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ABSTRACT

Within the contemporary dairy industry, the effective monitoring of cheese ripeness constitutes a critical
yet challenging task. This paper proposes the first public dataset encompassing images of cheese wheels
that depict various products at distinct stages of ripening and introduces an innovative hybrid approach,
integrating machine learning and computer vision techniques to automate the detection of cheese ripeness. By
leveraging deep learning and shallow learning techniques, the proposed method endeavors to overcome the
limitations associated with conventional assessment methodologies. It aims to provide automation, precision,
and consistency in the evaluation of cheese ripeness, delving into a hierarchical classification for the
simultaneous classification of distinct cheese types and ripeness levels and presenting a comprehensive solution
to enhance the efficiency of the cheese production process. By employing a lightweight hierarchical feature
aggregation methodology, this investigation navigates the intricate landscape of preprocessing steps, feature
selection, and diverse classifiers. We report a noteworthy achievement, attaining a best F-measure score of
0.991 through the merging of features extracted from EfficientNet and DarkNet-53, opening the field to

concretely address the complexity inherent in cheese quality assessment.

1. Introduction

The dairy industry, of which cheese is a prominent product, gener-
ates substantial revenue, creates jobs, and contributes to the agricul-
tural and food processing sectors. Dairy products are both a nutritional
powerhouse and a catalyst for positive health outcomes. The high
content of proteins, calcium, and vital micronutrients promotes bone
and muscle health. Additionally, their probiotics enhance digestive
well-being and nurture a healthy microbiome.

Beyond its gastronomic significance, cheese has a profound eco-
nomic impact, especially in regions where cheese production is a
vital part of the agricultural sector. The dairy industry, bolstered by
cheese production, generates substantial revenue and creates employ-
ment opportunities, supporting the agricultural and food processing
sectors. Moreover, cheese plays a crucial role in international trade,
with various countries engaging in the import and export of diverse
cheese varieties to cater to the preferences of a global consumer base.

Determining cheese quality involves evaluating its chemical com-
ponents, internal structure, and sensory aspects triggered by specific
properties and components [1]. The critical step in the cheese-making
process is detecting cheese ripeness, which is a specialized task pre-
dominantly reliant on the keen observation and sensory evaluation
of experts who assess cheese wheels visually, by scent, or by weight
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checking. This artisanal approach, although conducted by trained pro-
fessionals, is characterized by its inherent time-intensive nature and the
necessity for rigorous personnel training. Apart from being suscepti-
ble to the subjective inclinations of individual examiners, introducing
an element of personal bias into the assessment process, it is fur-
ther complicated by biochemical changes like lipolysis and proteolysis
during the ripening phase, significantly impacting flavor, aroma, and
texture [2,3].

These issues are further emphasized by the colossal scale of cheese
production in the industry [4], with leading manufacturers producing
over 4 million cheese wheels annually. This volume necessitates an
ongoing commitment to staffing and training to maintain the quality
and consistency of cheese products.

In general, accurately assessing cheese ripeness can be challeng-
ing due to factors such as the season, the origin of the milk, the
various processing steps, and storage temperature, which can be un-
predictable. Mistakes in determining cheese ripeness may lead to lower-
quality products being released into the market, harming a company’s
reputation and revenue [5].

To overcome these challenges, the dairy industry is increasingly in-
terested in adopting cutting-edge technologies for efficient monitoring.
Non-invasive techniques based on physicochemical, chromatographic,
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and electrophoretic analyses have been explored, but they are costly
and time-consuming [6].

Some alternative methodologies focus on computer vision (CV),
spectral analysis, and ultrasound-based techniques. These methodolo-
gies have evolved considerably in recent years, offering rapid, non-
destructive, and non-invasive means of monitoring cheese production
processes. Particularly within the domain of CV, advancements have led
to its widespread application across the agro-food chain, owing to its
cost-effectiveness, objectivity, reliability, and speed [1]. CV techniques
encompass diverse tasks ranging from qualitative and quantitative anal-
yses to defect identification, and various cheese varieties such as Ched-
dar, Mozzarella, Parmigiano Reggiano, Grana Padano, Queijo de Nisa,
and Pecorino cheeses. However, the quality of CV-based analyses heav-
ily relies on consistent lighting conditions, prompting the exploration
of more sophisticated techniques such as X-ray, Magnetic Resonance
Imaging (MRI), and Computed Tomography (CT), albeit with associ-
ated challenges and costs. In contrast, spectral analysis approaches
use light reflection to assess cheese properties, providing valuable
insights into cheese structure and composition. Meanwhile, ultrasound-
based methods offer non-invasive means of monitoring cheese integrity,
particularly in detecting eyes and cracks.

Despite the advancements, the current state of cheese quality anal-
ysis remains constrained by data acquisition challenges and privacy
concerns. Hence, this study endeavors to contribute to the field through
the development of computer vision and machine learning (ML) tech-
niques, focusing on digital image analysis acquired via a simple dig-
ital camera, emphasizing its non-intrusive, non-destructive, and cost-
effective nature. More precisely, we propose an innovative hybrid ap-
proach to automate cheese ripeness detection with a hierarchical clas-
sification strategy. By combining deep learning and shallow learning
techniques, this approach aims to address the limitations of traditional
methods and reduce reliance on human experts.

The contributions of this paper can be summarized as follows:

Public dataset release. We hereby provide public access to the
first dataset encompassing images of cheese wheels that depict
various products at distinct stages of ripening. It is available at
the following GitHub repository.

Hybrid approach. We introduce an innovative artificial
intelligence-based solution to automate the challenging task of
cheese ripeness detection.

Hierarchical classification. We present a hierarchical classifi-
cation strategy for the simultaneous differentiation of various
cheese types and ripeness levels, addressing the multifaceted
nature of cheese production.

Feature combination methodology. We propose a hierarchical
feature aggregation methodology that streamlines the feature
selection process and offers a lightweight yet effective approach
to feature combination.

Insights into feature importance. We provide valuable insights
into the significance of preprocessing steps, classifiers, and feature
selection techniques through comprehensive experiments, con-
tributing to the understanding of optimal feature combinations.
Source code release. The source code of the framework real-
ized in this work is publicly available at the following GitHub
repository.

The work is subdivided into the following sections: Section 2 re-
views existing techniques in cheese quality analysis, establishing a
foundation for the hybrid approach, while Section 3 gives the details
about the dataset, feature extraction, selection and normalization, and
machine learning strategies, laying the groundwork for the study.
In Section 4, the overall framework proposed is presented, outlining
the study’s main focuses: a hierarchical classification approach and
a unique feature aggregation methodology. In Section 5 the selected
experimental environment and hyperparameters are described, along
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with the presentation of the entire range of experimental results. Fi-
nally, in Section 6, we formulate our conclusions about the conducted
study and provide insightful possible new ways to improve our work
and possibly inspire future works based on our findings.

2. Related work

Within the realm of cheese production, different methodologies,
including CV with digital or hyperspectral imaging, near-infrared (NIH)
spectroscopy, Fourier-transformed infrared (FTIR) spectroscopy, and
other analytical techniques have been developed for monitoring the
cheese production process [1]. These methods serve not only for qual-
ity assessment but also for determining the geographical origin and
detecting potential adulteration in cheese products.

In addition, they offer the desired features of being a rapid, non-
destructive, and non-invasive methodology. In contrast to traditional
approaches, they can complement human visual inspection in evalu-
ating the attributes and sensory quality of cheese, for example, with
color assessments, identification of cheese imperfections such as gas
or mechanical holes, the presence of calcium lactate crystals, excessive
rind halo formation, and oiling off [7,8] without direct contact with
the samples.

Despite the ever-growing need for improvement in the quality and
quantity of cheese production, the state of the art for several sub-fields
of cheese quality analysis is still limited. The high difficulty in data
acquisition and the necessity of maintaining high privacy standards due
to industrial patents and techniques can explain this scarcity. However,
non-destructive approaches are the key to industrial-scale solutions.
Such approaches can be divided into three categories: computer vision,
spectral, and ultrasound-based, as presented in Fig. 1.

Computer Vision-based Approaches. In recent years, the use of
CV approaches has gained prominence across various stages of the
agro-food chain due to its objectivity, reliability, speed, and cost-
effectiveness [8-10]. A CV-based pipeline involves the use of a digital
camera to capture images, which are then processed for further analysis
in a multitude of tasks, from the qualitative [9,11] and quantitative [12,
13] analysis to the inspection and identification of defects [10,14] of
fruits and vegetables.

In this context, CV techniques have been used across various cheese
varieties, including Cheddar [15], Mozzarella [16], Parmigiano Reg-
giano [17,18], Grana Padano [18,19], Queijo de Nisa [8], and Pecorino
[20] cheeses. In addition, they were also employed for ingredient
distribution inspection [21].

In any case, the quality of the images highly depends on the con-
stancy of the direction and strength of the light source. To overcome
this issue, more complex techniques such as X-ray, MRI, and CT can
provide a more robust representation of the image, along with a 3D
representation of the inside of the cheese wheel, enabling cheese eye
analysis [1,22-24]. Of course, these approaches require specific mate-
rial that is normally used in a different context, such as the medical
context. For this reason, a minimally invasive and, at the same time,
inexpensive approach is based on digital images acquired with a digital
camera, as done in this work.

Spectral Analysis-based Approaches. Spectral analysis approaches
employ the use of light reflected by cheese wheels using probes or
various sources of light emitters. Fluorescence spectroscopy is a very
effective type of spectral approach that determines the intensity of fluo-
rescent components in the cheese, such as vitamin A, which determines
the ripeness and the molecular structure of the cheese [25,26]. NIR
provides another key spectral information for various applications. In
detail, for cheese analysis, it provides data about the cheese structure,
which can be used to determine quality, protein percentage, moisture,
and several other parameters [27-29]. Similar to the NIR approach,
the FTIR approach employs infrared spectroscopy to determine various
aspects of the cheese. This particular technology is usually employed
in rapid or real-time scenarios [1,30,31].
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Fig. 1. Hierarchical representation of the different non-destructive techniques for cheese quality analysis.

Ultrasound-based Approaches. Similar to CT scans, X-rays, and
MRI imaging, ultrasound methods have emerged as valuable tools for
monitoring the development of eyes and cracks within cheese [1].
For instance, by exploiting transducers and oscilloscopes, these tool
obtain wave data that describes the integrity and structure of the cheese
wheel [32]. Also, Eskelinen et al. demonstrated the capability of ultra-
sonic techniques in monitoring the progression of eyes and cracks in
cheese as it matures, often reconstructing three-dimensional ultrasound
images of cheese samples [33]. Meanwhile, Nassar et al. investigated
cheese eye formation through ultrasonic methods, highlighting lim-
itations encountered, particularly with mature cheeses that exhibit
extensive openings To address this issue, an alternative technique
known as the tap test acoustic method was devised [34].

This study revolves around the advancement of computer vision and
machine learning methodologies employed in analyzing digital images
captured using a basic digital camera. Unlike prevailing methods,
this approach is characterized by its non-intrusive and non-destructive
nature, prioritizing simplicity in setup and cost-effectiveness.

3. Materials and methods

This section describes the analytical pipeline followed in the study,
including the key elements of this framework. Section 3.1 presents
the image dataset used. Section 3.2 describes the feature extraction
methods, distinguished in deep and handcrafted (HC) features, while
Section 3.3 outlines the criteria and techniques for selecting the ap-
propriate features. Then, Section 3.4 discusses the approaches used to
standardize and normalize the features. Lastly, Section 3.5 details the
specific methodologies and algorithms used to apply machine learning
to the processed data.

3.1. Dataset

In this work, we present and provide the first dataset encompass-
ing images of cheese wheels that depict various products at distinct
stages of ripening, called the CHEESE-Hierarchical Image Data Base
(CHEESE-HIDB).

CHEESE-HIDB was built with the support of the Sardinian agency
for the implementation of regional agricultural and rural development
programs (LAORE!) and BiosAbbey S.r.l.

All the images in this dataset represent cheese wheels acquired
at the Italian dairy company Lattebusche-Conad. They are centered
on cardboard with a single light source and have a resolution of
6016 x 4016 pixels.

The images are hierarchically categorized into two levels. The first
one represents three different product types, called Semi-Hard, Hard,

1 https://www.sardegnaagricoltura.it

Table 1
Count of cheese wheel image samples for each of the
represented class in CHEESE-HIDB.

Class Target Not target
Semi-Hard 42 84
Hard 42 84
Extra-Hard 42 84

and Extra-Hard. Some sample images from the three first-level classes
are depicted in Fig. 2. Moreover, each product type is divided into
two further categories, viz. “Target” and “Not Target”, representing
cheese wheels with adequate ripeness and cheese wheels that require
additional aging or have exceeded the target, respectively. The number
of images for each class is depicted in Table 1. As can be seen,
each class has an uneven number of images, skewed towards the “Not
Target” class.

The maturation process for the distinct cheese classes within the
dataset exhibits specific temporal patterns. In the case of the Semi-Hard
variety, the target ripeness is achieved over a span of 92 days. For the
Hard cheese, classified under the Hard class, the target category under-
goes maturation for 207 days. Finally, the Extra-Hard class achieves its
target ripeness over 460 days.

3.2. Feature extraction

In this section, we present the feature extraction process and the
different preprocessing steps employed in our analysis.

3.2.1. Data preprocessing

The naive approach to ripeness and product classification is to
use the full RGB image to obtain semantically relevant features and
descriptors. However, modern deep learning architectures and HC im-
age descriptor extraction are not well-suited for handling such high-
dimensional data. The first step in our preprocessing strategy is to
correctly resize the image to the input size of the deep neural networks
utilized or to 224 x 224 if HC descriptors are employed. Another crucial
step is to center-crop the image to eliminate most of the background
portion.

As evident from Fig. 2, all the images share several common
elements, with the most significant one being the presence of a cheese
label that denotes the type and date of the wheel. To minimize any
potential bias or OCR-related information, we conducted an experiment
to select the RGB channel with the lowest cheese label intensity. A clear
example is illustrated in Fig. 3.

Fig. 3 reveals that the blue channel provides the strongest image
response with the lowest label response. Therefore, for all our exper-
iments, we utilized it for HC image features and a 3-channel stacked
representation for deep feature extraction approaches.
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Fig. 2. Illustrative examples showcasing images from the CHEESE-HIDB. Each column corresponds to samples representing distinct cheese classes, including Semi-Hard, Hard, and
Extra-Hard. The rows delineate ripeness classes, depicting instances categorized as Target and Not Target.
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Fig. 3. Illustration of a sample CHEESE-HIDB image categorized as belonging to the Semi-Hard class (Target). From left to right: grayscale conversion of the original RGB image,

followed by representations of the red, green, and blue channels, respectively.

3.2.2. Deep learning features

Deep learning feature extraction and classification, in conjunction
with shallow learning classifiers, have established themselves as a
successful approach for augmenting the predictive capabilities of tra-
ditional deep learning models [35]. These deep models often grapple
with the challenge of high dimensionality, commonly referred to as the
“curse of dimensionality”. To mitigate this challenge, feature selection
and aggregation processes can be employed [36].

Vision Transformers (ViT) have sparked a revolution in the field
of computer vision, delivering cutting-edge performance across various
subfields. ViT, originally introduced by Dosovitskiy et al. in 2020 [37],
marked the first successful application of the transformer architecture
to vision-related tasks. Vision transformers operate by segmenting the
input image into fixed-sized patches, embedding them into a hidden di-
mension, and incorporating positional encoding. Typically, a learnable
class patch, also referred to as a class token, is concatenated with the
image patches, and the resulting sequence is processed through a series
of transformer layers. Notably, the versatility of vision transformers
as foundational models [38-43] has enabled the utilization of unla-
beled data for efficient image representation and improved pretraining
strategies.

While the application of ViT for feature extraction and shallow
learning-based classification is relatively unexplored, it has garnered
increasing interest in recent research [44]. Depending on the adopted
architecture and the utilization of the class token, the feature extraction

Table 2
Details of Vision Transformer architectures employed in this study, including the
reference paper, model size, patch size, input shape, and feature extraction method.

Reference Model size Patch size Input shape Feature extraction
ViT [37] Base 16 224 x 224 CLS

DINO [39] Base 16 224 x 224 Average

DINO-v2 [42] Base 14 224 x 224 Average

EVA [40] Large 14 336 x 336 Average

CLIP [43] Base 32 384 x 384 Average

Swin-v2 [40] Tiny 16 256 x 256 CLS

MAE [41] Base 16 224 x 224 Average

I-JEPA [38] Huge 14 224 x 224 Average

process can vary. Specifically, if the class token is used, it serves as
the source of features. Otherwise, features are extracted by averaging
the image patches from the last transformer layer [37]. Detailed infor-
mation regarding the chosen architectures for feature extraction, input
size, and model size for each ViT can be found in Table 2.
Convolutional Neural Networks (CNNs) have proven their worth
as effective deep feature extractors in various studies [36,45,46]. CNNs
excel at capturing global features from images by guiding the input
through multiple convolutional filters and progressively reducing di-
mensionality across various architectural stages. For our experiments,
we selected several pre-trained off-the-shelf architectures based on the
Imagenetlk dataset [47]. Detailed information regarding the chosen
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Table 3
Specifications of employed CNNs, including the reference paper, number of trainable
parameters in millions, input shape, and feature extraction layer.

Reference Parameters (M) Input shape Feature layer
AlexNet [48] 60 224 x 224 Pen. FC
GoogLeNet [49] 5 224 x 224 Loss3
ResNet-18 [50] 11.7 224 x 224 Pool5
ResNet-50 [50] 26 224 x 224 Avg. Pool
ResNet-101 [50] 44.6 224 x 224 Pool5
Inception-v3 [51] 21.8 299 x 299 Last FC
Inception-ResNet-v2 [52] 55 299 x 299 Avg. pool
DarkNet-53 [53] 20.8 224 x 224 Conv53
DenseNet-201 [54] 25.6 224 x 224 Avg. Pool
EfficientNet BO [55] 5.3 224 x 224 Avg. Pool

Extracted features

Fullyconnected | | @ bt~——CLS| | P1 | | P2 p======~ H
Avg Pooling [ Transfomer layer ]

]

'

'

H
[ Transfomer layer ]

Convolutional Layers
- n H ------- “
Activation, Pooling

Convolutional Layers [ Patching and positional encoding ]

Input image

Fig. 4. Schematic representation of the differences in feature extraction methodologies
between CNNs and ViTs.

layers for feature extraction, input size, and the number of trainable
parameters for each CNN can be found in Table 3. A brief description
is provided hereafter.

A schematic representation of the differences between ViT and
CNN-based feature extraction approaches is depicted in Fig. 4

3.2.3. Handcrafted features

HC image features encompass a wide range of techniques and
methodologies utilized for extracting morphological, pixel-level, and
textural information from an image. According to [56], these features
can be further categorized into three primary categories: invariant
moments, textural features, and color-based features. Let us briefly
describe them and indicate the specific descriptors adopted.

Invariant moments - An image moment refers to a weighted average,
denoted as the moment, of the pixel intensities within an image,
employed for the extraction of specific properties. Moments find ap-
plication in image analysis and pattern recognition to characterize
segmented objects. In the present study, three distinct types of mo-
ments, namely, Zernike, Legendre, and Chebyshev, were utilized. A
concise overview of these moment types follows.

Chebyshev Moments (CH). Firstly introduced by [57], these are
a collection of orthogonal moments derived from Chebyshev polyno-
mials [58]. We utilized both first-order and second-order moments,
denoted as CH and CH_due, respectively. Specifically, we calculated
both CH and CH_due of order 5.

Second-order Legendre Moments (LGMS). Initially proposed
by [59], these moments are derived from Legendre orthogonal poly-
nomials [60] and are employed to represent the shape and spatial
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characteristics of objects within an image. In our analysis, we utilized
Legendre moments of order 5.

Zernike Moments (ZM). Initially introduced by [61], these are
another set of orthogonal moments derived from Zernike polynomials,
and they are employed to describe the shape and structure of objects
in an image. We applied Zernike moments of order 6 with a repetition
of 4.

Texture features - They were a focal point of evaluation in this pro-
posal, particularly emphasizing fine textures. The adopted texture fea-
tures are following described.

Haar Features (Haar). These features consist of adjacent rectangles
with alternating positive and negative polarities, taking forms like edge
features, line features, four-rectangle features, and center-surround
features. The computation of Haar features is often facilitated by using
an integral image, which allows for the rapid calculation of pixel value
sums within rectangular regions. Notably, Haar features are integral to
cascade classifiers, a key component of the Viola-Jones object detection
framework, where a series of stages employ subsets of Haar features to
efficiently determine the presence of a target object. [62].

Rotation-Invariant Haralick Features (HARri). Thirteen Haralick
features [63] were derived from the Gray Level Co-occurrence Matrix
(GLCM), and subsequently transformed into rotation-invariant features
(refer to [64] for details). To achieve rotation invariance, the compu-
tation involved four variations of the GLCM, each with parameters set
to d = 1 and angular orientations 6 = [0°,45°,90°, 135°].

Local Binary Pattern (LBP). This technique characterizes texture
and patterns within an image, as described by [65]. In this work, we
computed the histogram of the LBP, converted to a rotation invariant
form, viz. LBP_ri [66], was extracted and used as the feature vector.
The LBP map was generated within a neighborhood defined by a radius
r =1 and a number of neighbors n = 8.

Color features - These kinds of features aim at extracting color intensity
information from the images. In this study, these descriptors were
calculated from images that underwent a conversion to grayscale,
streamlining the process of analysis and computation.

Grayscale Histogram Features (Hist). The color histogram char-
acterizes the global color distribution within the image. We com-
puted seven statistical descriptors from it, including mean, standard
deviation, smoothness, skewness, kurtosis, uniformity, and entropy.

3.3. Feature selection

Feature selection is a crucial step in machine learning and data
analysis, as it involves identifying and choosing the most informative
attributes from a dataset while discarding irrelevant or redundant ones.
The significance of feature selection lies in its ability to enhance model
performance, reduce computational complexity, and mitigate the risk of
overfitting. Selecting a subset of relevant features, not only improves
model interpretability but also speeds up the training process and
enhances generalization to unseen data [67-69]. Univariate feature
selection using ranking is a technique that assesses individual features’
importance based on their statistical properties and assigns each feature
a ranking score. By ranking features according to their relevance to
the target variable. In our experiments, we employed some common
ranking methods, which include:

Chi-squared (chi2). It measures the statistical dependence between
a categorical target variable and each categorical or discrete feature in
the dataset using the chi-squared statistic.

ANOVA F-statistic (f_classif). The f classif employs the ANOVA
F-statistic to evaluate the variance between different classes and the
variance within those classes.

Mutual Information (mutual info_classif). This strategy quanti-
fies the mutual information between a feature and a categorical target
variable. It measures the dependency between features and the target,
capturing any relationship, be it linear or nonlinear.
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3.4. Feature normalization

Feature normalization is a crucial preprocessing step in ML and
data analysis. It involves transforming the numerical features in a
dataset to a common scale or distribution. Its primary purpose is
to ensure that the features have comparable magnitudes, preventing
certain variables from dominating others during model training [70].
In our experiments, the following feature normalization methods were
used:

Normalizer. This technique revolves around normalizing the input
data along unitary norms, usually the L1 or L2 norms.

Standard Scaler. It standardizes attributes by centering data around
zero and scaling to unit variance. It does so by subtracting the mean and
dividing by the standard deviation. While effective for normalization,
it can overemphasize outliers, leading to narrow inlier distributions.

MinMaxScaler. It is employed to translate and normalize data
within a predetermined range, typically spanning from 0 to 1. This
process involves subtracting the minimum value from each data point
and then dividing by the range. In the absence of outliers, its impact is
similar to that of the standard scaler. Nevertheless, in scenarios where
outliers are present, the min-max scaler may exhibit limitations in
achieving parity in means and variances across distributions.

MaxAbsScaler. This scaler scales each example by the maximum
absolute value in its attribute. This makes it sensitive to outliers,
resulting in narrower distributions and unequalized means.

RobustScaler. It transforms the data, centering on the median and
scaling using the interquartile range. This equalizes variances across at-
tributes robustly, even with outliers, since scaling uses the interquartile
magnitude [70].

QuantileTransformer. This scaler non-linearly maps data to uni-
form distributions, such as normal and uniform, using quantiles. It
transforms attributes independently, making it robust to outliers.

PowerTransformer. It employs a power transformation, specifically
the Yeo-Johnson transform in our case study, on a feature-wise basis to
induce a Gaussian-like distribution in the data. This approach proves
advantageous in addressing modeling challenges associated with non-
constant variance or instances where a normal distribution is sought
after.

3.5. Machine learning strategies

The HC and deep-learning extracted features employed in this study
are used as inputs of several ML classifiers, such as Random Forest
Classifier (RF), k-nearest Neighbor (k-NN), Support Vector Machine
(SVM), Gradient Boosting Classifier (GB), and a Stacked classifier (SC)
approach. Let us briefly introduce them.

k-Nearest Neighbor. The k-NN classifier makes categorical deter-
minations based on the classes of the k-training examples that are
nearest in distance to a given observation. By considering the proximity
of neighboring instances, this method employs a local strategy to
classify observations.

Support Vector Machine. This classifier discern categories by map-
ping examples to specific sides of a decision boundary. Here, a radial
basis function kernel is employed to handle non-linear relationships,
allowing for a more nuanced representation of complex data patterns.
The one-vs-rest approach is applied to address multiclass problems,
training individual classifiers to distinguish each class from the rest.

Random Forest. It amalgamates the predictions of numerous deci-
sion trees, each trained on random subsets of features and examples.
This ensemble technique enhances model robustness by introducing
diversity among the trees, contributing to improved resilience against
data imbalance and mitigating overfitting. Notably, the specified inclu-
sion of 100 trees further bolsters the predictive power of the random
forest.

Gradient Boosting Classifier. Operating through a sequential
ensemble-building process, the Gradient Boosting Classifier constructs
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a series of weak learners, typically decision trees. Each successive tree
aims to rectify the errors of its predecessor, thereby iteratively refining
predictive accuracy. This method excels in capturing intricate relation-
ships within the data, making it particularly effective in scenarios with
complex and non-linear patterns.

Stacked Classifier. The stacked classifier aims to increase classifi-
cation accuracy by integrating predictions from diverse base classifiers.
This is achieved through the training of a meta-classifier on the out-
puts of the individual classifiers, harnessing the collective intelligence
of various algorithms. By synergizing the strengths of multiple ap-
proaches, the stacked classifier produces a comprehensive and robust
classification outcome.

3.6. Performance evaluation measures

The classification performance has been measured in terms of ac-
curacy, precision, recall, and F-measure. Clear explanations of these
measures for binary classification tasks are provided below, followed
by their extensions to encompass multiclass scenarios. To assess a
binary classifier’s performance on a dataset, each instance within the
dataset will be categorized as either negative or positive based on
the classifier’s predictions. The classification result and the true target
value will determine whether an instance contributes to one of the
following measures:

True Negatives (TN). The count of instances from the negative class
that have been accurately predicted as negative.

False Positives (FP). The count of instances from the negative class
that have been erroneously predicted as positive.

False Negatives (FN). The count of instances from the positive class
that have been erroneously predicted as negative.

True Positives (TP). The count of instances from the positive class
that have been correctly predicted as positive.

Using these quantities, the aforementioned measures can be defined
as follows:

Accuracy is a measure of how often the classifier correctly predicts
both positive and negative instances. It provides a general overview
of the classifier’s performance, measuring the overall correctness of
predictions.

TP+TN
TP+TN+ FP+FN
Precision (also known as Positive Predictive Value) is the ratio of
correctly predicted positive instances to the total instances predicted as
positive. It measures how accurate the classifier is when it predicts the
positive class, focusing on minimizing FPs.

Precision = _TIr 2
TP+ FP

Recall (also known as Sensitivity or True Positive Rate) is the ratio

of correctly predicted positive instances to the total actual positive in-

stances. It quantifies how well the classifier identifies positive instances

and aims to minimize false negatives.

TP
Recall = ———— 3
= TP FN 3)
F-measure, or F-score, is the harmonic mean of precision and recall.

It provides a balance between the two.

@

Accuracy =

F-Score = 2. Pre;c?sion - Recall )
Precision + Recall

When extending these measures to multiclass classification, we
consider the concept of macro averaging. In a multiclass scenario, the
macro average calculates the measure for each class independently
and then takes the average of these individual class measures. This
approach provides a balanced evaluation across all classes.

Accuracy Macro Avg. It evaluates the overall correctness of the
classifier’s predictions by computing the average of the accuracy cal-
culated for each class separately.

c
Accuracy Macro Avg = é Z Accuracy; (5)
i=1
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Fig. 5. Schematic representation of the steps involved in our experimental process, representing in one schema the whole possible range of experiments, in the figure as in our

experiments the Hierarchical Concatenation is an optional step.

Precision Macro Avg. The precision macro average measures the
average precision of the classifier across all classes.

c
Precision Macro Avg = é 2 Precision; 6)

i=1
Recall Macro Avg. The recall macro average calculates the average
recall across all classes.

c
Recall Macro Avg = é Z Recall; (2]
i=1

F-Score Macro Avg. The F-Score macro average is the mean of the
F-Scores computed for each class.

c
F-Score Macro Avg = é Z F-Score, 8)
i=1

Algorithm 1: Hierarchical Feature Concatenation

Data: FeatureSets

Result: MergedFeatureSet with the highest F-Score
1 for each SingularFeatureSet in FeatureSets do
2 L Classify SingularFeatureSet;

3 while number of FeatureSets is greater than 1 do

4 for each Pair of FeatureSets < set,, set,; > do

5 MergedFeatureSet < MergeFeatures(set,,, set,);

6 Classify(MergedFeatureSet);

7 if F-Score of MergedFeatureSet is greater than max(F-Score
of set,, F-Score of set,,;) then

8 L Keep MergedFeatureSet;

9 else

10 Keep the FeatureSet with the higher F-Score
L between set, and set,,;

4. Proposed approach

The primary objectives of our study revolve around the assessment
of hierarchical classification techniques in the context of ripeness clas-
sification. Noteworthy precedents in the literature have employed such
methodologies to enhance conventional approaches [71,72]. In our
investigation, first, a flat classification approach is employed, wherein
the simultaneous categorization of the three distinct cheese types into
two ripeness levels is treated as a comprehensive 6-class classification
problem. Then, a hierarchical approach is adopted, wherein initial
training of classifiers is conducted to classify cheese wheels into the
three distinct cheese-type categories. Subsequently, binary classifiers
are trained for each category to discern the ripeness level within that
specific cheese type.

The second aim of our study is to ascertain an effective and seman-
tically robust method for aggregating features from diverse sources, as
elucidated in this manuscript. The exhaustive exploration of all feasible
feature combinations through a naive, full search approach yields 2" —
1 combinations, rendering it impractical and, due to computational

Table 4
Hyperparameters of classification algorithms used throughout the experimental
procedures.

Classifier Hyperparameter Value
k-NN number of neighbors 5

distance Euclidean distance
SVM C 1.0

kernel rbf

tipology one-versus-rest
Random Forest n. estimators 100

criterion gini-score
Gradient Boosting Classifier n. estimators 100

learning_rate 0.1

final estimator
estimators

Stacked Classifier logistic regression

SVM, RF, k-NN

constraints, infeasible in our scenario where n equals 32. To address
this challenge, we propose a streamlined approach that hierarchically
transforms the problem into a tree-like structure of potential combina-
tions. This method necessitates only n — 1 steps to converge towards a
locally optimal solution.

Our methodology first extracts a combination of a classifier, a fea-
ture selection algorithm, and a feature scaler. Subsequently, individual
sets of features undergo independent preprocessing, involving scaling
and filtering, followed by classification. The iterative process involves
concatenating features in pairs and repeating the preprocessing step.
Ultimately, features are classified, and consideration is given to re-
taining only those among the single elements and concatenated pairs
exhibiting the highest classification measures, notably the F-Score in
our analysis. The iterative procedure persists until only a singular set
of features remains.

Our final setup for the second step is carried out by repeating the
experiments k times, with each trial involving the shuffling of the order
of features. A schematic representation of the pseudocode is presented
in Algorithm 1. This algorithm distinguishes itself through its efficiency
and efficacy in navigating the intricate domain of feature synergies.
Employing an iterative refinement of feature combinations through
a lightweight and hierarchical methodology, our algorithm not only
automates the feature selection process but also furnishes a data-driven
mechanism for discerning optimal feature sets. This innovative ap-
proach contributes substantively to the wider field of machine learning
by presenting a systematic methodology for identifying the most influ-
ential features in the context of cheese classification. Furthermore, its
applicability extends beyond our specific domain, offering a promising
avenue for feature exploration in diverse domains.

A schematic representation of the experimental procedure is delin-
eated in Fig. 5, elucidating each step of the experimentation process.
Notably, the incorporation of our innovative hierarchical feature con-
catenation strategy is introduced as an optional iterative refinement
step.

Finally, a visual representation of the Flat and Hierarchical clas-
sification approaches is provided in Fig. 6, manifesting in a tree-like
structure that partitions the dataset classes hierarchically. This repre-
sentation accentuates the divergence in the generated classifiers for
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Fig. 6. Schematic representation depicting the classifiers generated as part of our experimental procedure. Classes within the flat classifier are highlighted in purple, while classes

at each level of the hierarchical classifier are highlighted in red.
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Fig. 7. Comparative analysis of ML classifiers’ performance trained with different CNN-extracted features using a hierarchical classification strategy. The heatmap illustrates
aggregated F-score values obtained by averaging F-score values across different setups encompassing all combinations of employed feature selectors, selected feature counts, and

feature scalers.

Classifier

F-Measure value

Fig. 8. Comparative analysis of ML classifiers’ performance trained with different CNN-extracted features using a flat classification strategy. The heatmap presents an aggregated
analysis of the average F-score performance obtained by varying the feature selection methods, feature counts, and feature scaling techniques employed.

each approach, thereby facilitating a nuanced comprehension of their
distinctions.

5. Experimental results

We present the outcomes of our experiments employing the pro-
posed methodology on CHEESE-HIDB. In Section 5.1, an in-depth
elucidation is provided regarding the varied classification performances
of features, encompassing both deep-based and HC features. Section 5.2
undertakes a comparative analysis between the flat and hierarchical
approaches. Subsequently, Section 5.3 and Section 5.4 inspect the
impact of feature normalization and feature selection, respectively,
on the classification performance. Section 5.5 offers a comprehensive
exposition of the outcomes derived from the hierarchical feature con-
catenation process. Finally, Sections 5.6 and 5.7 presents a comparison

with methods found in literature on similar contexts and with other
feature aggregation methods, respectively.

The experiments were executed on a workstation featuring an In-
tel(R) Core(TM) i7-12700 @ 2.1 GHz CPU, 16 GB RAM, and an NVIDIA
GTX1660 Super GPU with 6 GB of memory. All classifiers utilized in
the experiments were imported from the scikit-learn library [73]. A
comprehensive list of selected hyperparameters is provided in Table 4.

5.1. Influence of features on classification performance

5.1.1. CNN-extracted features results

Here, we present the results obtained from the classification of fea-
tures extracted by CNNs. Elucidating trends in F-measure, the heatmaps
presented in Figs. 7 and 8 delineate performance variations across
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Fig. 9. Comparative analysis of ML classifiers’ performance trained with different ViT-
extracted features using a hierarchical classification strategy. The heatmap presents
a trend of ML classifiers performance with their aggregated F-score values computed
by averaging F-score values across different setups encompassing all combinations of
employed feature selectors, selected feature counts, and feature scalers.
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Fig. 10. Comparative analysis of ML classifiers’ performance trained with different
ViT-extracted features using a flat classification strategy. The heatmap presents a trend
of the ML classifiers F-score performance computed by averaging F-score values across
different setups encompassing all combinations of employed feature selectors, selected
feature counts, and feature scalers.

various classifiers in the two analyzed settings. For conciseness, we
offer an overview of average results, accommodating variations in
feature scaling and ranking algorithms.

Discernible patterns emerge from the presented tables, indicating
that the most resilient features are associated with specific architec-
tures, including AlexNet, EfficientNet, and ResNet-18. Notably, the
results appear to exhibit a positive correlation with shallower archi-
tectures, exemplified by AlexNet, or those characterized by fewer pa-
rameters in comparison to others, such as EfficientNet and ResNet-18,
with respective parameter counts of 5.3 million and 11.7 million.

5.1.2. ViT-extracted features results

In this subsection, we present the outcomes derived from the clas-
sification of features extracted by the Vision Transformer. A com-
prehensive depiction of trends in F-measure is provided in Figs. 9
and 10 across diverse classifiers. For brevity, we present solely the
average results, accounting for variations in feature scaling and ranking
algorithms.

The discerned patterns from both figures indicate superior perfor-
mance for Swin-v2 and CLIP features compared to other extracted
features. This observation can be elucidated by two crucial aspects:
Swin-v2, owing to its architectural design, adeptly captures hierarchical
structures within images, resulting in a denser and more enriched rep-
resentation. In contrast, CLIP, built on the ViT architecture, although
lacking an inherent hierarchical representation, divides images into
larger 32 x 32 patches—largest among the studied architectures. This
results in fewer patches containing more information, contributing to
the extraction of valuable features.

Noteworthy among various classifiers are the commendable results
exhibited by both Swin-v2 and CLIP features, even with the Support
Vector Machine classifier, which otherwise demonstrates suboptimal
performance across other features. Significantly, the Stacked approach
emerges as a standout among diverse classifiers, consistently yielding
optimal results by effectively leveraging the strengths of the selected
base classifiers.
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Fig. 11. Comparative analysis of ML classifiers’ performance trained with different HC
features using a hierarchical classification strategy. The heatmap presents a trend of ML
classifiers performance with their aggregated F-score values computed by averaging F-
score values across different setups encompassing all combinations of employed feature
selectors, selected feature counts, and feature scalers.
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Fig. 12. Comparative analysis of ML classifiers’ performance trained with different HC
features using a flat classification strategy. The heatmap presents a trend of the ML
classifiers F-score performance computed by averaging F-score values across different
setups encompassing all combinations of employed feature selectors, selected feature
counts, and feature scalers.

5.1.3. Handcrafted features results

In addition to examining features extracted by ViTs and CNNs,
we present the outcomes derived from the classification of HC fea-
tures. Maintaining methodological consistency, the heatmaps depicted
in Figs. 11 and 12 adhere to the previously explained structure. Analysis
of the presented heatmaps reveals superior performance associated
with the utilization of invariant moments and first-order statistics.
Conversely, textural features such as LBP exhibit limited discriminative
capability in the context of the studied case across the array of selected
classifiers.

5.2. Comparison between flat and hierarchical classification results

The previously discussed results have showcased the remarkable
achievements of both flat and hierarchical classification approaches.
To delve deeper into our analysis, Figs. 13-15 present the differences
between the result values obtained from the hierarchical and flat
classification approaches. Positive results indicate the dominance of the
hierarchical approach, while negative values suggest the superiority of
the flat one.

The outcomes exhibit a strong dependency on the selected features,
where the type of feature significantly influences the approach either
positively or negatively. Moreover, when scrutinizing the impact of
different classifiers on the approach, it becomes evident that classifiers
appear to be approach-invariant, showing no clear improvement or
decrease in performance. Except for the SVM classifier, which exhibits
a positive influence from the hierarchical classification approach, clear
examples can be drawn from LBP results. When using the SVM clas-
sifier, the hierarchical approach achieves, on average, a 6% higher
performance compared to its flat counterpart. The best ten results
achieved across the whole set of experiments are depicted in Table 5.

5.3. Impact of the feature scalers
In this section, we delve into a detailed exploration of our observa-

tions centering on the effectiveness of various selected feature scalers
across the extensive set of experiments.
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Fig. 13. Comparative heatmap of aggregated ML classifiers F-scores: flat vs. hierarchical classification strategies with CNN-extracted features. The heatmap presents a comparative
analysis of the aggregated F-score performance the flat classification reported in Fig. 8, and the hierarchical classification detailed in Fig. 7, providing an overview of their

performance trends.

Table 5

Performance measures for hierarchical and flat classification experiments. The results include F-measure, Accuracy, Precision, and Recall scores, along with standard deviations
for each experimental setup. Classifiers, feature selectors, feature scalers, and the number of features are specified. For brevity, mutual_info_classif feature selection criteria are
abbreviated as m.i.c and QuantileTransformer as QT. Hierarchical approach classifiers are denoted with an H- prefix.

F-measure Accuracy Precision Recall Classifier Feature selector Feature scaler Feature number Feature name
0.987 +0.038 0.987 +0.038 0.984 +0.018 0.987 +0.038 SVM m.i.c QT(Normal) 300 DenseNet-201
0.987 +£0.038 0.987 +0.038 0.984 +£0.018 0.987 +0.038 SVM m.i.c QT(Uniform) 150 EfficientNet
0.987 +0.038 0.987 +0.038 0.984 +0.018 0.987 +0.038 SC m.i.c QT(Normal) 150 EfficientNet
0.987 +0.038 0.987 +0.038 0.984 +0.018 0.987 +0.038 SVM chi2 QT(Normal) 100 EfficientNet
0.987 +0.038 0.987 +0.038 0.984 +£0.018 0.987 +0.038 H-SC m.i.c QT(Normal) 100 EfficientNet
0.987 +£0.038 0.987 +0.038 0.984 +£0.018 0.987 +0.038 SVM f_classif QT(Normal) 100 EfficientNet
0.986 + 0.042 0.987 +0.038 0.982 +0.018 0.987 +0.038 H-RF f classif QT(Uniform) 100 ResNet-50
0.985 +0.038 0.985 +0.038 0.982 +0.018 0.985 +0.038 RF m.i.c Normalizer 50 ResNet-50
0.985 +£0.038 0.985 +0.038 0.982 +£0.018 0.985 +0.038 H-SVM f classif QT(Normal) 100 EfficientNet
0.985 +0.038 0.985 +0.038 0.982 +0.018 0.985 +0.038 H-SVM chi2 QT(Normal) 100 EfficientNet
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Fig. 14. Comparative heatmap of aggregated ML classifiers F-scores: flat vs. hierar-
chical classification with ViT-extracted features. The heatmap presents a comparative
analysis of the aggregated F-score performance between the flat classification reported
in Fig. 10, and the hierarchical classification presented in Fig. 9, providing an overview
of their performance trends.
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Fig. 15. Comparative heatmap of aggregated ML classifiers F-scores: flat vs. hierar-
chical classification with HC features. The heatmap presents a comparative analysis of
the aggregated F-score performance between the flat classification presented in Fig. 12,
and the hierarchical classification reported in Fig. 11, providing an overview of their
performance trends.
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Throughout the experimentations, two standout feature scalers,
namely the PowerTransformer and QuartileTransformer, exhibited re-
markable improvements in the obtained results. The impact was par-
ticularly pronounced, with instances where the gap between these pre-
ferred scalers and alternatives like MaxAbsScaler reached a significant
margin exceeding 24% in terms of F-measure.

The PowerTransformer and QuartileTransformer share a common
underlying principle, they both contribute to enhancing the distribution
characteristics of the initial data. By transforming the features into
Gaussian-like or normal distributions, these scalers meticulously ad-
dress each attribute individually. This tailored treatment of attributes,
combined with the distributional shift, may have played a pivotal role
in elevating the overall classification performance.

The results of this analysis are reported in Figs. 16-18 showing
the performance with the features extracted from CNN, ViT, and HC
features, respectively.

5.4. Impact of the feature selectors

Here, we present the observations and the results that focus on the
efficacy of the different feature selectors, varying the ranking score
across the whole set of experiments. Our results show that f classif
and mutual_info_classif outperform chi2 criteria in several scenarios.
This behavior can be explained by an implicit non-linear correlation
between features, which is not discernible by feature ranking using chi2
as a criterion.

The impact of different feature selection techniques on model per-
formance is presented in the heatmaps shown in Figs. 19-21. These
heatmaps depict the performance results when using features extracted
from CNN and ViT, and HC features, respectively.
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Fig. 16. Comparative analysis of performance obtained with the ML classifiers trained with different CNN-extracted features using a hierarchical classification strategy, from the
feature scaler technique perspective. The heatmap presents an aggregated analysis of the average F-score performance obtained by varying the feature selection methods, feature
counts, and ML classification methods employed.
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Fig. 17. Comparative analysis of performance obtained with the ML classifiers trained with different ViT-extracted features using a hierarchical classification strategy, from the
feature scaler technique perspective. The heatmap presents an aggregated analysis of the average F-score performance obtained by varying the feature selection methods, feature
counts, and ML classification methods employed.
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Fig. 18. Comparative analysis of performance obtained with the ML classifiers trained with different HC features using a hierarchical classification strategy, from the feature scaler
technique perspective. The heatmap presents an aggregated analysis of the average F-score performance obtained by varying the feature selection methods, feature counts, and ML
classification methods employed.

Feature selector
b o
e o
~N o
F-Measure value

f_classif 0848 .8 ‘0896 0.847 NOE:IZNRNE:)
mutual_info_classif [{UE-ZIERIERIN 0.850 Not- A NOVEERRN(T4
© N & 2 & S & & vy 2 & 2 S N & S
s ¢ §F & &£ F F 5 &£ & 5 §&§ F & & 5
Y Y & < & 2 & S s 5 & £ 9 b3 = g
Y T R A A A A § 3 & £ ¥
Q Q & W & & & 5 & & &
o 5 = @
Q N <
&
O
£
Feature

Fig. 19. Comparative analysis of performance obtained with the ML classifiers trained with different CNN-extracted features using a hierarchical classification strategy, from the
feature selection technique perspective. The heatmap presents an aggregated analysis of the average F-score performance obtained by varying the feature scaler methods, feature
counts, and ML classification methods employed.
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Table 6
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Results for hierarchical feature concatenation approach. The table displays F-measure scores with standard deviations for each setup, including

classifier, feature selector, feature scaler, maximum feature count, and feature names. For clarity, mutual_info_classif is abbreviated as m.i.c and

QuantileTransformer as QT.

F-measure Classifier Feature selector Feature scaler Feature number Feature list

0.987 +0.038 SVM chi2 QT(Uniform) 300 HARri, EfficientNet

0.987 +0.038 RF m.i.c MinMaxScaler 300 DenseNet-201

0.987 +0.038 SVM chi2 QT(Normal) 300 EfficientNet, DarkNet-53

0.987 +0.038 SC m.i.c QT(Normal) 150 EfficientNet

0.987 +0.038 SVM m.i.c QT(Normal) 150 EfficientNet

0.987 + 0.038 SC f_classif QT(Uniform) 150 ResNet-50, ResNet-18, HARri

0.991 + 0.040 SC m.i.c QT(Normal) 100 EfficientNet, DarkNet-53

0.987 +0.038 SC m.i.c QT(Normal) 100 EfficientNet

0.987 +0.038 SVM m.i.c QT(Normal) 100 EfficientNet

0.987 +0.038 SC m.i.c QT(Normal) 100 EfficientNet
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Fig. 20. Comparative analysis of performance obtained with the ML classifiers trained
with different ViT-extracted features using a hierarchical classification strategy, from
the feature selection technique perspective. The heatmap presents an aggregated
analysis of the average F-score performance obtained by varying the feature scaler
methods, feature counts, and ML classification methods employed.
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Fig. 21. Comparative analysis of performance obtained with the ML classifiers trained
with different HC features using a hierarchical classification strategy, from the feature
selection technique perspective. The heatmap presents an aggregated analysis of the
average F-score performance obtained by varying the feature scaler methods, feature
counts, and ML classification methods employed.

5.5. Hierarchical feature concatenation results

The comprehensive set of experiments detailed in the preceding
paragraphs encompassed a total of 38,400 distinct and unique experi-
mental configurations. These experiments systematically investigated
the influence of various classifiers, feature selectors, and scalers on
the outcomes. Notably, the execution of this extensive experimental
evaluation necessitated a computational duration of 30 days. Despite
the noteworthy results obtained, accomplishing such an undertaking
would pose a hard and time-consuming task.

Our hierarchical feature concatenation methodology yielded supe-
rior results, particularly with a modest value for the parameter Kk,
specifically set at 50. The parameter k denotes the number of shuffles
employed in the process. To maintain simplicity and coherence in our
experiments, we employed the hierarchical classification approach, and
the comprehensive set of experiments is presented in Table 6.

The findings elucidate a discernible pattern: QuantileTransformer
emerges as the most robust and effective feature scaler for the em-
ployed features, while mutual info_classif proves to be the optimal
feature selection criterion. Notably, EfficientNet consistently preserves
informative features for classification, featuring in 9 out of the top 10
experiments.
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mation of features from EfficientNet and DarkNet-53, both falling under
the CNN category. This optimal experiment achieves a remarkable
F-measure of 0.991 with a standard deviation of 0.040, surpassing
F-measure values attained in all other proposed experiments.

5.6. Comparison with literature

To the best of our knowledge, the proposed approach represents
the first attempt to evaluate cheese ripening by using a hierarchical
classification approach, while a previous method proposed by our team
analyzes images acquired through a photographic camera [20], with
accuracy up to 0.98 in the classification of four different ripeness stage
of a Pecorino soft cheese produced by a Sardinia dairy company.

In contrast, alternative methods in the literature primarily focus
on chemical and spectroscopic parameters or address various types
of cheese [74,75] and diverse ripening durations [7,76]. For these
reasons, a direct head-to-head comparison with the methods previously
proposed is not feasible.

Nevertheless, some studies have reported quantitative performance
measures. Specifically, Del Campo et al. introduced a Principal Com-
ponent Analysis-based model capable of discriminating among four
ripening stages of Emmental cheeses using mid-infrared spectroscopy.
Their model achieved a 0.87 cross-validation accuracy based on 14
samples and a 0.57 accuracy on a separate test set of 14 samples.
Notably, our work differs from theirs in that our characterization of
ripening extends over a longer time frame [76].

Additionally, Soto-Barajas et al. proposed an artificial neural net-
work trained on data related to the fatty acid composition and NIR
spectra of sixteen milk mixtures. Their approach achieved 0.50 accu-
racy in discriminating among different cheese types and 1.00 accuracy
in classifying unknown cheese samples based on ripening time [75].

Despite the similarities with these prior proposals, our work stands
out as innovative due to its remarkable 0.99 classification accuracy in
distinguishing between different ripeness phases with a hierarchical ap-
proach. Moreover, its non-invasive nature and end-to-end automation
make it valuable for identifying potential issues within cheese storage,
such as inappropriate temperature conditions.

5.7. Comparison with other feature aggregation methods
Our approach stands in contrast to the standard practice in various

subfields of machine learning, particularly in radiomics, where feature
combination is typically performed at a global level, followed by a
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subsequent global feature selection process [77,78]. Recent advance-
ments in feature fusion have focused on feature map-level fusion within
deep neural networks. This particular approach can be leveraged not
only for single-network fusion but also to incorporate feature maps
originating from different network backbones [79]. Such methods aim
to learn the optimal feature combination through backpropagation. An
alternative approach to merging multiple feature map sources can be
achieved through a hierarchical or pairwise strategy akin to our feature
concatenation technique. Interestingly, this method has demonstrated
strong performance not only in our work but also in the deep learning
paradigm [80].

The distinguishing aspect of our proposed approach is its ability to
capture and preserve the inherent hierarchical structure of the feature
representations, which is often overlooked in traditional global feature
combination and selection techniques. By employing a hierarchical
classification framework, we can leverage the meaningful relationships
and dependencies among the various feature subsets, leading to a more
comprehensive and effective feature aggregation process. This hierar-
chical perspective allows for a more nuanced and informed feature
fusion, ultimately contributing to the robust performance observed in
our experiments.

6. Conclusion

This study proposed the first public dataset encompassing images
of cheese wheels depicting various products at distinct stages of ripen-
ing, on which an extensive study was conducted. The conclusions
derived from the study affirm the efficacy of the proposed methodology
within the domain of cheese quality analysis. The combination of the
hierarchical classification approach with a distinctive feature aggre-
gation technique has yielded promising outcomes. The investigation
has provided insights into the potential utility of ViTs, CNNs, and
HC features for feature extraction, showcasing discernible performance
variations across diverse classifiers. Notably, the hierarchical feature
concatenation strategy emerges as a valuable contribution, presenting
a streamlined yet potent approach to feature selection and combination.
The experimental findings underscore the pivotal role of preprocessing
steps, classifiers, and feature selection techniques in attaining optimal
results.

Future research endeavors should prioritize the seamless integration
of the proposed methodology into authentic cheese production environ-
ments, addressing practical challenges and ensuring adaptability in in-
dustrial settings. Further exploration into advanced hierarchical classi-
fication strategies, coupled with the incorporation of expert knowledge,
holds the potential to fortify the system’s robustness and accuracy.
The development of user-friendly interfaces and the conduction of
robustness analyses against adversarial conditions are essential for en-
hancing the applicability and reliability of technology-driven solutions
within the dairy industry. Interdisciplinary collaboration with experts
in fields such as food science, dairy technology, and computer vision
can facilitate the development of comprehensive, domain-specific solu-
tions tailored to the unique requisites of cheese quality analysis. Such
collaborative efforts stand to propel advancements in non-destructive
techniques for food quality analysis, contributing significantly to the
enhancement of quality control and assurance standards across the
broader food industry.

In light of our findings, we suggest a future direction for research
involving the development of a modular framework for cheese clas-
sification. This framework could serve as a versatile tool, allowing
practitioners to explore and customize the best combinations of fea-
tures, classifiers, and preprocessing techniques for their specific cheese
production contexts. Beyond automating ripeness detection, such a
framework holds the potential to be adapted for broader applica-
tions in food quality assessment. This avenue of research encour-
ages an iterative approach to refining and optimizing classification
processes, thereby fostering technological integration and continuous
improvement in the dairy industry.
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Acronyms

The following acronyms are used in this manuscript:

Ccv Computer Vision

RF Random Forest

k-NN k-Nearest Neighbor

SVM Support Vector Machine

GB Gradient Boosting

SC Stacked Classifier

CNNs Convolutional Neural Networks
ViT Vision Transformers

TN True Negatives

FP False Positives

FN False Negatives

TP True Positives

NIR Near-Infrared Spectroscopy

FTIR Fourier Transform Infrared Spectroscopy
GLCM Gray Level Co-occurrence Matrix
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