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Abstract: We investigate a quantum mechanical harmonic oscillator based on the extended Snyder
model. This realization of the Snyder model is constructed as a quantum phase space generated by
D spatial coordinates and D(D− 1)/2 tensorial degrees of freedom, together with their conjugated
momenta. The coordinates obey nontrivial commutation relations and generate a noncommutative
geometry, which admits nicer properties than the usual realization of the model, in particular giving
rise to an associative star product. The spectrum of the harmonic oscillator is studied through the
introduction of creation and annihilation operators. Some physical consequences of the introduction
of the additional degrees of freedom are discussed.
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1. Introduction

The Snyder model [1] is known to be the first published proposal of quantized space-
time. It is based on an algebra generated by spacetime coordinates and Lorentz generators,
that allows nontrivial commutation relations between position operators without breaking
the Lorentz invariance.

Although in its time it did not attract much attention (see however [2–10] for early
investigations), its relevance increased when new models, as Moyal space or κ-Poincaré
algebra [11,12], and methods related to noncommutative geometry [13] were introduced.
In particular, its formulation in terms of Hopf algebras was investigated in [14,15]. In that
paper the coproduct and the star product were calculated for the algebra generated by
the noncommuting position operators, while the generators of the Lorentz algebra were
considered in the standard way as functions of the position and momenta operators.

However, in Snyder algebra the commutation relations of the position coordinates do
not close, since they give rise to Lorentz generators, and therefore the structure obtained
in [14,15] is not strictly a Hopf algebra, since it is nonassociative. A way to obtain an
associative Hopf algebra was proposed in [16], where the Lorentz generators were con-
sidered as independent generators of the Snyder algebra, associated with antisymmetric
tensorial operators.

This idea was then developed in a series of papers [17–19] using methods of realization
of quantum phase spaces in terms of Heisenberg algebra [14–20]; the algebra that included
the tensorial generators was named extended Snyder algebra, to distinguish it from the
standard realization of the Snyder model in terms of vectorial degrees of freedom only
(called standard Snyder model in the following). There were also generalizations including
κ-Poincaré deformations [18,19].

Although the extended Snyder framework solves the mathematical problem related to
the definition of a proper Hopf algebra, the physical interpretation of the antisymmetric
degrees of freedom is not obvious.

In this paper, we shall attempt to investigate a quantum mechanical problem based
on the Euclidean version of the model and inspired by an analogous one introduced in
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the context of Moyal space, where the objects of noncommutativity were promoted to
antisymmetric operators [21]. In particular, we study the harmonic oscillator in this theory,
with the aim of understanding in a simple case the physical implications of the addition of
the tensorial degrees of freedom, comparing the results with those obtained in [22–24] for
the standard Snyder model.

Of course, our investigation is only preliminary and more complicated situations
should be addressed in order to understand if the extended Snyder model has a counterpart
in physical reality or can be simply catalogued as a mathematical curiosity. In particular,
the next step should be the investigation of interacting oscillators, which already presents
nontrivial problems.

2. The Snyder Model

We recall that the original D-dimensional Euclidean Snyder model is defined by the
commutation relations[

x̂i, x̂j
]
= iβ2Mij,

[
Mij, x̂k

]
= i
(

δik x̂j − δjk x̂i

)
,[

Mij, Mkl
]
= i
(

δik Mjl − δil Mjk − δjk Mil + δjl Mik

)
,

(1)

and β is a real constant that can be identified with the noncommutative Snyder parameter,
which is usually assumed to be of the scale of the Planck length Lp. Of course, in the
Euclidean case the Lorentz algebra is replaced by the algebra of rotations in D dimensions.
For β = 0, the commutation relations (1) reduce to those of the standard rotation algebra
acting on commutative coordinates. One can then extend the algebra to phase space adding
momenta p̂i conjugated to x̂i, that, in order to obey the Jacobi identities, must satisfy

[ p̂i, p̂j] = 0, [x̂i, p̂j] = i
(

δij + β2 p̂i p̂j

)
, [Mij, p̂k] = i(δik p̂j − δjk p̂i). (2)

The standard realization of the Snyder model is obtained by considering the Lorentz
generators as dependent variables, functions of the x̂i and p̂i, and looking for suitable
representations of x̂i and p̂i on a canonical quantum phase space of coordinates xi, pi with
Mij = xi pj − xj pi, so that the algebra (1) and (2) is satisfied. In this way, it is possible to
construct a coalgebra structure [14,15] and to define a star product. However, since the
algebra generated by the x̂i does not close, the resulting coproduct is not coassociative and
the star product is not associative [14,15].

To avoid this problem, one can define an extended Snyder algebra, by promoting the
Mij to D(D− 1)/2 noncommutative tensorial degrees of freedom x̂ij = −x̂ji to be added to
the D position operators x̂i as independent generators of the algebra [16]. The total number
of independent degrees of freedom of the extended algebra is therefore D(D + 1)/2, and
the D-dimensional Euclidean extended Snyder algebra takes the form[

x̂i, x̂j
]
= iλβ2 x̂ij,

[
x̂ij, x̂k

]
= iλ

(
δik x̂j − δjk x̂i

)
,[

x̂ij, x̂kl
]
= iλ

(
δik x̂jl − δil x̂jk − δjk x̂il + δjl x̂ik

)
,

(3)

where we have introduced a deformation parameter λ, which in natural units is dimen-
sionless. Note that we assume that the coordinates x̂i have dimension of length, while the
tensorial coordinates x̂ij are dimensionless, like the Mij, although in this formalism the x̂ij
are no longer identified with the rotation generators.

Again, one may extend the algebra to phase space, by introducing the momenta p̂i and
p̂ij = − p̂ji, conjugated to the x̂i and x̂ij, respectively. This can be done in several inequiva-
lent ways compatible with the Jacobi identities, that correspond to different realizations
of the model [17]. At order λ there exists a one-parameter family of realizations [17]. The
realization (5) corresponds to the case c1 = 0 of ref. [17]. For the moment, we consider the
so-called Weyl realization, for which at leading order in λ,
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[
p̂i, p̂j

]
=
[
p̂ij, p̂kl

]
=
[

p̂i, p̂jk

]
= 0,

[
x̂i, p̂jk

]
= i λβ2

2

(
δik p̂j − δjk p̂i

)
,

[
x̂i, p̂j

]
= i
(

δij +
λ
2 p̂ij

)
,[

x̂ij, p̂k
]
= i λ

2

(
δik p̂j − δjk p̂i

)
,

[
x̂ij, p̂kl

]
= i
(

δikδjl +
λ
2

(
δik p̂jl − δil p̂jk

)
− (k↔ l)

)
.

(4)

However, we remark that a realization closer to (2) is given by what we may call
classical realization, defined so that the commutation relations (2) hold at order λ2 (in
particular, [x̂i, p̂j] = i

(
δij + λ2β2 p̂i p̂j

)
). In this case, the full set of commutation relations at

order λ is given by [17][
p̂i, p̂j

]
=
[

p̂ij, p̂kl

]
=
[

p̂i, p̂jk

]
= 0,

[
x̂i, p̂jk

]
= i λβ2

2

(
δik p̂j − δjk p̂i

)
,
[

x̂i, p̂j

]
= iδij,[

x̂ij, p̂k

]
= iλ

(
δik p̂j − δjk p̂i

)
,
[

x̂ij, p̂kl

]
= i
(

δikδjl +
λ
2

(
δik p̂jl − δil p̂jk

)
− (k↔ l)

)
.

(5)

The extended Snyder algebra admits realizations in terms of an extended Heisenberg
algebra [17], obtained by adding tensorial degrees of freedom xij = −xji to the standard
Heisenberg algebra, as[

xi, xj
]
=
[
pi, pj

]
=
[
xij, xkl

]
=
[
pij, pkl

]
= 0,[

xi, pj
]
= iδij,

[
xij, pkl

]
= i
(

δikδjl − δilδjk

)
,[

xi, xjk

]
=
[

xi, pjk

]
=
[
xij, xk

]
=
[
xij, pk

]
= 0,

(6)

where pi and pij are momenta canonically conjugate to xi and xij respectively, and
pij = −pji.

A simplification of the formalism can be obtained noticing that for β 6= 0 the algebra (3)
is isomorphic to so(D + 1), so that it is convenient to define new variables [17]

x̂i = βx̂i,D+1, p̂i =
p̂i,D+1

β
, (7)

such that the algebra (3) takes the form

[x̂µν, x̂ρσ] = iλ(δµρ x̂νσ − δµσ x̂νρ − δνρ x̂µσ − δνσ x̂µρ), (8)

with Greek indices running from 1 to N + 1.
The same can be done for the extended Heisenberg algebra (6), which becomes

[xµν, xρσ] = [pµν, pρσ] = 0, [xµν, pρσ] = i(δµρδνσ − δµσδνρ), (9)

The algebra (3) can then be realized in terms of the extended Heisenberg algebra as a
power series: in the Weyl realization one has at first order in λ,

x̂µν = xµν +
λ

2
(xµα pνα − xνα pµα), (10)

while p̂µν = pµν. In terms of components

x̂i = xi +
λ

2

(
xk pik − β2xik pk

)
x̂ij = xij +

λ

2

(
xi pj + xik pjk − (i↔ j)

)
.

(11)

It may be interesting to consider the symmetries of the extended Snyder algebra.
The algebra (3) and (4) is covariant under the action of the group SO

(
(D−1)D(D+1)(D+2)

8

)
generated by Lµν,ρσ = xµν pρσ − xρσ pµν. However, from a physical standpoint it is more
interesting to consider its subgroup corresponding to rotations of the D-dimensional space,
with generators

Mij = xi pj − xj pi + xik pjk − xjk pik. (12)
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acting as

[Mij, x̂k] = i(δik x̂j − δjk x̂i), [Mij, x̂jk] = i(δik x̂jl − δil x̂jk − δjk x̂il + δjl x̂ik). (13)

3. The Harmonic Oscillator

To test the dynamics of the model defined by the algebra (4), we consider an isotropic
harmonic oscillator. We start by defining an Hamiltonian invariant under the extended
Snyder symmetry, namely

H =
1
4 ∑

µν

(
p̂2

µν

M
+ Mω2 x̂2

µν

)
. (14)

where M has dimension of length. Substituting the realization (10) we obtain at leading
order in λ,

H =
1
4 ∑

µν

[
p2

µν

M
+ Mω2

(
x2

µν +
λ2

2
xµρ pνρ(xµσ pνσ − xνσ pµσ)

)]
, (15)

Notice that terms of order λ in the Hamiltonian vanish. The factor 1
4 is chosen because

antisymmetric degrees of freedom are counted twice.
To discuss the spectrum, it is useful to introduce creation and annihilation operators,

aµν =

√
Mω

2

(
xµν + i

pµν

Mω

)
, a†

µν =

√
Mω

2

(
xµν − i

pµν

Mω

)
, (16)

satisfying aµν = −aνµ, a†
µν = −a†

νµ, and

[aµν, a†
ρσ] = δµρδνσ − δνρδµσ. (17)

It is then convenient to split the Hamiltonian in a free part H0 and an interaction term
V, with H = H0 + λ2V, such that

H0 =
1
4 ∑

µν

(
p2

µν

M
+ Mω2x2

µν

)
, V =

Mω2

8

(
xµρ pνρ(xµσ pνσ − xνσ pµσ)

)
. (18)

One has then

H0 =
ω

4 ∑
µν

(aµνa†
µν + a†

µνaµν) =
ω

2

(
∑

µ 6=ν

Nµν +
D(D + 1)

2

)
, (19)

with Nµν = a†
µνaµν, so that Nµν = Nνµ, Nµµ = 0, and

V = −Mω2

16 ∑
µν

∑
ρσ

(aµρa†
νρ − a†

µρaνρ)(a†
µσaνσ − a†

νσaµσ), (20)

In (20) we have retained only the terms that can contribute to the leading-order corrections
to the energy. After some manipulations, the interaction term reduces to

V =
Mω2

8

(
∑

µ 6=ν
∑
ρ

NµρNνρ + (D− 1) ∑
µ 6=ν

Nµν

)
. (21)

The free part (19) of the Hamiltonian describes an harmonic oscillator in canonical
extended spacetime, which we will call a canonical extended oscillator. Its energy spectrum
is, as could be expected, that of a harmonic oscillator with D(D + 1)/2 degrees of freedom.
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In fact, defining the occupation numbers nµν such that Nµν | . . . , nµν, · · · >
= nµν | . . . , nµν, · · · >, the energy corresponding to a set of occupation numbers {nµν} is
at order 0 (i.e. , for the canonical extended oscillator)

E{nµν} =
ω

2

(
∑

µ 6=ν

nµν +
D(D + 1)

2

)
, (22)

while the leading-order corrections due to the Snyder structure are given by

∆E{nµν} = < {nµν}|λ2V|{nµν} > =
λ2Mω2

8

(
∑

µ 6=ν
∑
ρ

nµρnνρ + (D− 1) ∑
µ 6=ν

nµν

)
. (23)

Hence , while the canonical extended oscillator has a standard spectrum depending only
on the quantum number n = ∑µ<ν nµν, the Snyder extended oscillator has eigenvalues that
depend on combinations of all the quantum numbers nµν. The order of magnitude of the
corrections to the energy spectrum is the same as in the standard Snyder oscillator [22–24]
for M = β2m/λ2, with m the mass of the vectorial degrees of freedom.

4. Noncovariant Formalism

To better understand the physics, it is however useful to separate vector and tensor
degrees of freedom, studying the model from a D-dimensional point of view. Then the
Hamiltonian can be written as

H =
1
2 ∑

i

(
p̂2

i
m

+ mω2 x̂2
i

)
+

1
4 ∑

ij

(
p̂2

ij

M
+ Mω2 x̂2

ij

)
, (24)

where we have identified m = Mβ−2 with the mass of the vectorial degrees of freedom
(i.e. standard position coordinates). Note that in the limit β→ 0, m diverges if M is finite.
However, as we shall see, the energy spectrum is regular and goes to the canonical one for
β→ 0.

Then the free Hamiltonian reads

H0 =
1
2 ∑

i

(
p2

i
m

+ mω2x2
i

)
+

1
4 ∑

ij

(
p2

ij

M
+ Mω2x2

ij

)
, (25)

and the interaction term becomes

V = Mω2

8 ∑ij

(
xi pj

(
xi pj − xj pi

)
+ xik pjk

(
xil pjl − xjl pil

)
+ 2xi pj

(
xik pjk − xjk pik

)
+β−2xj pijxk pik + β2xij pjxik pk − xi pj pjkxik − pjxixik pjk

) (26)

Defining, for β 6= 0,

ai =

√
Mω

2

(
x4i
β

+ i
βp4i
Mω

)
, a†

i =

√
Mω

2

(
x4i
β
− i

βp4i
Mω

)
, (27)

the free Hamiltonian takes the form

H0 = ω

(
∑

i
a†

i ai +
D
2
+

1
2 ∑

i 6=j
a†

ijaij +
D(D− 1)

4

)
, (28)

with spectrum

E{ni ,nij} = ω

(
∑

i
ni +

1
2 ∑

i 6=j
nij +

D(D + 1)
4

)
, (29)
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where ni, nij are the occupation numbers for the vector and tensor degrees of freedom,
respectively. The leading-order corrections due to the Snyder structure arising from (24)
are instead

∆E{ni ,nij} =
λ2β2mω2

8

[
∑
i 6=j

niknjk + ∑
i 6=j

ninj + 2 ∑
ik

nknik + (D− 1)

(
∑
i 6=j

nij + 2 ∑
i

ni

)]
. (30)

These results are in accordance with (23) and can be compared with the spectrum of
the standard Snyder oscillator [22–24], for which En ∼ ω

(
∑i ni +

D
2

)
+ o(β2mω). It turns

out that the vacuum energy is different in the two cases, while the leading order correction,
although different, are of the same order of magnitude. Notice also that the higher-order
corrections to the vacuum energy (which vanish in our calculations) depend on the specific
operator ordering chosen.

However, in this context, it seems more interesting to choose a different Hamiltonian,
invariant only under the D-dimensional rotation group. One can still adopt the same
expression for the kinetic term, but assume different frequencies ω and Ω for the vector
and tensor degrees of freedom in the interaction term, namely

H = ∑
i

(
p̂2

i
2m

+
mω2

2
x̂2

i

)
+ ∑

ij

(
p̂2

ij

4M
+

MΩ2

4
x̂2

ij

)
. (31)

Using the realization (11) for x̂i and x̂ij, the spectrum of the free Hamiltonian gives

E{ni ,nij} = ω

(
∑

i
ni +

D
2

)
+

Ω
2

(
∑
i 6=j

nij +
D(D− 1)

2

)
, (32)

while

V =
Mω2

8 ∑
ijk

(
β2xij pjxik pk + β−2xj pijxk pik − xi pj pikxjk − pixjxik pjk

)

+
MΩ2

4

∑
ij

xi pj

(
xi pj − xj pi

)
+ ∑

ijkh
xik pjk

(
xih pjh − xjh pih

)
+ 2 ∑

ijk
xi pj

(
xik pjk − xjk pik

) (33)

and therefore

∆E{ni ,nij} =
λ2β2m

8

Ω2

∑
i 6=j

niknjk + ∑
i 6=j

ninj

+ 2ω2 ∑
i 6=j

ninij + (D− 1)
(

Ω2 + ω2
)

∑
i

ni

+
(
(D− 2)Ω2 + ω2

)
∑
ij

nij

.

(34)

It is reasonable to assume Ω� ω. In this case, one can make the approximation that
the tensorial degrees of freedom are in the ground state, and then

E{ni ,0} ∼ ω ∑
i

ni +

(
Dω

2
+

D(D− 1)Ω
4

)
+

λ2β2m
8

(
2(D− 1)(ω2 + Ω2)∑

i
ni + Ω2 ∑

i 6=j
ninj

)
. (35)

It is evident that the vacuum energy and the order-β2 corrections are greatly increased with
respect to the standard Snyder oscillator, with order of magnitude depending on the ratio
Ω/ω.
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As we have mentioned, the energy spectrum depends on the realization [24]. For
example, let us consider the classical realization, with commutation relations (3), (5). This
can be obtained by setting [17]

x̂i = xi −
λβ2

2
xik pk

x̂ij = xij +
λ

2

(
2xi pj + xik pjk − (i↔ j)

)
.

(36)

In this case, the zeroth-order energy (32) is of course unchanged, while the correction terms
give rise to a different potential, namely

V =
Mω2

8 ∑
ijk

β2xij pjxik pk +
MΩ2

8

(
4 ∑

ij
xi pj

(
xi pj − xj pi

)
+ ∑

ijkh
xik pjk

(
xih pjh − xjh pih

)
+ 4 ∑

ijk
xi pj

(
xik pjk − xjk pik

))
.

(37)

A calculation analogous to the previous one gives for the leading order corrections to
the energy

∆E{ni ,nij} =
λ2β2m

8

[
Ω2

(
∑
i 6=j

niknjk + 4 ∑
i 6=j

ninj

)
+ ω2

(
∑
i 6=j

ninij +
D(D− 1)

4

)

+(D− 1)
(

4Ω2 +
ω2

2

)
∑

i
ni +

(
(D− 2)Ω2 +

ω2

2

)
∑
ij

nij

]
.

(38)

Hence, although the structure of the corrections is identical to that obtained for the Weyl
realization, the numerical coefficients are rather different. This is a typical feature of
noncommutative models, where, for a given Hamiltonian, different realizations lead to
nonequivalent physical models [22–25].

5. Conclusions

The extended Snyder model includes tensorial degrees of freedom in addition to the
standard vectorial ones, allowing a more satisfying definition of its associated Hopf algebra.
We have considered an harmonic oscillator in the context of this model, and calculated
its energy spectrum. The result is that the corrections to the spectrum are of the same
order β2mω as in the standard Snyder model [22–24]. However, if one allows for different
frequencies to be associated with vectorial and tensorial degrees of freedom, the magnitude
of the corrections can increase much, depending on the ratio of the two frequencies.

We have assigned to the tensorial degrees of freedom zero physical dimension in
natural units, like angular momentum. However, we should mention the possibility of
assigning them a noncanonical dimension of length, so that it coincides with the one of
the vectorial degrees of freedom. In this case, one can associate a mass m to the tensorial
variables identical to that of the vectors. The conclusions about the harmonic oscillator
are unaffected, since its properties do not depend on the mass, but the properties of more
complex models could depend on this choice. For example, if the tensorial variables very
weakly interact with the vectors, they constitute a huge hidden mass whose interaction
with ordinary matter can be hardly detectable, and could allow the construction of models
for dark matter.

As discussed in the Appendix A, similar results are obtained in the case of a Moyal
model in which the object of noncommutativity is promoted to a dynamical variable, as
proposed in [21]. Differences arise only in the details of the leading-order corrections to
the energy. This fact suggests us the conjecture that all noncommutative models which
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include antisymmetric dynamical variables lead to the same structure when applied to the
harmonic oscillator problem.

Another effect that was pointed out in [21] is the fact that the uncertainty relations
can be modified. This happens also in our case, but is realization dependent. For exam-
ple, it is clear from (4) that the uncertainty relations for ∆xi∆pj in the Weyl realization
depend on the expectation values of the tensorial degrees of freedom, while in the classical
realization (5) they coincide with those of the standard Snyder model. Also, modifications
to the Casimir force between conducting plates could be evaluated on the lines of the
calculations performed in [26] for the standard case.

A more thorough discussion of the physical applications of our formalism would
require the generalization of our results to the interaction of several harmonic oscillators.
For example, in [27] it was shown that in standard quantum mechanics the coupling of
two harmonic oscillators can give rise to interesting effects in the context of phase tran-
sitions in the Rabi model. It would be interesting to extend this investigation to Snyder
quantum mechanics. However, to our knowledge, very few attempts at the description of
interacting particles in noncommutative spaces have ever been made. It is usually assumed
that the interaction term has the same form as in standard quantum mechanics [28,29]
(See however [30] for a different approach in the context of Snyder model). However, it is
not clear to us whether this assumption is consistent with the structure of noncommuta-
tive spaces, and in particular with the deformed composition law of momenta. Further
investigations are necessary to clarify this topic.

Our investigation can easily be extended to a relativistic setting in analogy with the
Moyal case studied in [31]. Perhaps more interesting would be to define a quantum field
theory on the extended Snyder background, that could solve some of the problems found
in the standard theory, whose formalism has been investigated using various approaches
in refs. [14–16,32–35]. Of course, the introduction of the new degrees of freedom would
greatly modify the formalism.
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Appendix A

In this appendix we compare our results with those arising from a Moyal oscillator with
dynamical noncommutativity [21]. A similar calculation has been performed in [21], but
the author employed a different approach, in particular choosing a deformed Hamiltonian,
such that the energy spectrum maintains its canonical form.

We do not report here the details of the computation, since they are analogous to those
performed in the Snyder case. The commutation relations of the Moyal space are [11]

[x̂i, x̂j] = iλ θij, [ p̂i, p̂j] = 0, [x̂i, p̂j] = iδij, (A1)

where the object of noncommutativity θij is a constant antisymmetric tensor of dimension
inverse length square, and λ a dimensionless deformation parameter. In [21] it was pro-
posed to promote θij to an independent dynamical variable x̂ij with conjugate momentum
p̂ij, in order to maintain rotational covariance.
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One has then, [
x̂i, x̂j

]
= iλx̂ij,

[
p̂i, p̂j

]
= 0,

[
x̂i, p̂j

]
= iδij,[

x̂ij, p̂kl
]
= i
(

δikδjl − δilδjk

)
,
[

x̂i, p̂jk

]
= −i λ

2 (δik p̂l − δil p̂k),[
x̂i, x̂jk

]
=
[
x̂ij, x̂kl

]
=
[

p̂i, x̂jk

]
=
[

p̂i, p̂jk

]
= 0.

(A2)

The commutation relations (A2) are similar to those of the extended Snyder model and can
be obtained analogously in terms of the extended Heisenberg algebra (6), defining

x̂i = xi − λ
2 xijxi pj, p̂i = pi, x̂ij = xij, p̂ij = pij. (A3)

Contrary to ref. [21] we choose the standard Hamiltonian (31) for the extended harmonic
oscillator. This will give rise to corrections to the energy spectrum of the canonical extended
oscillator.

In fact, substituting (A3) in (31) we obtain an effective Hamiltonian in terms of canoni-
cal operators xi, pi, xij, pij,

H = ∑i

[
p2

i
2m + mω2

2

(
x2

i − λ xijxi pj +
λ2

4 xij pjxik pk

)]
+ ∑ij

(
p2

ij
4M +

MΩ2x2
ij

4

)
. (A4)

As before, this can be separated in a free part H0, Equation (25) and an interaction part.
The free part has of course the same spectrum as in the extended Snyder model. The
leading-order corrections to the energy come instead from the term

V = λ2mω2

8 xij pjxik pk, (A5)

which also appears in (37).
We then go through the same steps as in the Snyder case, obtaining

E{ni ,nij} = ω

(
∑

i
ni +

D
2

)
+

Ω
2

(
∑
i 6=j

nij +
D(D− 1)

2

)

+
λ2mω2

8

(
∑
i 6=j

ninij +
D− 1

2 ∑
i

ni +
1
2 ∑

ij
nij +

D(D− 1)
4

)
.

(A6)

Although the details are of course different, this result is qualitatively similar to the one
obtained in the Snyder case. It is likely that analogous results hold for any noncommutative
model containing antisymmetric degrees of freedom.
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