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Abstract. We consider the class of all linear functionals L on a unital com-
mutative real algebra A that can be represented as an integral w.r.t. to a
Radon measure with compact support in the character space of A. Exploit-
ing a recent generalization of the classical Nussbaum theorem, we establish a
new characterization of this class of moment functionals solely in terms of a
growth condition intrinsic to the given linear functional. To the best of our
knowledge, our result is the first to exactly identify the compact support of the
representing Radon measure. We also describe the compact support in terms of
the largest Archimedean quadratic module on which L is non-negative and in
terms of the smallest submultiplicative seminorm w.r.t. which L is continuous.
Moreover, we derive a formula for computing the measure of each singleton in
the compact support, which in turn gives a necessary and sufficient condition
for the support to be a finite set. Finally, some aspects related to our growth
condition for topological algebras are also investigated.

1. Introduction

In this article we investigate the following instance of the moment problem for
a unital commutative (not necessarily finitely generated) R–algebra A. We always
assume that the character space of A, i.e., the set X(A) of all R–algebras ho-
momorphisms from A to R, is non-empty and we endow X(A) with the weakest
(Hausdorff) topology τX(A) such that for each a ∈ A the function â : X(A) → R,
α 7→ α(a) is continuous. Our main question is the following.

Question 1.1. Let A be a unital commutative R–algebra with X(A) non-empty.
Given a linear functional L : A → R with L(1) = 1, does there exist a Radon
measure ν on X(A) with

L(a) =

∫
X(A)

â(α)dν(α) for all a ∈ A (1.1)

such that the support of ν is compact?

If a Radon measure ν as in (1.1) does exist, then we call ν a representing Radon
measure for L and we say that L is a moment functional. In fact, if the support
of a representing Radon measure is compact, then the representation in (1.1) is
unique (see [24, Section 3.3]). We recall that a Radon measure ν on X(A) is a non-
negative measure on the Borel σ–algebra w.r.t. τX(A) that is locally finite and inner
regular w.r.t. compact subsets of X(A). The support of ν, denoted by supp(ν), is
the smallest closed subset C of X(A) for which ν(X(A) \ C) = 0 holds.
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We give a complete characterization of linear functionals that admit represent-
ing Radon measures with compact support in terms of a new growth condition
(see (1.2)) intrinsic to the given linear functional. Since this growth condition im-
plies Carleman’s condition, we can use the recent general version of the classical
Nussbaum theorem in [14, Theorem 3.17] to establish the existence of a unique
representing Radon measure. The main novelty is that our growth condition sur-
prisingly allows us to exactly identify the compact support of the representing
Radon measure (see (1.3)). More precisely, we establish the following main result
in Section 3.

Theorem 1.2. Let L : A → R be linear with L(A2) ⊆ [0,∞) and L(1) = 1. Then
there exists a unique representing Radon measure νL for L with compact support if
and only if

sup
n∈N

2n
√
L(a2n) <∞ for all a ∈ A. (1.2)

Moreover, in this case,

supp(νL) =

{
α ∈ X(A) : |α(a)| ≤ sup

n∈N

2n
√
L(a2n) for all a ∈ A

}
. (1.3)

To the best of our knowledge, (1.3) is the first exact and explicit description of the
compact support of the representing Radon measure νL. Indeed, linear function-
als that admit representing Radon measures with compact support have already
been studied, mostly in relation to their non-negativity on Archimedean quadratic
modules (see [16] and also [6, 7, 17, 23, 25, 26], [27, Chapter 12]) and more re-
cently in relation to their continuity w.r.t. submultiplicative seminorms (see [10]
and also [4, 11, 12, 13, 20, 21]). However, those results focus on the existence of a
representing Radon measure while the support is only shown to be contained in a
compact set associated with the considered quadratic module resp. submultiplica-
tive seminorm.

In Sections 3.1, 3.2, and 3.3, we analyze the equivalence of our growth con-
dition (1.2), the positivity condition in [16], and the continuity condition in [10]
independently of the representing Radon measure νL. This structural analysis al-
lows us, in Section 3.4, to establish (1.3) and to characterize supp(νL) in terms of
the largest Archimedean quadratic module on which L is non-negative as well as
in terms of the smallest submultiplicative seminorm w.r.t. which L is continuous
(see Corollary 3.13). For the convenience of the reader, we collect in Corollary 3.1 all
the above mentioned equivalent conditions and the characterizations of supp(νL).
In Section 3.4, we also present an explicit formula for computing the measure of
singletons in supp(νL) (see Theorem 3.14). From this result, we derive a sufficient
condition for supp(νL) to be countable (see Corollary 3.16) as well as a necessary
and sufficient condition for supp(νL) to be finite (see Corollary 3.17).

In Section 4.1, we construct and compare two locally convex topologies on A
closely related to the growth condition (1.2) and compatible with the algebraic
structure of A (see Propositions 4.1 and 4.2). In Section 4.2, we show that if A is
endowed with a locally convex topology belonging to a certain class, then assuming
the growth condition (1.3) only on the generating elements of a dense subalgebra
of A is sufficient for the existence of νL (see Corollary 4.7).

2. Preliminaries

In this section we collect some fundamental concepts, notations, and results
which we will repeatedly use in the following (see e.g., [27], [24]).

Throughout this article A denotes a unital commutative R–algebra with non-empty
character space. Recall that the topology τX(A) is Hausdorff and that the collection
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of sets of the form

U(a) := {α ∈ X(A) : â(α) > 0} with a ∈ A (2.1)

is a basis of τX(A) (see [14, Section 2.1] for details).

A subset Q ⊆ A is a quadratic module (in A) if 1 ∈ Q, Q+Q ⊆ Q, and A2Q ⊆ Q.
The set

∑
A2 of all finite sums of squares of elements in A is the smallest quadratic

module in A. If in addition for each a ∈ A there exists N ∈ N such that N ±a ∈ Q,
then Q is Archimedean. The non-negativity set of a quadratic module Q in A is
defined as

S(Q) := {α ∈ X(A) : â(α) ≥ 0 for all a ∈ Q} ⊆ X(A),

which is closed. If Q is Archimedean, then S(Q) is compact (see, e.g., [24, Theo-
rem 5.7.2]) while the converse is false in general (see [17]). Given C ⊆ X(A) closed,
the set

Pos(C) := {a ∈ A : â(α) ≥ 0 for all α ∈ C}
is a quadratic module, which is Archimedean if C is compact.

Proposition 2.1. The following statements hold:
(i) S(Pos(C)) = C for all closed C ⊆ X(A).
(ii) Q ⊆ Pos(S(Q)) for all quadratic modules Q in A.

Proof. For (i) let C ⊆ X(A) be closed. Let β ∈ S(Pos(C)). Since C is closed
w.r.t. τX(A), it suffices to show that U(a) ∩ C 6= ∅ for all a ∈ A with β ∈ U(a)
(cf. (2.1)). Now, let a ∈ A such that β ∈ U(a) and assume for a contradiction that
U(a) ∩ C = ∅. Then â(α) ≤ 0 for all α ∈ C, i.e., −a ∈ Pos(C), and so β(−a) ≥ 0.
This contradicts β ∈ U(a), i.e., U(a) ∩ C 6= ∅, and hence, β ∈ C.

The converse inclusion in (i) and statement (ii) are easy to verify. �

Throughout this article each linear functional L : A→ R is assumed to be normal-
ized, that is, L(1) = 1. A linear functional L : A→ R is Q–positive on a quadratic
module Q in A if L(Q) ⊆ [0,∞).

Lemma 2.2. Let L : A→ R be a normalized linear functional and Q an Archimedean
quadratic module in A. If L is Q–positive, then L is Pos(S(Q))–positive.

Proof. Let L be Q–positive and a ∈ Pos(S(Q)). Then, for each ε > 0, the Jacobi
Positivstellensatz (see [16, Theorem 4]) implies that a + ε ∈ Q and so L(a) + ε =
L(a+ ε) ≥ 0, i.e., L(a) ≥ 0 as ε > 0 was arbitrary. �

A function p : A→ [0,∞) is a seminorm (on A) if p(λa) = |λ| p(a) and p(a+b) ≤
p(a) + p(b) for all λ ∈ R and all a, b ∈ A. If in addition p(ab) ≤ p(a)p(b) for
all a, b ∈ A, then p is submultiplicative. A linear functional L : A → R is p–
continuous w.r.t. a seminorm p on A if there exists C > 0 such that |L(a)| ≤ Cp(a)
for all a ∈ A. The Gelfand spectrum of a seminorm p on A is defined as

sp(p) := {α ∈ X(A) : α is p–continuous} ⊆ X(A),

and is σ–compact. If p is submultiplicative, then the Gelfand spectrum equals

sp(p) = {α ∈ X(A) : |α(a)| ≤ 1 · p(a) for all a ∈ A} (2.2)

and is compact (see [10, Lemma 3.2 and Corollary 3.3]). Viceversa, givenK ⊆ X(A)
compact, the function ‖ · ‖K : A→ [0,∞) defined by

‖a‖K := max
α∈K
|α(a)| <∞ for all a ∈ A

is a submultiplicative seminorm.

Proposition 2.3. The following statements hold:
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(i) sp(‖ · ‖K) = K for all compact K ⊆ X(A).
(ii) ‖ · ‖sp(p) ≤ p for all submultiplicative seminorms p on A.

Proof. For (i) let K ⊆ X(A) be compact. Let β ∈ sp(‖ · ‖K). Since K is closed
w.r.t. τX(A), it suffices to show that U(a) ∩ K 6= ∅ for all a ∈ A with β ∈ U(a)
(cf. (2.1)). Now, let a ∈ A be such that β ∈ U(a) and set b := a + ‖a‖K . Then
β(b) = β(a) + ‖a‖K > ‖a‖K as β ∈ U(a) and also α(b) = α(a) + ‖a‖K ≥ 0 for
all α ∈ K as |α(a)| ≤ ‖a‖K by definition. Since β ∈ sp(‖ · ‖K) this implies that

‖α‖K < β(b) ≤ ‖b‖K = max
α∈K

α(a) + ‖a‖K .

Therefore, there exists α ∈ K with α(a) > 0, i.e., U(a)∩K 6= ∅, and hence, β ∈ K.
The converse inclusion in (i) and statement (ii) are easy to verify. �

Each
∑
A2–positive linear functional L : A→ R satisfies the Cauchy–Bunyakovsky–

Schwarz inequality, i.e.,

L(ab)2 ≤ L(a2)L(b2) for all a, b ∈ A. (CBS)

Repeated applications of (CBS) yield that a normalized
∑
A2–positive linear func-

tional L on A is continuous w.r.t. a submultiplicative seminorm p on A if and only if

|L(a)| ≤ 1 · p(a) for all a ∈ A.1 (2.3)

This combined with a result in the theory of complex Banach algebras leads to the
following result. Recall that a complex Banach algebra is a pair (B, q) consisting of
a C–algebra B and a submultiplicative norm q on B such that the topology on B
generated by q is complete.

Lemma 2.4. Let L : A → R be a normalized
∑
A2–positive linear functional and

let p be a submultiplicative seminorm on A. If L is p–continuous, then L is ‖·‖sp(p)–
continuous.

Proof. Passing to the completion of the canonical quotient of the seminormed al-
gebra (A, p) (see [10, Remark 3.4]) and then to its complexification (see [5, I, §13,
Proposition 3 (p. 68)]), there exists a complex Banach algebra (B, q) and a homo-
morphism φ : A → B such that p = q ◦ φ. Now, let L be p–continuous and a ∈ A.
Then L(a)2

d ≤ L(a2
d

) ≤ 1 · p(a2d) = q(φ(a2
d

)) = q(φ(a)2
d

) for all d ∈ N0 by (2.3),
and so [8, VII, Theorem 8.9 (p. 220)] implies that

|L(a)| ≤ lim
d→∞

2d
√
q(φ(a)2d) = ‖φ(a)‖sp(q),

i.e., |L(a)| ≤ ‖a‖sp(p) as ‖φ(a)‖sp(q) ≤ ‖a‖sp(p). �

3. Main results

At the beginning of this section, using the recent general version of the classical
Nussbaum theorem in [14, Theorem 3.17] and the so-called Prokhorov’s condition
(see [14, Section 1.2] and references therein), we first give a proof of Theorem 1.2
except for the containment supp(νL) ⊇ KL with

KL := {α ∈ X(A) : |α(a)| ≤ sup
n∈N

2n
√
L(a2n) for all a ∈ A}. (3.1)

1Let d ∈ N. Applying d times (CBS), we obtain that

|L(a)| ≤
√

L(a2) ≤ 4
√

L(a4) ≤ · · · ≤ 2d
√

L(a2d ), ∀a ∈ A.

Since L is p−continuous, there exists C > 0 such that |L(b)| ≤ Cp(b), ∀ b ∈ A. Using this and

the submultiplicativity of p, we get |L(a)| ≤ 2d
√

Cp(a2d ) ≤ 2d
√
Cp(a), ∀a ∈ A, which yields (2.3)

by the arbitrarity of d. Viceversa, if (2.3) holds, then L is p−continuous.
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The proof of the inclusion supp(νL) ⊇ KL relies on a continuity condition discussed
in Subsection 3.2 and, therefore, will be established later in Corollary 3.13. In
Subsections 3.1, 3.2 and 3.3 we relate Theorem 1.2 to the characterizations of
linear functionals that admit representing Radon measures with compact support
in [10] and [16] (see Theorems 3.8 and 3.11, respectively). All those characterization
are summarized in Corollary 3.1, where we also provide a detailed analysis of the
compact support (see (3.2) and also Subsection 3.4).

Proof of Theorem 1.2.
(⇐) Suppose (1.2) holds and for each a ∈ A set Ca := supn∈N

2n
√
L(a2n). In

order to apply [14, Theorem 3.17] we introduce the index set

I := {S ⊆ A : S finitely generated (unital) subalgebra of A}

and note that, for each a ∈ A, clearly
∑∞
n=1(

2n
√
L(a2n))−1 =∞. Therefore, by [14,

Theorem 3.17-(i)], for each S ∈ I there exists a unique representing Radon mea-
sure νS on X(S) for L �S . Let us now show that the family {νS : S ∈ I} fulfils
the so-called Prokhorov condition by means of the characterization in [14, Proposi-
tion 1.18], that is, we aim to show that for all ε > 0 and for all S ∈ I, there exists
K(S) ⊆ X(S) compact such that νS(K(S)) ≥ 1 − ε and πS,T (K(T )) ⊆ K(S) for all
T ∈ I with S ⊆ T .

For each S ∈ I, define K(S) := {α ∈ X(S) : |α(a)| ≤ Ca for all a ∈ S}. Now,
let S ⊆ T in I. The closed set K(S) ⊆ X(S) is compact as it embeds into the
compact product

∏
a∈S [−Ca, Ca] via the continuous map α 7→ (α(a))a∈S and the

inclusion πS,T (K
(T )) ⊆ K(S) holds by definition, where πS,T : X(T ) → X(S) de-

notes the restriction map. To show that νS(K(S)) = 1, let a ∈ S and ε > 0 and
consider the set B(a, ε) := {α ∈ X(S) : |α(a)| ≤ Ca + ε}. Then, for each n ∈ N,
Chebyshev’s inequality implies that

νS(X(S) \B(a, ε)) · (Ca + ε)2n ≤
∫
â2ndνS = L(a2n) ≤ C2n

a

and so νS(B(a, ε)) = 1 as Ca(Ca + ε)−1 < 1 and n ∈ N was arbitrary. Since the
equality

K(S) =
⋂
a∈S
{α ∈ X(S) : |α(a)| ≤ Ca} =

⋂
a∈S

⋂
ε>0

B(a, ε)

holds, [30, I, §6 (a) (p. 40)] yields that νS(K(S)) = 1 as νS is Radon and B(a, ε)
is closed. Therefore, the family {νS : S ∈ I} fulfils Prokhorov’s condition and
hence, by [14, Theorem 3.17-(iii)] there exists a unique representing Radon mea-
sure ν for L. Since ν is a Radon measure, we can argue as for the set K(S) to
show that ν(KL) = 1, where KL is as in (3.1). This establishes supp(ν) ⊆ KL,
while supp(ν) ⊇ KL is established in Corollary 3.13. Moreover, KL is compact as
it embeds into

∏
a∈A[−Ca, Ca] and so supp(ν) is compact, too.

(⇒) Suppose that νL is the representing Radon measure for L with compact
support and let a ∈ A. Then, exploiting the compactness of supp(νL) and the
assumption that L(1) = 1, we get that for all n ∈ N

L(a2n) =

∫
â2ndνL ≤

(
max

α∈supp(νL)
|â2n(α)|

)
· L(1) = max

α∈supp(νL)
‖α(a)‖2n <∞,

which shows that supn∈N 2n
√
L(a2n) <∞. �

Corollary 3.1. For a normalized
∑
A2–positive linear functional L : A → R the

following are equivalent.
(i) There exists a unique representing Radon measure νL for L with compact

support.
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(ii) supn∈N
2n
√
L(a2n) <∞ for all a ∈ A.

(iii) L is p–continuous for some submultiplicative seminorm p on A.
(iv) L is Q–positive for some Archimedean quadratic module Q in A.
In this case, the submultiplicative seminorm defined by pL(a) := supn∈N

2n
√
L(a2n)

for all a ∈ A (see (3.4)) is the smallest on A w.r.t. which L is continuous and
the Archimedean quadratic module generated by supn∈N

2n
√
L(a2n) ± a with a ∈ A

(see (3.5)) is the largest in A on which L is positive. Moreover, pL = ‖ · ‖supp(νL)
and QL = Pos(supp(νL)) as well as

supp(νL) = KL = sp(pL) = S(QL), (3.2)

where KL is defined in (3.1).

If the normalized
∑
A2–positive linear functional L : A → R is represented by

the Radon measure νL with compact support, then it is easy to show that L
is ‖ · ‖supp(νL)–continuous and Pos(supp(νL))–positive. This yields the implica-
tions (i)⇒(iii) and (i)⇒(iv), respectively. All other remaining implications are
shown in the following subsections as illustrated by the diagram.

(i)

(iii) (iv)

(ii)

Theorem 3.8 Theorem 3.11

Lemma 3.9

Lemma 3.7

Lemma 3.12

Lemma 3.10

Theorem 1.2

Lemma 3.3 Lemma 3.5

In fact, we establish the equivalences of the growth condition (ii) (see (1.2)), the
continuity condition (iii), and the positivity condition (iv) without appealing to the
representing Radon measure νL. The localization of the support in (3.2) is shown
in Corollary 3.13.

3.1. The growth condition. In the following subsection we first analyze in detail
some properties of the growth condition (1.2) (i.e., Corollary 3.1-(ii)) and then we
directly derive from it Corollary 3.1-(iii) and Corollary 3.1-(iv).

Let L : A→ R be a normalized
∑
A2–positive linear functional.

Remark 3.2. Let L : A→ R be a normalized
∑
A2–positive linear functional.

(i) If we endow A with the topology induced by the seminorm p1(a) :=
√
L(a2),

then (1.2) holds if and only if all elements in A are bounded in (A, q) in the
sense of [1, Definition 2.1], i.e., for each a ∈ A there exist λ > 0 and r > 0
such that {(aλ−1)n : n ∈ N} ⊆ {b ∈ A : p1(b) ≤ r}.

(ii) If L is represented by the Radon measure νL with compact support, then
for each n ∈ N the function a 7→ 2n

√
L(a2n) on A coincides with the L2n–

seminorm of the Lebesgue space L2n(X(A), νL) of 2n–integrable functions
on X(A). By a standard result of measure theory (cf. [18, p. 143]), we get
supn∈N

2n
√
L(a2n) = ‖â‖∞ for all a ∈ A, where ‖ · ‖∞ denotes the (sub-

multiplicative) L∞–seminorm, given by the essential supremum on X(A), of
L∞(X(A), νL).

(iii) (CBS) yields that for each a ∈ A the sequence ( 2n
√
L(a2n))n∈N is monotone

increasing. Therefore, the growth condition (1.2) is of asymptotic nature, i.e.,

sup
n∈N

2n
√
L(a2n) = lim

n→∞
2n
√
L(a2n) for all a ∈ A,
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which allows us to work with suitable subsequences. For example the growth
condition (1.2) holds if and only if for each a ∈ A there exists fa : N → N
unbounded, ga : N→ [0,∞) with limn→∞

2fa(n)
√
ga(n) <∞, and Ca ≥ 0 such

that L(a2fa(n)) ≤ ga(n)C2fa(n)
a for all n ∈ N.

(iv) The subsequence ( 2d
√
L(a2d))d∈N will be crucial as for each d ∈ N setting

pd(a) :=
2d
√
L(a2d) for all a ∈ A (3.3)

defines a seminorm. Indeed, let d ∈ N and note that pd(ab) ≤ pd+1(a)pd+1(b)
for all a, b ∈ A by (CBS) as pd+1(a)

2 = pd(a
2) for all a ∈ A by definition. To

show that pd is a seminorm, we proceed by induction on d. Since the map
(a, b) 7→ L(ab) defines a positive semidefinite bilinear form on A × A, p1 is
a seminorm on A. Now, assume that pd is a seminorm on A and let λ ∈ R
and a, b ∈ A. Then pd+1(λa)

2 = λ2pd(a
2) and

pd(a
2) + 2pd(ab) + pd(b

2) ≤ pd+1(a)
2 + 2pd+1(a)pd+1(b) + pd+1(b)

2,

i.e., pd+1(a + b)2 ≤ (pd+1(a) + pd+1(b))
2, yield that pd+1 is a seminorm.

Moreover, note that ker(pd) = ker(p1) as (CBS) yields that p1(a) ≤ pd(a) and
pd(a)

2d ≤ p1(a)p1(a2
d−1) for all a ∈ A.

The implication (ii) ⇒ (iii) in Corollary 3.1 follows from the following lemma.

Lemma 3.3. Let L : A→ R be a normalized
∑
A2–positive linear functional such

that supn∈N 2n
√
L(a2n) <∞ for all a ∈ A. Then setting

pL(a) := sup
n∈N

2n
√
L(a2n) for all a ∈ A (3.4)

defines a submultiplicative seminorm w.r.t. which L is continuous.

Proof. Recall that supn∈N 2n
√
L(a2n) = supd∈N pd(a) for all a ∈ A by Remark 3.2-

(iii). Thus, using Remark 3.2-(iv), it is easy to verify that pL is a seminorm on A
which is submultiplicative as

pL(ab) = sup
d∈N

pd(ab) ≤ sup
d∈N

pd+1(a) · sup
d∈N

pd+1(b) = pL(a)pL(b)

for all a, b ∈ A. Clearly, L is pL–continuous as |L(a)| ≤
√
L(a2) ≤ 1 · pL(a) for

all a ∈ A by (CBS). �

Combining Lemma 3.3 and (2.2) easily yields the following.

Corollary 3.4. Let L : A → R be a normalized
∑
A2–positive linear functional

such that supn∈N 2n
√
L(a2n) <∞ for all a ∈ A. Then sp(pL) = KL, where pL is as

in (3.4) and KL as in (3.1).

The implication (ii) ⇒ (iv) in Corollary 3.1 follows from the following lemma.

Lemma 3.5. Let L : A→ R be a normalized
∑
A2–positive linear functional such

that supn∈N 2n
√
L(a2n) <∞ for all a ∈ A. Then

QL := {a ∈ A : L(b2a) ≥ 0 for all b ∈ A} (3.5)

is an Archimedean quadratic module on which L is positive. In fact, QL is generated
by supn∈N

2n
√
L(a2n)± a with a ∈ A.

Proof. It is easy to verify that QL is a quadratic module and L is QL–positive as
L(a) = L(12 · a) ≥ 0 for all a ∈ QL. It remains to show that QL is Archimedean.
Let d ∈ N and a, b ∈ A such that, w.l.o.g., L(b2) = 1 and recall that Ca :=

supn∈N
2n
√
L(a2n) = supd∈N

2d
√
L(a2d) by Remark 3.2-(iii). Then L(a2

d+1

) ≤ C2d+1

a
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by definition and |L(b · ba)|2
d+1

≤ 1 · L(b2a2d)2 ≤ L(b4)L(a2d+1

) by repeated appli-
cation of (CBS). Therefore,

L(b2(Ca ± a)) = CaL(b
2)± L(b2a) ≥ Ca(1− 2d+1

√
L(b4))

and so L(b2(Ca ± a)) ≥ 0 as d ∈ N was arbitrary, i.e., Ca ± a ∈ QL.
Now, let a ∈ QL. Then Ca + (a− Ca) = a and Ca − (a− Ca) = Ca + (Ca − a)

are in QL and so C2
a − (a−Ca)2 ∈ QL by [24, Proposition 5.2.3-(1)]. Therefore, an

easy induction shows that C2d

a ± (a− Ca)2
d ∈ QL for all d ∈ N and so

Ca−Ca := sup
n∈N

2n
√
L((a− Ca)2n) = sup

d∈N

2d
√
L((a− Ca)2d) ≤ Ca

as L is QL–positive. Hence, the identity a = (Ca − Ca−Ca) + (Ca−Ca + (a − Ca))
shows that QL is generated by Ca ± a with a ∈ A. �

The previous lemma easily provides the following.

Corollary 3.6. Let L : A → R be a normalized
∑
A2–positive linear functional

such that supn∈N 2n
√
L(a2n) < ∞ for all a ∈ A. Then S(QL) = KL, where QL is

as in (3.5) and KL as in (3.1).

3.2. The continuity condition. In the following subsection, we directly derive
from the continuity condition Corollary 3.1-(iii) all other conditions in Corollary 3.1.

The implication (iii) ⇒ (ii) in Corollary 3.1 follows from the following lemma.

Lemma 3.7. Let L : A → R be a normalized
∑
A2–positive linear functional that

is p–continuous for a submultiplicative seminorm p on A. Then sup
n∈N

2n
√
L(a2n) <∞

for all a ∈ A. In particular, pL ≤ p, where pL is as defined in (3.4).

Proof. Let a ∈ A. Then L(a2n) ≤ 1 ·p(a)2n for all n ∈ N by the submultiplicativity
of p and (2.3), i.e., pL(a) = sup

n∈N

2n
√
L(a2n) ≤ p(a) <∞. �

The implication (iii)⇒(i) in Corollary 3.1 follows from Theorem 3.8 below. The-
orem 3.8 was established in [10, Corollary 3.8] using the well-known Jacobi Pos-
itivstellensatz (see [16, Theorem 4]) and a result from the theory of real Banach
algebras (see [10, Lemma 3.5]). We provide an alternative proof that does not in-
volve any Positivstellensatz but instead relies on the functional calculus for complex
Banach algebras.

Theorem 3.8. Let L : A → R be a normalized
∑
A2–positive linear functional

that is p–continuous for a submultiplicative seminorm p on A. Then there exists a
representing Radon measure ν for L with supp(ν) ⊆ sp(p).

Proof. Passing to the completion of the canonical quotient of the seminormed al-
gebra (A, p) (see [10, Remark 3.4]) and then to its complexification (see [5, I,
§13, Proposition 3 (p. 68)]), there exists a complex Banach algebra (B, q) and
a homomorphism φ : A → B such that p = q ◦ φ. By construction, for each
β ∈ sp(q) ⊆ X(B) there exists α ∈ sp(p) ⊆ X(A) such that β◦φ = α. In particular,
since L is p–continuous, there exists a unique linear functional L : B → C such that
L = L ◦ φ. By construction, L is non-negative on Hermitian squares of B.

Now, let a ∈ Pos(sp(p)) and ε > 0. Then φ(a) ∈ Pos(sp(q)) by construction
and the spectrum of φ(a) + ε in the sense of complex Banach algebras (see [5, II,
§16, Proposition 9 (p. 81)]), i.e., {β(φ(a)) + ε : β ∈ sp(q)}, is contained in [ε,∞).
Therefore, by the functional calculus for complex Banach algebras (cf. [5, I, §7,
Theorem 4 (p. 33)]), there exists b ∈ B Hermitian such that φ(a) + ε = b2 and so

L(a) + ε = L(a+ ε) = L(φ(a) + ε) = L(b2) ≥ 0,
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i.e., L(a) ≥ 0 as ε > 0 was arbitrary. Thus, L is Pos(sp(p))–positive and so,
by [24, Theorem 3.3.2], there exists a representing Radon measure ν for L with
supp(ν) ⊆ sp(p). Recall that sp(p) ⊆ X(A) is compact as p is submultiplicative. �

Note that Theorem 3.8 can be also derived without appealing to neither any
Positivstellensatz nor any theory of (real or complex) Banach algebras. Indeed, by
Lemma 3.7, the continuity of L w.r.t. a submultiplicative seminorm p yields that
pL ≤ p. Then the first part of Theorem 1.2 ensures that there exists a unique
representing Radon measure νL for L with supp(νL) ⊆ KL. Now, on the one hand,
Corollary 3.4 provides that KL = sp(pL) and, on the other hand, pL ≤ p implies
sp(pL) ⊆ sp(p). Thus, supp(νL) ⊆ sp(p) and Theorem 3.8 is established.

The implication (iii) ⇒ (iv) in Corollary 3.1 follows from the following lemma.

Lemma 3.9. Let L : A → R be a normalized
∑
A2–positive linear functional that

is p–continuous for a submultiplicative seminorm p on A. Then L is Pos(sp(p))–
positive.

Proof. Set K := sp(p). Recall that Pos(K) is Archimedean as K is compact and
that L is ‖ · ‖K–continuous by Lemma 2.4. Let a ∈ Pos(K). Then ‖a− ‖a‖K‖K ≤
‖a‖K as |α(a− ‖a‖K)| ≤ ‖a‖K for all α ∈ K and so |L(a− ‖a‖K)| ≤ 1·‖a−‖a‖K‖K
by (2.3). Therefore,

‖a‖K + L(a− ‖a‖K) ≥ ‖a‖K − ‖a− ‖a‖K‖K ≥ 0,

i.e., L(a) ≥ 0. �

Given a
∑
A2–positive linear functional L : A→ R that is p–continuous for a sub-

multiplicative seminorm p on A, it is also possible to show that L is positive on the
(Archimedean) quadratic module generated by p(a)±a with a ∈ A (cf. Lemma 3.5).
The closure of this quadratic module w.r.t. the finest locally convex topology on A is
equal to Pos(sp(p)) as a consequence of the Jacobi Positivstellensatz (see [16, The-
orem 4]). It is not clear to us if the quadratic module itself is equal to Pos(sp(p)).

3.3. The positivity condition. In the following subsection, we directly derive
from the positivity condition Corollary 3.1-(iv) all other conditions in Corollary 3.1.

The implication (iv) ⇒ (ii) in Corollary 3.1 follows from the following lemma.

Lemma 3.10. Let L : A → R be a normalized linear functional that is Q–positive
for an Archimedean quadratic module Q in A. Then supn∈N

2n
√
L(a2n) < ∞ for

all a ∈ A. In particular, Q ⊆ QL, where QL is defined as in (3.5).

Proof. Let a ∈ A. Then there exists N ∈ N such that N ± a ∈ Q by the Archi-
medianity of Q and so N2d ± a2d ∈ Q for all d ∈ N as in the proof of Lemma 3.5.
Therefore, supn∈N 2n

√
L(a2n) = supd∈N

2d
√
L(a2d) ≤ N < ∞ by Remark 3.2-(iii)

as L is Q–positive.
Now, let a ∈ Q. Then L(b2a) ≥ 0 for all b ∈ A as b2a ∈ Q, i.e., a ∈ QL. �

The implication (iv)⇒(i) in Corollary 3.1 follows from Theorem 3.11 below. The-
orem 3.11 was established in, e.g., [23, Corollary 3.3] using the Jacobi Positivstel-
lensatz (see [16, Theorem 4]), or [27, Theorem 12.36].

Theorem 3.11. Let L : A→ R be a normalized linear functional that is Q–positive
for an Archimedean quadratic module Q in A. Then there exists a representing
Radon measure ν for L with supp(ν) ⊆ S(Q).
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Note that Theorem 3.11 can be also derived without appealing to any Positivstel-
lensatz. Indeed, by Lemma 3.10, the positivity of L on an Archimedean quadratic
module Q yields Q ⊆ QL and (1.2). The latter implies, by the first part of The-
orem 1.2, that there exists a unique representing Radon measure νL for L with
supp(νL) ⊆ KL. Now, on the one hand, Corollary 3.6 ensures that KL = S(QL)
and, on the other hand, Q ≤ QL implies S(QL) ⊆ S(Q). Thus, supp(νL) ⊆ S(Q)
and Theorem 3.11 is established.

The implication (iv) ⇒ (iii) in Corollary 3.1 follows from the following lemma.

Lemma 3.12. Let L : A → R be a normalized linear functional that is Q–positive
for an Archimedean quadratic module Q in A. Then L is ‖ · ‖S(Q)–continuous.

Proof. Set K := S(Q). Recall that ‖ · ‖K is submultiplicative as K is compact and
that L is Pos(K)–positive by Lemma 2.2. Let a ∈ A. Then ‖a‖K ± a ∈ Pos(K)
and so L(‖a‖K ± a) ≥ 0, i.e, |L(a)| ≤ ‖a‖K . �

Given a linear functional L : A → R that is Q–positive for an Archimedean qua-
dratic module Q in A, it is also possible to show that L is continuous w.r.t. the
submultiplicative seminorm on A given by a 7→ inf{s ≥ 0 : s ± a ∈ Q}. Note that
in [29, Theorem 10.5] it is shown that this seminorm is actually a C∗-seminorm.
Moreover, this seminorm is equal to ‖·‖S(Q) as a consequence of the Jacobi Positiv-
stellensatz (see [16, Theorem 4]).

3.4. Localization of the support. In the following subsection, we analyze in
detail the support of the representing Radon measure in Corollary 3.1-(i).

Corollary 3.13. Let L : A → R be a normalized linear functional that is rep-
resented by the Radon measure νL with compact support K. Then ‖ · ‖K = pL,
Pos(K) = QL and

K = KL = sp(pL) = S(QL),
where KL is as in (3.1), pL as in (3.4), and QL as in (3.5).

Proof. By the first part of Theorem 1.2, the existence of a representing measure νL
for L with compact support K implies that (1.2) holds and that K ⊆ KL. Then
Lemma 3.3 gives that the seminorm pL in (3.4) is well-defined and Corollary 3.4
ensures KL = sp(pL). Hence, K ⊆ sp(pL) which implies ‖ · ‖K ≤ ‖ · ‖pL ≤ pL
by Proposition 2.3-(ii). Since νL is representing for L, clearly, L is ‖·‖K–continuous
and so pL ≤ ‖ · ‖K by Lemma 3.7. Hence, ‖ · ‖K = pL. Analogously, Pos(K) = QL.

Then sp(‖ · ‖K) = sp(pL) as well as S(Pos(K)) = S(QL). The latter together
with Propositions 2.1-(i), Corollary 3.6 and Corollary 3.4 yields the assertion. �

The following result shows how to compute the measure of singletons in supp(νL).
For compact K ⊆ X(A) and α ∈ K, we denote by [α]K the set of all a ∈ A for
which â �K attains its maximum at α, i.e., [α]K := {a ∈ A : ‖a‖K = |α(a)|}. Note
that A =

⋃
α∈K [α]K .

Theorem 3.14. Let L : A→ R be a normalized linear functional that is represented
by the Radon measure νL with compact support K and let d ∈ N. Then

νL({α}) = max{λ ∈ [0, 1] :
2d
√
λpL ≤ pd on [α]K} for all α ∈ K.

Proof. Let α ∈ K and recall that pL = ‖ · ‖K by Corollary 3.13.
Now, let a ∈ [α]K and set λα := νL({α}) ∈ [0, 1]. Then

λαpL(a)
2d = νL({α}) |α(a)|2

d

≤
∫
K

α(a)2
d

dνL = L(a2
d

)
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yields that 2d
√
λαpL(a) ≤ pd(a), i.e., λα ∈ {λ ∈ [0, 1] : 2d

√
λpL ≤ pd on [α]K}.

Conversely, let λ ∈ [0, 1] be such that 2d
√
λpL ≤ pd on [α]K and let 0 < ε ≤ 1.

Since νL is outer regular and sets of the form U(b) = {α ∈ X(A) : b̂(α) > 0} with
b ∈ A are a basis of τX(A) (cf. (2.1)), there exists b ∈ A such that α ∈ U(b) and
νL(U(b)) ≤ νL({α}) + ε. Set U := U(b) and note that pL(b) = ‖b‖K ≥ |α(b)| > 0.
Let n ∈ N be such that(

1− εα(b)2

pL(2b)2

)2n

≤ 2d
√
ε and set aε :=

(
1− ε(α(b)− b)2

pL(2b)2

)2n

.

By construction, pL(aε) = ‖aε‖K = 1 as α(aε) = 1 and |α(b)− β(b)| ≤ 2pL(b) for
all β ∈ K, i.e., aε ∈ [α]K , as well as β(aε) ≤ 2d

√
ε for all β ∈ K \ U . Thus,

pd(aε)
2d =

∫
K\U

â2
d

ε dνL +

∫
K∩(U\{α})

â2
d

ε dνL +

∫
{α}

â2
d

ε dνL

≤ ε · νL(K \ U) + 1 · νL(U \ {α}) + νL({α})
≤ ε · 1 + 1 · ε + νL({α}).

Therefore, λ · 1 = λpL(aε)
2d ≤ pd(aε)2

d ≤ 2ε+ νL({α}) and hence, νL({α}) ≥ λ as
0 < ε ≤ 1 was arbitrary. �

Let L : A→ R be represented by the Radon measure νL with compact support K.
If νL({α}) > 0 for all α ∈ K, then K is countable as νL(K) = L(1) = 1 while the
converse is false in general.

Example 3.15. Consider the polynomial algebra R[X] and the Radon measure ν
on X(R[X]) ' R given by ν :=

∑∞
n=1 2

−nδn−1 , where δn−1 denotes the Dirac
measure on R concentrated on {n−1} for each n ∈ N. Clearly, ν is representing for
the linear functional given by f 7→

∫
fdν and its support

supp(ν) = {n−1 : n ∈ N} = {n−1 : n ∈ N} ∪ {0}
is countable and compact, but ν({0}) = 0.

However, if there exists λ ∈ (0, 1] such that νL({α}) ≥ λ > 0 for all α ∈ K, then K
is finite (with |K| ≤ λ−1) and the converse is also true as the singletons are closed
w.r.t. τX(A). Therefore, Theorem 3.14 yields the following two results.

Corollary 3.16. Let L : A→ R be normalized linear functional that is represented
by the Radon measure νL with compact support K. If for each α ∈ K there exists
Cα ∈ (0, 1] and dα ∈ N such that CαpL ≤ pdα on [α]K , then K is countable.

Corollary 3.17. Let L : A→ R be normalized linear functional that is represented
by the Radon measure νL with compact support K and let d ∈ N. Then K is finite
if and only if there exists C ∈ (0, 1] such that CpL ≤ pd. In this case, K = sp(pd)

and |K| ≤ C−2d .

Proof. Note that K = sp(pL) = sp(pd) by Corollary 3.13 as CpL ≤ pd ≤ pL. �

Often one is interested in constructing a representing Radon measure whose support
is contained in the topological dual V ′ of a locally convex (lc) space (V, τ) rather
than in X(A) (see, e.g., [3], [2, Vol. II, Chapter 5, Sect. 2], [15], [28]). Suppose that
V is a subspace of A and there exists a representing Radon measure ν on X(A) for
a
∑
A2–positive linear functional L : A→ R. Then the natural embedding of V in

A extends to a homomorphism φ : S(V ) → A, where S(V ) denotes the symmetric
tensor algebra of V . Since X(S(V )) is isomorphic to the algebraic dual V ∗ of V ,
the dual map of φ actually gives a map φ′ : X(A) → V ∗ (see, e.g., [9, p.10]. If we
endow V ∗ with the weak topology, then φ′ is continuous and so the pushforward
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measure of ν through φ′, denoted by ν′, is a representing Radon measure on V ∗

for L ◦ φ. If the support of ν is compact in X(A) and pL is τ–continuous, then
Corollary 3.1 ensures that supp(ν) = sp(pL) and φ′(supp(ν)) is compact in V ′ with
ν′(φ′(supp(ν)) = 1.

The previous observations motivated us to investigate more deeply in the next
section the case when A is endowed with some topology compatible with the algebra
structure.

4. Topological aspects

Let τ be a locally convex topology on the algebra A, i.e., τ is generated by a
family of seminorms on A. The pair (A, τ) is called a locally convex topological
algebra (lc TA) if the multiplication in A is separately continuous and an lc TA
with continuous multiplication if the multiplication is jointly continuous. The pair
(A, τ) is called a locally multiplicative convex algebra (lmc TA) if τ is generated by
a family of submultiplicative seminorms on A. In this case the multiplication is
automatically jointly continuous and so each lmc TA is an lc TA with continuous
multiplication (see, e.g., [22, 31] for details).

4.1. Some natural topologies related to the growth condition. In the fol-
lowing subsection, we construct and characterize two topologies on A closely related
to the growth condition (1.2).

Let us fix a normalized
∑
A2–positive linear functional L : A → R. Consider the

topology τP generated by the family P := {pd : d ∈ N} of seminorms on A. Note
that τP is Hausdorff if and only if p1 is a norm (see Remark 3.2-(iv)).

Proposition 4.1. The topology τP is the weakest topology on A such that (A, τP)
is an lc TA with continuous multiplication and L is τP–continuous.

Proof. By (CBS), the linear functional L is p1–continuous and so L is τP–con-
tinuous. Since for each d ∈ N we have that pd(a·b) ≤ pd+1(a)pd+1(b) for all a, b ∈ A,
the multiplication is jointly continuous (cf. [31, p. 420]).

Let (A, τ) be an lc TA with continuous multiplication and L be τ–continuous.
Then there exists a τ–continuous seminorm q on A such that |L| ≤ q. As the
multiplication is jointly continuous, for each d ∈ N, there exists a τ–continuous
seminorm r on A such that q(a2

d

) ≤ r(a)2
d

for all a ∈ A, i.e., pd ≤ r. Hence, each
seminorm in P is τ–continuous and so τP ⊆ τ . �

In case the growth condition (1.2) holds, L is also continuous w.r.t. the submulti-
plicative seminorm pL on A (see Lemma 3.3). Consider the topology τL generated
by pL and note that τL is Hausdorff if and only if p1 is a norm as pL = supd∈N pd.

Proposition 4.2. The topology τL is the weakest topology on A such that (A, τL)
is an lmc TA and L is τL–continuous.

Proof. Let (A, τ) be an lmc TA and L be τ–continuous. Then there exists a τ–
continuous submultiplicative seminorm q on A such that L(a2

d

) ≤ q(a2
d

) ≤ q(a)2
d

for all d ∈ N and all a ∈ A, i.e., pL = supd∈N pd ≤ q. Hence, pL is τ–continuous
and so τL ⊆ τ . �

Since the lmc TA (A, τL) is also an lc TA with continuous multiplication, τP ⊆ τL
by Proposition 4.1. Therefore, by Proposition 4.2, the converse inclusion τL ⊆ τP
holds if and only if (A, τP) is an lmc TA. Note that by Corollary 3.17 and [31,
Proposition 7.7] the case τP = τL is equivalent to the existence of a representing
Radon measure for L with finite support.
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4.2. Generators. In the following subsection, we investigate the consequences of
assuming the growth condition (1.2) not on all elements of A but just on a proper
subset of A, e.g., the generators of A or the generators of a dense subalgebra of A
when A is a topological algebra.

Let us fix a normalized
∑
A2–positive linear functional L : A→ R.

Proposition 4.3. Let A be generated by {ai : i ∈ I} such that supd∈N pd(ai) <∞
for all i ∈ I. Then (1.2) holds.

Proof. Since pd(λa+bc) ≤ |λ| pd(a)+pd+1(b)pd+1(c) for all λ ∈ R and all a, b, c,∈ A
by Remark 3.2-(iv), we easily get that supd∈N pd(a) <∞ for all a ∈ A. This yields
the assertion as supn∈N 2n

√
L(a2n) = supd∈N

2d
√
L(a2d) for all a ∈ A. �

Combining Proposition 4.3 and Corollary 3.1 yields the following result.

Corollary 4.4. Let A be generated by {ai : i ∈ I} such that supd∈N pd(ai) <∞ for
all i ∈ I. Then νL is the unique representing Radon measure for L with compact
support. In particular,

supp(νL) ⊆ {α ∈ X(A) : |α(ai)| ≤ pL(ai) for all i ∈ I}.

Example 4.5. Consider the polynomial algebra R[X] := R[X1, . . . , Xm] for some
m ∈ N and let L : R[X] → R be a

∑
R[X]2–positive linear functional such that

supd∈N pd(Xi) < ∞ for all i ∈ {1, . . . ,m}. Then νL is the unique representing
Radon measure for L on X(R[X]) ' Rm with compact support by Corollary 4.4
and, in particular,

supp(νL) ⊆
m∏
i=1

[−pL(Xi), pL(Xi)] ⊆ Rm.

Note that further aspects of the problem of bounding the (not necessarily compact)
support of a Radon measure on Rm by a closed box are considered in [19].

Now, let us fix an lc TA (A, τ) such that L is τ–continuous. Note that here the
multiplication in A is not assumed to be jointly continuous. We investigate what
can be said when we assume the growth condition only on a dense subalgebra.

Proposition 4.6. Let B ⊆ A be a τ–dense subalgebra such that supd∈N pd(b) <∞
for all b ∈ B and τL�B ⊆ τ �B. Then (1.2) holds.

Proof. Recall that τL�B denotes the topology on B generated by the submultiplica-
tive seminorm pL�B that is induced by L �B : B → R (cf. Lemma 3.3). Further,
pL�B is τ �B–continuous as τL�B ⊆ τ �B . Therefore, by the Hahn–Banach theorem,
pL�B extends to a τ–continuous seminorm p on A. W.l.o.g. we can assume that L
is p–continuous (otherwise replace p by max{p, |L|}). By Lemma 3.7 it suffices to
show that p is submultiplicative.

Let a1, a2 ∈ A and ε > 0. Since the multiplication is separately continuous,
there exists a τ–continuous seminorm q1 on A such that p(a · a1) ≤ q1(a) for all
a ∈ A. Then the density of B in (A, τ) implies that there exists b2 ∈ B such that
max{p, q1}(a2 − b2) ≤ ε and so

|p(a1a2)− p(a1b2)| ≤ p(a1(a2 − b2)) ≤ q1(a2 − b2) ≤ ε.
Similarly, there exists a τ–continuous seminorm q2 on A such that p(a · b2) ≤ q2(a)
for all a ∈ A as well as b1 ∈ B such that max{p, q2}(a1 − b1) ≤ ε. As above,
|p(a1b2)− p(b1b2)| ≤ ε. Since p�B= pL�B and p(ai − bi) ≤ ε for i ∈ {1, 2},

p(a1a2) ≤ p(b1b2) + 2ε ≤ p(b1)p(b2) + 2ε ≤ (p(a1) + ε)(p(a2) + ε) + 2ε.

Hence, p is submultiplicative as ε > 0 was arbitrary. �
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Combining Propositions 4.3 and 4.6 yields the following generalization of Corol-
lary 4.4.

Corollary 4.7. Let B ⊆ A be a τ–dense subalgebra generated by {bi : i ∈ I} such
that supd∈N pd(bi) < ∞ for all i ∈ I and τL�B ⊆ τ �B. Then νL is the unique
representing Radon measure for L with compact support. In particular,

supp(νL) ⊆ {α ∈ X(A) : |α(bi)| ≤ pL(bi) for all i ∈ I}.
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