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ORIGINAL ARTICLE

Machine Learning Detects Symptomatic Plaques 
in Patients With Carotid Atherosclerosis on CT 
Angiography
Francesco Pisu , MS*; Brady J. Williamson , PhD*; Valentina Nardi , MD; Kosmas I. Paraskevas , MD, PhD; Josep Puig, MD, PhD; 
Achala Vagal , MD, MS; Gianluca de Rubeis , MD; Michele Porcu , MD; Riccardo Cau , MD; John C. Benson , MD;  
Antonella Balestrieri , MD; Giuseppe Lanzino , MD; Jasjit S. Suri, MD, PhD; Abdelkader Mahammedi, MD; Luca Saba , MD

BACKGROUND: This study aimed to develop and validate a computed tomography angiography based machine learning model 
that uses plaque composition data and degree of carotid stenosis to detect symptomatic carotid plaques in patients with 
carotid atherosclerosis.

METHODS: The machine learning based model was trained using degree of stenosis and the volumes of 13 computed 
tomography angiography derived intracarotid plaque subcomponents (eg, lipid, intraplaque hemorrhage, calcium) to identify 
plaques associated with cerebrovascular events. The model was internally validated through repeated 10-fold cross-validation 
and tested on a dedicated testing cohort according to discrimination and calibration.

RESULTS: This retrospective, single-center study evaluated computed tomography angiography scans of 268 patients with both 
symptomatic and asymptomatic carotid atherosclerosis (163 for the derivation set and 106 for the testing set) performed 
between March 2013 and October 2019. The area-under-receiver-operating characteristics curve by machine learning on 
the testing cohort (0.89) was significantly higher than the areas under the curve of traditional logit analysis based on the 
degree of stenosis (0.51, P<0.001), presence of intraplaque hemorrhage (0.69, P<0.001), and plaque composition (0.78, 
P<0.001), respectively. Comparable performance was obtained on internal validation. The identified plaque components and 
associated cutoff values that were significantly associated with a higher likelihood of symptomatic status after adjustment 
were the ratio of intraplaque hemorrhage to lipid volume (≥50%, 38.5 [10.1–205.1]; odds ratio, 95% CI) and percentage of 
intraplaque hemorrhage volume (≥10%, 18.5 [5.7–69.4]; odds ratio, 95% CI).

CONCLUSIONS: This study presented an interpretable machine learning model that accurately identifies symptomatic carotid 
plaques using computed tomography angiography derived plaque composition features, aiding clinical decision-making.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Stroke is a common cause of death and severe dis-
ability worldwide, and a significant proportion of 
ischemic stroke is related to carotid artery athero-

sclerosis.1,2 Current guidelines for stroke prediction are 
primarily based on the degree of stenosis.1 However, 
recent literature have shown that plaque structure and 

composition play a fundamental role in plaque vulner-
ability or stability.3–7 Previous studies have demon-
strated that morphological and composition differences 
between plaques can predict the occurrence of ischemic 
strokes.8–11 Investigation of these unique biomarkers 
and their predictive value is an area of active research. 
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Currently, computed tomography angiography (CTA) is 
widely used in the noninvasive assessment of carotid 
atherosclerosis.7 Recent technological advancements in 
CTA allow the quantification and characterization of ath-
erosclerotic carotid plaque.

Indeed, several volumetric measures characterizing 
the anatomic features of the plaque can be obtained 
using different HU cutoffs,2 namely fibrous tissues, cal-
cium tissues, lipid tissues as well as intraplaque hemor-
rhage (IPH).2,8 Among the multiple parameters that have 

been indicated as responsible for an increased vulner-
ability, IPH has been identified as a strong risk factor of 
cerebrovascular events (CVE).2,8,12,13

Machine learning (ML), a subfield of artificial intel-
ligence, has gained significant interest lately due to its 
ability to automatically learn complex patterns in existing 
data, that are undetectable with conventional statistical 
methods, and make predictions based on unseen data.14 
However, the clinical application of ML models has suf-
fered from the black box problem of interpretability and 
explainability.15 Hence, the development of interpreta-
ble ML solutions is essential for enabling clinicians to 
make confident decisions.16 The aim of this study was 
to derive an interpretable ML model that used data of 
plaque composition derived from CTA of carotid arter-
ies to detect symptomatic carotid plaques. Furthermore, 
the study aimed to assess the most significant predic-
tors and investigate potential nonlinear associations with 
symptomatic status using ML techniques.

METHODS
The data collection and protocols used in this study were 
approved by the institutional review board, and individual patient 
consent was waived because of the retrospective nature of the 
study. This study was designed, and article prepared accord-
ing to the checklist for artificial intelligence in medical imaging 
(CLAIM, Table S1).

Data Availability
The data underlying this study’s findings cannot be shared pub-
licly as it would compromise the privacy of the participants. The 
data can be made available on reasonable written request to 
the corresponding author, L. Saba.

Study Design and Participant Selection
This is a single-center, retrospective, diagnostic study of 163 
patients with carotid atherosclerosis who underwent CTA of 
the carotid arteries from January 2013 to November 2017 
at Azienda Ospedaliero-Universitaria di Cagliari. One hundred 
twenty-three of 163 patients have previously been reported 
in another study,2 we retrospectively collected data of 106 
patients who underwent CTA between December 2017 and 
October 2019 at the same institution.

In cases where atherosclerotic plaque was present in both 
carotid arteries of a subject, both the left and right sides were 
considered. However, if only one side showed signs of pathol-
ogy, the healthy side was not included.

We included adults (18+) with carotid atherosclerosis 
diseases. Carotid sonography was used as a screening tool 
to identify carotid stenosis according to the Mannheim con-
sensus (ie, carotid wall thickness of >1.5 mm17). Symptomatic 
patients underwent CTA without prior ultrasound. Otherwise, 
CTA screening was performed if ultrasound showed patho-
logical stenosis (according to the North American Symptomatic 
Carotid Endarterectomy Trial criteria17), features indicating 
plaque vulnerability (eg, irregular surface, ulcerations) or it was 

CLINICAL PERSPECTIVE
Computed tomography angiography of the carotid 
arteries is an essential diagnostic tool in the assess-
ment of patients presenting with cerebrovascular 
symptoms. Employing a standardized protocol, our 
investigation explored the composition of carotid 
artery plaques, discerning between key subcompo-
nents including calcium, lipid, and intraplaque hemor-
rhage. Using the volumes of such subcomponents to 
develop an interpretable machine learning model, we 
were able to successfully differentiate symptomatic 
from asymptomatic plaques. We found that the ratio 
of intraplaque hemorrhage to lipid volume and the 
proportion of intraplaque hemorrhage to total plaque 
volume were key indicators of symptomatic plaques. 
Our model’s intelligibility enables clinicians to under-
stand how predictions are generated, which in turn 
improves their ability to assess risk. For a given carotid 
plaque, it first assigns a symptomatic likelihood to 
each individual component, which is then added up 
to determine the overall likelihood of a plaque being 
symptomatic. This straightforward approach gives cli-
nicians a clearer picture of what factors contribute to 
plaque instability and potential cerebrovascular risk. 
This marks a step towards automated artificial intelli-
gence-based solutions for predicting future cerebro-
vascular events based solely on plaque morphology.

Nonstandard Abbreviations and Acronyms

AUROC	� area under the receiver-operating  
characteristics curve

AUPR	 area under the precision-recall curve
CTA	 computed tomography angiography
CVE	 cerebrovascular event
GB-GAM	� gradient-boosting generalized additive 

model
IPH	 intraplaque hemorrhage
ML	 machine learning
NRI	 net reclassification index
TOAST	� Trial of Org 10172 in Acute Stroke 

Treatment
OR	 odds ratio
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inconclusive due to anatomic conditions. Diabetes screening 
and presurgery analysis also constituted criteria for CTA.12

Patients were excluded if >1 week was passed between 
symptoms onset and imaging (average was 3 days, range was 
0–7, where 0 was the same time of the event) or in case of 
doubt with other pathologies (hypoglycemia, migraine, postp-
aroxysmal neurological dysfunction), concomitant intracra-
nial pathology (brain tumor, abscess, encephalitis) or cardiac 
embolic source. We also excluded patients in case of symptom-
atic status due to posterior circle occlusion.

Definition of Symptomatic
Neurological status at the time of CTA was defined as symp-
tomatic or asymptomatic based on the TOAST (Trial of Org 
10172 in Acute Stroke Treatment) criteria18,19 for individual 
arteries by the clinical care team. The readers of the CTA during 
data reassessment were blinded on the status of the patient. 
We classified as symptomatic those subjects who had plaque 
in the carotid artery ipsilateral to the CVE in the distribution of 
the anterior and middle cerebral arteries. Asymptomatic per-
sons had no history of either remote or recent CVE at the time 
of the examination. The CVE was defined as carotid territory 
ischemic event (TIA or stroke) with symptoms like hemiparesis, 
dysarthria, dysphasia, or monocular blindness. Episodes of neu-
rological dysfunction that lasted >24 hours were considered as 
stroke, otherwise TIA.11 All symptomatic patients had subtype 
1 (ie, large-artery atherosclerosis) as the cause. Stroke causes 
other than large-artery atherosclerosis, as per the TOAST cri-
teria, were excluded by the clinical care team through a com-
prehensive cardiovascular examination. This included 12-lead 
electrocardiography, 24-hour Holter electrocardiography, trans-
thoracic echocardiography, and hematologic screening.

CTA Technique
Data were obtained using a 16-detector row CT system 
(Brilliance; Philips Healthcare, Best, the Netherlands). Images 
were obtained from the aortic arch to the circle of Willis 
before and after the administration of contrast. For CTA, 80 
mL of prewarmed contrast medium (Ultravist 370; iopromide; 
Bayer HealthCare, Berlin, Germany) was injected into a cubital 
vein using a power injector at a flow rate of 4–5 mL/s and a 
16-gauge intravenous catheter followed by 30 mL of saline 
flush. CT scanning parameters included the following: section 
thickness = 0.6 mm, section interval = 0.3 mm, matrix size = 
512×512 pixels, FOV = 14–19 cm. Images were reconstructed 
using a C-filter algorithm. The same CT scanner was used for 
all the imaging.

Carotid Plaques Analysis
Two expert radiologists (L. Saba and A. Balestrieri) blinded to 
symptomatic status performed all HU measurements using a 
window/level setting of 850/300. To analyze the volume of 
plaques and their subcomponents, a semi-automated software 
(iNtuition; Terarecon, Foster City, CA) was used, which involved 
the delineation of the inner and outer wall boundaries of the 
vessel and the calculation of the volume of the plaque and its 
subcomponents based on the specific region of interest.9,10 To 
identify and classify the subcomponents of the plaque, attenu-
ation values of all voxels within a volume were identified, and 

specific thresholds were used to classify the tissues according 
to the attenuation values. Through the use of specific thresh-
olds, 5 tissue classes can be identified: lipid tissue (<60 HU), 
fibrous tissue (60–130 HU), calcium tissue (>130 HU) as 
suggested by de Weert et al,20 as well as IPH (<25 HU) and 
lipid—IPH (26–59 HU) which are subclasses of the lipid tissue 
category.2,21 In this regard, IPH and lipid-IPH are subclassifica-
tions of the lipid tissue class. Interobserver and intraobserver 
variability of the volumetric analysis was not measured in this 
study as it has already been done in previous investigations.17,22

Machine Learning
Data on 14 variables were available for ML. They included pres-
ence of stenosis, intracarotid plaque and its subcomponents 
volumes derived from CTA scans (lipid, fibrous, calcium, IPH 
and lipid minus IPH) in both absolute and percentage values, 
and the ratio of IPH to lipid volume. See Table S2 for details. 
The plaque’s symptomatic status was the binary outcome, and 
models were trained to detect symptomatic plaques.

The ML methodology involved training and validating sta-
tistical and ML models on the derivation cohort with 10 repeti-
tions of 10-fold CV. A separate cohort was used to test the ML 
model and determine the significance of predictors of symp-
tomatic status and relative cutoffs. Finally, nonlinear associa-
tions between selected variables and the symptomatic status 
were investigated.

Model Building
The gradient-boosting generalized additive model (GB-GAM) 
was used to derive models for identifying symptomatic 
plaques. The GB-GAM is a highly intelligible model that 
learns a function for each individual feature using gradi-
ent boosting, and combines them to derive the likelihood 
of symptomatic status.23 The GB-GAM has been effectively 
used in other studies with cardiac data.24,25 In gradient boost-
ing, a kind of supervised ensemble learning, weaker esti-
mators are ensembled to produce a stronger estimator by 
sequential fitting and adjustment of weighting to account for 
misclassifications. For an unseen carotid artery, feature val-
ues are used to index learned functions, which in turn provide 
partial contributions that are summed up to predict the score 
of symptomatic status.

Four different models were derived using a GB-GAM with 
plaque composition data and presence of stenosis (ML), and 
3 logistic regressors using presence of stenosis, presence of 
IPH, and plaque composition data, respectively. We refrained 
from performing hyperparameter tuning due to the small sam-
ple size and hence used settings derived from previous works 
instead.

Internal Validation and Dedicated Testing
Model derivation was conducted in a stratified 10-fold CV with 
10 repetitions, which ensures robust performance when the 
sample size is small.26 Briefly, the data is divided into 10 equally 
sized subsets ensuring similar proportions of cases in each 
subset. Nine out of 10 sets were used for model derivation and 
the remaining set was used for validation. This protocol was 
applied 9 more times so that each set was used for validation 
exactly once. Overall, this scheme was repeated 10×, each time 
shuffling the dataset to better estimate the generalization error 
of the model.
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Compared with the conventional holdout method, 10-fold 
CV allows to: (1) reduce the bias when quantifying predictive 
performance, (2) reduce the variance when estimating the gen-
eralization error, and (3) maximize the available data for training 
and testing by ensuring these are performed on nonoverlap-
ping subsets, hence limiting the risk of overfitting.

Each model was used to predict the probability of symp-
tomatic plaque for all arteries in each testing fold; these scores 
were pooled and used to quantify predictive performance and 
to compare models according to the area under the receiver-
operating characteristics (AUROC) and area under the  
precision-recall (AUPR) curves.

Finally, the ML model was trained using all available data 
using the same methodology as used within CV and evaluated 
on a dedicated testing cohort.

To address potential bias arising from the underrepresenta-
tion of female patients in our datasets, we derived all models 
using a gender-balanced derivation set. These models were then 
employed to classify patients in the dedicated testing set, aiming 
to assess whether a gender-balanced model would exhibit fewer 
errors on female subjects compared with the model trained on 
the unbalanced derivation set. This approach was implemented 
to alleviate the minority representation of female subjects com-
pared with male subjects. Additional details on the balancing 
technique can be found in the Supplemental Methods.

Importance of Variables and Contribution to Predictions
Features were ranked by average absolute impact on model’s 
predictions on the derivation set and further validated on the 
testing cohort. Two case examples of correct predictions of 
symptomatic and asymptomatic cases of the testing cohort 
were also presented, with individual contributions of each fea-
ture to the final prediction.

Dependency and Partial Dependency of Selected 
Variables
Dependence plots were used to analyze potential nonlinear, 
unadjusted associations between the 2 most impactful variables 
and their effect of symptomatic status prediction. Partial depen-
dence plots were also examined to isolate the effect of the 
variables of interest while averaging out the impact of all other 
variables in the model. Optimal cutoffs for stratifying carotid 
plaques into low and high likelihood of symptomatic status were 
derived considering the nadir, histograms of feature distributions 
and normal range for the feature from the derivation set.

ML Performance Evaluation
ML models were evaluated according to discrimination ability 
and calibration. The areas under both the AUROC and AUPR 
were constructed from ground-truth labels and predicted prob-
abilities pooled across validation folds for internal validation, 
and from bootstrap samples for dedicated testing, and used as 
measures of discrimination. The average precision score was 
used to summarize the AUPR. Sensitivity and specificity were 
calculated at the cutoff that maximized the Youden’s J statistic 
(sensitivity + specificity–1) from the derivation set. Confidence 
bands around curves were generated with 5000 repetitions of 
the bootstrap on either pooled CV results (for average curves 
after internal validation) or testing predictions (for dedicated 
testing). Model calibration was assessed both qualitatively 
through observed versus predicted plots and quantitatively 

using the Brier score.27 The bootstrap was also used to assess 
predictive performance on the dedicated testing set.27,28 All 
metrics were computed using the percentile method on scores 
accumulated across the 100 CV repetitions for internal valida-
tion and the 5000 bootstrap resamples for the dedicated test-
ing, providing the median and 95% CIs.

Statistical Analysis
Continuous data were presented as mean±SD or median and 
interquartile rangedepending on the normality of residuals. 
Comparisons between symptomatic and asymptomatic sub-
jects were performed using t tests or Mann-Whitney U tests 
as appropriate. Differences in proportions were assessed using 
the χ2 test. To account for multiple comparisons, P values were 
adjusted using the Benjamini-Hochberg method. Statistical 
significance between areas-under-curve were determined 
using the DeLong method or the independent t test, as appro-
priate.29 The net reclassification index (NRI) was employed to 
assess the incremental value of the proposed ML approach 
in comparison to traditional statistical models for improving 
the accurate reclassification of carotid plaques into symp-
tomatic and asymptomatic status. Both the event-specific, 
nonevent specific, and the combined NRI were calculated. 
Cutoffs identified by our ML approach on the derivation data 
were further examined using both univariable and multivariable 
logit analysis on the testing cohort by adjusting for common 
clinical confounders such as demographics and cardiovascular 
risk factors. P<0.05 were deemed statistically significant. The 
GB-GAM model was implemented using the interpret frame-
work in Python. All analyses were performed using R software 
(R Foundation for Statistical Computing, Vienna, Austria, ver-
sion 4.1.0) and Python language (Python Software Foundation. 
Python Language Reference, version 3.9).

RESULTS
Characteristics of the Derivation and Testing 
Cohorts
Figure 1 shows the patients flow chart. No patients were 
excluded due to suboptimal image quality. A total of 175 
patients were enrolled during the study period. Of these, 
12 were symptomatic due to posterior circle occlusion, 
hence they were excluded; the remaining 163 patients 
(122 men; median age, 72 [95% CI, 71–76]) were finally 
registered to the derivation cohort. Each carotid artery 
was evaluated independently, yielding an initial sample of 
326 carotid arteries. For each subject, when both carotid 
arteries showed atherosclerotic plaque, the left and right 
sides were included (77 subjects, 154 carotid arteries). 
Conversely, when only one carotid artery was patho-
logical, the normal side was excluded from the analysis 
(86 subjects, 86 carotid arteries). A total of 240 carotid 
arteries were finally used as the derivation set to train 
ML models. Carotid arteries in the testing cohort were 
exclusively used to validate the results. Patients’ charac-
teristics in the derivation and testing cohorts are shown 
in Table 1.
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Diagnostic Performance in Predicting 
Symptomatic Plaques

The overall ML process is illustrated in Figure 2A. ROC 
curves for identifying symptomatic plaques on the dedi-
cated testing cohort are reported in Figure 2B. ML had 
the highest AUROC: 0.89 (95% CI, 0.78– 0.95) after 
5000 iterations of the bootstrap at the Youden’s index 
identified using the derivation set (Table S3). ML achieved 
significantly higher areas under the curve than logistic 
regressors using presence of stenosis (0.51 [95% CI, 
0.41–0.62]), logistic regressors using presence of IPH 
(0.69 [95% CI, 0.59–0.76]), and logistic regressors using 
plaque composition data (0.78 [95% CI, 0.65–0.87]), all 
P<0.001. ROC curves after internal validation are shown 
in Figure S1. ML showed a sensitivity of 81% (95% 
CI, 63–92) and a specificity of 95% (95% CI, 87–99;  
Table S3). Precision-recall curves on the testing cohort 
are shown in Figure S2A. AUPR of the proposed ML 
model was significantly higher than those of logistic 

regressors using presence of stenosis (0.30 [95% CI, 
0.20–0.40]), logistic regressors using presence of IPH 
(0.40 [95% CI, 0.29–0.54]), and logistic regressors using 
plaque composition data (0.70 [95% CI, 0.51–0.82]), all 
P<0.001. Precision-recall curves after internal validation 
are reported in Figure S2B. Positive and negative predic-
tive value were 87% (95% CI, 68–96) and 92% (95% 
[84–97]), respectively (Table S3).

Out of the 10 errors made by our ML model on the 
testing cohort, 8 (80%) were male subjects, and 2 (20%) 
were female subjects. Interestingly, the same ML model, 
when trained on a gender-balanced derivation set, exhib-
ited an equal number of errors on both male and female 
subjects. This suggests that the underrepresentation of 
female subjects in the derivation set did not result in a 
biased model toward making errors on female subjects. 
Overall, models trained on the balanced derivation set 
demonstrated performance similar to those trained on 
the unbalanced data set. Specifically, the balanced ML 
model achieved the same AUROC as the unbalanced 

Figure 1. Schematic of inclusion and exclusion of patients for computed tomography angiography (CTA) acquisition.
Details on the total number of carotid arteries constituting the derivation cohort are provided. NASCET indicates North American Symptomatic 
Carotid Endarterectomy Trial.
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model (0.89 [95% CI, 0.79–0.95], P=0.88). ROC and 
precision-recall curves following gender balancing for all 
models on both dedicated testing and internal validation 
are provided in Figure S3. Diagnostic performance details 
following gender balancing are reported in Table S4.

Comparable diagnostic performance was observed on 
internal validation; however, these results may be overfit-
ted and are typically not as reliable as those achieved 
on a dedicated testing set. The proposed ML approach 
achieved the highest AUROC (0.88 [95% CI, 0.66–
0.99]) and AUPR (0.79 [95% CI, 0.5–0.97], all P<0.001), 
along with great calibration (0.12 [95% CI, 0.06–0.22], 
Figure S4A). On dedicated testing, a median Brier score 
of 0.09 (95% CI, 0.04–0.15) indicated excellent calibra-
tion of predicted scores (Figure S4B).

Confusion matrices, providing detailed information 
about correct classifications and errors for all models on 
the testing cohort, are presented in Figure S5. Overall, our 
ML approach provided incremental diagnostic value on 

both dedicated testing and internal validation, in reclas-
sifying carotid plaques in symptomatic and asymptomatic 
status, with respect to logistic regressors using presence 
of stenosis (NRI of 1.21 [95% CI, 1.14–1.28] on the test-
ing cohort, NRI of 1.29 [95% CI, 0.95–1.62] after inter-
nal validation), logistic regressors using presence of IPH 
(NRI of 1.13 [95% CI, 1.05–1.20] on the testing cohort, 
NRI of 1.24 ([95% CI, 0.89–1.58] after internal valida-
tion) and logistic regressors using plaque composition 
data (NRI of 1.14 [95% CI, 1.06–1.21]) on the testing 
cohort, NRI of 1.24 (95% CI, [0.89–1.58]), all P<0.001 
(see Table S5 for the event- and nonevent-specific NRI).

Importance of Variables for Identifying 
Symptomatic Plaques
The ML model was built using 13 CTA-derived plaque 
composition features and presence of stenosis as deter-
mined by ultrasound. Variable importance ranking is 

Table 1.  Baseline Characteristics of Patients in the Derivation and Testing Cohorts

 

Derivation cohort (n = 240) Testing cohort (n=106)

Cerebrovascular symptoms

P value* 

Cerebrovascular symptoms

P value* 
Yes (n=69 and 
#subjects=63) 

No (n=171 and 
#subjects=100) 

Yes (n=31 and 
#subjects=31) 

No (n=75 and 
#subjects=75) 

Demographic

 � Age, y 76.0 (65.0–81.0) 72.0 (62.0–79.5) P=0.375 76.0 (67.5–81.0) 76.0 (67.0–81.0) P>0.999

 � Male, n (%) 52 (82.54%) 70 (70.00%) P=0.187 24 (77.42%) 46 (61.33%) P=0.241

Cardiovascular risk factors

 � Hypertension, n (%) 17 (26.98%) 26 (26.00%) P=0.999 15 (48.39%) 26 (34.67%) P=0.335

 � CAD, n (%) 32 (50.79%) 42 (42.00%) P=0.489 22 (70.97%) 34 (45.33%) P=0.06

 � Smoker, n (%) 23 (36.51%) 27 (27.00%) P=0.402 15 (48.39%) 23 (30.67%) P=0.197

 � Diabetes, n (%) 3 (4.76%) 9 (9.00%) P=0.597 3 (9.68%) 7 (9.33%) P>0.999

 � Hyperlipidemia, n (%) 41 (65.08%) 67 (67.00%) P=0.981 23 (74.19%) 48 (64.00%) P=0.502

CTA findings

 � Stenosis (NASCET), n (%) 27 (42.86%) 47 (47.00%) P=0.842 18 (58.06%) 45 (60.00%) P>0.999

 � Presence of IPH, n (%) 61 (88.41%) 97 (56.73%) P<0.001† 26 (83.87%) 35 (46.67%) P=0.003†

 � Plaque volume, mm3 823.0 (547.0–1004.0) 566.0 (426.0–944.5) P=0.036† 973.0 (832.5–1326.5) 754.0 (543.0–1094.0) P=0.065

 � IPH volume, mm3 98.0 (45.0–204.0) 5.0 (0.0–23.0) P<0.001† 153.0 (59.5–232.0) 0.0 (0.0–23.0) P<0.001†

 � Lipid volume, mm3 172.0 (82.0–307.0) 88.0 (56.0–196.0) P<0.001† 255.0 (132.0–389.5) 153.0 (75.0–272.0) P=0.03†

 � (Lipid-IPH) volume, mm3 68.0 (31.0–112.0) 70.0 (44.5–155.0) P=0.077 99.0 (63.0–179.0) 132.0 (69.0–232.0) P=0.197

 � Calcium volume, mm3 160.0 (62.0–315.0) 144.0 (77.5–270.5) P=0.981 206.0 (120.0–288.0) 235.0 (154.5–375.5) P=0.255

 � Mixed volume, mm3 460.0 (315.0–600.0) 335.0 (225.0–545.5) P=0.066 459.0 (378.0–555.5) 323.0 (212.0–443.0) P=0.003†

 � IPH volume, % 14.4 (8.3–21.2) 1.0 (0.0–3.3) P<0.001† 15.7 (8.5–22.3) 0.0 (0.0–2.8) P<0.001†

 � Lipid volume, % 23.0 (14.0–31.0) 17.0 (1.0–22.2) P<0.001† 25.2 (17.2–38.0) 19.9 (14.1–26.8) P=0.034†

 � (Lipid-IPH) volume, % 7.7 (4.5–11.8) 13.1 (9.0–18.1) P<0.001† 10.7 (5.4–17.1) 17.0 (12.5–25.0) P=0.003†

 � Calcium volume, % 17.1 (12.0–27.0) 21.1 (14.9–33.0) P=0.036† 20.0 (15.0–26.7) 33.9 (23.6–51.7) P=0.002†

 � Mixed volume, % 56.0 (48.1–65.0) 57.9 (49.0–67.0) P=0.597 49.9 (40.4–58.5) 41.2 (31.8–53.6) P=0.071

 � (IPH/lipid) volume ratio 0.7 (0.5–0.8) 0.06 (0.0–0.2) P<0.001† 0.6 (0.5–0.7) 0.0 (0.0–0.1) P<0.001†

Statistics of demographic variables, cardiovascular risk factors, and stenosis were computed on each cohort’s subjects (163 and 106 subjects, respectively), whereas 
plaque and carotid related statistics were computed on the carotid plaques (240 and 106, respectively). Of those, 69 and 31 were symptomatic for CVA, respectively. 
Values are median and interquartile range, n (%). CAD indicates carotid artery disease; CVA, cerebrovascular accident; IPH, intraplaque hemorrhage; and NASCET, North 
American Symptomatic Carotid Endarterectomy Trial.

*P value adjusted using the Benjamini-Hochberg method.
†Indicates statistical significance.
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reported in Figure 3A.2 Among them, ratio of IPH to lipid 
volume and absolute IPH volume out of total plaque vol-
ume had the highest impact on identifying symptomatic 
plaques. Other plaque components such as plaque vol-
ume and lipid volume had lower impact. Presence of ste-
nosis and presence of IPH were the weakest predictors.

Dependency and Partial Dependency of Most 
Predictive Variables
Dependency plots for the 2 most predictive variables in 
the ML model from the derivation cohort are shown in 
Figure 3B. In brief, the predicted probability of plaque 
symptomatic status increased steadily as the ratio of 
IPH to lipid ratio increased, until it reached 50%, at 

which point it began to decrease. Similarly, as the per-
centage of IPH volume relative to the total plaque vol-
ume increased, there was an associated increase in 
the probability of symptoms until it reached 10%, after 
which it decreased and then increased again around 
30%. Partial dependence plots that report the adjusted 
probability when the influence of common clinical con-
founders is averaged out are reported in Figure S6. 
Carotid plaques with ratio of IPH to lipid volume <30% 
exhibited the lowest likelihood of displaying symptom-
atic characteristics. Beyond this threshold, there was a 
steady increase until the 50% threshold. Similarly, val-
ues of percentage of IPH volume <5% were associated 
with reduced predicted probabilities, which exhibited a 
continuous increment until reaching the 10% cutoff, 

Figure 2. Sequence of steps of 
machine learning (ML) analysis and 
performance of ML and traditional 
models.
A, ML analysis comprised model building 
with a tree-based boosting generalized 
additive model, 10 repetitions of 10-fold 
cross-validation (CV) for internal validation 
and additional testing on a dedicated test 
set. Four models were derived—ML-plaque 
composition based on plaque measures, 
and 3 logistic regression models, 
model 1: Stenosis based solely on the 
presence of stenosis, model 2: intraplaque 
hemorrhage (IPH) based on presence 
of IPH, model 3: plaque composition—to 
identify symptomatic plaques. B, Receiver-
operating characteristics curves showing 
diagnostic performance of the proposed 
ML model and traditional logit models of 
stenosis, presence of IPH, and plaque 
components in detecting symptomatic 
plaques on the dedicated testing cohort. 
Median areas-under-curve are reported 
as horizontal bars with 95% CIs shown 
with horizontal whiskers. Comparisons 
between models are indicated by 
vertical whiskers which are annotated 
with asterisks to indicate statistical 
significance. CTA indicates computed 
tomography angiography; and NASCET, 
North American Symptomatic Carotid 
Endarterectomy Trial.
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after which a declining trend was observed. Histograms 
of feature distributions used to identify cutoffs are pre-
sented in Figure S7.

Individualized Explanations of ML Predictions
Examples of correct predictions by ML with individual-
ized explanations for 2 subjects are shown in Figure 4. 
Individual contributions of each feature to the final pre-
dicted score along with their values are reported for both 
subjects.

Validation of ML Derived Cutoffs
All ML-derived cutoffs were further examined to verify 
their diagnostic relevancy. Each cutoff was tested both 
in an univariable logit analysis and also adjusted for 
common clinical confounders such as age, sex, and 
cardiovascular risk factors. Both identified cutoffs sig-
nificantly stratified carotid plaques based on the likeli-
hood of symptomatic status. Carotid arteries exhibiting 
plaques with higher ratio of IPH to lipid volume (ratio 
IPH/lipid ≥50%; odds ratio [OR], 50.4 [95% CI, 14.4–
243.4], P<0.001 in univariable analysis; OR, 49.2 [95% 
CI, 13.9–241.3], P<0.001 in demographics-adjusted 
analysis; and OR, 38.5 [95% CI, 10.1–205.1], P<0.001 
in risk factors-adjusted analysis) and percentage of 
IPH volume (IPH (%) ≥10%; OR, 24.2 [95% CI, 8.3–
80.5], P<0.001 in univariable analysis; OR, 23.5 [95% 
CI, 7.9–80.3], P<0.001 in demographics-adjusted 
analysis; and OR, 18.5 [95% CI, 5.7–69.4], P<0.001 
risk factors-adjusted analysis) were significantly asso-
ciated with an increased probability of symptomatic 
status, both on derivation and testing cohorts (Table 2 
and Table S6).

DISCUSSION
Recent evidence has demonstrated that carotid plaque 
morphology correlates with ipsilateral stroke risk. Using 
ML, we showed that a quantitative carotid plaque com-
ponent model may have significant impact on identifying 
symptomatic carotid plaques independent of the pres-
ence of IPH or the degree of carotid stenosis, allowing to 
identify symptomatic carotid plaques with optimal predic-
tive accuracy.

The best predictors were ratio of IPH to lipid volume 
and percentage IPH volume and could serve as valuable 
imaging indicators for symptomatic carotid plaques.

From a histological perspective, a large LRNC con-
tains an elevated concentration of free cholesterol, 
thereby increasing the likelihood of volume expansion 
through crystallization. The development and enlarge-
ment of cholesterol crystals, aligned in parallel forma-
tions with sharp tips within the necrotic core, have the 
potential to efficiently sever the vasa vasorum network, 
leading to IPH and plaque rupture.30,31

Indeed, histological research have reported that some 
morphological features of carotid plaque are related to 
an increased risk of cerebrovascular symptoms, including 
LRNC and IPH.32 In a recent meta-analysis, Schindler et 
al33 investigated the risk of stroke in patients with carotid 
artery disease with and without IPH using MRI. The pres-
ence of IPH significantly increased the risk of stroke in 
both symptomatic and asymptomatic patients.

In addition, plaque subcomponent volumes and per-
centages have shown an important role in stroke risk 
prediction.34,35

Cao et al36 demonstrated that prevalence, volume, and 
proportion of IPH were associated with the severity of 
stroke.

Figure 3. Variable importance and 
associations with symptoms.
A, Variable importance and ranking for 
identifying symptomatic plaques from 
the testing set. B, Dependency plots 
showing the nonlinear relationship 
between the 2 most predictive plaque 
composition variables and the probability 
of symptomatic status. IPH indicates 
intraplaque hemorrhage.
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Our results are consistent with recent studies high-
lighting the reliability of carotid artery plaque volumetric 
analysis on CT as well as the importance of delineation 
of subcomponent volume for stroke prediction.37,38 In line 
with previous evidence, our data also suggests that the 
ratio and percentages of subcomponent volumes, in par-
ticular IPH and lipid volumes, are relevant for identifying 
symptomatic carotid plaques, suggesting that the quanti-
fication of volume and percentage of IPH may be useful 
in patients with carotid plaque in stroke risk stratification, 
beyond simply determining the presence of IPH.

The main limitations in evaluating carotid atheroscle-
rosis using CT in clinical practice are blooming artifacts, 
edge blur, and halo effects. Nevertheless, the good spa-
tial resolution of CT, the rapid flow rate achieved using a 
power injector, the CT scanning parameters, the applied 
reconstruction algorithm, and the window/level setting 
of 850/300, along with the expertise of neuroradiology 
readers, enabled us to overcome these limitations and 
not exclude any patients from our analysis.

AI-based models could potentially enhance stroke risk 
prediction, as recently suggested by Brugnara et al.39  

Figure 4. Example of correct predictions of symptomatic and asymptomatic cases.
A–C, Personalized explanations by the machine learning model of the 2 examples of correct predictions, with individual contributions of each 
feature to the predicted likelihood of symptomatic status. Features are sorted decreasingly by impact; blue and red bars indicate positive and 
negative contributions, respectively. Gray dotted line indicates classification threshold for deciding whether the patient is symptomatic or not. 
B–D, Computed tomography angiography (CTA) view of an asymptomatic carotid plaque of a 67-year-old male and a symptomatic plaque of an 
75-year-old male, respectively. IPH indicates intraplaque hemorrhage.

D
ow

nloaded from
 http://ahajournals.org by on June 19, 2024



Pisu et al Plaque Morphology Predicts Symptoms Using ML

Circ Cardiovasc Imaging. 2024;17:e016274. DOI: 10.1161/CIRCIMAGING.123.016274� June 2024 474

The authors investigated a ML-based algorithm integrat-
ing different parameters from CT imaging to predict the 
clinical outcome after acute stroke reporting that the 
performance of a ML-based approach was higher than 
with conventional statistical methods. Indeed, an AI-
based approach has the potential to overcome the linear 
association assumption made using conventional statisti-
cal analysis, allowing the examination of complex nonlin-
ear interactions within the data.2

One strength of our study is that all the CTA-derived 
variables used to construct our ML model can be obtained 
on arrival at the hospital in relatively short time follow-
ing a standardized protocol. Furthermore, we created 
an interpretable model to facilitate integration in routine 
clinical practice. During the training procedure, the ML 
model learns a contribution function for each feature, 
which can be then used to get the contribution to the 
predicted ML score; thanks to the additive nature of the 
ML model, contributions of all features can be summed 
to obtain the final score of symptomatic status. By 
showing example cases of ML predictions, we showed 
which features had the greatest impact on model pre-
dictions and individual feature contributions to the final 
prediction. Nonlinear relationships between the identi-
fied predictive plaque composition variables and likeli-
hood of symptomatic status were examined and used 
to derive diagnostic thresholds. These thresholds were 
further tested, and their diagnostic relevancy were quan-
tified with further logit analyses on the testing cohort. 
Our interpretable approach may offer an alternative to 
more complex methods which suffer from the black-box 
problem of explainability of outputs. Indeed, one of the 
challenges in the widespread applicability of AI-based 

models in clinical practice is their lack of interpretability, 
which means that the systems do not offer any insight 
or explanations about how the result is obtained. Cur-
rently, some AI-based tools have received approval from 
the Food and Drug Administration and are already being 
used in cardiovascular clinical practice, particularly in the 
field of imaging acquisition and reconstruction.40

However, developing AI models intelligible to human 
comprehension, enabling an understanding of why a 
model produces a specific outcome, can facilitate the 
widespread integration of AI algorithms into diagnostic 
and prognostic cardiovascular clinical settings, as well as 
increase the trust of physicians in AI applications.

Additionally, physicians and future medical profes-
sionals should be properly trained in the AI domain to 
promote the safe adoption of AI-based models in cardio-
vascular imaging.

There are limitations to this study. First, our findings 
are based on a relatively small cohort. Although we 
evaluated our model on a dedicated testing set, which 
produced33,28 more reliable estimates of predictive per-
formance than internal validation, our model may benefit 
from additional training on bigger cohorts. In fact, the 
predictive performance of ML models depends, among 
other things, on the data set size, therefore, additional 
studies on bigger cohorts are needed to confirm our 
findings. Second, predictive performance of the final ML 
model was tested on testing data acquired at the same 
institution in a different time period than the derivation 
data. Although the promising results, the generalizabil-
ity of the model must be further quantified on additional 
data with different baseline characteristics, social back-
grounds, treatments and ethnicity. Additionally, although 
our experiments were conducted in a controlled and 
standardized environment, using the same scanner, 
scanning parameters, and reconstruction algorithm for 
all imaging, the generalizability of our approach requires 
further evaluation. Future validation studies involving 
multiple scanners and institutions, as well as different 
software tools for quantifying the volumes of plaque sub-
components, are needed to thoroughly assess the appli-
cability of our method in diverse settings. Third, female 
subjects were underrepresented in both the derivation 
cohorts. Previous research has demonstrated convincing 
evidence for sex differences in carotid atherosclerotic, 
with plaque features of size, composition and morphol-
ogy being more common or larger in man compared with 
women.41 Additionally, the incidence of stroke has been 
observed higher in man than women, despite risk fac-
tors being more strongly associated with the risk of any 
stroke in women than man.42,43

The diagnostic performance of both the proposed 
approach and traditional logistic regression models, 
following gender balancing, was comparable to the 
original models trained on data where female sub-
jects were underrepresented, in both internal validation 

Table 2.  Validation of Machine Learning-Derived Cutoffs for 
Most Predictive Variables on the Testing Cohort

 

Testing (n=106)

Odds ratio (95% CI) P value* 

Univariable logit analysis

 � IPH to lipid volume ratio ≥0.5 50.4 (14.4–243.4) <0.001

 � IPH volume (%)≥10% 24.2 (8.3–80.5) <0.001

Demographic factors adjusted logit analysis†

 � IPH to lipid volume ratio ≥0.5 49.2 (13.9–241.3) <0.001

 � IPH volume (%)≥10% 23.5 (7.9–80.3) <0.001

Clinical risk factor adjusted logit analysis‡

 � IPH to lipid volume ratio ≥0.5 38.5 (10.1–205.1) <0.001

 � IPH volume (%)≥10% 18.5 (5.7–69.4) <0.001

Univariable and adjusted logit analysis for the testing cohort. Cutoffs for ratio 
of IPH to lipid volume and percentage of IPH are validated against the testing 
cohort with a logistic regression analysis. Odds ratios along with 95% CIs and 
P values for the null hypothesis that the estimated odds ratios are significantly 
different than 0 are reported. IPH indicates intraplaque hemorrhage.

*P values indicate statistical significance.
†Adjusted for sex and age.
‡Adjusted for sex, age, hypertension, coronary artery disease, smoking status, 

diabetes, and dyslipidemia.
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and dedicated testing. Furthermore, the majority of 
errors made on the testing cohort by our ML model, 
trained on the unbalanced derivation set, were asso-
ciated with carotid plaques in male subjects. Interest-
ingly, on retraining the model on a gender-balanced 
derivation set, the number of errors between male 
and female subjects remained unchanged, suggesting 
that the underrepresentation of females is unlikely to 
have introduced bias in our diagnostic model. Fourth, 
this was a cross-sectional study. We built ML mod-
els using data on radiological findings of a real-world 
cohort of patients that were symptomatic at the time of 
examination. Although our model can identify arteries 
associated with recent cerebrovascular symptoms with 
optimal diagnostic accuracy, additional prospective and 
longitudinal studies are warranted, so that more clini-
cal covariates can be assessed, and the occurrence of 
future CVE can be recorded.

CONCLUSIONS
These results add evidence to the status of intraca-
rotid plaque subcomponent volumes and biomechanical 
structure in identifying subjects with recent cerebrovas-
cular symptoms using interpretable ML. Atherosclerotic 
carotid plaques with a ratio of IPH to lipid volume ≥50% 
and a percentage of IPH volume ≥10% were associated 
with a higher likelihood of symptomatic status. These 
data-driven findings add important diagnostic infor-
mation and aim to offer valuable assistance in clinical 
decision-making.
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