
ORIGINAL RESEARCH
published: 04 July 2022

doi: 10.3389/fninf.2022.883333

Frontiers in Neuroinformatics | www.frontiersin.org 1 July 2022 | Volume 16 | Article 883333

Edited by:

James B. Aimone,

Sandia National Laboratories (DOE),

United States

Reviewed by:

Fred H. Hamker,

Chemnitz University of Technology,

Germany

Georgios Detorakis,

Independent Researcher, Irvine, CA,

United States

*Correspondence:

Bruno Golosio

golosio@unica.it

Received: 24 February 2022

Accepted: 02 June 2022

Published: 04 July 2022

Citation:

Tiddia G, Golosio B, Albers J, Senk J,

Simula F, Pronold J, Fanti V,

Pastorelli E, Paolucci PS and van

Albada SJ (2022) Fast Simulation of a

Multi-Area Spiking Network Model of

Macaque Cortex on an MPI-GPU

Cluster.

Front. Neuroinform. 16:883333.

doi: 10.3389/fninf.2022.883333

Fast Simulation of a Multi-Area
Spiking Network Model of Macaque
Cortex on an MPI-GPU Cluster
Gianmarco Tiddia 1,2, Bruno Golosio 1,2*, Jasper Albers 3,4, Johanna Senk 3,

Francesco Simula 5, Jari Pronold 3,4, Viviana Fanti 1,2, Elena Pastorelli 5,

Pier Stanislao Paolucci 5 and Sacha J. van Albada 3,6

1Department of Physics, University of Cagliari, Monserrato, Italy, 2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di

Cagliari, Monserrato, Italy, 3 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and

JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 4 RWTH Aachen

University, Aachen, Germany, 5 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy, 6 Faculty of

Mathematics and Natural Sciences, Institute of Zoology, University of Cologne, Cologne, Germany

Spiking neural network models are increasingly establishing themselves as an effective

tool for simulating the dynamics of neuronal populations and for understanding the

relationship between these dynamics and brain function. Furthermore, the continuous

development of parallel computing technologies and the growing availability of

computational resources are leading to an era of large-scale simulations capable of

describing regions of the brain of ever larger dimensions at increasing detail. Recently,

the possibility to use MPI-based parallel codes on GPU-equipped clusters to run such

complex simulations has emerged, opening up novel paths to further speed-ups. NEST

GPU is a GPU library written in CUDA-C/C++ for large-scale simulations of spiking

neural networks, which was recently extended with a novel algorithm for remote spike

communication through MPI on a GPU cluster. In this work we evaluate its performance

on the simulation of a multi-area model of macaque vision-related cortex, made up of

about 4 million neurons and 24 billion synapses and representing 32mm2 surface area of

the macaque cortex. The outcome of the simulations is compared against that obtained

using the well-known CPU-based spiking neural network simulator NEST on a high-

performance computing cluster. The results show not only an optimal match with the

NEST statistical measures of the neural activity in terms of three informative distributions,

but also remarkable achievements in terms of simulation time per second of biological

activity. Indeed, NEST GPU was able to simulate a second of biological time of the full-

scale macaque cortex model in its metastable state 3.1× faster than NEST using 32

compute nodes equippedwith an NVIDIA V100GPU each. Using the same configuration,

the ground state of the full-scale macaque cortex model was simulated 2.4× faster than

NEST.

Keywords: computational neuroscience, spiking neural networks, simulations, GPU (CUDA), primate cortex,

multi-area model of cerebral cortex, message passing interface (MPI), high performance computing (HPC)

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.883333
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.883333&domain=pdf&date_stamp=2022-07-04
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:golosio@unica.it
https://doi.org/10.3389/fninf.2022.883333
https://www.frontiersin.org/articles/10.3389/fninf.2022.883333/full

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

1. INTRODUCTION

Large-scale spiking neural networks are of growing research
interest because of their ability to mimic brain dynamics and
function more and more accurately. However, the task of
accurately simulating natural neural networks is arduous: the
human brain contains around 86 × 109 neurons (Azevedo
et al., 2009) and on the order of 104–105 synapses per neuron
in the cerebral cortex (Cragg, 1975; Alonso-Nanclares et al.,
2008). Moreover, the brain presents a plethora of different
neurotransmitters, receptors, and neuron types connected with
specific probabilities and patterns. For these reasons, even
a simulation of a small fraction of the brain could be
computationally prohibitive if the details of axonal and dendritic
arborizations were accounted for or if, adding further complexity,
accurate descriptions of biochemical processes were included.
In this work, focused on enabling the simulation of multi-area
cortical models on up to a few tens of compute nodes, we treat
spiking simulations with point neurons and simplified synaptic
rules. This level of abstraction greatly reduces computational
demands while still capturing essential aspects of the neural
network behavior. However, achieving short simulation times for
a multi-area spiking network model is nevertheless nontrivial
even on high-performance hardware with highly performant
software tools.

Some simulators such as NEST (Hahne et al., 2021), NEURON
(Carnevale and Hines, 2006), Brian 2 (Stimberg et al., 2019)
and ANNarchy (Vitay et al., 2015) are capable of simulating a
large variety of neuron and synapse models. These simulators
support multithreaded parallel execution on general-purpose
CPU-based systems. Furthermore, NEST and NEURON also
support distributed computing viaMPI.

Meanwhile in the last decades, to efficiently simulate large-
scale neural networks in terms of both speed and energy
consumption, neuromorphic hardware has been developed
by taking inspiration from brain architecture. Among these
systems, we can mention Loihi (Davies et al., 2018) and
TrueNorth (Akopyan et al., 2015), which are entering the
realm of large-scale neural network simulations, and BrainScaleS
(Grübl et al., 2020), which is based on analog emulations
of simplified models of spiking neurons and synapses, with
digital connectivity. The system enables energy-efficient neuronal
network simulations, offering highly accelerated operations.
Another promising project in this field is SpiNNaker (Furber
et al., 2014), which recently achieved biological real-time
simulations of a cortical microcircuit model (Rhodes et al.,
2020) proposed by Potjans and Diesmann (2014) (which
has since been simulated sub-realtime with NEST (Kurth
et al., 2022) and with an FPGA-based neural supercomputer
(Heittmann et al., 2022). This result was made possible by
its architecture designed for efficient spike communication,
performed with an optimized transmission system of small
data packets. BrainScaleS and SpiNNaker are freely available to
the scientific community through the EBRAINS Neuromorphic
Computing service. Nevertheless, neuromorphic systems still
require a significant amount of system-specific skills. Even
if the simulation speed they can provide is impressive, the

flexibility and simplicity of programming environments available
for such neuromorphic systems are still low compared to
their general-purpose counterparts. On neuromorphic systems
adopting analog design techniques, advantages in speed, area,
and energy consumption are associated with the difficulties of
managing manufacturing fluctuations, unavoidable in analog
substrates, and with the effects of electronic noise emerging
in the dynamics of analog circuits. Porting neural simulations
from digital systems to analog neuromorphic platforms is not
a trivial task. Overcoming such difficulties and turning them
into advantages is an emerging field of research (Wunderlich
et al., 2019). Furthermore, as soon as the number of synapses
established by each neuron reaches biological scales (i.e., several
thousands per neuron), the current generation of neuromorphic
systems often experience significant slowdown, whereas a new
generation capable of coping with such issues is still under
development. For example, in its maximum configuration, the
first-generation BrainScaleS system hosts 1 billion synapses and
4 million neurons (250 synapses/neuron) on 20 silicon wafers
(Güttler, 2017), and a similar synapse-per-neuron ratio is the
sweet spot for optimal execution on SpiNNaker, well below
the typical 10K synapses/neuron characteristic for pyramidal
cortical neurons or >100K synapses/neuron sported by cerebellar
Purkinje cells.

Lately some systems based on graphical processing units
(GPUs) have emerged (Sanders and Kandrot, 2010; Garrido
et al., 2011; Brette and Goodman, 2012; Vitay et al., 2015; Yavuz
et al., 2016). These systems grant a higher flexibility compared
to neuromorphic systems, because of the current technological
constraints of the latter and because of the software support
offered by platforms like CUDA (Compute Unified Device
Architecture) (Sanders and Kandrot, 2010), created by NVIDIA
to take advantage of the large compute resources of GPUs.
As a matter of fact, spiking neural network simulations could
reap large benefits from the high degree of parallelism of GPU
systems, which allows for thousands of simultaneous arithmetic
operations even for a single GPU. However, the effective speed-
up made possible by parallelization on GPUs can be limited by
sequential parts and operations like I/O of spike recordings and
feeding inputs into the network model, which inevitably require
data transfer between CPU and GPU memory.

Among GPU-based simulators we can mention CARLSim4
(Chou et al., 2018), a spiking neural network simulator written
in C++ with a multi-GPU implementation, and NCS6 (Hoang
et al., 2013), a CPU/GPU simulator specifically designed to
run on high-performance computing clusters. More recently,
CoreNEURON (Kumbhar et al., 2019) was developed as an
optimized compute engine for the NEURON simulator. It is
able to both reduce memory usage and increase simulator
performance with respect to the NEURON simulator by taking
advantage of architectures like NVIDIA GPUs and many-core
CPUs. One of the most popular GPU-based simulators for
spiking neural networks is GeNN (Yavuz et al., 2016), which
has achieved fast simulations of the cortical microcircuit model
of Potjans and Diesmann (Knight and Nowotny, 2018; Knight
et al., 2021). Recently the same simulator, running on a single
high-end GPU, has shown better performance compared to what

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2022 | Volume 16 | Article 883333

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

was obtained with a CPU-based cluster (Knight and Nowotny,
2021) in the simulation of a multi-area spiking network model of
macaque cortex (Schuecker et al., 2017; Schmidt et al., 2018a,b).
This result was reached thanks to the procedural connectivity
approach, consisting in generating the model connectivity and
its synaptic weights only when spikes need to be transmitted,
without storing any connectivity data in the GPU memory.
As a matter of fact, one of the most constraining features of
GPUs is the size of the built-in memory, which in spiking
neural network simulations can be a severe limitation. The
possibility of generating the connections on demand enables
performing a large-scale simulation even with a single GPU.
However, procedural connectivity is a suitable approach only
with static synapses. Indeed, plastic synapses require data to be
stored since their synaptic weights change their value during
the simulation. The inclusion of plastic synapses is essential
for many investigations, e.g., when learning or the interplay
between synaptic changes and brain dynamics are of interest
(Capone et al., 2019; Golosio et al., 2021a). GeNN allows and
supports models with synaptic plasticity, but for such models the
procedural connectivity approach is thus prevented.

NEST GPU (previously named NeuronGPU) (Golosio et al.,
2021b) is a GPU-MPI library written in CUDA for large-scale
simulations of spiking neural networks, which was recently
included in the NEST Initiative with the aim of integrating it
within the NEST spiking network simulator, in order to allow
for simulations on GPU hardware. In this work we evaluate the
performance of NEST GPU on simulations that exploit multiple
GPUs on MPI clusters. The library implements a novel MPI-
optimized algorithm for spike communication across processes
that also leverages some of the delivery techniques already
investigated for CPU-based distributed computing platforms.
Currently, NEST GPU exploits the neuron distribution among
processes as described in Pastorelli et al. (2019): neurons are
allocated on processes taking into account their spatial locality,
instead of using a round-robin approach. Spike delivery takes
advantage of this distribution mode, resulting in an efficient
and optimized algorithm. NEST GPU supports a large variety
of neuron models and synapses, both static and plastic. In this
work we compare the outcomes of NEST GPU and NEST for the
full-scale multi-area spiking network model of macaque cortex
simulated on a high-performance computing (HPC) cluster
with both GPU- and CPU-equipped compute nodes. To this
end the distributions of firing rates, coefficients of variation of
interspike intervals (CV ISI), and Pearson correlations between
spike trains obtained by the two simulators are examined. We
further evaluate the performance in terms of simulation time per
second of biological activity.

2. MATERIALS AND METHODS

2.1. NEST GPU Spike Communication and
Delivery Algorithm
In this section the algorithm exploited by NEST GPU for spike
communication between MPI processes and for spike delivery

is briefly introduced. For an in-depth description of the spike
delivery algorithm please see Golosio et al. (2021b).

In NEST GPU, the output connections of each neuron (or
other spiking device) are organized in groups, all connections in
the same group having the same delay. For each neuron there
is a spike buffer, which is structured as a queue used to store
the spikes emitted by the neuron. Each spike is represented by
a structure with three member variables: a time index ts, which
starts from 0 and is incremented at every time step; a connection
group index ig , which also starts from zero and is increased
every time the spike matches a connection group, i.e., when the
time index corresponds to the connection group delay; and a
multiplicity, i.e., the number of spikes emitted by the neuron
in a single time step. Keeping a connection group index and
having connection groups ordered according to their delays is
useful for reducing the computational cost, because it avoids the
need for a nested loop to compare the time index of the spike
with all the connection delays. When the time index of a spike
matches a connection group delay, spike information (i.e., source
neuron index, connection group index, multiplicity) is inserted in
a global spike array and the connection group index is increased.
A spike is removed from the queue when ig becomes greater than
the number of connection groups of that neuron, i.e., when the
time index becomes greater than the maximum delay. The final
delivery from the global spike array to the target neurons is done
in a loop, so no additional memory is required. When a source
neuron is connected to target neurons belonging to a different
MPI process, a spike buffer, similar to the local one, is created
in the remote MPI process. When the source node fires a spike,
this is sent to the spike buffer of the remote MPI process, which
will deliver the spike to all target neurons after proper delays. The
remote spikes, i.e., the spikes that must be transferred to remote
MPI processes, are communicated through non-blocking MPI
send and receive functions at the end of every simulation time
step. LetN be the number ofMPI processes. The whole procedure
consists of three stages:

1. Each MPI process initiates a non-blocking receive
(MPI_Irecv) on N − 1 receiving buffers (one for each
remote MPI process), so that all receiving buffers are ready
more or less simultaneously;

2. Each MPI process initiates forwarding of the remote spikes
to all other N − 1 processes by calling a non-blocking send
(MPI_Isend);

3. EachMPI process initializes a list with the indexes of the other
N − 1 processes, and starts checking all the items in the list
in an endless loop with MPI_Test. When the transfer from
the i-th MPI process is complete, the corresponding index i is
removed from the list. The loop is interrupted when the list is
empty.

The spike buffer for a single network node and the spike handling
and delivery for multiple MPI processes are depicted in Figure 1.

2.2. NEST GPU Spike Recording Algorithm
In this section the NEST GPU algorithm for spike time recording
is introduced. The spike times are initially recorded in the GPU

Frontiers in Neuroinformatics | www.frontiersin.org 3 July 2022 | Volume 16 | Article 883333

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A B

FIGURE 1 | Spike handling and delivery schemes. (A) Structure of a single spike buffer. (B) Schematic depicting MPI communication between spike buffers for

different hosts.

memory in a two-dimensional array, with the number of rows
equal to the number of neurons and the number of columns
equal to the maximum number of spikes that can be recorded
before each extraction. Since the number of spikes per neuron
is typically much smaller than the maximum, most entries of
this array are zero. To compress the information, the spike
times are periodically packed into contiguous positions of a one-
dimensional buffer, which is copied from GPU memory to RAM
along with a one-dimensional array indicating the positions at
which the spikes for each neuron start. The packing algorithm
works as follows:

1. Let Ni be the number of recorded spikes of the i-th neuron,
and Ci its cumulative sum (also called prefix scan):

C0 = 0; Ci =

i−1
∑

k=0

Nk for i = 1, ..., n (1)

where n is the number of neurons. Note that Ci has n +

1 elements, one more than Ni, and that it is sorted by
construction. Ci is computed in parallel with CUDA using
the algorithm described by Nguyen (2007, Chapter 39) as
implemented in https://github.com/mattdean1/cuda. The last
element of Ci, Ntot = Cn, is the total number of recorded
spikes of all neurons;

2. Let ti,j be the time of the j-th recorded spike of the i-th neuron.
The packed spike array Am (m = 0, . . .,Ntot − 1) is computed
from ti,j using a one-dimensional CUDA kernel with Ntot

threads.m is set equal to the thread index. Since Ci is sorted, a
binary-search algorithm can be used to find the largest index i
such that

Ci ≤ m < Ci+1 (2)

Ci will be the index of the first spike of the i-th neuron in the
packed spike array, therefore the spike m in this array will

correspond to the spike i, j in the original two-dimensional
array ti,j, where j is simply

j = m− Ci (3)

Once i and j are computed fromm, it is possible to set

Am = ti,j (4)

Packing of recorded spikes and transfer to the RAM can be
performed after a certain number of simulation time steps
depending on GPU memory availability.

2.3. Multi-Area Model
We consider the dynamics of a model of all vision-related areas
in one hemisphere of macaque cortex (Schmidt et al., 2018a,b)
(Figure 2). Here, we briefly summarize the model; all details
and parameter values can be found in the original publications.
Following the parcellation of Felleman and Van Essen (1991),
the model includes 32 areas that either have visual function
or are strongly interconnected with visual areas. To yield a
tractable model size, only 1 mm2 of cortex is represented within
each area, albeit with the full local density of neurons and
synapses. This leads to a total of about 4.1 million neurons and
24 billion synapses. The areas have a laminar structure, layers
2/3, 4, 5, and 6 each containing one population of excitatory
(E) and one population of inhibitory (I) neurons (area TH
lacks layer 4); hence the total number of populations in the
network is 254. The neuron model is the leaky integrate-and-fire
model with exponential current-based synapses, and all neurons
have the same electrophysiological parameter values. The initial
membrane potentials are normally distributed. Input from non-
modeled brain regions is represented by homogeneous Poisson
spike trains with area-, layer- and population-specific rates.

The numbers of neurons are determined from a combination
of empirically measured neuron densities, cytoarchitectural type

Frontiers in Neuroinformatics | www.frontiersin.org 4 July 2022 | Volume 16 | Article 883333

https://github.com/mattdean1/cuda
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

definitions of areas, and the thicknesses of the cortical layers.
The connectivity of the local microcircuits consists of scaled
versions of the connectivity of a microcircuit model of early
sensory cortex (Potjans and Diesmann, 2014). The inter-area
connectivity is based on axonal tracing data collected in the
CoCoMac database (Bakker et al., 2012), complemented with the
quantitative tracing data of Markov et al. (2011, 2014). Gaps in
the data are filled by predictions of overall connection densities
from inter-area distances, and laminar patterns from relative
neuron densities of source and target areas. The synapses are
statistically mapped to target neurons based on the extent of the
dendritic trees of morphologically reconstructed neurons of each
type in each layer (Binzegger et al., 2004). A mean-field-based
method slightly adjusts the connectivity to support plausible
spike rates (Schuecker et al., 2017).

When the cortico-cortical synapses have the same strength
as the local synapses, this leads to a stationary “ground
state” of activity without substantial rate fluctuations or inter-
area interactions (Figure 2B). As this state does not match
experimental resting-state recordings of spiking activity and
functional connectivity between areas, the cortico-cortical
synaptic strengths are increased, especially onto inhibitory
neurons, in order to generate substantial inter-area interactions
while maintaining balance. Poised just below a transition to
a high-activity state, the spiking activity is irregular with low
synchrony apart from population events of variable duration. In
this “metastable state” (Figure 2C), aspects of both microscopic
and macroscopic resting-state activity in lightly anesthetized
monkeys are well reproduced: the spectrum and spike rate
distribution of the modeled spiking activity of primary visual
cortex (V1) are close to those from parallel spike train
recordings (Chu et al., 2014a,b); and the functional connectivity
between areas approximates that obtained from fMRI recordings
(Babapoor-Farrokhran et al., 2013).

For further details we refer to the original publications
(Schmidt et al., 2018a,b).

3. RESULTS

In this section we first verify the correctness of the simulations
performed by NEST GPU, using NEST 3.0 as a reference.
Afterwards, the performance evaluation is presented in
terms of build (i.e., network construction) and simulation
time.

To this end, we used the HPC cluster JUSUF (von St. Vieth,
2021). In particular, the NEST GPU simulations employed 32
accelerated compute nodes, each of them equipped with two
AMD EPYC 7742 (2 × 64 cores, 2.25 GHz), 256 GB of DDR4
RAM (3,200 MHz), and an NVIDIA V100 GPU with 16 GB
HBM2e; inter-node communication is enabled via InfiniBand
HDR100 (Connect-X6). The NEST simulations were run on
standard compute nodes of the HPC cluster JURECA-DC
(Thörnig and von St. Vieth, 2021), which uses the same CPUs
and interconnect as JUSUF but has 512 GB of DDR4 RAM per
node available.

3.1. Comparison of Model Results Between
NEST and NEST GPU
In Golosio et al. (2021b) some of us have compared the
simulation outcomes between NEST GPU and NEST for the
cortical microcircuit model of Potjans and Diesmann (2014),
showing an optimalmatch between the results of both simulators.
The validation approach follows that of van Albada et al. (2018)
and Knight and Nowotny (2018). In this section we present a
similar procedure in order to validate the NEST GPU outcome
for the multi-area model considered here.

Firstly, for each of the executed simulations, we simulated 10 s
of biological activity of the full-scale multi-area model in both
NEST andNESTGPU. All the simulations were performed with a
time step of 0.1ms.We simulated both the ground state (showing
asynchronous irregular spiking with stationary rate) and the
metastable state of the model (better representing the resting-
state activity of the cortex) in order to compare the results of
both configurations. To avoid transients due for instance to initial
synchronization, a pre-simulation time of 500ms was employed
for all the simulations. This enhances the independence of the
derived activity statistics from the total simulation time.

We executed 10 simulations for each simulator, recording
the spike times. The 10 simulations differ in the chosen seed
for the random number generation, so that there is no pairwise
matching of seeds between NEST and NEST GPU simulations.
Furthermore, we performed another set of 10 simulations with
NEST to estimate the differences that arise only because of the
different seeds used. Taking their outcome as a reference for both
NEST GPU and NEST simulations, it was possible to evaluate
NEST-NEST and NEST-NEST GPU comparisons.

To compare the simulation outcomes using the recorded
spike times, we selected and extracted the distributions of three
quantities for each population:

• The time-averaged firing rate of each neuron;
• The coefficient of variation of inter-spike intervals (CV ISI),

i.e., the ratio between the standard deviation and the average
of inter-spike time intervals of each neuron;

• The pairwise Pearson correlation between the spike trains
obtained from a subset of 200 neurons for each population,
in order to grant a reasonable computing time.

The spike trains were binned with a time step of 2ms,
corresponding to the refractory time, so that at most one spike
could occur in each bin. Considering a binned spike train bi for
neuron i with mean value µi, the correlation coefficient between
two spike trains bi and bj is defined as:

C[i, j] = 〈bi−µi, bj−µj〉/

√

〈bi − µi, bi − µi〉 · 〈bj − µj, bj − µj〉

(5)
where 〈, 〉 represents the scalar product. Hence a 200×200matrix
is built and the distribution of the Pearson correlations can be
evaluated as the distribution of the off-diagonal elements. All
aforementioned distributions were computed using the Elephant
package (Denker et al., 2018).

The raw distributions were smoothed using Kernel
Density Estimation (KDE) (Rosenblatt, 1956; Parzen,

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2022 | Volume 16 | Article 883333

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A

B

FIGURE 2 | Spiking neuronal network model used to evaluate simulator performance in this study. (A) Schematic overview of the model. The multi-area model

represents 32 areas of macaque vision-related cortex, each modeled by four cortical layers with a size of 1mm2. Local connectivity, cortico-cortical connectivity, and

population sizes are adapted for each area. (B) Network activity of areas V1 and V2 in the ground state. (C) Network activity of the same areas in the metastable state.

Figure adapted from Schmidt et al. (2018a) and Schmidt et al. (2018b).

Frontiers in Neuroinformatics | www.frontiersin.org 6 July 2022 | Volume 16 | Article 883333

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

1962). The KDE method was applied with the
sklearn.neighbors.KernelDensity function of
the scikit-learn Python library (Pedregosa et al., 2011) (version
0.24.2). Specifically, we performed KDE with a Gaussian kernel,
optimized with a bandwidth obtained using the Silverman
method (Silverman, 1986).

With this procedure we obtained 762 distributions for each
simulation. For each of the 254 populations we determined
the average and standard deviation of these distributions across
each set of 10 simulations. To gain an impression of the
similarity of the simulation outcomes of NEST and NEST
GPU, example distributions are shown in Figures 3, 4.
As can be observed, the distributions obtained with the

two simulators closely match each other in the ground state
(Figure 3), and also the error bands are negligible because of
the small variability of the state. In the metastable state, the
variability between the NEST and NEST GPU distributions
is larger (Figure 4). Due to the increased variability, we
decided to depict an additional NEST distribution to show
the substantial fluctuations that can arise between two sets of
NEST simulations.

To provide an overview over the distributions for the
entire model, averaged distributions for each layer and
area were computed. These data were plotted with the
seaborn.violinplot function of the Seaborn Python
library (Waskom, 2021) (version 0.11.1), which returns KDE-
smoothed distributions optimized with the Silverman method,
matching our calculation of the distributions. The distributions
thus obtained were compared by placing them side by side in
the split violin plots shown in Figure 5, also showing median and
interquartile range for every distribution.

The area-averaged distributions compared in Figure 5 are
nearly indistinguishable. The same holds for each of the 254
population-level distributions separately1.

To quantify the similarity between the distributions, the Earth
Mover’s Distance (EMD) was computed. This metric evaluates
the distance between two probability distributions, and its name
stems from an analogy with the reshaping of soil. The two
distributions may be thought of as, respectively, a given amount
of earth located in a certain space and the same amount of earth
that has to be arranged properly. The Earth Mover’s Distance can
thus be seen as the minimum amount of work needed to obtain
the desired distribution from the original one. It is equivalent
to the 1st Wasserstein distance between two distributions (see
Supplementary Material). In this work it has been computed
using the scipy.stats.wasserstein_distance
function of the Python scientific library SciPy (Virtanen et al.,
2020) (version 1.5.2). We opted for this measure instead of the
Kullback-Leibler divergence adopted in the procedure described
in Golosio et al. (2021b) because of the metric properties of the
EMD, which makes it not only more specific in detecting the
degree of dissimilarity among distributions but also symmetric.

To verify the equivalence between the simulators we analyzed
the box plots obtained from the set of 10 EMD values for each

1The distributions are available at https://github.com/gmtiddia/
ngpu_multi_area_model_simulation/tree/main/analysis/dist_plots/Areas.

population, given by the pairwise comparison of each of the 10
simulations. This way, we take into consideration the possible
variability due to the different random number generator seeds.
The random connectivity, membrane potential initialization, and
external drive mean that one expects a nonzero EMD between
simulations with different random seeds even with the same
simulator. Furthermore, the different order of the operations in
the two simulators combined with the chaotic dynamical state
imply that nonzero differences would be expected even with
the same random seeds for different simulators. Since EMD has
the same units as the variables over which the distributions are
computed, it is possible to directly estimate the relevance of the
corresponding values.

Figure 6 shows the EMD box plots obtained from the
comparisons NEST-NEST and NEST-NEST GPU for the three
distributions calculated for area V1, respectively, for the ground
state and the metastable state. The EMD values for the NEST-
NEST GPU comparison are distributed similarly to those for
the NEST-NEST comparison, meaning that the differences that
arise due to the choice of simulator are statistically similar to
those between NEST simulations with different random number
generator seeds. Thus, using NEST GPU instead of NEST (with
different random numbers) does not add variability compared to
using different random seeds with the same simulator. This is a
further indication that NEST and NEST GPU yield statistically
closely similar results. EMD values obtained by the comparison
of the ground state distributions are smaller than the EMD
values obtained for the metastable state. This is due to the
increased fluctuations in the latter state of the model. In some
cases, the whiskers for the NEST-NEST and NEST-NEST GPU
comparisons have different extents. This may be related to
long-tailed distributions of the corresponding activity statistics,
especially for correlations (cf. Figure 5). Differences in the tails of
the distributions caused by only a few data points can lead to large
differences in EMD values because the probability mass needs
to be moved over large distances to turn one distribution into
another. However, the EMD values are marginal compared to
the values within the distributions shown in Figure 5, revealing
a negligible difference between the NEST and NEST GPU
simulation results. This statement is also true for the other areas
of the model, as shown in the Supplementary Material.

3.2. Performance Evaluation
Hitherto we showed that NEST and NEST GPU simulation
outcomes are comparable. In this section the performance of
NEST GPU is evaluated and compared with that of NEST 3.0.

We divided the total execution time into build and simulation
time. The former includes the time needed to allocatememory for
the network components (i.e., neurons, synapses, and all devices,
such as Poisson generators and spike detectors), and to establish
the connections. The simulation time measures how long it takes
to propagate the network dynamics for the specified amount of
biological time once the model has been set up.

The simulation time for NEST and NEST GPU was further
divided to reflect the following subtasks:

Frontiers in Neuroinformatics | www.frontiersin.org 7 July 2022 | Volume 16 | Article 883333

https://github.com/gmtiddia/ngpu_multi_area_model_simulation/tree/main/analysis/dist_plots/Areas
https://github.com/gmtiddia/ngpu_multi_area_model_simulation/tree/main/analysis/dist_plots/Areas
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A B

C D

E F

FIGURE 3 | Ground state distributions of firing rate (A,B), CV ISI (C,D) and Pearson correlation of the spike trains (E,F) for the populations L4E and L4I of area V1.

The distributions are averaged over 10 simulations with NEST (orange) and NEST GPU (sky blue). Every averaged distribution has an error band representing its

standard deviation.

• Delivery, describing the time for local spike handling and
delivery;

• MPI communication, describing the time for remote spike
handling and delivery;

• Collocation, i.e., the time employed for the preparation of the
MPI send buffers;

• Update, i.e., the dynamics update time;
• Other, a general subtask in which other contributions

to the overall simulation time are taken
into account.

As reported in Golosio et al. (2021b), NEST GPU creates the
model connections in the RAM, and thereafter copies them to
the GPU memory. For this reason, the build phase, i.e., the phase
related to the network construction, does not take advantage of
any speed-up due to the use of GPUs. However, the build phase
does not depend on the biological time, meaning that the more
biological time is simulated, the less relevance the build time has
for the overall duration of the simulation.

The simulations performed on JUSUF by NEST GPU used
32 compute nodes with one MPI process each and 8 threads

Frontiers in Neuroinformatics | www.frontiersin.org 8 July 2022 | Volume 16 | Article 883333

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A B

C D

E F

FIGURE 4 | Metastable state distributions of firing rate (A,B), CV ISI (C,D) and Pearson correlation of the spike trains (E,F) for the populations L4E and L4I of area V1.

The distributions are averaged over 10 simulations with NEST (orange lines) and NEST GPU (sky blue dashed line). Every averaged distribution has an error band

representing its standard deviation. An additional set of NEST simulation distributions is also shown.

per MPI process. It should be noted that while NEST uses MPI
and thread parallelism during both build and state propagation
phases, the number of threads per MPI process in NEST GPU
affects only the build time, because the connections are initially
created in parallel by different OpenMP threads in CPUmemory,
as stated above. This parallel setup, which permits the simulation
of an area for each compute node, was the most efficient in
terms of compute time, because the NVIDIA V100 GPUmemory
can hold one model area at most and also because in this setup
only inter-area communications have to be carried out by MPI.

Indeed, it is known that one of the most significant bottlenecks
in parallel computation is the communication between MPI
processes (Marjanović et al., 2010), and herein the way NEST
GPU handles spike delivery and distributes model areas between
MPI processes (i.e., an area for each MPI process) grants an
efficient parallel optimization.

Performance was evaluated using 10 simulations of 10 s of
biological time for both NEST and NEST GPU, averaging over
random number generator seeds. In contrast to the previous
simulations, spike recording was disabled. To obtain a single set

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2022 | Volume 16 | Article 883333

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A B

C

F

D E

FIGURE 5 | Averaged distributions of the ground state and the metastable state of the model for all 32 areas obtained using NEST (orange, left side) and NEST GPU

(sky blue, right side) and compared with split violin plots. The central dashed line represents the distribution’s median, whereas the other two dashed lines represent

the interquartile range. (A,D) average firing rate, (B,E) average CV ISI, (C,F) average Pearson correlation of the spike trains.

Frontiers in Neuroinformatics | www.frontiersin.org 10 July 2022 | Volume 16 | Article 883333

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

FIGURE 6 | Earth Mover’s Distance between distributions of firing rate (A,D), CV ISI (B,E) and correlation of the spike trains (C,F) obtained for area V1 of the model in

the ground state and the metastable state. NEST-NEST (orange, left) and NEST-NEST GPU (sky blue, right) data are placed side by side.

Frontiers in Neuroinformatics | www.frontiersin.org 11 July 2022 | Volume 16 | Article 883333

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

of values for each simulation we performed timemeasurement on
each employed compute node separately and then we averaged
the obtained values. Since the MPI processes are synchronized by
NESTGPU after each simulation time step, the overall simulation
time for each node is the same; however, the time taken by
individual subtasks differs somewhat across the MPI processes
due to the differences between the areas of the model, such as
number of neurons, density of connections, and activity rate.
These subtask differences across the MPI processes are discussed
later in this section. Once we extracted a single set of timings for
each simulation we computed their mean and standard deviation
to obtain a unique set of values.

Figure 7 shows the performance benchmarks of the multi-
area model on CPUs conducted on JURECA-DC using the
benchmarking framework beNNch (Albers et al., 2022).
For both network states, the optimal configuration of the
hybrid parallelization is achieved with 8 MPI processes per
node and 16 threads per task, thus making use of every
physical core of the machine while avoiding hyperthreading.
NEST distributes neurons in a round-robin fashion across
virtual processes. This implements a simple form of static
load balancing as neuronal populations are distributed
evenly. Larger error bars in Figure 7B demonstrate the
increased dependence on initial conditions and decreased
stability of network activity of the metastable state. For the
network simulations of the ground and metastable states,
the scalings plateau at 12 nodes and 32 nodes, respectively.
As discussed in Jordan et al. (2018), plateau is expected in
strong scaling experiments once the MPI communication
dominates. Figure 7 shows that indeed all contributions except
the communication get smaller for increasing numbers of
MPI processes.

In the ground state simulations, comparing the configurations
with 32 nodes, the network construction times were 951 ± 29 s
and 80 ± 7 s (mean ± st.dev.) for NEST GPU and
NEST, respectively. Simulations of the multi-area model in its
metastable state revealed similar network construction times of
957± 41 s for NEST GPU and 69.5± 0.4 s for NEST.

In terms of state propagation time, ground state simulations
took 6.5 ± 0.1 s using NEST GPU, whereas NEST took
15.6 ± 2.1 s, both measured per second of biological model
time. In the metastable state NEST GPU was able to compute a
second of biological activity in 15.3 ± 0.9 s, whereas NEST took
47.9 ± 7.7 s. The longer simulation time taken for the metastable
state is explained by the higher firing rates and synchrony in this
state.

In case of enabled spike recording using NEST GPU the
simulation time increases up to 5% when recording from all
neurons. In these simulations, packing of recorded spikes and
transfer to the CPUmemory is performed every 2,000 simulation
time steps (i.e., every 200ms of biological time). This overhead
is strongly dependent on the model simulated and the amount
of GPU memory available. In fact a larger GPU memory
would support larger buffers of recorded spikes, diminishing
the frequency of copy operations from GPU memory to CPU
memory. Furthermore, the overhead can be reduced by recording
spikes from only a fraction of the neurons.

Figure 8A shows the various contributions to the simulation
time for NEST and NEST GPU. The main difference between the
simulators appears in the time taken by spike communication,
evincing the advantage of exploiting a neuron distribution among
MPI processes that takes into account spatial locality. The round-
robin distribution of neurons in NEST necessitates a larger
degree of parallelization and hence communication to reach
optimal performance. This increased communication is needed
regardless of whether MPI or OpenMP parallelism is used.
Indeed, replacing the 8 MPI processes per node by a further 8
threads incurs an even greater performance penalty (data not
shown). We here compare both simulators in configurations
which yield optimal performance.

The relative contributions of the various phases do not
differ strongly between the ground and metastable states. The
contribution of the communication of spikes between different
MPI processes for the metastable state of the model is around
8.0 and 29.7 s per second of biological time for NEST GPU
and NEST, respectively. The contribution of update, delivery,
and other operations, excluding the communication of spikes
between different MPI processes, is around 7.3 s for NEST GPU
and 18.0 s for NEST. We can therefore observe that the better
performance of NEST GPU compared to NEST is mainly due
to a reduction in the communication time of the spikes between
MPI processes, although there is an improvement also in the time
associated with the update and delivery of local spikes.

Regarding the differences in computation time across MPI
processes in NEST GPU, as mentioned above, the time taken
by individual subtasks can vary across MPI processes because of
differences between the areas of the model. However, since MPI
processes are synchronized at the end of every simulation time
step, the overall simulation time shown by every MPI process
is the same. The resulting latency due to the difference between
model areas is embedded in the Communication subtask. We
measured that, within a simulation, the contribution of the spike
communication between the 32 MPI processes (i.e., the 32 areas
of the model) can vary up to 25% with respect to its average
shown in Figure 8A and the contribution of the local spike
delivery subtask shows comparable variations. The rest of the
subtasks (i.e., Collocation, Update and Other) do not change
significantly across the MPI processes, as shown in Figure 8B.

4. DISCUSSION

In this work we have compared the simulators NEST GPU
and NEST on a full-scale multi-area spiking network model of
macaque cortex with 4.1 million neurons and 24 billion synapses
(Schmidt et al., 2018a,b). As described at the beginning of the
Results section, the NEST GPU simulations used 32 nodes of
the HPC cluster JUSUF, each node of which is equipped with
an NVIDIA V100 GPU. The NEST simulations used 32 nodes
of the JURECA-DC cluster, each of which is equipped with two
AMD EPYC 7742 CPUs. We have considered both the ground
state of the model and the metastable state, where the latter better
represents in vivo cortical activity thanks to stronger inter-area
connections.

Frontiers in Neuroinformatics | www.frontiersin.org 12 July 2022 | Volume 16 | Article 883333

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A

B

FIGURE 7 | Strong-scaling performance of the multi-area model in its ground and metastable states on JURECA-DC using NEST 3.0. (A) Simulated with parameters

inducing stable ground state activity in the network. The left sub-panel displays the absolute wall-clock time Twall for the network construction and state propagation in

ms for a biological model time Tmodel = 10 s. Error bars indicate the standard deviation of the performance across 10 repeat simulations with different random seeds,

the central points of which show the respective mean values. Error bars are shown in pink in the right panels to indicate that they are for the state propagation phase

as a whole; the corresponding standard deviations are the same as in the left panels. The top right sub-panel presents the real-time factor defined as Twall/Tmodel.

Detailed timers show the absolute (top right) and relative (bottom right) time spent in the four different phases of the state propagation: update, collocation,

communication, and delivery. Where the collocation phase is not discernible, this is due to its shortness. (B) Simulated with parameters inducing a metastable state

with population bursts of variable duration. Same arrangement as (A).

Figure 5, showing the averaged distributions of firing rate,
CV ISI, and Pearson correlation obtained with NEST and NEST
GPU, exhibits the compatibility between the outcomes of the
two simulators in both states of the network. We have also
quantified the differences that arise between a NEST and a NEST
GPU simulation using the EarthMover’s Distance (EMD)metric.
Specifically, we used EMD to evaluate the differences between
the distributions obtained for each population with the two
simulators. The results of this analysis show that the differences
between NEST and NEST GPU simulations are comparable to
those between multiple NEST simulations differing only in terms
of their random seeds.

Regarding simulation performance, we observed that the build
time of the multi-area model simulations is substantially higher
using NEST GPU as compared to NEST. This is due to the fact

that NEST GPU builds the network in the RAM and thereafter
copies the constructed model to GPU memory. This additional
step represents the bottleneck of the network construction phase
using NEST GPU. However, since the build time is independent
of the biological simulation time, it can be regarded as an
overhead with decreasing relevance for longer biological times.
A future integration of the network construction phase into the
GPU memory could strongly decrease this contribution.

In terms of simulation time, NEST GPU shows a remarkable
performance (Figure 8A). Simulations of themulti-areamodel in
its ground state achieved a simulation time of 6.5 s per second of
biological activity, reaching a speed-up factor of 2.4 compared
to NEST. In the metastable state, NEST GPU reached 15.3 s
of simulation time per second of biological activity which is
approximately 3.1× faster than NEST simulations. Future work

Frontiers in Neuroinformatics | www.frontiersin.org 13 July 2022 | Volume 16 | Article 883333

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A B

FIGURE 8 | Contributions to the simulation time of the multi-area model. (A) Contributions to the simulation time in the ground state and the metastable state for

NEST and NEST GPU measured with the real-time factor. Error bars show the standard deviation of the overall performance across 10 simulations with different

random seeds. The plot shows the performance obtained by NEST GPU and NEST in the 32-node configuration. NEST simulations were performed on JURECA-DC

using 8 MPI processes per node and 16 threads per task, whereas NEST GPU simulations were performed on JUSUF using one MPI process per node and 8 threads

per task. The black dashed line indicates the biological time. (B) Relative contributions to the simulation time of the multi-area model in the metastable state for every

area (i.e., for every MPI process) in a NEST GPU simulation.

can further improve upon this performance: firstly, if each node
of the HPC cluster were equipped with more than one GPU,
the communication time, and with it the simulation time, would
diminish. Secondly, the same simulation performed with a more
recent GPU hardware (e.g., NVIDIA A100 GPUs) would permit
not only faster simulations but also the possibility to simulate
more than one area of the model on the same GPU thanks to
enhancements of the GPU memory.

From the Results section it can be observed that the most
relevant differences in the performance of NEST and NEST GPU
in the simulation of the multi-area model are related to the
contribution of the spike communication to the total simulation
time. NEST uses a round-robin distribution of the nodes among
MPI processes, and a two-tier connection infrastructure for
communicating spikes. This infrastructure differentiates between
data structures on the presynaptic side, i.e., the MPI process
of the sending neuron, and the postsynaptic side, i.e., the MPI
process of the receiving neuron. By using the blocking MPI
Alltoall, spikes, which are stored in MPI buffers, are routed
across MPI processes from pre- to postsynaptic neurons. In the
implementation described by?, a spike having target neurons
on different threads necessitated communication of spike copies
to all these threads. Furthermore, this implementation only
allowed MPI buffers to grow, but not to shrink. Albers et al.
(2022) identified that this puts unnecessary strain on the MPI
communication. They therefore introduced spike compression
which only sends one spike to each target MPI process, which

has the necessary knowledge on the target threads saved in an
additional data structure. The problem of buffer size is solved via
introducing the possibility of dynamically shrinking and growing
the MPI buffers.

Kumar et al. (2010) and Hines et al. (2011) propose
and compare several strategies for spike-exchange on systems
including up to 128 K communication end-points (fine-grained
BlueGene/P cores) leveraging a communication infrastructure
based on non-blocking neighborhood collectives. The proposed
approach has several points of strength that have not yet been
exploited in this paper, for several reasons. First, communication
steps are performed every ms (the minimum axo-synaptic delay
in their model), while the integration step is set at 0.1ms.
Some of the authors of the present paper already exploited
this strategy (e.g., in Pastorelli et al., 2019) demonstrating its
substantial merit in reducing the communication/computation
time ratio. However, the minimal connection delay in the 32-
areamodel under consideration is not higher than the integration
step, so this prevents the application of the method in the
current paper. However, this will be considered for multi-area
models with inter-areal connection delays substantially longer
than the integration step. Second, in Kumar et al. (2010)
and Hines et al. (2011) communication and computation are
overlapped by further dividing the communication step in two
alternating temporal steps (A and B, with spikes produced
during the time window A sent during the B window, and
vice versa). Substantial minimal inter-areal connection delays

Frontiers in Neuroinformatics | www.frontiersin.org 14 July 2022 | Volume 16 | Article 883333

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

are again a precondition for the overlapping of computation
and communication, but it must also be supported by adequate
infrastructure in the simulation engine. This technique further
reduces the overhead of communication down to values that
are comparable with the computation cost even for highly
simplified neural integration models. The technique should be
surely considered for implementation in NEST GPU and NEST.

Concerning the merit of distributing the neurons among
nodes according to their spatial locality (as in the NEST
GPU implementation), there are several substantial differences
between the spike-exchange algorithmic exploration proposed by
Hines et al. (2011) (from 8 to 128 K small memory footprint
MPI end-points in the BlueGene/P system) and our discussion
that uses as end-points of MPI communication 32 large memory
node systems. Hines et al. (2011) analyze the effect of round-
robin vs. a consecutive distribution of neurons among processing
nodes for models with random vs. local connectivity, in two
spiking rate regimes, named “Noburst” and “Burst.” In the first
one each neuron of the network fires with a uniform distribution
over the entire simulation time interval, whereas in the second
regime groups of contiguous neurons successively fire at five
times their normal rate for a 50 ms period. On a system
with 16 K communication end-points, they demonstrated that
the consecutive distribution is highly advantageous for locally
connected networks with homogeneous firing rates, while it is
only moderately advantageous when all neurons on a processor
show the bursting regime. In our case, with larger memory
per node and in general for horizontal projections strongly
decaying with spatial distance, mapping the laterally incoming
synapses on the memory of a single GPU eliminates the need
to use collective communications for a much larger fraction of
spikes than when mapping a structured network on a system
with 16K communication end-points. Indeed, the average ratio
between the number of spikes that an area sends to all the
other areas and the total number of spikes that it emits is
around 3%, with a maximum across areas of around 16% (see
Supplementary Material).

Regarding NEST GPU performance on a learning case (i.e.,
on a network model that employs plastic synapses), in Golosio
et al. (2021b) we evaluated the library’s performance in the
simulation of networks with spike-timing-dependent plasticity
(STDP) (Gütig et al., 2003) on a single GPU. In general, multi-
GPU/MPI simulation performance can significantly depend on
the way synaptic parameters of STDP connections between
neurons on different MPI processes are updated. The availability
of presynaptic spikes and synaptic representation on the same
process as the target neurons, as in NEST GPU (and NEST),
enables efficient weight updates because they can be managed
locally. However, simulation of plastic networks will be covered
in future work.

The inclusion of NEST GPU into the NEST Initiative
facilitates further integration with the NEST simulator, opening it
up to GPU-based spiking neural network simulations. Currently
there is ongoing work oriented to an adaptation of the models to
be consistent with the NEST simulator, and a software interface
has also been developed (Golosio et al., 2020) which enables
creating NEST-NEST GPU hybrid networks. Indeed, as reported
in Golosio et al. (2021b), the Python interfaces of NEST and

NEST GPU are highly similar, making the porting of NEST
scripts to the new simulator quite simple. Not only the possibility
of using GPU hardware, but also the optimized MPI algorithm
for spike communication will greatly improve user experience in
simulating large-scale spiking neural networks. In fact, as shown
in Figure 8, the time reduction in the communication between
MPI processes is the main contributor to the better performance
of NEST GPU compared to NEST. A speed-up in the neuron
updates and delivery of local spikes is also present, and can be
further enhanced with the use of more performant GPU-based
HPC solutions.

In summary, the NEST GPU simulator (Golosio et al., 2021b)
is able to outperform NEST in the state propagation phase of
the simulation of a large-scale spiking model, and this speed-
up can be essential for simulations covering long stretches
of biological time. The performance might be even further
enhanced with the help of the latest GPU hardware, which could
lead to a steeper performance difference between CPU-based
simulators and GPU-based ones. Indeed the use of multi-GPU
nodes in a cluster, together with the increase in GPU memory
and therefore the possibility of allocating more neurons on a
single GPU card, would allow a considerable reduction in the
spike communication time. More generally, the GPU industry is
growing rapidly, with excellent prospects for the performance of
future cards, which from generation to generation significantly
increase performance.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
gmtiddia/ngpu_multi_area_model_simulation.

AUTHOR CONTRIBUTIONS

GT, JA, and JP performed the simulations and data analysis with
guidance by JS, BG, and SvA. JP, JA, JS, and SvA contributed
to the development of the NEST implementation of the multi-
area model. BG, FS, GT, EP, VF, and PP contributed to the
development of the NEST GPU implementation of the multi-
area model. GT, BG, and SvA wrote the first manuscript draft.
JS, GT, JA, EP, PP, VF, and SvA revised the manuscript. BG and
SvA supervised the project. All authors have read and approved
the final manuscript.

FUNDING

This study was supported by the European Union’s Horizon
2020 Framework Programme for Research and Innovation under
Specific Grant Agreements No. 945539 (Human Brain Project
SGA3) and No. 785907 (Human Brain Project SGA2), the
Priority Program 2041 (SPP 2041) Computational Connectomics
of the German Research Foundation (DFG), the Helmholtz
Association Initiative and Networking Fund under project
number SO-092 (Advanced Computing Architectures, ACA), the
Joint Lab Supercomputing and Modeling for the Human Brain,

Frontiers in Neuroinformatics | www.frontiersin.org 15 July 2022 | Volume 16 | Article 883333

https://github.com/gmtiddia/ngpu_multi_area_model_simulation
https://github.com/gmtiddia/ngpu_multi_area_model_simulation
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

and the INFN APE Parallel/Distributed Computing laboratory.
We acknowledge the use of Fenix Infrastructure resources, which
are partially funded from the European Union’s Horizon 2020
research and innovation programme through the ICEI project
under the Grant Agreement No. 800858. Open access publication
funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 491111487.

ACKNOWLEDGMENTS

We thank Alexander van Meegen for contributing to the testing
and maintenance of the NEST code for the multi-area model. We

are also grateful to Jose Villamar for his valuable contribution
to the improvement of the NEST GPU code. The authors
gratefully acknowledge the computing time granted by the JARA
Vergabegremium and provided on the JARA Partition part
of the supercomputer JURECA at Forschungszentrum Jülich
(computation grant JINB33).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.883333/full#supplementary-material

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,
et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design Integrat.

Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396
Albers, J., Pronold, J., Kurth, A. C., Vennemo, S. B., Haghighi Mood,

K., Patronis, A., et al. (2022). A modular workflow for performance
benchmarking of neuronal network simulations. Front. Neuroinform. 16,
837549. doi: 10.3389/fninf.2022.837549

Alonso-Nanclares, L., Gonzalez-Soriano, J., Rodriguez, J., and DeFelipe, J. (2008).
Gender differences in human cortical synaptic density. Proc. Natl. Acad. Sci.
U.S.A.105, 14615–14619. doi: 10.1073/pnas.0803652105

Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite,
R. E., et al. (2009). Equal numbers of neuronal and nonneuronal cells make the
human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513,
532–541. doi: 10.1002/cne.21974

Babapoor-Farrokhran, S., Hutchison, R. M., Gati, J. S., Menon, R. S., and Everling,
S. (2013). Functional connectivity patterns of medial and lateral macaque
frontal eye fields reveal distinct visuomotor networks. J. Neurophysiol. 109,
2560–2570. doi: 10.1152/jn.01000.2012

Bakker, R., Thomas, W., and Diesmann, M. (2012). CoCoMac 2.0 and
the future of tract-tracing databases. Front. Neuroinform. 6, 30.
doi: 10.3389/fninf.2012.00030

Binzegger, T., Douglas, R. J., and Martin, K. A. C. (2004). A quantitative
map of the circuit of cat primary visual cortex. J. Neurosci. 39, 8441–8453.
doi: 10.1523/JNEUROSCI.1400-04.2004

Brette, R., and Goodman, D. F. M. (2012). Simulating spiking neural networks on
GPU. Network 23, 167–182. doi: 10.3109/0954898X.2012.730170

Capone, C., Pastorelli, E., Golosio, B., and Paolucci, P. S. (2019). Sleep-like
slow oscillations improve visual classification through synaptic homeostasis
and memory association in a thalamo-cortical model. Sci. Rep. 9, 8990–8911.
doi: 10.1038/s41598-019-45525-0

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:
Cambridge University Press.

Chou, T.-S., Kashyap, H. J., Xing, J., Listopad, S., Rounds, E. L., Beyeler, M.,
et al. (2018). “CARLsim 4: An open source library for large scale, biologically
detailed spiking neural network simulation using heterogeneous clusters,” in
2018 International Joint Conference on Neural Networks (IJCNN) (Rio de
Janeiro: IEEE).

Chu, C. C. J., Chien, P. F., and Hung, C. P. (2014b). Tuning dissimilarity explains
short distance decline of spontaneous spike correlation in macaque V1. Vision
Res. 96, 113–132. doi: 10.1016/j.visres.2014.01.008

Chu, C. C. J., Chien, P. F., and Hung, C. P. (2014a). Multi-Electrode Recordings of

Ongoing Activity and Responses to Parametric Stimuli in Macaque V1. Available
online at: https://crcns.org/data-sets/vc/pvc-5/about

Cragg, B. G. (1975). The density of synapses and neurons in normal,
mentally defective ageing human brains. Brain 98, 81–90. doi: 10.1093/brain/
98.1.81

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Denker, M., Yegenoglu, A., and Grün, S. (2018). “Collaborative HPC-enabled
workflows on the HBP Collaboratory using the Elephant framework,” in
Neuroinformatics 2018 (Jülich), P19.

Felleman, D. J., and Van Essen, D. C. (1991). Distributed hierarchical processing in
the primate cerebral cortex. Cereb. Cortex 1, 1–47. doi: 10.1093/cercor/1.1.1

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker
project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Garrido, J. A., Carrillo, R. R., Luque, N. R., and Ros, E. (2011). “Event and
time driven hybrid simulation of spiking neural networks,” in Advances in

Computational Intelligence (Berlin; Heidelberg: Springer), 554–561.
Golosio, B., De Luca, C., Pastorelli, E., Simula, F., Tiddia, G., and Paolucci, P.

S. (2020). “Toward a possible integration of NeuronGPU in NEST,” in NEST

Conference 2020 (Ås), 7.
Golosio, B., De Luca, C., Capone, C., Pastorelli, E., Stegel, G., Tiddia, G.,

et al. (2021a). Thalamo-cortical spiking model of incremental learning
combining perception, context and NREM-sleep. PLoS Comput. Biol. 17, 1–26.
doi: 10.1371/journal.pcbi.1009045

Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, F., and Paolucci, P. S.
(2021b). Fast simulations of highly-connected spiking cortical models using
GPUs. Front. Comput. Neurosci. 15, 13. doi: 10.3389/fncom.2021.627620

Grübl, A., Billaudelle, S., Cramer, B., Karasenko, V., and Schemmel, J. (2020).
Verification and design methods for the BrainScaleS neuromorphic hardware
system. J. Signal Process. Syst. 92, 1277–1292. doi: 10.1007/s11265-020-01558-7

Gütig, R., Aharonov, R., Rotter, S., and Sompolinsky, H. (2003). Learning input
correlations through nonlinear temporally asymmetric hebbian plasticity. J.
Neurosci. 23, 3697–3714. doi: 10.1523/JNEUROSCI.23-09-03697.2003

Güttler, G. M. (2017). Achieving a Higher Integration Level of Neuromorphic

Hardware Using Wafer Embedding. Heidelberg: Heidelberg University Library.
doi: 10.11588/HEIDOK.00023723

Hahne, J., Diaz, S., Patronis, A., Schenck, W., Peyser, A., Graber, S., et al. (2021).
NEST 3.0. Available online at: https://zenodo.org/record/4739103/export/hx#.
YqHBUiNByYM

Heittmann, A., Psychou, G., Trensch, G., Cox, C. E.,Wilcke,W.W., Diesmann,M.,
et al. (2022). Simulating the cortical microcircuit significantly faster than real
time on the ibm inc-3000 neural supercomputer. Front. Neurosci. 15, 728460.
doi: 10.3389/fnins.2021.728460

Hines, M., Kumar, S., and Schürmann, F. (2011). Comparison of neuronal spike
exchange methods on a Blue Gene/P supercomputer. Front. Comput. Neurosci.
5, 49. doi: 10.3389/fncom.2011.00049

Hoang, R., Tanna, D., Jayet Bray, L., Dascalu, S., and Harris, F. (2013). A
novel cpu/gpu simulation environment for large-scale biologically realistic
neural modeling. Front. Neuroinform. 7, 19. doi: 10.3389/fninf.2013.
00019

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).
Extremely scalable spiking neuronal network simulation code: from laptops to
exascale computers. Front. Neuroinformat. 12:2. doi: 10.3389/fninf.2018.00002

Frontiers in Neuroinformatics | www.frontiersin.org 16 July 2022 | Volume 16 | Article 883333

https://www.frontiersin.org/articles/10.3389/fninf.2022.883333/full#supplementary-material
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.3389/fninf.2022.837549
https://doi.org/10.1073/pnas.0803652105
https://doi.org/10.1002/cne.21974
https://doi.org/10.1152/jn.01000.2012
https://doi.org/10.3389/fninf.2012.00030
https://doi.org/10.1523/JNEUROSCI.1400-04.2004
https://doi.org/10.3109/0954898X.2012.730170
https://doi.org/10.1038/s41598-019-45525-0
https://doi.org/10.1016/j.visres.2014.01.008
https://crcns.org/data-sets/vc/pvc-5/about
https://doi.org/10.1093/brain/98.1.81
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1371/journal.pcbi.1009045
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.1007/s11265-020-01558-7
https://doi.org/10.1523/JNEUROSCI.23-09-03697.2003
https://doi.org/10.11588/HEIDOK.00023723
https://zenodo.org/record/4739103/export/hx#.YqHBUiNByYM
https://zenodo.org/record/4739103/export/hx#.YqHBUiNByYM
https://doi.org/10.3389/fnins.2021.728460
https://doi.org/10.3389/fncom.2011.00049
https://doi.org/10.3389/fninf.2013.00019
https://doi.org/10.3389/fninf.2018.00002
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

Knight, J. C., Komissarov, A., and Nowotny, T. (2021). PyGeNN: A Python
library for GPU-enhanced neural networks. Front. Neuroinform. 15, 659005.
doi: 10.3389/fninf.2021.659005

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current HPC
and neuromorphic solutions in terms of speed and energy when
simulating a highly-connected cortical model. Front Neurosci. 12.
doi: 10.3389/fnins.2018.00941

Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain
simulations with procedural connectivity. Nat. Comput. Sci. 1, 136–142.
doi: 10.1038/s43588-020-00022-7

Kumar, S., Heidelberger, P., Chen, D., and Hines, M. (2010). “Optimization of
applications with non-blocking neighborhood collectives viamultisends on the
blue gene/p supercomputer,” in 2010 IEEE International Symposium on Parallel

Distributed Processing (IPDPS) (Atlanta, GA: IEEE), 1–11.
Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., et al.

(2019). Coreneuron: an optimized compute engine for the neuron simulator.
Front. Neuroinform. 13, 63. doi: 10.3389/fninf.2019.00063

Kurth, A. C., Senk, J., Terhorst, D., Finnerty, J., and Diesmann, M. (2022). Sub-
realtime simulation of a neuronal network of natural density. Neuromorph.

Comput. Eng. 2, 021001. doi: 10.1088/2634-4386/ac55fc
Marjanović, V., Labarta, J., Ayguadé, E., and Valero, M. (2010). “Overlapping

communication and computation by using a hybrid mpi/smpss approach,” in
Proceedings of the 24th ACM International Conference on Supercomputing, ICS

’10 (New York, NY: Association for Computing Machinery), 5–16.
Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A., Lamy, C.,

Magrou, L., Vezoli, J., et al. (2014). A weighted and directed interareal
connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36.
doi: 10.1093/cercor/bhs270

Markov, N. T., Misery, P., Falchier, A., Lamy, C., Vezoli, J., Quilodran, R., et al.
(2011). Weight consistency specifies regularities of macaque cortical networks.
Cereb. Cortex 21, 1254–1272. doi: 10.1093/cercor/bhq201

Nguyen, H. (2007). Gpu Gems 3. Addison-Wesley Professional, 1st Edn.
Boston, MA: Addison-Wesley

Parzen, E. (1962). On estimation of a probability density function and mode. Ann.
Math. Stat. 33, 1065–1076. doi: 10.1214/aoms/1177704472

Pastorelli, E., Capone, C., Simula, F., Sanchez-Vives, M. V., Del Giudice, P., Mattia,
M., et al. (2019). Scaling of a large-scale simulation of synchronous slow-
wave and asynchronous awake-like activity of a cortical model with long-range
interconnections. Front. Syst. Neurosci. 13, :33. doi: 10.3389/fnsys.2019.00033

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12,
2825–2830. Available online at: https://scikit-learn.org/stable/about.html

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking network
model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Rhodes, O., Peres, L., Rowley, A. G. D., Gait, A., Plana, L. A., Brenninkmeijer,
C., et al. (2020). Real-time cortical simulation on neuromorphic
hardware. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 20190160.
doi: 10.1098/rsta.2019.0160

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density
function. Ann. Math. Stat. 27, 832–837. doi: 10.1214/aoms/1177728190

Sanders, J., and Kandrot, E. (2010). CUDA by Example: An Introduction to

General-Purpose GPU Programming. Upper Saddle River, NJ: Addison-Wesley.
Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M., and van Albada, S. J.

(2018a). Multi-scale account of the network structure of macaque visual cortex.
Brain Struct. Funct. 223, 1409–1435. doi: 10.1007/s00429-017-1554-4

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., and van Albada, S.
J. (2018b). A multi-scale layer-resolved spiking network model of resting-state
dynamics in macaque visual cortical areas. PLoS Comput. Biol. 14, e1006359.
doi: 10.1371/journal.pcbi.1006359

Schuecker, J., Schmidt, M., van Albada, S. J., Diesmann, M., and
Helias, M. (2017). Fundamental activity constraints lead to specific
interpretations of the connectome. PLoS Comput. Biol. 13, e1005179.
doi: 10.1371/journal.pcbi.1005179

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis.
London: Chapman and Hall.

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. Elife 8, e47314. doi: 10.7554/eLife.47314

Thörnig, P., and von St. Vieth, B. (2021). JURECA: data centric and
booster modules implementing the modular supercomputing architecture
at jülich supercomputing centre. J. Large Scale Res. Facilit. 7, A182.
doi: 10.17815/jlsrf-7-182

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,
A. B., et al. (2018). Performance comparison of the digital neuromorphic
hardware SpiNNaker and the neural network simulation software NEST
for a full-scale cortical microcircuit model. Front. Neurosci. 12, 291.
doi: 10.3389/fnins.2018.00291

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in
python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-020-0772-5

Vitay, J., Dinkelbach, H. U., and Hamker, F. H. (2015). ANNarchy: a code
generation approach to neural simulations on parallel hardware. Front.

Neuroinform. 9, 19. doi: 10.3389/fninf.2015.00019
von St. Vieth, B. (2021). Jusuf: Modular tier-2 supercomputing and cloud

infrastructure at jülich supercomputing centre. J. Large Scale Res. Facilit. 7,
A179. doi: 10.17815/jlsrf-7-179

Waskom, M. L. (2021). seaborn: statistical data visualization. J. Open Source Softw.
6, 3021. doi: 10.21105/joss.03021

Wunderlich, T., Kungl, A. F., Müller, E., Hartel, A., Stradmann, Y., Aamir, S. A.,
et al. (2019). Demonstrating advantages of neuromorphic computation: a pilot
study. Front. Neurosci. 13, 260. doi: 10.3389/fnins.2019.00260

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework
for accelerated brain simulations. Sci Rep. 6, 18854. doi: 10.1038/srep18854

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Tiddia, Golosio, Albers, Senk, Simula, Pronold, Fanti, Pastorelli,

Paolucci and van Albada. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 17 July 2022 | Volume 16 | Article 883333

https://doi.org/10.3389/fninf.2021.659005
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1088/2634-4386/ac55fc
https://doi.org/10.1093/cercor/bhs270
https://doi.org/10.1093/cercor/bhq201
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.3389/fnsys.2019.00033
https://scikit-learn.org/stable/about.html
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1007/s00429-017-1554-4
https://doi.org/10.1371/journal.pcbi.1006359
https://doi.org/10.1371/journal.pcbi.1005179
https://doi.org/10.7554/eLife.47314
https://doi.org/10.17815/jlsrf-7-182
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1038/s41592-020-0772-5
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.17815/jlsrf-7-179
https://doi.org/10.21105/joss.03021
https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Fast Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster
	1. Introduction
	2. Materials and Methods
	2.1. NEST GPU Spike Communication and Delivery Algorithm
	2.2. NEST GPU Spike Recording Algorithm
	2.3. Multi-Area Model

	3. Results
	3.1. Comparison of Model Results Between NEST and NEST GPU
	3.2. Performance Evaluation

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

