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Abstract 12 

The Lepidopteran Papilio hospiton uses only plants belonging to the Apiaceae and the Rutaceae 13 

families as hosts. Both adult females and larvae are equipped with gustatory receptor neurons 14 

(GRNs) capable of detecting sugars, bitters and salts, thus providing information for evaluating the 15 

chemical composition of the plant. Since the activation of these neurons may affect insect behavior, 16 

the aim of this work was: a) to study the gustatory sensitivity of both females and larvae to the sap 17 

of two Apiaceae, Foeniculum vulgare (fennel) and Daucus carota (carrot), that are not used as host 18 

plants; b) to cross-compare the spike activity evoked from these two plants with that evoked by 19 

Ferula communis (ferula), the host plant preferred by ovipositing females of P. hospiton and where 20 

the larvae perform best; c) finally, to confirm that the gustatory system can provide the central 21 

nervous system with the necessary information to evaluate differences between plant saps. The 22 

results show that: a) fennel and carrot both evoke a higher neural activity from the bitter-sensitive 23 

neurons and lower from the sugar-sensitive neurons with respect to ferula, in both adult females 24 

and larvae; b) on the basis of the different patterns of neural activity generated in tarsal, lateral and 25 

medial sensilla by fennel and carrot vs. ferula, both adult and larvae possess enough information to 26 

discriminate among these plants; c) adult females of P. hospiton lay eggs where the larvae have the 27 

greatest growth success and this confirms the importance of taste sensitivity in host plants selection. 28 

 29 

 30 

 31 
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Introduction  35 

Papilio hospiton Géné, an endemic species of the islands of Sardinia and Corsica, is considered an 36 

oligophagous butterfly since it has a narrow range of host plants belonging mainly to the Apiaceae 37 

family and secondarily to the Rutaceae (Prudic, Oliver, & Sperling, 2007). In Corsica, the females 38 

oviposit and the larvae feed on Ferula communis L. (fennel) and on other three endemic species of 39 

Apiaceae (Peucedanum paniculatum Loisel, Pastinaca latifolia (Duby) DC. and Pastinaca 40 

divaricata R. and C.), and only one of Rutaceae (Ruta corsica DC.) (Aubert, Descimon, & Michel, 41 

1996). In Sardinia, instead, F. communis represents the primary host plant by P. hospiton, albeit 42 

two other plants, rare and restricted to small areas, are used as host: Ferula arrigonii Bocch. 43 

(Apiaceae) and Ruta lamarmorae Bacch., Brullo et Giusso (Rutaceae) (Sollai, Tomassini 44 

Barbarossa, Solari, Masala, & Crnjar, 2014). Therefore in Sardinia P. hospiton can be considered 45 

as an almost monophagous species, in spite of the presence of other plants of the Apiaceae family. 46 

Among the Apiaceae, Foeniculum vulgare Mill. (fennel) and Daucus carota L. (carrot) deserve 47 

attention because they are widespread in the island like ferula and used, as the main and a rare host 48 

respectively, by Papilio machaon, a species phylogenetically related to P. hospiton. Neither eggs 49 

nor larvae of P. hospiton have ever been found on these two plants during our field observations. 50 

Furthermore, when we tried to raise some larvae on the foliages of these plants, they reached the 51 

third stage at most and then died (personal observation). 52 

We have previously found that the sensory input coming from gustatory receptor neurons (GRNs), 53 

plays a key role in controlling the degree of acceptance of a plant as host, both in adult females 54 

(during the choice of the ovipositing sites) and in the larvae (during the choice to eat or not a food 55 

source) (Sollai, Tomassini Barbarossa, Solari, & Crnjar, 2015; Sollai, Biolchini, Solari, & Crnjar, 56 

2017a; Sollai, Biolchini, Loy, Solari, & Crnjar, 2017b; Sollai, Biolchini, & Crnjar, 2018a). 57 

Furthermore, the specific pattern of activation of GRNs, in both adults and larvae, provides 58 

information to the central nervous system (CNS) to discriminate among different chemicals and 59 

plant saps (Dethier & Crnjar, 1982; Glendinning, Davis, & Rai, 2006; Sollai et al., 2015). Finally, 60 



chemical senses (taste and olfaction) play in general a primary role in insect-host interaction, 61 

providing information used in different behavioural paradigms, such as the choice of an oviposition 62 

site, a feeding substrate and mating partner (Bernays, Oppenheim, Chapman, Kwon, & Gould, 63 

2000; Biolchini et al., 2017; Chapmn, 2003; Dangles, Irschick, Chittka, & Casas, 2009; del Campo 64 

& Miles, 2003; Dethier, 1973; Feeny, Stadler, Ahman, & Carter, 1989; Masala, Solari, Sollai, 65 

Crnjar, & Liscia, 2009; Murata, Mori, & Nishida, 2011; Nishida, 2005; Olianas et al., 2006; Ozaki 66 

et al., 2011; Ryuda et al., 2013; Solari et al., 2007; Solari et al., 2016; Sollai, Solari, Masala, Crnjar, 67 

& Crnjar, 2007; Sollai et al., 2010; Sollai, Solari, & Crnjar, 2018b). On the basis of all these 68 

considerations, our question was whether the peripheral taste sensitivity of adult females and larvae 69 

of P. hospiton, could also be involved in the rejection behavior of such plants as fennel and carrot. 70 

To this end we stimulated the tarsal sensilla of adult females and both the lateral and medial 71 

styloconic sensilla of larvae of P. hospiton with the foliage extract of the three selected plants 72 

(ferula, fennel and carrot). The electrophysiological responses obtained in response to each plant 73 

sap were compared to one another, since quantitative and qualitative differences in spike activity of 74 

each GRN are used by the CNS in the discrimination process leading to a hierarchy of host 75 

acceptance. Drumming and scratching the leaf surface with the tarsi by the ovipositing female and 76 

the nibbling action by the larvae causes release of plant saps by leafs: taste neurons detect the plant 77 

chemicals and send signals to the CNS. In the brain the stimulating and deterrent inputs are 78 

integrated and processed; their balance provides the final information to the ovipositing females 79 

and to the feeding larvae as to whether to accept or reject the plant (Dethier, 1973; Ichinosè & 80 

Honda, 1978; Nishida, 2005; Renwick & Chew, 1994; Sollai et a., 2015;  Sollai et al., 2017a; Sollai, 81 

Sollai et al., 2017b; Zhang et al., 2013). Previous studies revealed that, in P. hospiton, adult 82 

females have on the last tarsomere of the forelegs, basiconic sensilla housing at least one sugar-83 

sensitive and one bitter-sensitive neuron (Sollai et al., 2017b), while the lateral and medial sensilla 84 

of larvae, albeit not the only gustative organs, are considered the most important ones (Dethier & 85 



Crnjar, 1982; Martin & Shields, 2012; Schoonhoven, 1987) and possess phagostimulant, 86 

phagodeterrent and salt neurons (Sollai et al., 2014; Sollai et al., 2015). 87 

 88 

Materials and Methods 89 

Insects and rearing 90 

The specimens of Papilio hospiton Géné came from a colony raised for several years (since 2012) 91 

in the butterfly annex (a 3 x 3 x 3m cage) at the Physiology Laboratories (University of Cagliari). 92 

Several pots of giant fennel (Ferula communis L.; hereafter ferula), were placed inside the cage 93 

where adult females laid their eggs. After hatching, the larvae were removed from the cage and 94 

reared at the insectary facility on the same plant in 1500-ml plastic cups (4-5 per cup), stored in an 95 

environmental growth chamber (24-25 °C, 70% R.H., 16L/8D) and monitored daily until ready for 96 

testing. Fresh foliage of ferula from plants grown in a courtyard near the butterfly annex was 97 

available ad libitum every day. Adult females were free to feed on flowers of Lantana camara L. 98 

inside the cage; after mating, each female was transferred into small boxes and fed with a sugar 99 

solution until used for the electrophysiological experiments (Sollai et al., 2017b). 100 

 101 

Electrophysiological experiments 102 

The "tip-recording" technique (Hodgson, Lettvin, & Roeder, 1955) was used to obtain the 103 

electrophysiological recordings from both the basiconic sensilla on the fifth tarsomere of the adult 104 

females and the lateral and medial maxillary styloconic sensilla of the larvae at the fifth instar two 105 

days after moulting (Simmonds, Schoonhoven, & Blaney, 1991). Briefly, the reference electrode (a 106 

thin Ag/AgCl) was inserted into the amputated butterfly leg or the head of the larva, thus 107 

supporting the leg or fixing the maxillae in a prognathous position. The recording electrode 108 

containing the stimulus (glass micropipette, tip diameter 20 m) was brought in contact with the 109 

sensillum tip (Masala, Solari, Sollai, Crnjar, & Liscia, 2008; Solari, Masala, Falchi, Sollai, & 110 

Liscia, 2010). All signals were recorded by means of a high input impedance (1015 ) electrometer 111 



(WPI, Duo 773), band-pass filtered (0.1-3 KHz), digitized with an analogical/digital acquisition 112 

system (Axon Digidata 1440A A/D; sampling rate 10 KHz) and stored on PC for subsequent 113 

analysis (Sollai, Solari, Masala, Liscia, & Crnjar, 2008). 114 

 115 

Stimuli 116 

All sensilla were tested with freshly cold-pressed leaf extracts of three plants, Ferula communis L. 117 

(ferula), Foeniculum vulgare L. (hereafter fennel) and Daucus carota L. (hereafter carrot) and with 118 

KCl 50 mM (control). These plants were chosen on the basis of two considerations. First: ferula 119 

represents our reference plant, since it is the main host of P. hospiton; in contrast, fennel and carrot 120 

are not used as hosts by ovipositing females, despite their belonging to the same family as ferula 121 

(Apiaceae) and representing, in Sardinia, respectively, the main host plant and a less common one 122 

for P. machaon, closely related to P. hospiton. Second: rearing trials on fennel revealed that larvae 123 

hardly reached the third stage. Stimuli were delivered for 2-3 s, in a random sequence with a 3 min 124 

interval between consecutive stimulations to minimize adaptation phenomena. Leaf extracts were 125 

tested within 30 s after cold-pressing, according to Dethier and Crnjar (1982) and Sollai et al. 126 

(2017a, 2017b). KCl was tested at the beginning and the end of the recording series to check for 127 

any shift in responsiveness; the experiment was discarded when significant variations between the 128 

initial and final KCl responses were found. After each stimulus, the tarsal surface or the mouthpart 129 

of the insect was rinsed with distilled water and blotted dry. Recordings were obtained from both 130 

sensilla of one maxilla only per larva (N=20 larvae) and from one tarsal sensillum only per adult 131 

female (N=20 butterflies); no preparation was used more than once.  132 

 133 

Data analysis 134 

Spikes analysis was done only on the first second of the discharge, which is representative of the 135 

phasic/phasic-tonic portions of the neuronal response (Dethier & Crnjar, 1982; Inoue, Asaoka, Seta, 136 

Imaeda, & Ozaki, 2009), but discarding the first 10 msec in order to remove the artifact due to 137 



electrical contact (Sollai, Solari, Corda, Masala, & Crnjar, 2012). Spike sorting and counting were 138 

performed by means of the Clampfit 10.0 software (Biolchini et al., 2017; Dolzer, Fischer, & 139 

Stengl, 2003; Sollai et al., 2014; Sollai et al., 2017b; Sollai et al., 2017c). For tarsal sensilla, on the 140 

basis of the action potential amplitude, we identified the spikes and assigned them to four different 141 

classes (small S, intermediate M1, intermediate M2 and large L) (Sollai et al., 2017b). For lateral 142 

and medial sensilla, three different classes were identified (small S, intermediate M and large L); in 143 

a next step, intermediate spikes were divided into two additional classes on the basis of action 144 

potential duration: intermediate 1 (M1) and intermediate 2 (M2) (Sollai et al., 2014). 145 

 146 

Statistical analysis  147 

The effect of the taste stimulus on the spike frequency evoked in each GRN of tarsal, lateral and 148 

medial sensillum was evaluated by using repeated measures ANOVA (factor: stimulus, 3 levels). 149 

Two-way ANOVA was used to test for a difference in ensemble, temporal and /or spatio-temporal 150 

code (Sollai et al., 2015). A difference in ensemble code was assumed if a significant interaction of 151 

Stimulus  GRN on the spike frequency was found; to this end the total frequency during the first 152 

second of neural activity was evaluated separately for each GRN. A difference in temporal code 153 

was assumed if the interaction of Time  Stimulus on the spike frequency was significant: we built 154 

Time-Intensity (T-I) curves counting the spike frequency (separately for each GRN and stimulus) 155 

every 100 msec for the first second of stimulation. A difference in spatio-temporal code (e.g., 156 

between ferula and carrot), was deduced if a stimulus produced non-parallel Time-Intensity (T-I) 157 

curves (significant interaction of Time  GRN), while another stimulus produced parallel Time-158 

Intensity curves (non-significant interaction of Time  GRN). The assumptions of homogeneity of 159 

variance, normality and sphericity (when applicable) were checked for all data. Tukey or Duncan’s 160 

test was used for the subsequent post-hoc comparisons. Statistical analyses were performed using 161 

STATISTICA for WINDOWS (version 7.0; StatSoft Inc, Tulsa, OK, USA). P values < 0.05 were 162 

considered significant. 163 



 164 

Permits 165 

Required permits were obtained for Papilio hospiton. Specimens were collected in Sardinia in the 166 

spring of 2012, in compliance with the permit issued on 28 May 2012 (Ref. # 0010888) to Roberto 167 

Crnjar and his co-workers, by the “Ministero dell’Ambiente e della Protezione del Territorio e del 168 

Mare” (Italian Board of Environment and Protection of Land and Sea), in derogation from the 169 

provisions set out in the regulation DPR 357/97 concerning the application of the “Council 170 

Directive 92/43/EEC of 21 May 1992 on conservation of natural habitats and of wild fauna and 171 

flora”. No specific permits were required for host plants tested, as they are not endangered or 172 

protected species. 173 

 174 

Results and Discussion 175 

The primary aim of this work was to cross-compare the electrophysiological responses of the 176 

gustatory sensilla of both adult females and larvae to the saps of fennel and carrot with those 177 

evoked by ferula. This was aimed at assessing the presence of specific differences in the activation 178 

of stimulant and/or deterrent neurons that could explain the different degree of acceptance of these 179 

three Apiaceae, both as oviposition substrate and food source.  180 

For tarsal GRNs, examples of spike discharges of the response to plant extracts tested are shown in 181 

figure 1A, while the mean value ± SEM of the neural activity of each GRN evoked by each plant 182 

sap is shown in figure 1B. By means of repeated measures ANOVA, we found a significant effect 183 

of stimulus on the spike frequency of “L”, “M1” and “M2” GRNs (F > 5.22; df 2,38; p < 0.01), and 184 

post-hoc comparisons showed that the responses were different between ferula and the other two 185 

stimuli (P < 0.05; Tukey test), but not between fennel and carrot. In contrast, no stimulus effect 186 

was found for “S” neuron (F = 0.56; df 2.38; p = 0.5741). These results on the gustatory sensitivity 187 

of adult females indicate that the spike activity evoked in the sugar-sensitive “M1” neuron in 188 

response to ferula is significantly higher than to fennel or carrot, while the opposite was found for 189 



the bitter-sensitive “M2” neuron. This may be one of the reasons why, in the field, ovipositing 190 

females of P. hospiton do not use fennel and carrot as hosts: in fact, their eggs are nowhere to be 191 

found on either plant. These results are comparable to those previously found about the hierarchy 192 

of host choice by ovipositing females: the most stimulating plant of the bitter-sensitive neuron was 193 

the one where the significant lowest number of eggs was found (Sollai et al., 2017b). The 194 

conclusion that the gustatory information obtained by drumming and scratching the leaf surface 195 

with the foretarsi provides a relevant contribution in the final oviposition choice, does not rule out 196 

the importance of other inputs, such as visual and olfactory ones (Ichinosé & Honda, 1978; 197 

Renwick & Chew, 1994; Zhang et al., 2013). Sight and smell provide information that allows 198 

gravid females to identify a potential host at distance, but once reached the plant, it is the gustative 199 

input that conditions the final decision whether to lay eggs or not (Dethier, 1973; Nishida, 2005; 200 

Sollai et al., 2017b). 201 

Similar results were obtained on the spike activity elicited from the GRNs of the styloconic sensilla 202 

of larvae (Figures 2 and 3). For lateral sensilla, repeated measures ANOVA revealed a significant 203 

effect of stimulus on the spike frequency of “L”, “M1” and “M2” GRNs (F > 4.54; df 2,38; p < 204 

0.05). Pairwise comparisons showed that the spike frequency of “L” and “M1” neurons in response 205 

to both ferula and fennel was different from the response to carrot, while for the neuron “M2” 206 

differences resulted between ferula and carrot vs. fennel (P < 0.05; Tukey test), but not between 207 

ferula and carrot (P > 0.05; Tukey test). For medial sensilla, repeated measures ANOVA showed a 208 

significant effect of stimulus on the spike frequency of “L” and “S” neurons (F > 3.65; df 2,38; p < 209 

0.05), and post-hoc comparisons showed that the differences were between ferula and the other two 210 

stimuli for “L” neuron (P < 0.01; Tukey test), and between carrot vs. ferula and fennel in the case 211 

of “S” neuron (P < 0.05; Tukey test). As a whole, these findings point to the conclusion that ferula 212 

is more stimulating than fennel and carrot for the phagostimulant neurons, while fennel and carrot 213 

are better stimuli for the phagodeterrent ones. Also in the case of larvae, the observed differences 214 

in neuron activity in response to plant saps are considered consistent with the differences in food 215 



preference (Tang et al., 2014), and represent an additional convincing reason why larvae are never 216 

found on fennel or carrot in the field.  217 

The results obtained both on adult females and larvae, are in agreement with the following two 218 

theories about the relationship between the acceptance of a plant as host and the 219 

electrophysiological responses it elicits. The first one holds that a direct relationship exists between 220 

the neural activity of a specific neuron and the promptness and intensity of the relative behavioral 221 

response: for example, a bitter-sensitive neuron causes a decrement in the feeding (De Boer, 222 

Dethier, & Schoonhoven, 1977; Glendinning, Valcic, & Timmermann, 1998). The second one 223 

suggests instead that host acceptance depends on the presence of stimulating inputs rather than of 224 

deterrent ones (Ma, 1972) [44]. In this respect, it has been reported that sugars need to mask the 225 

presence of bitter compounds and that stimulant inputs balance deterrent ones (Cocco & 226 

Glendinning, 2012; Schoonhoven & Blom, 1988; Sollai et al., 2014). By recalling that the 227 

successful choice of a host plant necessary for survival of the species is determined both by the 228 

ovipositing females and the larval feeding acceptance (Nishida, 2005) [20], these results support 229 

the preference-performance hypothesis, based on which females choose the host plant that ensures 230 

the best performance for the offspring (Gripenberg, Mayhew, Parnell, & Roslin, 2010; Jaenike, 231 

1978). Accordingly, the ovipositing females do not lay eggs on fennel and carrot, two plants on 232 

which the larvae do not survive beyond the third stage. 233 

The second aim of this work was to verify whether the different spikes activity (in terms of both 234 

total frequency and time course during the first second of discharge) evoked from each GRN by 235 

plant saps could be used by the central nervous system as a neural code to discriminate between 236 

ferula and the other two plants, as host and non-host respectively. We found a significant 237 

interaction of Stimulus  GRN on spike frequency in tarsal sensilla of adult females (F = 10.61; df 238 

6,228; p = 0.0000), and in both lateral and medial sensillum of larvae (F = 5.43; df 6,228; p = 239 

0.0000, and F = 5.14; df 6,228; p = 0.0000, respectively) (Figure 4). As shown in detail in Table 1, 240 

the results indicate that ferula generates a different response pattern across all active GRNs from 241 



fennel and carrot, but no difference was found between the latter two stimuli, both in tarsal and 242 

styloconic sensilla.  243 

A non-significant interaction of Stimulus  Time was found for all sensilla (tarsal: F = 0.46; df 244 

18,2370; p = 0.9753; lateral:  F = 0.29; df 18,2370; p = 0.9984; medial:  F = 0.30; df 18,2370; p = 245 

0.9981) (Fig. 5), thus indicating that time courses of spike frequency in response to plant saps do 246 

not differ from one another (Table 2). 247 

As regards the results on the presence of a spatio-temporal code (Table 3), significant interaction of 248 

Time  GRN was found only for ferula in the tarsal sensillum and for all saps in the lateral 249 

sensillum, showing that they all evoke non-parallel T-I curves. Instead, for fennel and carrot in the 250 

tarsal sensillum and for all stimuli in the medial sensillum, we found a non-significant interaction 251 

of Time  GRN, showing that each stimulus evokes T-I curves that are essentially parallel to one 252 

another.  253 

These results confirm what previously reported on the involvement of several combined coding 254 

mechanisms in the discrimination process between host plants by adult females (Sollai et al., 255 

2017b). In fact, ferula (host) generates a different across neuron pattern (ANP) from fennel and 256 

carrot (non host), and the extracts of fennel and carrot evoke parallel T-I curves in GRNs, while the 257 

extract of ferula evokes non-parallel T-I curves, thus indicating a difference in spatio-temporal 258 

code. Larvae, instead, seem to be able to discriminate between ferula (host) vs. fennel and carrot 259 

(non-host) only by means of an ensemble code. In fact, ferula generates a different response pattern 260 

from fennel and carrot across all active GRNs of both lateral and medial sensilla, while no 261 

difference was found between the latter two, in both sensilla. These results confirm that for larvae a 262 

different ensemble code is sufficient in the discrimination process between host and non-host plants, 263 

as previously found between ferula and S. tortuosum (Sollai et al., 2018a). From a functional 264 

viewpoint, the discriminating capability among different plants helps larvae to recognize hosts 265 

from non-hosts, e.g. when they come in contact with neighboring non-host plants, as it often 266 

happens in Sardinia between ferula and fennel.  267 



 268 

Conclusions  269 

These results, by showing that the different pattern of activity of GRNs evoked by the plant saps 270 

allows both females and larvae to discriminate among them (accepting ferula and rejecting fennel 271 

and carrot as hosts) strengthen the theory that the peripheral taste sensitivity plays a key role in the 272 

host acceptance or rejection, and in the discrimination process between host and non-host plants.  273 

In general, we can say that, except for the particular case (in the Asinara island) of divergence 274 

between females and larvae in the acceptance of S. tortuosum (Sollai et al., 2018a), in P. hospiton 275 

the performance-preference hypothesis is respected, although there is a hierarchy of choice, both 276 

for adults and for larvae, strongly related to peripheral taste sensitivity.  277 

These results complete those previously published (Sollai et al., 2017a; Sollai et al., 2017b) and 278 

allow us to speculate that in the case of P. hospiton  an "ideal" pattern of activity exists for GRNs 279 

housed in the tarsal and styloconic sensilla, represented by the across neuron pattern (ANP) 280 

generated by the extract of F. communis. Variations of neuronal activity that lead to across neuron 281 

patterns different from the ideal one, determine a hierarchical behavior in the host choice, which 282 

goes from a lower level of acceptance (i.e. Ruta lamarmorae; Sollai et al., 2017a, 2017b) to a total 283 

rejection of a plant as host (i.e. fennel and carrot). 284 

285 
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 449 

Pair stimuli Tarsal Lateral Medial 

ferula-fennel F=18.06; P=0.0000; df 3,152 F=5.79; P=0.0001; df 3,152 F=6.33; P=0.0005; df 3,152 

ferula-carrot F=10.93; P=0.0000; df 3,152 F=7.48; P=0.0000; df 3,152 F=5.77; P=0.0009; df 3,152 

fennel-carrot F=0.45; P=0.7221; df 3,152 F=2.29; P=0.0806; df 3,152 F=2.34; P=0.0756; df 3,152 

Table 1 - Ensemble code analysis: a difference in ensemble code between two saps was inferred, 450 

whether 2-way ANOVA revealed a significant interaction of the Stimulus  GRN on the spike 451 

frequency during the first second of stimulation (red typing). 452 

 453 

Pair stimuli Tarsal Lateral Medial 

ferula-fennel F=0.47; P=0.8985; df 9,1580 F=0.26; P=0.9845; df 9,1580 F=0.25; P=0.9865; df 9,1580 

ferula-carrot F=0.67; P=0.7372; df 9,1580 F=0.18; P=0.9959; df 9,1580 F=0.15; P=0.9979; df 9,1580 

fennel-carrot F=0.22; P=0.9916; df 9,1580 F=0.47; P=0.8975; df 9,1580 F=0.53; P=0.8504; df 9,1580 

Table 2 - Temporal code analysis: a difference in temporal code between two saps was inferred, 454 

whether there was a significant interaction of the Stimulus  Time on the spike frequency during 455 

the 10 consecutives intervals of 100 ms of stimulation (red typing). 456 

 457 

Stimulus Tarsal Lateral Medial 

ferula F=1.56; P=0.0353; df 27,760 F=1.76; P=0.0105; df 27,760 F=0.89; P=0.6263; df 27,760 

fennel F=0.98; P=0.4920; df 27,760 F=1.82; P=0.0071; df 27,760 F=0.89; P=0.6209; df 27,760 

carrot F=0.38; P=0.9985; df 27,760 F=3.31; P=0.0000; df 27,760 F=0.47; P=0.9903; df 27,760 

Table 3 – Spatio-temporal code analysis: a difference in spatio-temporal code between two saps 458 

was inferred, whether the T-I curves of a stimulus produced a significant interaction of Time  459 

GRN (red typing), while those of another stimulus produced a non-significant interaction. 460 

 461 

 462 

463 



Legends of Figures 464 

Figure 1 – (A) Example of traces showing spike activity of a tarsal basiconic sensillum of an adult 465 

P. hospiton female following stimulation with leaf sap of Fe. communis (ferula), F. vulgare 466 

(fennel) and D. carota (carrot). (B) Mean values ± SEM of number of spikes evoked in each GRN 467 

of the tarsal sensillum during the first second of stimulation with leaf saps of ferula, fennel and 468 

carrot. N = 20 sensilla (one per female). Different letters indicate significant differences between 469 

the spike activity of the same GRN in response to the three taste stimuli (p < 0.05; Tukey test). 470 

 471 

Figure 2 – (A) Example of traces showing spike activity of a lateral styloconic sensillum of a P. 472 

hospiton fifth instar larva following stimulation with leaf sap of Fe. communis (ferula), Fo. vulgare 473 

(fennel) and D. carota (carrot). (B) Mean values ± SEM of number of spikes evoked in each GRN 474 

during the first second of stimulation with leaf saps of ferula, fennel and carrot. N = 20 sensilla 475 

(one per larva). Different letters indicate significant differences between the spike activity of the 476 

same GRN in response to the three taste stimuli (p < 0.05; Tukey test). 477 

 478 

Figure 3 – (A) Example of traces showing spike activity of a medial styloconic sensillum of a P. 479 

hospiton fifth instar larva following stimulation with leaf sap of Fe. communis (ferula), Fo. vulgare 480 

(fennel) and D. carota (carrot). (B) Mean values ± SEM of number of spikes evoked in each GRN 481 

during the first second of stimulation with leaf saps of ferula, fennel and carrot. N = 20 sensilla 482 

(one per larva). Different letters indicate significant differences between the spike activity of the 483 

same GRN in response to the three taste stimuli (p < 0.05; Tukey test). 484 

 485 

Figure 4 – Ensemble code analysis: significant interaction of the Stimulus  GRN on the spike 486 

frequency of an adult tarsal sensillum (A), larval lateral (B) and larval medial (C) sensillum of P. 487 

hospiton, elicited by Fe. communis (ferula), Fo. vulgare (fennel) and D. carota (carrot).  488 

 489 



Figure 5 – Temporal code analysis: Time-Intensity curves (i.e., number of spikes during 10 490 

consecutive 100 ms intervals) elicited by Fe. communis (ferula), Fo. vulgare (fennel) and D. carota 491 

(carrot) in adult tarsal sensillum (A), larval lateral (B) and larval medial (C) sensillum of P. 492 

hospiton.  493 
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