210 images with a resolution of 2592 ×
1944 pixels of four types of malaria species - P. Falciparum, P. Malariae,
P. Ovale, and P. Vivax - with each image corresponding to one or more
of the four life stages of the species. The dataset features high-resolution
images with a 24-bit color depth, allowing for detailed analysis of the
variations within and across species.
5

3.1.4. Comprehensive datasets analysis with details on life stages
Each of the used datasets has the corresponding stage species for at

least one represented species, as shown in Fig. 2.
Specifically, the ring stage is the first stage of the Plasmodium para-

site’s life cycle. After the parasite enters the human host, it invades liver
cells and multiplies asexually, producing many ring-shaped structures.
These rings are small and contain a single nucleus. Over time, the rings
mature into other forms, such as the trophozoite and schizont stages.

The trophozoites are larger and more visible than the ring forms.
They have a distinct nucleus and a more prominent cytoplasm. During
this stage, the parasite continues multiplying asexually within the liver
cells.

The schizonts are large, multinucleated structures that contain many
daughter cells. When they are mature, they rupture the liver cells and
release the daughter cells, called merozoites, into the bloodstream. The
gametocytes are mature, non-dividing cells that do not replicate within
the human host. Instead, they are taken up by a mosquito when it feeds
on an infected human. Once inside the mosquito, the gametocytes can
differentiate into male and female gametes, fertilizing each other to
produce a zygote.

The different stages present various and, most importantly, hard-to-
recognize characteristics. However, the main challenge related to the
stage classification task is the high imbalance of the stages. This issue
requires particular attention, often introducing proper image augmen-
tation techniques for oversampling; another popular solution is to use
imbalanced specialized classification algorithms and training processes.
A complete representation of this issue is presented in Table 3. It
provides the available count of each class across the different datasets.
Please note that, for MP-IDB, only P. Falciparum is reported as the other
species are not provided with their stage ground truth, i.e.,the label
needed for the classification task.

3.2. Classification algorithms

For the sake of this work, we selected several off-the-shelf archi-
tectures to demonstrate their robust capabilities in the downstream
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Fig. 2. Samples of various developmental stages of parasites as observed in distinct datasets. From top to bottom, the columns present instances from the M5, IML, and MP-IDB
datasets, respectively. The last one specifically pertains to the P. falciparum species. The rows are organized to represent the developmental stages in the following sequence: ring,
trophozoite, schizont, and gametocyte.
Table 3
Count of parasites present in the three datasets, based on ground truths provided by
the authors.

Dataset Species Ring Schizont Trophozoite Gametocyte

M5 [85] P. Falciparum 2445 19 1088 90
IML [46] P. Vivax 164 27 77 261
MP-IDB [30] P. Falciparum 1230 18 42 7

task of malaria stage classification, especially given the limited existing
literature on the application of such novel methods in this specific
field. In addition, several common CNN architectures have been already
considered in our previous work [24,49]. In particular, we selected two
recent CNNs and three Vision Transformer (ViT)-based methods. We
now provide a brief description of the architectures employed.

InternImage is a large-scale CNN that utilizes deformable convolutions
to enhance its performance in tasks such as classification, detection,
and segmentation. It has been shown to achieve accuracy on par with
or better than ViTs while maintaining fewer parameters, making it a
competitive alternative in large-scale vision tasks [86]. ConvNeXt is
a modernized version of traditional CNNs, designed to bridge the gap
between convolutional architectures and transformer models. It incor-
porates design principles from ViT while optimizing for performance in
various vision tasks, demonstrating strong results in benchmarks [87].

DINO is a self-supervised learning framework that enhances the train-
ing of ViTs by leveraging knowledge distillation techniques without
requiring labeled data. This approach allows for effective learning from
6

unlabeled datasets, fostering robust feature extraction capabilities [88].

ViT revolutionized image processing by applying transformer architec-
tures, traditionally used in natural language processing, to visual data.
It excels in learning long-range dependencies within images but often
requires larger datasets and more computational resources compared
to CNNs [89].

Swin Transformers, introduced by Microsoft Research in 2021, apply
transformer architecture to computer vision (CV) tasks [90]. These
models process image patch embeddings using multi-headed self-
attention modules, allowing for linear computational complexity with
image size and enabling cross-window connections.

Swin Transformers employ hierarchical feature maps, similar to
CNNs, downsampling images by 4×, 8×, and 16×. This approach fa-
cilitates tasks such as object detection and instance segmentation,
potentially replacing convolution in vision tasks despite requiring more
parameters.

Together, these models illustrate the evolving landscape of com-
puter vision, where hybrid approaches and novel architectures continue
to push the boundaries of performance and efficiency.

3.3. Object detectors

Contemporary object detectors are predominantly founded on deep
learning methodologies and can be categorized into two primary types:
one-stage and two-stage detectors.

Two-stage architectures, exemplified by Faster R-CNN [91], initially
extract Regions of Interest (ROIs) and subsequently conduct classifica-
tion and bounding box regression through a coarse-to-fine approach.
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In contrast, one-stage detectors, such as SSD [92], FPN [93], and the
YOLO family [94–97], generate bounding boxes and class predictions
directly from the predicted feature maps utilizing predefined anchors.

One-stage detectors are characterized by their speed and compact-
ness, rendering them particularly suitable for time-sensitive applica-
ions and computationally constrained edge devices [98,99].

The recent success of Transformer architectures in image recog-
ition has spurred the development of several end-to-end Detection
ransformers (DETRs). Despite their impressive recognition accuracy,
ETRs face challenges related to their intricate architectures and slow

convergence rates [98].
To address these limitations, this paper proposes a modified version

of the one-stage detector YOLOv8 that aims to enhance both efficiency
and accuracy in malaria parasites detection.

YOLO. The YOLO family of detectors diverges from the traditional
two-step approach that relies on region-selection methods, instead
employing an end-to-end differentiable network that integrates bound-
ing box estimation with object identification. YOLO partitions the
input image into 𝑆 × 𝑆 constant-size grids, with a CNN predicting
bounding boxes and class labels for each grid. Bounding boxes with
confidence scores exceeding a specified threshold are selected to iden-
tify objects within the image. The CNN performs a single pass to
generate predictions, and following non-maximum suppression, it out-
puts the identified objects along with their corresponding bounding
boxes, ensuring that each object is detected uniquely.

YOLOv8 the eighth version of the popular YOLO architecture pro-
osed by the Ultralytics team encompasses a family of architectures and
odels for object detection that is pre-trained on the Common Objects

n Context (COCO) dataset [100].
This family consists of five distinct models that share a com-

on architectural framework but vary in terms of breadth, depth,
nd the number of trainable parameters. The models are designated
s YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l
large), and YOLOv8x (extra-large), each pre-trained on images with
esolutions of either 640 × 640 or 1280 × 1280 pixels. Notably, the

number of trainable parameters for each model is as follows: YOLOv8n
contains 3.2 million parameters, YOLOv8s has 11.2 million, YOLOv8m
includes 25.9 million, YOLOv8l comprises 43.7 million, and YOLOv8x
features 68.2 million parameters.

The architecture of YOLOv8 consists of three essential components,
imilar to those of other single-stage object detectors: the backbone,

neck, and prediction head.
The backbone serves as a pre-trained network specialized in feature

xtraction from the input image. This process involves reducing the
spatial resolution of the image while simultaneously enhancing the
resolution of the extracted features.

The neck component amalgamates the extracted features and gen-
erates three distinct scales of feature maps, commonly referred to
as feature pyramids. This design significantly enhances the model’s
capacity to generalize effectively across objects of varying sizes and
cales.

Subsequently, the prediction head utilizes anchor boxes on the fea-
ure maps, facilitating the detection of objects based on the previously
enerated feature representations.

Similar to YOLOv5, the YOLOv8 architecture employs the CSPDark-
et53 architecture with a Spatial Pyramid Pooling (SPP) layer [101] as

its backbone, utilizes the Path Aggregation Network (PANet) [102] as
the neck, and incorporates the YOLO detection head [94].

Despite the notable advancements in detection speed, it is widely
recognized that YOLO architectures encounter difficulties in detecting
small objects when compared to two-stage detectors [94,99]. This
challenge has been addressed in this study, particularly in scenarios
where the smallest parasites, such as the initial ring stages, are present.
In this case, they may not be sufficiently large to be effectively detected
by a conventional detector.
7

3.4. Attention mechanisms

In this section, we briefly define the concept of attention applied
in CV tasks (refer to Section 3.4.1), and present the attention modules
employed in this work (refer to Section 3.4.2).

3.4.1. Attention in computer vision
Attention mechanisms, inspired by human cognitive processes, have

ecome pivotal in computer vision. These mechanisms selectively fo-
us on salient input features, enhancing efficiency and accuracy in
erceptual processing.

Among the different types of attention mechanisms the one that
evolutionized mostly the computer vision field is the self attention
roposed by Vaswani et al. [75] in which the attention function links

queries with key–value pairs, producing outputs through weighted
ums. Formally, given input features 𝑥1, 𝑥2,… , 𝑥𝑛 and desired output
𝑦, attention is computed as:

Attention(𝑄, 𝐾 , 𝑉 ) = softmax
(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉 (1)

where 𝑄, 𝐾, and 𝑉 are query, key, and value matrices, respectively,
and 𝑑𝑘 is the key vector dimension [75].

3.4.2. Types of attention modules
Two prevalent attention mechanisms are spatial and channel at-

tention [103,104]. Spatial attention identifies crucial image positions,
hile channel attention focuses on inter-channel feature relationships.

The Convolutional Block Attention Module (CBAM) combines these
mechanisms sequentially, enhancing feature refinement [105].

The Normalized Attention Module (NAM) addresses varying dot-
product attention scores by normalizing them, enhancing training sta-
bility [106].

3.5. Performance measures

This section presents the performance measures used to evaluate
the detection and classification experiments in Sections 3.5.1 and 3.5.2,
respectively.

3.5.1. Detection measures
Object detection methodologies are typically assessed using the

ean average precision (mAP) metric and its various derivatives [107].
The concept of precision is grounded in the Intersection over Union
(IoU) metric, which quantifies detection accuracy. Specifically, IoU
s defined as the ratio of the area of overlap between the predicted
ounding box and the actual object to the total area encompassed by
oth.

When the IoU exceeds a predetermined threshold, the detection is
eemed correct and classified as a true positive (TP). Conversely, if the
oU falls below this threshold, the detection is categorized as a false
positive (FP). Furthermore, if the model fails to identify an object that
is present in the ground truth, this is referred to as a false negative (FN).

In terms of detection evaluation, Precision (PRE) is defined in
Eq. (2):

𝑃 𝑅𝐸 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 (2)

where:

• TP denotes the number of instances belonging to the positive class
that have been accurately predicted;

• FP refers to instances where a non-existent object is incorrectly
identified or an existing object is detected in an incorrect location;

• FN indicates instances where a ground truth bounding box is not
detected.
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In this study, the experimental evaluations were conducted using
ive variants of the mAP metric:

• AP0.50∶0.95 is assessed using ten different IoU thresholds, ranging
from 50% to 95% in increments of 5%;

• AP50 is evaluated at a single IoU threshold of 50%;
• APs represents the AP calculated for small objects, defined as

those with an area of less than 322 pixels;
• APm denotes the AP calculated for medium objects, characterized

by an area between 322 and 962 pixels;
• APL signifies the AP calculated for large objects, defined as those

with an area greater than 962 pixels.

In order to provide a clear and fair comparison, we computed
the 𝐴𝑃0.50∶0.95 and 𝐴𝑃50 using the official YOLOv8 framework [108]

hile for 𝐴𝑃𝑆 , 𝐴𝑃𝑀 , and 𝐴𝑃𝐿 we use the standard coco AP evaluation
ool [109].

3.5.2. Classification measures
The classification performance is evaluated using several measures,

ncluding accuracy, recall, precision, and the F1-score.
In the following subsections, we provide straightforward definitions

of these metrics as they pertain to binary classification problems,
followed by their generalizations for multiclass scenarios.

Standard definitions for binary classification problems. An example, de-
oted as 𝑒, is characterized by a pair ⟨𝑖, 𝑡⟩, where 𝑖 represents a list

of feature values and 𝑡 denotes the assigned category (i.e.,the target
category). A dataset 𝐷 is defined as a collection of such examples. When
the dataset 𝐷 contains two target categories, it constitutes a binary
classification problem. In this context, the categories are referred to as
negative and positive.

To assess the performance of a binary classifier on the dataset 𝐷,
ach instance is labeled as either negative or positive based on the

classifier’s output. Depending on the classification outcome and the
actual target value, an instance will contribute to one of the following
counts:

• True Negatives (TN): The number of instances belonging to the
negative class that have been accurately predicted;

• FP: The number of instances belonging to the negative class that
have been incorrectly predicted as positive;

• FN : The number of instances belonging to the positive class that
have been incorrectly predicted as negative;

• TP: The number of instances belonging to the positive class that
have been accurately predicted.

Based on these quantities, the measures to evaluate the classification
performance can be defined as follows:

• Accuracy (ACC) — The ratio of correctly classified instances to
the total number of instances:

𝐴𝐶 𝐶 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁 (3)

• Precision — The fraction of positive instances that are correctly
classified among all instances classified as positive:

𝑃 𝑅𝐸 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 (4)

• Recall (REC) — It measures the classifier’s ability to correctly
identify the positive class, calculated against FN:

𝑅𝐸 𝐶 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 (5)

• F1-score (F1) — Defined as the harmonic mean of precision and
recall:

𝐹1 = 2 ⋅ 𝑃 ⋅ 𝑅
𝑃 + 𝑅

(6)
8

Standard definitions for multiclass classification problems. As previously
mentioned, the measures outlined can also be generalized for multiclass
classification scenarios. A straightforward approach to achieve this is
to calculate the metrics for each category using a One-vs-Rest (OvR)
strategy. Following this process, the average value of each binary
measure is computed, yielding an informative metric for the multiclass
model.

Three distinct averaging methods can be employed: micro, macro,
nd weighted. In this study, macro averaging has been adopted.

In summary, for a classification problem involving K classes, the
etrics with macro averaging are calculated as follows:

• Macro Average Precision (where 𝑃𝑘 denotes the precision for class
k):

𝑀 𝑎𝑐 𝑟𝑜𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 =
∑𝐾

𝑘=1 𝑃𝑘

𝐾
(7)

• Macro Average Recall (where 𝑆 𝐸 𝑁𝑘 denotes the sensitivity for
class k):

𝑀 𝑎𝑐 𝑟𝑜𝑅𝑒𝑐 𝑎𝑙 𝑙 =
∑𝐾

𝑘=1 𝑆 𝐸 𝑁𝑘

𝐾
(8)

• Macro Average F1-score (where P and R denote the macro average
precision and recall, respectively):

𝑀 𝑎𝑐 𝑟𝑜𝐹1 = 2 ⋅ 𝑃 ⋅ 𝑅
𝑃 + 𝑅

(9)

4. Proposed architectures

As discussed in Section 1, malaria is a life-threatening infectious
isease that poses a significant threat to human life globally. The
mportance of accurate diagnosis and timely treatment cannot be over-
tated, as these are critical factors in reducing the high mortality rates
ssociated with the disease. However, the current standard method of
anually examining blood smears, which relies heavily on the expertise

f skilled hematologists, is labor-intensive and susceptible to errors,
articularly in resource-limited regions. This highlights the urgent need
or more efficient and reliable diagnostic techniques.

In response to this need, this section presents the proposed method-
ologies for detecting and classifying malaria parasites in microscopic
blood smear images. We have developed several innovative DL ar-
chitectures tailored for the detection of malaria parasites in full-sized
images, addressing the limitations of current diagnostic approaches.

The primary impetus for the development of these novel DL-based
rchitectural models stems from the critical importance of early malaria
etection for effective treatment and management. Accurate detection
f malaria parasites across all their life stages is essential for proper

diagnosis. This work proposes a novel pipeline designed to first detect
parasites in their various sizes and stages and then classify them accord-
ngly. Accurate identification is essential to ensure prompt treatment,

which directly impacts patient outcomes.
To tackle the challenge of detecting parasites of different sizes even

uring the initial stages of infection, we have introduced three novel
DL-based architectures: YOLO Para SP (described in Section 4.1), YOLO
ara SMP (described in Section 4.2), and YOLO Para AP (described

in Section 4.3).
These models have been customized and integrated into enhanced

versions of the YOLOv8 framework with the following purposes:

• YOLO Para SP: optimized for detecting small parasites (ring
stage).

• YOLO Para SMP: designed for both small and medium-sized
parasites.

• YOLO Para AP: capable of detecting parasites of all sizes and
stages.
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Fig. 3. YOLO Para SP architecture.

The YOLO Para series introduces several innovative enhancements
specifically designed to improve the detection of parasites, with the
ultimate goal of advancing malaria diagnostics. Each architecture incor-
porates multiple prediction heads, Swin Transformer-enhanced layers,
and attention mechanisms to improve detection and classification ac-
curacy, particularly for challenging cases such as low parasitemia or
sources variability.

For clarity, the following abbreviations will be used throughout this
text from now on: SP stands for Small-sized Parasites, SMP denotes Small
and Medium-sized Parasites, and AP represents All-sized Parasites.

4.1. YOLO Para SP

The architectural design of YOLO Para SP is illustrated in Fig. 3.
This model integrates NAM and C3 modules, enhanced with Swin
Transformer layers, into the YOLOv8 architecture, resulting in a highly
advanced design optimized for detecting small parasites as shown by
our previous work [21,22].

To boost the performance of YOLO Para SP, features extracted from
the CBAM (Convolutional Block Attention Module) layers are fused
with those derived from sequential C3STR (C3 with Swin Transformer)
layers. This specialized feature fusion enhances the model’s ability to
detect small objects. Additionally, the NAM (Normalization and Atten-
tion Mechanism) module assigns higher weights to the most critical
features while diminishing the importance of less relevant ones, thereby
enriching the overall feature representation.

The lower layers of YOLO Para SP focus on extracting less refined
features at a higher resolution, which is essential for detecting parasites
that occupy only a few pixels in the image. Conversely, the higher-level
layers excel in identifying medium-sized parasites but may lose some
small parasite information due to the lower resolution of feature maps
produced by convolution.

These enhancements in the YOLO Para SP architecture are aimed
at improving the detection of parasites in full-size images, particularly
focusing on the accuracy and efficiency of identifying small parasites.

4.2. YOLO Para SMP

Building upon the foundation laid by YOLO Para SP, the YOLO Para
SMP architecture, shown in Fig. 4, introduces an additional prediction
head, enhancing the model’s capability to detect a broader range of
parasite sizes. While retaining the core innovations of YOLO Para SP,
such as the integration of NAM and C3STR modules, YOLO Para SMP
is particularly optimized for detecting both small and medium-sized
parasites. The additional prediction head is specifically designed to
9

Fig. 4. YOLO Para SMP architecture.

Fig. 5. YOLO Para AP architecture.

improve the model’s sensitivity to medium-sized objects, ensuring a
more comprehensive detection across different parasite scales. This
makes YOLO Para SMP particularly effective in scenarios where par-
asites of varying sizes need to be identified simultaneously, enhancing
the overall robustness and accuracy of malaria diagnostics.

4.3. YOLO Para AP

The YOLO Para AP model, illustrated in Fig. 5, extends YOLO Para
SP and YOLO Para SMP architectures even further by incorporating
five prediction heads. This expanded configuration enables the model
to detect a full spectrum of parasite sizes, from the smallest ring-
stage parasites to larger forms that may appear in advanced stages of
malaria. By adding multiple prediction heads, YOLO Para AP provides a
highly versatile detection framework capable of accurately identifying
objects across a wide range of scales. This architecture is particularly
valuable in clinical settings where a diverse range of parasite sizes
may be present within the same blood smear, ensuring that no critical
details are overlooked during the diagnostic process. The comprehen-
sive nature of YOLO Para AP makes it the most robust and versatile
model in the YOLO Para series, suitable for a wide array of diagnostic
applications.

5. Experimental evaluation

In this section, we present a comprehensive evaluation of our pro-
posed framework for the detection and classification of malaria para-
sites in full-size blood smear images. First, the experimental setup is
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Table 4
Hyperparameters for detection models training.

Hyperparameter Value Description

Learning rate 0.01 Step size for gradient descent
Batch size 2 Number of samples per mini-batch
Dropout rate 0.1 Probability of dropping a neuron
Optimizer Adam Optimization algorithm
Weight decay 5e−4 Regularization strength
Epochs 20 Number of training epochs
Warmup epochs 3 Number of warmup epochs
Image size 1280 Image resize size

Table 5
Augmentation strategies employed on the MP-IDB [30] detection task to address data
imitations, along with their associated probabilities.
Augmentation Parameters Probability

Rotation Range iterations: [0, 3] 1
Gaussian Noise Variance range: [50, 100] 0.3
HSV - Hue Shift limit: 20 0.3
HSV - Saturation Shift limit: 30 0.3
HSV - Value Shift limit: 20 0.3

described in Section 5.1. Then, we present the experimental results,
btained on M5, IML, and MP-IDB in Sections 5.2 to 5.4, conducted to
valuate the performance of the proposed models across the following

three dimensions:

(i) Parasite detection: to evaluate the ability to localize parasites
in full-size images, as presented in Sections 5.2.1, 5.3.1 and 5.4.1
for M5, IML, and MP-IDB and its subtypes, respectively.

(ii) Parasite stage classification: to measure the capability to clas-
sify parasites into life stages (ring, trophozoite, schizont, game-
tocyte) from their single-cell image representation, as indicated
in Sections 5.2.2, 5.3.2 and 5.4.2 for M5, IML and MP-IDB and
its subtypes, respectively.

(iii) Generalizability under a real-world clinical scenario: to val-
idate the robustness of the models across a real-world envi-
ronment such as the one represented by the three different
magnifications and microscope qualities provided by the M5
dataset, which exhibit distinct characteristics in Section 5.5.

5.1. Experimental setup

The framework proposed in this work and the experimental eval-
uations are aimed at detecting and classifying malaria parasites in
ull-sized images. The datasets used consist of high-resolution images of
ed blood cells, both infected and uninfected, covering various stages of
alaria parasites, such as ring, trophozoite, schizont, and gametocyte.

Here, we detail the detection and classification setups, comprising
yperparameters and implementation choices, used for the evaluations.

Datasets splits.
To keep our code reproducible, we maintained the same splits

provided by the authors of the datasets if provided or, otherwise, used
he same codebases to reproduce the splitting technique used by other
orks. In detail, we use the same split modalities of [21,22] for the MP-

DB dataset while we follow the splits of the proposing works [46,85]
or IML and M5. We employ a dropout value of 0.1% for classification

and detection to mitigate overfitting in our strategies.

Detection hyperparameters and augmentations. Table 4 lists the
hyperparameters for training the detection models. We employed the
automatic hyperparameter selection process proposed by the YOLOv8
framework on our largest model, YOLO Para AP, and then applied the
same parameters for our other models to maintain consistency across all
10

our experiments. To enhance detection performance, as demonstrated
Table 6
Augmentation strategies used on every single dataset for the classification task, with
the associated probabilities.

Augmentation Parameters Probability

Rotation Range iterations: [0, 3] 1
Color jitter Brightness: 0.2, contrast: 0.2 0.6
Gaussian blur Kernel size: (3, 3) 0.4
Horizontal flip – 0.5
vertical flip – 0.5
Random crop Crop size: 224 × 224 0.5

Table 7
Hyperparameters applied to train classification algorithms.

Hyperparameter Value Description

Learning rate 1e−4 Step size for gradient descent
Batch size 16 Number of samples per mini-batch
Dropout rate 0.1 Probability of dropping a neuron
Optimizer AdamW Optimization algorithm
Weight decay 1e−2 Regularization strength
Epochs 40 Number of training epochs

in previous work [23], the MP-IDB was oversampled using the augmen-
tation strategy outlined in Table 5, resulting in 35 images per original
image. All experiments were conducted on this augmented dataset.
Augmentations to the IML [46] and M5 [85] datasets were not required
due to their already extensive image collections. Similarly to previous
works [21,22,24], we employ a simpler single-class detection paradigm
than a multi-class train approach. We, therefore, train our models to
distinguish between parasitized versus healthy red blood cells instead
of discriminating between specific malaria life stages among healthy
cells

Classification hyperparameters. Table 7 shows the hyperparame-
ters used for training the classification models. These parameters re-
mained unchanged throughout the entire evaluation procedure to en-
sure fairness. We also report in Table 6 the full set of classification
augmentations used during the train process.

Experiments were conducted on a workstation with an Intel(R)
ore(TM) i5-9400f CPU running at 4.1 GHz, 32 GB RAM, and an
VIDIA RTX 3060 GPU with 12 GB of memory. The performance of

he models was evaluated using the performance measures presented
in Section 3.5.

Models selection. We have chosen specific DL architectures for the
tage classification task to highlight the capabilities of the latest con-

volutional and transformer-based technologies against the proposal
ramework, either by using them for comparison purposes or as the
ackbone of the proposed framework.

In particular, the exploited CNN architectures were InternImage
86], with tiny (internimage-t) and small (internimage-s) variants, and
ConvNextV2 [87], which includes tiny (convnextv2-t) and base
convnextv2-b) models. Instead, the following ViT-based architectures
ere used: Dino [88], with small (dino-s) and base (dino-b) versions;

SwinV2 [110], featuring tiny (swinv2-t) and base (swinv2-b) config-
urations; and ViT [89], which includes base (vit-b) and large (vit-l)

odels.

5.2. Results on M5

This subsection presents the results obtained on the M5 [85].

5.2.1. Detection results
As presented in Table 8 the produced results showcase the per-

formances of the different YOLO Para models in comparison to the
aseline ones. The best results in terms of AP0.50∶0.95 were reached by

the YOLO Para SMP model and YOLO Para SP model, both reaching an

AP0.50∶0.95 score of 70%.
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Table 8
Experimental results obtained on the M5 dataset [85] The reported performance metrics
nclude Average Precision at different Intersection over Union thresholds. The number
f parameters for each model is also provided.
Model AP0.50∶0.95 AP50 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿 Params (M)

YOLO PAM [22] 0.70 0.94 – – 0.70 48
YOLOv8m 0.69 0.95 – – 0.69 34
YOLOv8l 0.68 0.93 – – 0.68 77
YOLO Para SP 0.70 0.95 – – 0.70 39
YOLO Para SMP 0.71 0.96 – – 0.71 51
YOLO Para AP 0.68 0.94 – – 0.68 68

YOLO SPAM++ [21] 0.70 0.95 – – 0.70 30
YOLO SPAM [21] 0.67 0.93 – – 0.67 23
YOLOv5m 0.69 0.94 – – 0.69 25
YOLOv5l 0.68 0.93 – – 0.68 53

Table 9
Experimental results on the M5 dataset [85] for the Falciparum stage classification task.
The models were trained on the original crops from the training set, and evaluated on
he detected crops from the test set.
Model ACC Macro F1 Macro PRE Macro REC Params (M)

internimage-t 0.91 0.58 0.59 0.58 29
internimage-s 0.72 0.34 0.36 0.33 50

dino-s 0.50 0.34 0.38 0.40 21
dino-b 0.90 0.53 0.53 0.52 85

convnextv2-t 0.89 0.50 0.50 0.51 27
convnextv2-b 0.89 0.52 0.59 0.49 87

swinv2-t 0.88 0.54 0.53 0.55 27
swinv2-b 0.91 0.67 0.88 0.61 86

vit-b 0.91 0.65 0.69 0.62 86
vit-l 0.90 0.54 0.55 0.54 303

Table 10
Experimental results obtained on the IML dataset [46]. The reported performance
metrics include Average Precision at different IoU thresholds. The number of parameters
for each model is also provided.

Model AP0.50∶0.95 AP50 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿 Params (M)

YOLO PAM [22] 0.599 0.918 – 0.600 0.650 48
YOLOv8m 0.562 0.892 – 0.555 0.640 34
YOLOv8l 0.571 0.901 – 0.565 0.655 77
YOLO Para SP 0.597 0.911 – 0.590 0.655 39
YOLO Para SMP 0.674 0.944 – 0.670 0.710 51
YOLO Para AP 0.626 0.908 – 0.620 0.675 68

YOLO SPAM++ [21] 0.615 0.869 – 0.610 0.640 30
YOLO SPAM [21] 0.62 0.891 – 0.615 0.640 23
YOLOv5m 0.604 0.865 – 0.600 0.625 25
YOLOv5l 0.591 0.83 – 0.585 0.605 53

5.2.2. Classification results
The classification results for the stage classification task on the M5

dataset are depicted in Table 9. The best results are achieved using the
Swinv2 base model, reaching an F1 score of 67%.

5.3. Results on IML

This subsection gives the results obtained on the IML [46].

5.3.1. Detection results
As presented in Table 10 the produced results showcase the per-

formances of the different YOLO Para models in comparison to the
baseline ones. The best results in terms of AP0.50∶0.95 were reached by
the YOLO Para SMP model, reaching an AP0.50∶0.95 score of 67.4%.

5.3.2. Classification results
The classification results for the stage classification task on the IML

dataset are depicted in Table 11, the best results are achieved using
Vit base, reaching a F1 score of 72.7%.
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Table 11
Experimental results on the IML dataset [46] for the Vivax stage classification task.
The models were trained on the original crops from the training set and evaluated on
the detected crops from the test set.

Model ACC Macro F1 Macro PRE Macro REC Params (M)

internimage-t 0.653 0.561 0.558 0.616 29
internimage-s 0.295 0.224 0.246 0.224 50

dino-s 0.537 0.416 0.442 0.413 21
dino-b 0.758 0.57 0.564 0.577 85

convnextv2-t 0.705 0.536 0.556 0.543 27
convnextv2-b 0.747 0.561 0.555 0.57 87

swinv2-t 0.737 0.555 0.55 0.562 27
swinv2-b 0.747 0.563 0.589 0.577 86

vit-b 0.758 0.727 0.813 0.688 86
vit-l 0.747 0.562 0.557 0.572 303

Table 12
Experimental results obtained on the MP-IDB dataset [30] on the Falciparum class. The
eported performance metrics include Average Precision at different IoU thresholds. The
umber of parameters for each model is also provided.
Model AP0.50∶0.95 AP50 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿 Params (M)

YOLO PAM [22] 0.836 0.989 0.76 0.8 1 48
YOLOv8m 0.789 0.983 0.7 0.77 0.9 34
YOLOv8l 0.809 0.985 0.73 0.79 0.9 77
YOLO Para SP 0.858 0.991 0.78 0.83 0.8 39
YOLO Para SMP 0.857 0.991 0.78 0.82 1 51
YOLO Para AP 0.865 0.991 0.79 0.83 1 68

YOLO SPAM++ [21] 0.846 0.991 0.755 0.803 1 30
YOLO SPAM [21] 0.747 0.987 0.656 0.698 1 23
YOLOv5m 0.811 0.985 0.72 0.79 0.9 25
YOLOv5l 0.782 0.982 0.69 0.77 0.9 53

Table 13
Experimental results obtained on the MP-IDB dataset [30] on the Malariae class. The
reported performance metrics include Average Precision at different IoU thresholds.
The number of parameters for each model is also provided.

Model AP0.50∶0.95 AP50 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿 Params (M)

YOLO PAM [22] 0.788 0.972 0.34 0.74 – 48
YOLOv8m 0.929 0.994 0.9 0.84 – 34
YOLOv8l 0.913 0.993 0.8 0.84 – 77
YOLO Para SP 0.95 0.995 0.83 0.85 – 39
YOLO Para SMP 0.946 0.995 0.93 0.84 – 51
YOLO Para AP 0.949 0.995 0.8 0.84 – 68

YOLO SPAM++ [21] 0.936 0.985 0.85 0.842 – 30
YOLO SPAM [21] 0.941 0.995 0.88 0.859 – 23
YOLOv5m 0.872 0.98 0.75 0.78 – 25
YOLOv5l 0.897 0.995 0.85 0.83 – 53

5.4. Results on MP-IDB

This subsection provides a comprehensive set of tables that display
the results obtained from the MP-IDB dataset [30].

5.4.1. Detection results
As depicted in Tables 12 to 15 the best detection results for the

P-IDB dataset over the different species are reached using YOLO Para
MP and YOLO Para AP models. The first one reaches the new state-of-
he-art results for the P. Ovale class while the YOLO Para AP reaches

also state-of-the-art results for the P. Falciparum, P. Malariae, and P.
ivax classes.

5.4.2. Classification results
The classification results for the stage classification task on the MP-

IDB dataset P. Falciparum class are depicted in Table 16, the best
results are achieved using a ViT base reaching an F1 of 79%.
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Fig. 6. Comparison of predictions from the trained YOLO Para AP architecture with ground truth annotations. The left column shows the model’s predictions, which are highlighted
with green bounding boxes, while the right column displays the ground truth, with red bounding boxes marking the malaria parasites. The first row presents images from the
MP-IDB dataset, the second row from the IML dataset, and the third row from the M5 dataset.
5.5. Generalizability analysis of YOLO Para under a real-world clinical
scenario

In this section, we present our efforts toward developing improved
architectures for malaria identification. Our evaluation includes not
only performance measures obtained by training and testing on the
same source but also an analysis of performance correlations across
different microscope types and magnification levels. To effectively
assess our model’s capabilities in such scenarios, we utilize the M5
dataset [85], which uniquely includes various modalities absent in
12
other datasets.
We report our findings in Table 17, where the tests were conducted

on both the YOLO Para SMP model and the YOLO model used in
the [85] evaluation for a fair comparison. Our model demonstrates
robust performance across diverse evaluation datasets, showing that
it can generalize well to variations in microscope quality without
requiring domain generalization techniques. Furthermore, we observe
that performance decreases slightly under substantial magnification
changes, such as from 1000× to 400×, with a 6.88% drop from 400×
to 1000× and a 10.65% drop from 1000× to 400×.



Computers in Biology and Medicine 186 (2025) 109704L. Zedda et al.

r
T

r
T

o

c
t
d

p

w
a
u

m
t

t

Table 14
Experimental results obtained on the MP-IDB dataset [30] on the Ovale class. The
eported performance metrics include Average Precision at different IoU thresholds.
he number of parameters for each model is also provided.
Model AP0.50∶0.95 AP50 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿 Params (M)

YOLO PAM [22] 0.944 0.995 – 0.85 – 48
YOLOv8m 0.897 0.995 – 0.83 – 34
YOLOv8l 0.776 0.993 – 0.72 – 77
YOLO Para SP 0.932 0.995 – 0.83 – 39
YOLO Para SMP 0.951 0.995 – 0.86 – 51
YOLO Para AP 0.935 0.995 – 0.85 – 68

YOLO SPAM++ [21] 0.874 0.928 – 0.792 – 30
YOLO SPAM [21] 0.938 0.995 – 0.839 – 23
YOLOv5m 0.902 0.995 – 0.83 – 25
YOLOv5l 0.9 0.995 – 0.81 – 53

Table 15
Experimental results obtained on the MP-IDB dataset [30] on the Vivax class. The
eported performance metrics include Average Precision at different IoU thresholds.
he number of parameters for each model is also provided.
Model AP0.50∶0.95 AP50 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿 Params (M)

YOLO PAM [22] 0.872 0.942 0.19 0.86 0.94 48
YOLOv8m 0.859 0.937 0.19 0.83 0.96 34
YOLOv8l 0.836 0.936 0.17 0.835 0.930 77
YOLO Para SP 0.866 0.94 0.22 0.83 0.95 39
YOLO Para SMP 0.875 0.944 0.16 0.83 0.91 51
YOLO Para AP 0.883 0.946 0.19 0.86 0.95 68

YOLO SPAM++ [21] 0.875 0.935 0.152 0.81 0.89 30
YOLO SPAM [21] 0.836 0.929 0.152 0.792 0.898 23
YOLOv5m 0.826 0.935 0.16 0.83 0.95 25
YOLOv5l 0.831 0.932 0.156 0.811 0.924 53

Table 16
Experimental results on the MP-IDB dataset [30] for the Falciparum stage classification
task. The models were trained on the original crops from the training set and evaluated
n the detected crops from the test set.
Model ACC Macro F1 Macro PRE Macro REC Params (M)

internimage-t 0.794 0.564 0.532 0.777 29
internimage-s 0.886 0.627 0.615 0.682 50

dino-s 0.938 0.649 0.796 0.579 21
dino-b 0.931 0.747 0.705 0.831 85

convnextv2-t 0.858 0.582 0.577 0.769 27
convnextv2-b 0.909 0.719 0.704 0.784 87

swinv2-t 0.681 0.681 0.742 0.802 27
swinv2-b 0.58 0.618 0.742 0.731 86

vit-b 0.901 0.79 0.798 0.85 86
vit-l 0.912 0.731 0.818 0.734 303

6. Discussion

This section discusses the results of the experimental evaluation
onducted. We start in Section 6.1 with the ablation study conducted
o better motivate the architectural design used in this study. Then, the
etection and classification experiment results are given in Sections 6.2

and 6.3. In addition, further analyses are provided in Sections 6.4 to
6.6, based on the parasite size, computational performance, and low
arasitemia results. Finally, in Section 6.7, we compare the obtained

results with those available from the literature work and give the final
insights from the experimentations in Section 6.8.

6.1. Ablation study on YOLO Para SMP architectural choices

To guide the architectural design of the YOLO Para architectures,
e conducted an ablation study evaluating the impact of different
ttention mechanisms on performance. Specifically, we tested config-
rations without CBAM, NAM and without C3STR blocks to assess how

these components contribute to the model’s robustness and accuracy
13
Table 17
AP0.50∶0.95 values for different train and test dataset combinations, grouped by testing
dataset using the M5 [85] dataset.

Model Train dataset AP0.50∶0.95

Test dataset: 100 × HCM

YOLO Para SMP 100 × HCM 0.17
YOLO [85] 100 × HCM 0.20
YOLO Para SMP 400 × HCM 0.05
YOLO [85] 400 × HCM 0.05
YOLO Para SMP 1000 × HCM 0.003
YOLO [85] 1000 × HCM 0.00
YOLO Para SMP 100 × LCM 0.09
YOLO Para SMP 400 × LCM 0.03
YOLO Para SMP 1000 × LCM 0.04

Test dataset: 400 × HCM

YOLO Para SMP 100 × HCM 0.06
YOLO [85] 100 × HCM 0.04
YOLO Para SMP 400 × HCM 0.60
YOLO [85] 400 × HCM 0.57
YOLO Para SMP 1000 × HCM 0.53
YOLO [85] 1000 × HCM 0.37
YOLO Para SMP 100 × LCM 0.08
YOLO Para SMP 400 × LCM 0.35
YOLO Para SMP 1000 × LCM 0.32

Test dataset: 1000 × HCM

YOLO Para SMP 100 × HCM 0.09
YOLO [85] 100 × HCM 0.11
YOLO Para SMP 400 × HCM 0.60
YOLO [85] 400 × HCM 0.55
YOLO Para SMP 1000 × HCM 0.71
YOLO [85] 1000 × HCM 0.63
YOLO Para SMP 100 × LCM 0.07
YOLO Para SMP 400 × LCM 0.29
YOLO Para SMP 1000 × LCM 0.32

Test dataset: 100 × LCM

YOLO Para SMP 100 × HCM 0.03
YOLO Para SMP 400 × HCM 0.01
YOLO Para SMP 1000 × HCM 0.0002
YOLO Para SMP 100 × LCM 0.09
YOLO Para SMP 400 × LCM 0.02
YOLO Para SMP 1000 × LCM 0.01

Test dataset: 400 × LCM

YOLO Para SMP 100 × HCM 0.08
YOLO Para SMP 400 × HCM 0.23
YOLO Para SMP 1000 × HCM 0.06
YOLO Para SMP 100 × LCM 0.13
YOLO Para SMP 400 × LCM 0.35
YOLO Para SMP 1000 × LCM 0.20

Test dataset: 1000 × LCM

YOLO Para SMP 100 × HCM 0.12
YOLO Para SMP 400 × HCM 0.27
YOLO Para SMP 1000 × HCM 0.13
YOLO Para SMP 100 × LCM 0.10
YOLO Para SMP 400 × LCM 0.34
YOLO Para SMP 1000 × LCM 0.46

on the M5 dataset [85] using the YOLO Para SMP as a guideline
odel. By isolating these factors, we aimed to identify the configuration

hat best supports generalization across diverse microscope types and
magnification levels.

As shown in Table 18, removing CBAM or NAM individually leads
to slight performance declines, while removing both results in the
largest drop in AP0.50∶0.95 score. These results suggest that both atten-
ion mechanisms contribute positively to the model’s performance and

that their combined use offers the best results for the architecture, the
C3STR module makes the biggest contribution in terms of performance
metrics and combined with the other attention modules provides the
best overall score.



Computers in Biology and Medicine 186 (2025) 109704L. Zedda et al.

Y
Y
T
d
a
d

d

t

i
p
i
a

n

r

o
m

l
d
r

f

o
T

o

Table 18
Performance of YOLO Para SMP on the M5 dataset [85] with different attention
strategies.

Attention strategy AP

YOLOv8m 0.690
YOLOv8m+CBAM 0.699
YOLOv8m+NAM 0.696
YOLOv8m+C3STR 0.705
YOLOv8m+NAM+CBAM 0.702
YOLO Para SMP 0.711

6.2. Detection results overview

As observable from Tables 8, 10 and 12 to 15 across all the different
detection experiments, one pattern emerges.

The models proposed in each experiment outperform the baseline
OLOv5 and YOLOv8 models. Specifically, the YOLO Para AP and
OLO Para SMP models tend to perform better across the novelties.
his is likely due to the fact that the majority of parasites in the
atasets are medium and small in size, which both architectures excel
t detecting. The YOLO Para SMP model is the best one for the M5
ataset, although the YOLO PAM [22] model comes in second.

In addition, we report a visual representation of the prediction
capabilities of the proposed YOLO Para AParchitecture across the used
atasets in Fig. 6

6.3. Stage classification results overview

In three classification experiments depicted in Tables 9, 11 and
16 the results show a clear pattern of better performances reached by
using transformer-based models. In particular, for larger datasets such
as M5 the Swinv2 transformer provided the best results while the plain
Vit base model outperformed all other methods in the other smaller
datasets.

6.4. Parasite size quantification

The subsequent analysis is devoted to diagnosing and quantifying
he dimensions of the detected parasites to better understand the results

obtained from the experimentations realized.
The results reported use common evaluation metrics at different ob-

ject sizes, such as 𝐴𝑃𝐿, 𝐴𝑃𝑆 , and 𝐴𝑃𝑀 , which are often considered the
standard for most evaluation protocols. However, these kinds of metrics
are insufficient in the case of parasites, which are often represented by
various shapes. In our previous work, a deep learning framework for
malaria detection focused on the issue of P. Falciparum detection [23]
n MP-IDB. Despite the fact that it produced state-of-the-art results, it
resented limitations in tiny ring stage parasite detection. Specifically,
t shows how one of the employed models (i.e.,YOLO SPAM++ [21])
ddresses the issues, reaching outstanding results.

The study of size quantification is important to define an appro-
priate concept of size and show the inherent differences within the
datasets. Different datasets can be obtained with varying types of equip-
ment, which often produce different brightness variations, but, more
importantly, different magnifications. To conduct this experiment, the
most effective approach is to calculate a histogram of the different
areas grown in the datasets. As shown by the results in Fig. 7, MP-IDB
presents tiny parasites compared to the others. In contrast, IML offers
the most significant area-related parasites, and, finally, M5 has the most
balanced distribution.

After these considerations and results, it is possible to define a
ew definition of small, medium, and large-sized parasites. Fig. 7(a)

shows that the areas can be empirically subdivided into three different
thresholds:

• less than 0.2 ∗ 1𝑒−2: small-sized parasites;
14

f

Table 19
Summary of off-the-shelf and proposed YOLO models with parameters (in millions),
GFLOPs, and inference speeds. Values evaluated on RTX 3060.

Model Parameters (M) GFLOPs Inference speed (ms)

YOLO Para SP 39 139.2 40.6
YOLO Para SMP 51 143.3 43.5
YOLO Para AP 68 163.4 73.1
YOLOv8m 34 86.0 25.9
YOLOv8l 77 192.8 45.9
YOLOv5m 25 64.6 25.6
YOLOv5l 53 135.6 34.0

• greater than 0.6 ∗ 1𝑒−2: large-sized parasites;
• otherwise: medium-sized parasites.

Further analysis was conducted on the best model for each dataset
using these new discrimination criteria, thus modifying the standard
COCO evaluation. According to Fig. 8, the overall best-performing
models for tiny parasites are YOLO Para SP and YOLO Para AP. These
esults can be justified by the addition, for both, of a prediction head

dedicated to the first backbone feature map, excluding the first channel
expansion convolution. There is no clear indication of which models for
other parasite sizes. However, on average, YOLO Para SMP obtained
excellent performance in almost all cases of study and is in line with
the best when it is not. As mentioned in the description of Fig. 4, this
model uses three prediction heads, none specialized for extremely small
r large objects. These results are predictable because each proposed
odel considers intermediate feature maps suitable for medium and

large objects (see Figs. 9 and 10).

6.5. Computational analysis

Despite improvements in reference metrics, our models that incor-
porate Swin Transformer-based modules experience increased GFLOPs,
as quantified in Table 19, which also affects inference speed. However,
arger off-the-shelf models like YOLOv5 and YOLOv8 large variants
emonstrate comparable performance, making them viable for near
eal-time applications.

6.6. Low parasitemia results discussion

Our proposed architectures not only outperform previous ad-hoc
models in detecting small parasites but also demonstrate remarkable
robustness in recognizing parasites under low parasitemia conditions.
This includes challenging classes such as P. Malariae and P. Ovale
in the MP-IDB dataset [30], where the parasite-to-image ratios are
as low as 1.16 and 1.13, respectively. This enhancement leads to
an improvement over previous state-of-the-art performance with an
increase in Average Precision by 0.8% and 0.7% for these classes. Key
strategies implemented to achieve these gains include tailored data aug-
mentation techniques to enhance detection in low-parasitemia cases,
which proved to be pivotal in the development process as described
in Table 4

6.7. Comparison with state of the art work

A comparison of the previous state of the art and our proposed
ramework is given in Tables 20 and 21 for the detection and clas-

sification tasks, respectively.
In Table 20, a significant improvement in terms of AP0.50∶0.95 is

bserved in every single dataset and also in each subset of MP-IDB.
hese results clearly show the superiority of the proposed framework

on the detection task.
As regards the classification performance, there are some important

bservations to note. First, the approaches presented in Table 21 do not
ollow the same evaluation procedure. In particular, Zedda et al. [24]
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Fig. 7. Comparison of the parasites’ sizes of the different adopted datasets [30,46,85].
Table 20
Comparison of our proposed framework against the state-of-the-art in terms of detection performance.
Dataset Species Work Reference model AP Increase AP%

M5 P. Falciparum Sultani et al. (2022) [85] Faster R-CNN 66.8 –
M5 P. Falciparum Proposed framework YOLO Para SMP 71.0 4.2

MP-IDB P. Falciparum Zedda et al. [21] YOLO SPAM++ 84.6 –
MP-IDB P. Falciparum Proposed framework YOLO Para AP 86.5 1.9

MP-IDB P. Malariae Zedda et al. [21] YOLO SPAM 94.1 –
MP-IDB P. Malariae Proposed framework YOLO Para AP0.50∶0.95 94.9 0.8

MP-IDB P. Ovale Zedda et al. [22] YOLO PAM 94.4 –
MP-IDB P. Ovale Proposed framework YOLO Para SMP 95.1 0.7

MP-IDB P. Vivax Zedda et al. [21] YOLO SPAM++ 87.5 –
MP-IDB P. Vivax Proposed framework YOLO Para AP 88.3 0.8

IML P. Vivax Proposed framework YOLO Pra SMP 67.4 –
Fig. 8. Average precision of small objects detection performances for each YOLO SPAM
model, in the figure are depicted the performances for MP-IDB P. Falciparum, P. Ovale,
P. Vivax, P. Malariae and M5 P. Falciparum.

and our approach are the only ones that perform the life-stage classi-
fication on the parasites detected by the detection framework rather
than on a test set sampled by the entire crops available. This was done
to ensure an overall quantification of the performance of the entire
framework by simulating a more realistic clinical scenario, where the
parasite crops are effectively provided after a first stage of analysis from
full-size images.

Although our classification method is not reported as the best-
performing in Table 21, we considered the results of 93.80% in terms
of accuracy highly satisfactory because of the previous considerations.
15
6.8. Significance and implications of the results

The experimental results demonstrate the proposed framework’s
ability to address key challenges in malaria diagnosis:

• Enhanced detection: YOLO Para SMP achieved up to a 23%
improvement in AP0.50∶0.95 over baseline methods for detecting
small parasites.

• Stage classification: the models accurately distinguished parasite
life stages, particularly on imbalanced datasets, through data
augmentation and attention-based architectures.

• Real-world adaptation the proposed framework is well-suited
for deployment in real-world clinical and low-resource settings by
addressing the typical variations encountered in the microscope
quality and magnification scenario provided by the M5 dataset.

• Comparison with traditional microscopy Traditional
microscopy is often the golden standard for malaria identification,
however, such technique is prone to human error and is highly
influenced by the experience of the medical personnel, in [112]
is it shown that the accuracy for the studied cases is 91%. Notably,
our models for the IML and MP-IDB reach near-perfect results
in terms of 𝐴𝑃50 not only emphasizing high accuracy but also
precision in the detected bounding boxes.

6.9. Limitations

Limitations from a clinical perspective. The proposed YOLO Para model
series has demonstrated promising results in accurately identifying
malaria parasites from Giemsa-stained slides. However, the clinical
context in which these models may be deployed poses some inherent
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Fig. 9. Average precision of medium sized objects detection performances for each YOLO SPAM model, in the figure are depicted the performances for MP-IDB P. Falciparum, P.
Ovale, P. Vivax, P. Malariae, M5 P. Falciparum and IML P. Vivax parasites.
Table 21
Comparison of performance with the state of the art on the classification task.

Work Task Method ACC (%)

Rahman et al. [33] Single cells stages classification VGG-19 85.18
Maity et al. [8] Segmentation+classification of ring stage ANN + CapsNet 95.46
Zedda et al. [24] Detection+classification of all stages YOLOv5 + DarkNet-53 96.05
Chen et al. [111] Segmentation+classification of types+classification of all stages U-Net + SDU-Net + MobileNetV1 98.83
Proposed approach Detection+classification of all stages YOLO Para AP + dino-s 93.80
Fig. 10. Average precision of large-sized objects detection performances for each YOLO
SPAM model, in the figure are depicted the performances for MP-IDB P. Falciparum,
P. Ovale, P. Vivax, P. Malariae, M5 P. Falciparum and IML P. Vivax parasites.

challenges.
One significant limitation of our work is the potential vulnera-

bility to false positives, particularly in distinguishing malaria from
other diseases that exhibit similar morphological features in blood
smears. For instance, other plasmodial infections or conditions such
as leukemias can present cells that may be misclassified as malaria
parasites (e.g.,altered red blood cells, irregular leukocytes).

To mitigate the risk of misdiagnosis in clinical settings with the
proposed approach, we propose some guidelines that can be pursued
in future developments of the current work: (i) future development of
the model could benefit from the inclusion of a broader range of data
that encompasses various diseases characterized by similar appearances
to enhance the model’s ability to discern malaria parasites amidst other
objects; (ii) implementing a multi-class classification system that does
not solely focus on malaria detection could improve the model’s speci-
ficity while learning to differentiate not just the target species but also
various aberrant blood cell presentations indicative of other diseases;
(iii) before widespread deployment of our model in clinical practice,
rigorous validation against comprehensive control datasets should be
conducted. Collaborations with clinical experts in hematology may
provide more robust training and validation phases, ensuring that the
model can accurately discern malaria from other conditions; (iv) when
incorporated into applications or software utilized in clinical settings,
including contextual clinical guidelines and decision-support tools, can
be advantageous. This would enable practitioners to interpret results
16
in conjunction with traditional diagnostics, thereby reducing the risks
associated with potential misclassification.

Limitations from the datasets perspective. In this study, we introduced a
deep learning framework for the detection and classification of malaria
parasites using Giemsa-stained blood smear images from three pub-
licly available datasets. While our model demonstrates significant im-
provements in detection accuracy, the quality of the input images
considerably impacts the model’s performance.

In particular, the public datasets used in this research exhibit var-
ious realistic imaging challenges, including but not limited to incon-
sistent background illumination, variations in stain quality, and dif-
ferences in imaging conditions (e.g., magnification and microscope
type). To maximize the performance of our model series, we provide
some guidelines to follow: (i) for improved detection accuracy, it is
recommended that images be captured against a consistent background
color. A white or neutral background minimizes visual distractions and
enhances the model’s ability to focus on the features of interest. This is
particularly important when the images originate from varied sources
where background consistency may not be guaranteed; (ii) ensuring
proper white balance during image acquisition is also important. Im-
ages that are too bright or too dark can compromise the visibility
of malaria parasites. Implementing preprocessing steps to standardize
brightness and contrast across images can help enhance feature extrac-
tion by the model; (iii) rigorous quality control measures should be
implemented to assess whether images meet the established criteria for
inclusivity within the training and testing datasets. This may involve
filtering out images with notable artifacts or misclassifications before
model training; (iv) it is mandatory to develop a standard operating
procedure for image capture that outlines best practices, including
optimal lighting conditions, camera settings, and image formats. Clear
guidance on minimizing background noise can facilitate the collection
of high-quality images that enhance the robustness of the model.

Future work will include extensive validation under varied imag-
ing conditions to further refine these guidelines and optimize model
performance.

7. Conclusion

This study presents a novel computer vision-based pipeline for
malaria parasite detection, integrating attention mechanisms and the
YOLO architecture to achieve superior detection and classification of
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malaria parasites across various life stages and species. The experi-
mental evaluation demonstrates that the proposed YOLO Para series,
particularly the YOLO Para SMP and YOLO Para AP models, consis-
ently outperform baseline approaches in terms of precision, recall, and
1 scores on three benchmark datasets (M5, IML, and MP-IDB). These
esults highlight the robustness of the proposed architecture, especially
n detecting small-scale ring-stage parasites critical for early diagnosis.
he performance gains observed are attributed to key architectural

nnovations, such as the use of attention mechanisms to enhance feature
xtraction, multi-head configurations for scale-aware detection, and
ugmentation strategies for handling class imbalance. In particular,
he YOLO Para AP model exhibited a remarkable ability to generalize
cross multiple datasets with diverse imaging characteristics, empha-
izing its potential for real-world applications in resource-constrained
nvironments.

Despite our models’ small computational trade-off, we show that
hey also improve upon the performances in the malaria detection
ield without sacrificing the near-real-time capabilities of off-the-shelf

models. They also showed strong capabilities across different scenarios,
such as low-parasitemia for the MP-IDB’s P. Malariae and P. Ovale
classes and, most importantly, strong generalization capabilities across
microscope quality and magnification, as experimented on the M5
dataset.

The achievements presented in this study have also revealed av-
enues for further research. Challenges such as handling extremely low
parasitemia levels, detecting mixed infections, and adapting models
for low-cost mobile imaging devices remain largely unexplored. Fu-
ture directions could include: (1) refining existing architectures or
eveloping new transformer-based models to enhance accuracy and
fficiency. Most importantly, the focus will be on developing more

lightweight architectures suitable for fully real-time scenarios without
acrificing the near-optimal performance achieved by our YOLO Para

architectures. A key aspect of this development could be the integration
f novel fast attention mechanisms, such as Flash Attention [113,114];

(2) obtain valuable insights into their generalization and robustness by
testing these models on benchmark datasets like COCO with possible
investigations on domain adaptation techniques to improve model
robustness across varying imaging conditions and devices. Examples
include the incorporation of contrastive pretraining [82] into our down-
tream pipelines, facilitating smoother adaptation for detection even
n new domains and the expansion of datasets to include additional
lasmodium species and diverse geographic variations; (3) exploring
he transferability of these models to related tasks, such as detecting
ther types of parasites or objects in medical images, is also a key
rea for further research. This could involve fine-tuning new datasets
r designing specialized models, for example, investigating further
mprovements of transformer-based architectures to capture long-range
ependencies for more precise classification of parasite stages; (4)
mproving interpretability and explainability by visualizing learned
eatures to enhance the understanding of model predictions.

Acronyms

See Table 22.
Table 22
List of acronyms used in this paper.

Acronym Meaning

DL Deep Learning
CNN Convolutional Neural Network
YOLO You Only Look Once
CAD Computer-Aided Detection
CNN Convolutional Neural Network
SVM Support Vector Machine
RDT Rapid Diagnostic Test
PCR Polymerase Chain Reaction

(continued on next page)
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Table 22 (continued).
Acronym Meaning

WHO World Health Organization
HBHI High Burden to High Impact
ViT Vision Transformer
CBAM Convolutional Block Attention Module
NAM Normalized Attention Module
SPP Spatial Pyramid Pooling
PANet Path Aggregation Network
HCM High-Cost Microscope
LCM Low-Cost Microscope
GPU Graphics Processing Unit
GFLOPs Giga Floating Point Operations
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