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Abstract: 1 

The shock adiabats for dry and wet sand were obtained in our plane-wave shock 2 

experiments and earlier in the inverse impact experiment technique by using a measure bar with 3 

a flat end. A one-dimensional problem of a spherical cavity expanding at a constant velocity 4 

from a point in an infinite soil medium, which has a first-kind self-similar solution is considered. 5 

Elastic-plastic deformation of the soil is described in a barotropic approximation, using a shock 6 

adiabat and Mohr-Coulomb-Tresca limit yield criterion. The medium is assumed to be 7 

incompressible behind the shock wave front propagating through the unperturbed medium. The 8 

problem in this formulation was solved analytically. Besides, a generalized solution of the 9 

problem was obtained numerically, which involves transition of a continuous elastic-plastic 10 

wave into a plastic shock wave when pressure grows with the cavity expansion velocity. 11 

Comparison of the analytical and numerical solutions shows that a linearized analytical solution 12 

is a good approximation of the pressure along the boundary of the cavity as a function of its 13 

expansion, except for low velocities. A formula for determining minimal pressure required for 14 

the nucleation of a cavity has been obtained, accounting for internal friction, in the framework of 15 

Mohr-Coulomb yield criterion, which generalizes a known solution for an ideally plastic medium 16 

with Tresca yield criterion. Lower and upper bounds for the ratio of the discontinuity surface 17 

velocity (the elastic-plastic interface) to the cavity expansion velocity have been obtained. The 18 

linearized solution can be used for analyzing resistance to a rigid sphere penetrating into the soil. 19 

The computational results are compared with known experimental relations for resistance to 20 

spherical projectiles penetrating dry and water-saturated sand. Good agreement between the 21 

numerical and experimental results is obtained without introducing any correcting coefficients. 22 

 23 

Key words: shock adiabat; impact; spherical projectile; sand; cavity expansion;  24 

 25 
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1. Introduction 1 

 2 

The expanding cavity problem is a classical problem of mechanics of deformable solids. 3 

There exist many formulations of this problem differing in: а) the way compressibility of the 4 

material is accounted for – linearly compressible media [1], incompressible media or media with 5 

limited ultimate strain [2, 3]; b) the assumed yield criterion – Tresca [1, 4], Mohr-Coulomb [2], 6 

Mohr-Coulomb with Tresca-limit [3]. There is a solution of the problem obtained using Drucker-7 

Prager’s model and the non-associated yield law [5]. For brittle media (ice, ceramics, concrete), 8 

the notion of the material failure zone is introduced [1, 6]. There also exists an improved 9 

formulation of the problem, based on accounting for the dependence of the material properties on 10 

strain rate [7, 8].  11 

Papers [9 – 11] give approximations of cavity wall pressure as a function of its expansion 12 

taking into account the induced variation of mechanical properties of the material as well as 13 

parametric analysis of the obtained solutions. Alongside with dynamic formulations, static 14 

formulations of the problem are also considered [12], which are especially popular in soil 15 

mechanics [13 – 15]. Analytical solutions have been obtained for an incompressible elastic-16 

plastic medium, using different types of yield criterion; for compressible media, some effective 17 

numerical algorithms [1] was proposed, based on the iterative method of numerical analysis of a 18 

boundary-value problem for a system of two first-order ordinary differential equations, which 19 

makes it possible to obtain an exact solution of the problem for the equation of state of a medium 20 

with nonlinear relations [16, 17].  21 

The expanding cavity problem has numerous applications in impact dynamics. The 22 

approximate approach, in which pressure at every point of the lateral surface of the projectile is 23 

identified with the pressure at the internal surface of a spherical cavity expanding in an infinite 24 

medium from zero radius – the Cavity Expansion Method (CEM), is extensively used in 25 

analyzing problems of impact and penetration into continua [18 – 22]. Analytic solutions of the 26 
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problem of a spherical cavity expanding in an incompressible elastic-plastic medium [4, 23 – 25] 1 

using CEM are used in evaluating resistance forces and depths of penetration of rigid and 2 

deformable strikers into metals, concrete and soils. It was noticed [25] that accounting for 3 

incompressibility in metals at impact velocities up to 1 km/s produces insignificant effects. This 4 

problem is still of scientific interest, as it is manifest in discussions [26 – 28] and [29 – 31].  5 

The application of the approach based on solving the cavity expansion problem in the 6 

dynamics of geological materials is presented in [1 – 3, 32, 33]. Along with these works, an 7 

analysis of penetration of rigid and deformable projectiles at an angle to the free surface of a soil 8 

medium, involving curvilinear motion trajectories, [34, 35] can be noticed. An experimental-9 

computational analysis of projectiles with flat, conical and hemispherical heads penetrating dry 10 

and water-saturated sand is presented in [36 – 41]. 11 

Generally, it can be noticed that the analysis of the cavity expansion problem and the 12 

methods of evaluating loads acting on the penetrator are well developed. Accounting for 13 

nonlinear material properties, when analyzing problems of penetration into compressible elastic-14 

plastic media, poses no problem in numerically analyzing the cavity problem either.  15 

One special feature in the deformation of soft soils is the necessity to account for both 16 

continuous elastic-plastic and shock waves. The presence of spherical shock waves in sandy and 17 

clayey soils, as well as the dependence of the shock wave velocity on the pressure at its front, 18 

were shown experimentally [42 – 46]. It has to be noticed that the existing solutions of the cavity 19 

expansion problem do not account for the possible formation of a shock wave propagating 20 

through the unperturbed space. 21 

The present article describes a formulation and analysis of a spherical cavity expansion 22 

problem, which can be applied for evaluating the force resisting a rigid penetrator in sandy soil. 23 

The deformational and shear properties of soil are assigned by a shock adiabat and Mohr-24 

Coulomb’s with Tresca-limit yield criterion. The numerically obtained generalized solution 25 

assumes the existence of an elastic region at subsonic propagation velocities of the elastic-plastic 26 
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interface and the formation of a single plastic shock wave at supersonic velocities. In the 1 

assumption of incompressibility of the medium behind the shock wave front, an analytical 2 

solution of the problem has been obtained. This solution is similar to the earlier obtained rigid-3 

plastic solution [1] of the cylindrical cavity expansion problem, where it was shown that use of a 4 

rigid-plastic solution theoretically leads to overestimation of resistance to penetration. It should 5 

be noticed, however, that the approach itself, based on using the analysis of the cavity expansion 6 

problem in impact dynamics, is approximate; a solution is considered preferable, judging by its 7 

results in comparison with the experimental data. By comparing the experimental and numerical 8 

data, the present authors have demonstrated that the model of a rigid penetrator in soil, using a 9 

simple linearized analytical rigid-plastic model, has a scope of applicability which is comparable 10 

with models based on numerically analyzing the cavity expansion problem. 11 

 12 

2. Experimental methods of determining physical-mechanical properties of sand under 13 

shockwave loading  14 

 15 

2.1. The method of constructing a shock adiabat 16 

 17 

To study the dynamic compressibility of sand, the reflection method [47], also called the 18 

impedance match technique, is used. In the method, the accelerated striker-plate hits a specimen 19 

not directly, but through a screening plate. The shock adiabats of the materials of the striker and 20 

the screen must be known. Besides, the initial density of the studied material must be determined 21 

in advance. The measured parameters are shockwave front velocity  and striker velocity V, 22 

which (for equal properties of the striker and of the target) is equal to the double of particle mass 23 

velocity  in the target (Fig. 1). These parameters in the shock wave are related through the 24 

pulse conservation laws with the thermal-dynamic characteristics – pressure  and 25 

impact compression density . Measuring the two independent parameters 26 

(namely Us and up) makes it possible to determine the shock adiabat of the soil. 27 

!"

!"

!"#$% !ρ=

( )!""" #$$ −= !ρρ
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 1 

 2 

Fig. 1. A scheme for determining the shock adiabat of sand by using the impedance 3 

match technique. 4 

 5 

Fig.2 shows schematically an experimental stand used for realizing the methodology of 6 

constructing a shock adiabat using the reflection method. An 8mm-thick soil layer was placed 7 

between two plates made of an aluminum alloy. Compression waves were induced in a 5mm-8 

thick screening plate struck by a projectile (impactor) which has been accelerated using a 57mm-9 

caliber gas gun. As a result, a plane compression wave was formed both in the screening plate 10 

and in the specimen. The impact velocity varied in the range 100-500 m/s and was measured 11 

using electro-contact speedometers with an accuracy of up to 2%. 12 

 13 

Fig. 2. The experimental stand (schematically).  14 
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 1 

The thicknesses of the plate-striker, of the screening plate and of the specimen were 2 

chosen such that unloading waves from the free surfaces could not distort the picture of one-3 

dimensional strain in the compression wave. Changing impact velocity V and propagation 4 

velocity  of the compression wave through the specimen in combination with known adiabats 5 

of the striker and the screening plate makes it possible to determine the point of the shock 6 

adiabat of the studied medium.  7 

A 57mm-caliber gas gun was used to apply the loading. The propagation velocity of the 8 

compressive wave in the specimen was measured with two dielectric pressure gauges located on 9 

the specimen surfaces. Each gauge consisted of two 0.05mm-thick 20mm-diameter current 10 

collectors made of copper foil and a 0.05mm-thick sensitive element of dielectric (PET film). 11 

The total thickness of the gauge is 0.2 mm. When a plane wave travels through the specimen 12 

within the gauges, the compression pulse induces electric signals on the armature of the gauges, 13 

which are registered in the memory of the oscillograph. The compression wave propagation 14 

velocity through the soil specimen can be determined based on the distance between the gauges 15 

and the travelling time of the pressure pulses relative to each other. In testing soil materials in 16 

conditions of shockwave loading, special attention was paid to inducing a plane wave with one-17 

dimensional strain. Inducing a plane wave is possible provided that warping is minimized, when 18 

the striker hits the screening plate. Accordingly, the parallelism of the planes of the specimen 19 

and the striker was thoroughly checked before each test. 20 

To synchronize the time base of the oscillograph with the beginning of the process, an 21 

electro-contact gauge, in the form of a 0.05mm-thick copper foil stripe cemented on a 0.05mm-22 

thick insulating film, was secured on the surface of the screening plate impacted by the plate-23 

striker. When the projectile hit the plate, the gauge short-circuited and triggered the oscillograph 24 

to start recording. 25 

!"
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The analysis of the measurements and of processing the test data in the plane-wave 1 

experiments showed that the inaccuracies in determining the parameters of shock adiabats are 2 

less than 7% [48]. 3 

Experimenting with different impact velocities makes it possible to obtain several points 4 

of the shock adiabat of the material. 5 

 6 

2.2. The inverse experiment technique using the measuring bar 7 

The methodology of measuring the force resisting penetration of a projectile into sand 8 

using a measuring bar [41] is schematically shown in Fig.3.  9 

 10 

Fig. 3. Schematic representation of the setup for measuring forces resisting penetration in 11 

the inverse experiment. 12 

 13 

A container filled with soil (sand) is accelerated up to the required velocities and 14 

impacted against a stationary striker fixed on a measuring bar. The impact velocity and the 15 

material properties are to be such that no plastic strains should occur in the bar. An elastic strain 16 

pulse ε(t) is formed in the bar. Registering this pulse on the surface of the bar makes it possible 17 

to determine the force F, acting on the striker upon its interaction with the medium, according to 18 

the known relation , where E is the elastic modulus of the bar and  is its cross-19 

section area.  20 

Thus, in this method, the task of measuring the forces is considerably simplified and 21 

reduced to registering an elastic strain pulse in the bar, using strain gauges. The setup 22 

( ) ( ) !!"#"$ ε= !!
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implementing this method is schematically depicted in Fig. 3. In the present version of the 1 

inverse experiment, a soil container is accelerated using a 57 mm caliber gas-gun with a two-2 

diaphragm breech mechanism, which makes it possible to provide stable and readily controlled 3 

impact velocities in the range from 50 to 500 m/s, using air compressed up to 15 MPa, and up to 4 

~1000 m/s, when using compressed helium.  5 

The container is a thin-walled cartridge, filled with soil. To prevent the soil from spilling 6 

in the process of preparation of the experiment and during acceleration of the container, the front 7 

end of the container is sealed with 0.01 mm-thick PET film. The film is fixed and secured against 8 

the surface of the soil with a vinyl-resin ring. 9 

The impact velocity of the container was determined using two electric-contact 10 

transducers located in the orifices of the barrel, made in the vicinity of the muzzle. A 1.5 m-long 11 

20 mm-diameter steel rod with yield strength larger than 2000 MPa was used as a measuring bar. 12 

The steel measuring bar had density ρ= 8050 kg/m3, Young’s modulus E=186 GPa. One of the 13 

ends of the measuring bar has a threaded orifice housing a cylindrical striker with a head of 14 

appropriate geometry. The bar is located at a certain distance from the barrel muzzle, so that the 15 

impact occurs immediately after the container entirely leaves the barrel. The stand on which the 16 

bar is located has adjusting supports, which are used to provide axisymmetric interaction. The 17 

rear end of the bar rests against a special damper, preventing it from displacing and damping the 18 

impact energy. Impact takes place inside a vacuum chamber, to which the gun barrel is 19 

connected, and into which the measuring bar with its head is introduced. The cylindrical part of 20 

the heads was 19.8 mm in diameter, with the radius of the hemisphere equal to 10 mm, and were 21 

made of steel with a yield strength larger than 1800 МPа.  22 

 23 

2.3. The conditions of the experiments  24 

For the inverse tests, cylindrical containers made of aluminum alloy were used, which 25 

had the following dimensions: outer diameter 56.8 mm, inside diameter 54 mm, bottom 26 
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thickness 2 mm, filling depth 65 mm. To prevent sand from strewing out during the test, the sand 1 

surface in the container was fixed with a 0.01 mm thickness PET film. 2 

Both experiments were conducted with dry and water saturated (wet) sandy mixture of a 3 

natural composition, from which particles larger than 1 mm and smaller than 0.1 mm had been 4 

removed. The particle size distribution of dry sand mixture is presented in Table 1. 5 

 6 

Table 1. Particle size distribution of the sand used in experiments. 7 

Mean particle 

diameter (mm) 
The granules lie in the range between the size value shown in the given 

column and the size value in the column immediately to the left of that. 

0.63 0.4 0.315 0.2 0.16 0.1 

% finer by mass 5.0 21.5 13.2 38.8 11.6 9.9 

 8 

The dry sand filled into the container was compacted layer-by-layer until reaching an 9 

average density of about 1750±50 kg/m3. In the tests of water-saturated sand, the containers 10 

filled with dry sand were poured with a certain amount of water until the sand was completely 11 

saturated. Further saturation resulted in the formation of a water layer over the surface of the 12 

sand, so the excess water was poured off. The containers were weighed again to determine the 13 

density of the water-saturated sand and its moisture content relative to its initial density. The 14 

average density of the water-saturated (wet) natural mixture was 2080±50 kg/m3. 15 

 16 

3. Analyzing the problem of a spherical cavity expanding in a soft soil 17 

 18 

3.1. Analytical solution in the assumption of incompressibility of the medium behind the 19 

shock wave front 20 

3.1.1. Formulating an initial boundary-value problem for a system of partial differential 21 

equations.  22 
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A mathematical model of a soil medium is described by a system of differential equations 1 

expressing the laws of continuity and balance of linear momentum, which in spherical Eulerian 2 

coordinates can be written as: 3 

, 
,
 (1)

 4 

where r  is density in a deformed state,  is velocity,  and  are radial and circumferential 5 

components of Cauchy stress tensor (which are assumed positive in compression), r is the radial 6 

coordinate.  7 

The system of partial differential equations (1) is closed by finite relations determined 8 

from the experiment: 9 

,     (2) 10 

where  is initial density of the medium,   is volumetric strain. 11 

Functions  and  define the equation of state and the plasticity condition of the soil 12 

medium.  13 

Along the boundary of a cavity whose radius is R0=Vt, expanding from point 14 

( ), the velocity V is assigned, the outer surface of spherical layer  is free from 15 

stresses, and at the initial time both velocity and stresses in the medium are equal to zero: 16 

, , .  (3) 17 

The solution of the problem is constructed in the plastic yield region bounded by radii 18 

 and  and adjacent to the region of unperturbed medium (the elastic damping of 19 

the soft soil medium is neglected).  20 

3.1.2. Formulating a boundary-value problem for a system of first-order partial 21 

differential equations.  22 

Following [1 – 9], self-similar variable is used in the solution of the problem. 23 

The partial derivatives in time and space are defined as follows: 24 
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, , , . 1 

The system of partial differential equations (1) is transformed into a system of ordinary 2 

differential equations (ODE): 3 

,    (4) 4 

, 5 

where , as it follows from equation of state (2).  6 

System (4) is transformed, assuming a time : 7 

,   (4) 8 

For =1, Rankine-Hugoniot’s jump conditions are used on the shock wave: 9 

,    (5) 10 

In (5), square brackets designate difference of the values to the left and to the right of the 11 

discontinuity, and с is the propagation velocity of the discontinuity. The values to the left and to 12 

the right of the discontinuity will be designated as  and , respectively. 13 

In view of its smallness the elastic precursor in a soft soil medium can be neglected. Then, 14 

assuming , one has , , 15 

or , . 16 

It is also assumed that, at high cavity expansion velocities, the density of the soft soil is 17 

low; then system (4) is considered in the assumption of incompressibility of the medium, i.e., 18 

when equalities  or do hold.  19 
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In equations (4), the value of the volumetric strain is taken to be  and . The 1 

fact that density retains its value  on the shock wave amounts to the assumption of 2 

incompressibility of the medium behind the shock wave front. Values of  and  are 3 

determined for every value of cavity expansion velocity. 4 

Having chosen  and as dimensionless variables, one gets the 5 

following system of ODE (the prime designates differentiation with respect to x) 6 

, ,    (6) 7 

and boundary conditions 8 

,     (7) 9 

, , 10 

where the following definitions are introduced:  is a dimensionless coordinate, 11 

corresponding to the cavity boundary,  is a dimensionless function in the 12 

plasticity condition.  13 

3.1.3. Solution of the boundary-value problem for a system of ODE with Mohr-Coulomb 14 

yield criterion.  15 

To solve the boundary-value problem for a system of two first-order ordinary differential 16 

equations, (6), (7), it is necessary to  provide functions  and  of the equation of state of the 17 

medium.   18 

Experiments [45, 46] indicate that dynamic compressibility of soil media is characterized 19 

by a shock adiabat in the form of a linear relation: 20 

,      (8) 21 
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correlating plane shock wave velocity  and velocity of particles behind the wave front, . 1 

Here,  corresponds to sonic velocity in the medium at zero pressure.  2 

Relations (8) were obtained experimentally in shock-wave experiments for the conditions 3 

of uniaxial strain. In the present formulation of the spherical cavity expansion problem, the 4 

shockwave velocity and the plastic wave velocity are taken to be equal to . This is 5 

another simplifying assumption, mentioned earlier in [1].  6 

Substituting relation (8) into Rankine-Hugoniot’s equations (5), one obtains , 7 

; relation (8) will become , . The final 8 

form of the relation between stress  and volumetric strain  will be 9 

 [45], which has been used earlier in computations [49, 50]. In this 10 

formulation, parameter  characterizes compression strength of the soil. The barotropic 11 

approximation applied to soil media is justified by the fact that, at pressures up to 10 GPа, the 12 

relative thermal volumetric expansion is an order of magnitude smaller than the total relative 13 

change of the volume. 14 

Taking account of conditions (8) on the shock wave, boundary conditions (7) can be 15 

rewritten as follows: 16 

, ,    (9)  17 

The first equation of system (1.6) is an equation with branching variables 18 

, the solution of which yields . Constant c1 is determined from 19 

the first boundary condition in (9) as , and the dimensionless velocity has the following 20 

form:  21 
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To determine the unknown value e , taking into account the second boundary condition in 1 

relations (9) = = , the following cubic equation 2 

is obtained: 3 

      (11) 4 

where . The coefficients in equation (11) depend only on the parameters of the shock 5 

adiabat of the medium ,  and cavity expansion velocity . 6 

An exact solution of equation (11) according to Cardano’s formula has the following 7 

form:  8 

,     (12a) 9 

where the definition has been  introduced.  10 

A linear approximation to , which follows from equation (11), when using Taylor's 11 

expansion , yields 12 

    (12b) 13 

Using the definition , one obtains 14 

,   (13a) 15 

     (13b) 16 

Earlier, a solution of the form of (13а) was obtained in the cylindrical cavity expansion 17 

problem [1]. 18 

It is further assumed that the plasticity criterion of the medium is described by Mohr-19 

Coulomb’s law , where  is cohesion, is internal friction 20 

coefficient,  is pressure, . 21 
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The second equation of system (6) and the boundary condition when taking into account 1 

solution (10) and the yield criterion will be written as: 2 

= ,  (14) 3 

where . 4 

Transferring the terms containing  in equation (14) into the left-hand side and the rest of 5 

the terms into the right-hand side, and multiplying the left-hand and the right-hand sides of the 6 

equation by :  7 

, 8 

one obtains, after some transformations, an equation with branching variables, 9 

, the solution of which depends on 10 

the arbitrary variable  11 

 12 

Taking into account boundary conditions (14), the dimensionless stress takes the form: 13 

(15а)
 
 

14 

Equation (15а) is not defined for µ=0 and µ=0.5. In these cases, a solution can be 15 

obtained by passing to the limit in (15а) for µ  tending to 0 and 0.5, respectively 16 

,   (15b) 17 

,  (15c) 18 
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In a dimensional form, the stress as a function of the self-similar variable has the 1 

following form: 2 

 (16) 3 

Equations (16) were derived using the equality . 4 

The dimensionless stress on the cavity wall (x=e), depending on the values of internal 5 

friction coefficient , is defined as: 6 

  7 

In a dimensional form, the stress  on the boundary of the cavity expanding at a 8 

velocity , has the following form: 9 

 (17a) 10 

,  (17b) 11 

,  (17c) 12 

In equations (16), (17), the value of  is determined based on equations (12). The 13 

relations for stresses obtained by substituting equations (12а) and (12b) are in what follows called 14 

rigid-plastic and linearized, respectively. Thus, final relations have been obtained, which make it 15 

possible to determine the stress in a medium with Mohr-Coulomb’s plasticity condition. 16 

3.1.4. Solution of a boundary-value problem for a system of ODE with Mohr-Coulomb 17 

Tresca-limit yield criterion.  18 
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The plasticity function for Mohr-Coulomb’s condition, with the account of the limitation 1 

for Tresca’s maximal value of the yield strength has the following form: 2 

 3 

where . In a dimensionless form, this equation is: 4 

,  5 

where dimensionless values , are introduced. 6 

Stress S monotonically decreases with the dimensionless coordinate  changing from  7 

to 1, i.e., the minimal stress value is achieved at =1. The value of cavity expansion 8 

velocity , at which , is then determined.  9 

From the relations on the shock wave for =1 it follows that . 10 

The values of shock wave velocity, volumetric strain and , corresponding to , will be 11 

designated as ,  and , respectively. To determine , formula (13b) will be used, 12 

yielding 13 

, , . 14 

Then, to determine , the following cubic equation is obtained: 15 

    (18a) 16 

In a similar way, the maximal stress value is achieved at = . Symbol  will 17 

designate the value of cavity expansion velocity, at which equalities  or 18 

hold. Substituting value =  into equation (17), , 19 

the following nonlinear equation for determining is obtained: 20 
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 (18b) 1 

where definitions , have been introduced. 2 

For a cavity expansion velocity varying in the interval , it is necessary to 3 

find the value of the dimensionless coordinate , at which the value of the dimensionless 4 

stress is .  5 

Finally, the dimensionless stress will be defined as:  6 

 (19) 7 

Dimensional stress along the cavity boundary  8 

 (20) 9 
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In equations (19), (20) the value of  is determined in the same way, using equations (12). 1 

Thus, the final relations are obtained, which make it possible to determine the stress in a medium 2 

with Mohr-Coulomb Tresca-limit yield criterion. 3 

 4 

3.2. Numerical solution of the problem in a complete formulation  5 

3.2.1. Formulating an initial boundary-value problem for a system of partial differential 6 

equations.  7 

A mathematical model of a soil medium is described by differential equation system (1), 8 

which is closed by an invariant relation between pressure and volumetric strain: 9 

,     (21) 10 

where K is the elastic bulk modulus (i.e. the modulus of volumetric compression). 11 

It is assumed that in the region bounded by radii  and , the medium is 12 

plastically deformed. In the adjacent region of elastic deformation, which is bounded by 13 

coordinate , the stress tensor components are related to strains by Hooke’s law with 14 

elastic moduli  and , where  is the plane shock wave propagation 15 

velocity, and  is the shear modulus. 16 

A solution of a one-dimensional problem of spherical cavity expansion in the region of 17 

plastic deformation will be now constructed. In view of the spherical symmetry and of the fact 18 

that the first invariant of the deviator tensor is equal to zero, , and if yield 19 

condition  holds, one obtains , where  and  are radial 20 

and circumferential components of the stress deviator tensor.  21 

System of partial differential equations (1) for  and υ will be written as follows: 22 

, , (22) 23 

where , ,  24 
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On the boundary of the expanding cavity of radius R0= V0t , velocity V is assigned, outer 1 

surface of the spherical layer  is free from stresses, the velocity and stresses in the medium at 2 

the initial time are equal to zero: 3 

, ,  .  (23) 4 

3.2.2. Formulation of a boundary-value problem for a system of first-order ordinary differential 5 

equations.  6 

A self-similar solution of the system for variable  will be considered, and 7 

dimensionless variables ,  will be introduced together with the following 8 

notations: , , . The partial derivatives in time and 9 

space are defined similarly to Section 3.1.2.  10 

As a result of the substitution, the system of partial differential equations (22) is 11 

transformed into a system of ordinary differential equations: 12 

, ,   (24) 13 

where , and  prime denotes differentiation with respect to x.  14 

Boundary conditions (23) for equation system (24) are defined depending on the relation 15 

of velocities  and , and value . For , the boundary conditions are 16 

defined by an elastic solution (Appendix А). For , Hugoniot’s jump conditions (5) are 17 

used, from which it follows that ,  or, in dimensionless variables, 18 

.  19 

Finally, the boundary value problem for a system of two first-order ordinary differential 20 

equations, written in a normal form, is as follows: 21 
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 ,   (25) 1 

, 2 

, , 3 

where , and  is the solution of equation . 4 

Equation system (25) includes the unknown parameter c, propagation velocity of the 5 

interface between the elastic and plastic regions or of the plastic shock wave front. The unknown 6 

velocity с is determined iteratively, as long as boundary condition  is 7 

satisfied to an assigned accuracy . At each iteration step, the fourth-order-accurate Runge-8 

Kutta numerical method is used for self-similar variable x changing from elastic-plastic interface 9 

(x=1) to cavity boundary (x=e). 10 

 11 

4. Analyzing the accuracy of the approximate solution  12 

 13 

4.1. Parametric analysis of the cavity problem solution with Mohr-Coulomb yield criterion 14 

The problem of spherical cavity expanding at a constant velocity from a zero radius in an 15 

infinite nonlinearly compressible medium is considered. Compressibility of the medium is 16 

characterized by linear relation (8) between shock wave velocity and mass velocity of the 17 

particles of the medium. Resistance of the medium to shear is assigned by Mohr-Coulomb’s 18 

linear relation. Cavity expansion velocity, internal friction coefficient , and parameter of 19 

dynamic compression strength are varied.  20 

4.1.1. Formation of a plastic shock wave.  21 

As it was noticed in Section 3.2, the solution of the problem in the plastic region is 22 

continuous at the transition to the elastic region, for  a plastic shock wave is formed, 23 

which propagates through the unperturbed space. Further, two choices of the parameters of the 24 
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equation of state (EOS) of a medium with known stress-volumetric strain (shock adiabat) 1 

relations and Mohr-Coulomb’s yield criterion are considered as an illustration, which are listed 2 

in the Table 2. In what follows, media with EOS1 and EOS2 will be considered.  3 

 4 

Table 2. Parameters of the EOS of media 1 and 2. 5 

№ ρ0, 

kg/m3 

K, 

MPa  

G,   

MPa 

,   

m/s 

,  

m/s 

 ,   

MPa 

k  

1 1730 220 115 465 460 2.3 0.042 1.0 0.6 

2 2080 4570 1147 1713 1700 3.4 0.021 0.5 0.375 

 6 

The curves in Fig. 4 correspond to the results of the solution of the boundary-value 7 

problem for a system of ODE (Section 3.2, Eqs. (25)), using the fourth-order-accurate Runge-8 

Kutta method. In what follows, this solution will be called ‘exact solution’. 9 

It is found that a shock wave is formed at cavity expansion velocities  (marked in 10 

dotted lines), = 182 m/s and 550 m/s for media with EOS1 and EOS2, respectively. In the 11 

vicinity of these values, the solution curves have second-order tangency.  12 

In Fig. 5, velocity is represented on a logarithmic scale, the dashed line corresponds to 13 

the value of the dimensionless cavity expansion velocity , at which a single plastic 14 

shock wave is formed ( =0.395 and =0.340  for the media with EOS1 and EOS2, 15 

respectively). 16 
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Fig. 4. Stress at the boundary of a cavity expanding at velocity  for the media with 1 

EOS1 (a) and EOS2 (b): elastic-plastic solution for (solid line) and the solution 2 

indicating the formation of a single plastic shock wave propagating through the unperturbed 3 

medium (the crossed solid line) for . 4 

  

Fig. 5. Dimensionless parameter  as a function of cavity expansion velocity in 5 

relation to elastic wave velocity for the media with EOS1 (a) and EOS2 (b): exact 6 

generalized solution including elastic-plastic interface (the solid blue line) at  and 7 

formation of a plastic shock wave (the solid red line with a cross) at , approximated 8 

rigid-plastic solution (12а) (the dotted line) and linearized solution (12b) (the dot-dash line). 9 

 10 

The exact solution in Fig. 5 demonstrates the limitation of parameter  when the cavity 11 

expansion velocity tends to infinity ( <0.758 and <0.663 for EOS1 and EOS2 respectively) 12 

and to zero ( >0.066 and >0.023 again for media with EOS1 and EOS2, respectively). The 13 

approximate solutions according to formulas (12) are limited from above ( ). The 14 
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dimensional stress value on the cavity wall also remains limited at velocities close to zero: for 1 

media with EOS1, the stress does not exceed 2.3 MPа, and for a medium with EOS2 it does not 2 

exceed 1.13 MPа. The value of , obtained using formula (13а), is close enough to the exact 3 

solution, except for the region with M<0.1, the solution according to linearized formula (13b) 4 

tends to the exact solution only at M>0.4. 5 

The evaluation of the minimal stress on the cavity wall, required for its propagation 6 

(critical pressure  [10]) is now considered. Earlier, an equation for a critical pressure in a 7 

compressed linearly elastic medium with Tresca’s plasticity condition was obtained:  8 

     (26) 9 

where  is Young’s modulus, and  is Poisson’s coefficient. 10 

To determine the critical pressure in a medium with Mohr-Coulomb’s plasticity criterion, 11 

the second equation of system (24) is transformed into an equation for the dimensional pressure. 12 

Taking into account that elastic-plastic interface velocity , at  yields Cauchy’s 13 

problem: 14 

, , ,  (27) 15 

where the boundary conditions are defined based on the second equation in (А9) for . 16 

The solution of Cauchy’s problem (27) is a function  which, for , defines 17 

the critical pressure 18 

.     (28а),  19 

The value of such critical pressure for  can be obtained by passing to the limit 20 

 in (28а): 21 

     (28b) 22 

ε

!"

( ) 







−

+=
!

! "#
$%"

#
&

τν
τ !"#

! ν

( )!"# = !→!

!" ! =
+

+
ξ
µστ

ξ
σ !!
"
" !≤≤ξε ( ) !"# $τξσ ==!

!<<α

( )ξσ ! εξ =










 −
+=

−
−

µ
ετετ

µ
µ !

"
# #

$
#

$!"

!=µ

!→µ

( )!" #$%
!
& −+= ετ!"



Prep
rin

t

 26 

Considering that value weakly depends on the change in internal pressure, equation (26) will 1 

be used for determining , assuming . Thus, equation (28а) will be a 2 

generalization of the known equation (26) for the case of Mohr-Coulomb’s yield criterion. 3 

Fig. 6 presents the values of critical pressure on the cavity wall, obtained numerically for 4 

various levels of the initial value of yield strength in a medium where a logarithmic scale is used 5 

for the yield stress. Good applicability of equation (28а) is noticed for  changing by three 6 

orders of magnitude, as well as the growth of critical pressure with an increasing internal 7 

pressure. 8 

 9 

 

Fig.6. Critical pressure  for a medium with EOS1 as a function of the initial value 10 

of the yield strength : exact numerical solution (the solid lines) and solution according to 11 

formulas (28) (the markers). 12 
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 1 
Fig.7. Normalized pressure on the cavity wall as a function of cavity expansion 2 

velocity in a medium with EOS1: exact numerical solution (the markers) and an 3 

approximation using the least squares method (the solid lines). 4 

 5 

The polynomial approximations in Fig. 7 are functions of the form 6 

 for the case  and 7 

 for the case . It can be 8 

noticed that a linear member appearing in the approximating polynomial is determined by 9 

accounting for the internal pressure in the framework of Mohr-Coulomb’s yield criterion. 10 

The linearized solution (13b) in Fig. 8 appears to be closer to the exact solution for 11 

, than the rigid-plastic solution according to Cardano’s formula (13а). 12 

 13 
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Fig. 8. Normalized propagation velocities of the elastic-plastic interface as a function 1 

of cavity expansion velocity for the media with EOS1 (a) and EOS2 (b): (the definition of the 2 

curves is the same as in Fig. 5). 3 

 4 

It has to be noticed that solving the problem without accounting for the formation of a 5 

plastic shock wave results in the limitation of the elastic-plastic interface at high cavity 6 

expansion velocities (the solid line in Fig.8), which agrees with the results earlier obtained in 7 

[16]. The continuation of the solution, concentrating on the single plastic shock wave (the solid 8 

line with a cross in Fig. 8) is closer to the physical picture of wave propagation. 9 

The approximate solutions in Fig. 9 were obtained using formulas (12а), (17а) and (12b), 10 

(17а), respectively. The approximate linearized solution agrees well with the exact solution in a 11 

complete formulation over a fairly wide range of cavity expansion velocities up to M=0.1. Like 12 

the exact solution, the dimensionless linearized solution has a nonlinear character at M<0.4, and 13 

at M>0.4 can be represented by a linear relation. 14 

The good agreement between the approximate linearized and the exact solutions can be 15 

explained if stress distributions in the medium as a function of the dimensionless coordinate is 16 

considered.  17 

  

Fig. 9. Dimensionless relations between stress on the cavity wall expanding at velocity 18 

 for the media with EOS1 (a) and EOS2 (b): (the definition of the curves is the same as in Fig. 19 

5). 20 

 21 

!
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Fig. 10. Stress distribution in the medium as a function of similarity variable x at the 1 

dimensionless cavity expansion for velocities М=0.5 and M=1.0 for a medium with EOS1 2 

(a), М=0.125 and М=0.250 for the medium with EOS2 (b): the solid, dotted and dot-dash 3 

lines correspond to the exact generalized solution, the rigid-plastic and linearized rigid-4 

plastic solutions, respectively. 5 

 6 

It is evident in Fig. 10 that the computations of stress using equation (12а) for 7 

determining and equation (13а) for determining shock wave velocity generally give closer 8 

results than those obtained using the linearized formula (13b). However, maximal stress values 9 

in the vicinity of the cavity, obtained using formulas (12b), (17b) (the dot-dash line in Fig. 10), 10 

tend to be closer to the exact value. The formal continuation of solution (13) into the region with 11 

M<0.4 for a medium with EOS2 leads to an error of 13% and 16% in defining the stress at the 12 

cavity boundary. Errors in determining stresses using formulas (12b), (17b) substantially 13 

decrease with an increasing cavity expansion velocity. 14 

4.1.2. Evaluation of stress at the cavity wall.  15 

In what follows, the normalized stresses obtained in the framework of the problem of 16 

spherical cavity expansion, by varying the internal friction coefficient, are compared; the 17 

remaining parameters correspond to the material with EOS1.  18 

It follows from Fig. 11 that the difference between the stresses obtained exactly and 19 

approximately decreases with the cavity expansion velocity. This corroborates the earlier 20 

conclusion that linear relation (13b) of shock wave velocity as a function of cavity expansion 21 

ε
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velocity is more accurate in determining normal stress at the cavity wall than the exact solution 1 

using Cardano’s formulas (13a).  2 

 3 

Fig. 11 Normalized stresses at the cavity wall as a function of dimensionless 4 

expansion velocity, obtained for the internal friction coefficient values µ=0; µ=0.5; µ=0.75. 5 

(definitions are the same as in Figs. 9, 10). 6 

 7 

  

Fig. 12. Relative error in determining the shock wave front velocity (a) and the stress 8 

at the cavity wall (b) for µ=0, µ=0.5 and µ=0.75. 9 

 10 
This is connected with a summation of errors of opposite sign. The difference between the 11 

approximate and exact solutions increases with µ, the character of the curves remaining the same. 12 

The minimal error of the approximate solutions is observed for a value of the internal friction 13 

coefficient close to 0. 14 



Prep
rin

t

 31 

 1 

  

Fig. 13. Relative errors in determining the cavity wall stress for various values of 2 

compression strength coefficient  of the soil for internal friction coefficient μ =0 (а) and μ 3 

=0.6 (b) as a function of relative cavity expansion velocity . 4 

 5 

Fig. 12(a)depicts relative errors in determining the plastic shock wave velocity for various 6 

values of internal friction coefficient , where c is the exact solution, and 7 

 and  are determined from formulas (13a) and (13b). The relative errors for the stress at the 8 

cavity wall depicted in Figs.12(b), are determined in a similar way. The relative errors for 9 

approximate linearized formulas (17b), (12b) are significantly lower than those using Cardano’s 10 

formulas (12а). The errors are also observed to decrease with an increasing cavity expansion 11 

velocity. Thus, velocities and stresses at the wall of a spherical cavity, expanding at a constant 12 

velocity from zero radius in a soil medium with a known shock adiabat, are determined using 13 

formulas (13b) and (17), (12b) with an error less than 5% at relative cavity expansion velocities 14 

 and when the variation of the internal friction coefficient is in the range [0; 15 

0.75]. 16 

The error in Fig. 13 was determined in a standard way: , 17 

where  is the exact solution, and  is determined using formulas (17), (12b). It can be seen 18 

that the errors in determining the stress at the wall of the spherical cavity, expanding at a 19 
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constant velocity in a soft medium, using linearized formula (12b) and formula (17b) do not 1 

exceed 5% at relative cavity expansion velocities  and compression strength 2 

parameter changing in a fairly wide range [1; 4] for admissible values of the internal friction 3 

coefficient.  4 

Determining the plastic shock wave velocity using formula (13b) and the stress at the 5 

cavity wall using equations (12b), (17b) can formally be extended onto the range M<0.5.  6 

It is evident from Fig. 14 that at relative cavity expansion velocity M<0.5 the error in 7 

determining the shock wave velocity increases up to 50%. For stresses calculated at the cavity 8 

wall, the errors do not exceed 5% over the entire velocity range, and only for large values of the 9 

internal friction coefficient (µ=0.75) and small relative cavity expansion velocities, the errors 10 

increase up to 10%. The obtained estimations show that equation (17) and the linearized 11 

equations (12b), (13b) can be further used for approximating stresses at the cavity wall when 12 

analyzing problems of penetration into soil media. 13 

  

Fig. 14 Error in determining shock wave front velocity (а) and cavity wall stress (b) 

using the linearized rigid-plastic solution for the values of µ=0, µ=0.5 and µ=0.75. 

 14 

5. Determining the force resisting penetration of a rigid sphere into sand 15 

 16 

5.1. Parameters of the equation of state of the soil medium 17 

!"#$ # >= !"#

!
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As it is known, the equation of state of a soft soil includes a shock adiabat, a plasticity 1 

condition, as well as elasticity moduli  and  of the initial part of the deformation curve. 2 

Representing the shock adiabat in the form of linear relation (8) makes it possible to correlate 3 

stress    and volumetric strain  in conditions of uniaxial deformation: 4 

    (29)
 5 

Resistance of the medium to shear is defined by a bilinear relation between yield stress 6 

and pressure: 7 

,    (30) 8 

Coefficients ,  and k in (30) characterize cohesion, maximal value of yield stress and 9 

tangent of the internal friction angle of the soil. 10 

For the “pressure-volumetric strain” relation, , the following function of the form 11 

(29) is used: 12 

,    (31) 13 

where the unknown parameters а and b are found by using the least squares method. 14 

The shock adiabats parameters  and  for dry and wet sand were obtained in our 15 

plane-wave shock experiments. These parameters were close to those obtained earlier in the 16 

inverse impact experiment technique by using a measure bar with flat end [41]. The following 17 

Table 3 lists the parameter values of the equation of state of dry and water-saturated sands  18 

 19 

Table 3. Parameters of EOS for sand of different water saturation.  20 

№ w,  

% 

ρ0,    

kg/m3 

,  

m/s 

 a,      

m/s 

b ,      

MPa 

k ,  MPa 

1 0 1730 460 2.3 340 2.6 0.1 1.2 275 

2 20 2080 1700 3.4 1620 3.6 0.1 0.5 50 
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 1 

   

Fig. 15. Bilinear relations between yield stress and pressure for dry (а) and wet soils 2 

(b) and Mohr-Coulomb-Tresca’s bilinear approximation. 3 

 4 

Fig. 15 presents curves of nonlinear yield criterion (30) as approximated by the bilinear 5 

relations of Mohr-Coulomb’s with Tresca’s-limit yield criterion 6 

     (32) 7 

 8 

Table 4. Parameters of yield criterion (32) for dry and wet sand. 9 

№ ,        

MPa 

k  ,    

MPa 

,         

MPa 

1 0.042 1.0 0.6 180 300 

2 0.021 0.3 0.25 25 1000 

 10 

The parameters of the elastic portion of the deformation diagram and the shock adiabat of 11 

dry and wet sands are those previously presented in Table 2. 12 

 13 

5.2. Analytical solution of the cavity problem with Mohr-Coulomb Tresca’s limit yield 14 

criterion 15 
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In Fig. 16, the cavity expansion velocities are 400 and 250 m/s for dry (a) and wet (b) 1 

sands, respectively. The values of parameters  and , determined using formulas (18), and 2 

the values of other parameters are summarized in the Table 5: 3 

 4 

Table 5. Limits of the chosen ranges in equations (19) and (20). 5 

№ ,        

m/s 

,       

m/s 

  ,  

m/s 

  

1 296 528 0.544 0.607 400 0.795 0.298 

2 150 380 0.19 0.305 250 0.58 0.053 

 6 

In Table 5, the first and second lines correspond to dry and wet sand, respectively.  7 

In Fig. 17, the markers represent normalized cavity wall stresses as a function of 8 

normalized expansion velocities under high pressures. Using Mohr-Coulomb’s yield criterion 9 

(а), the stresses were found according to formula (17a) for ; the parameters of the 10 

equation of state are listed in Table 2. With Mohr-Coulomb-Tresca’s yield criterion (b), formula 11 

(17b) was used with , ; the parameters of the equation of state are listed in 12 

Table 3.  13 

 14 
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Fig. 16. Distribution of dimensionless stresses as a function of self-similar coordinate 1 

in dry (a) and wet (b) sand for Mohr-Coulomb-Tresca’s yield criterion (the solid line) and 2 

Mohr-Coulomb’s criterion (the dotted line). 3 

 4 

  

Fig. 17. Normalized cavity wall stresses as a function of normalized cavity expansion 5 

velocities when using Mohr-Coulomb’s (а) and Mohr-Coulomb Tresca’s limit (b) yield 6 

criterions in dry and wet sand (squares and diamonds, respectively) and linear 7 

approximations using the least squares method (solid lines). 8 

 9 

It can be seen that when using Mohr-Coulomb’s yield criterion, the relation between 10 

stresses acting on the cavity wall and the velocity is  (see also [51]), 11 

whereas when Tresca’s yield criterion is used for , , the relation is 12 

; besides,  for the wet soil. 13 
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Fig. 18. Approximation of the cavity wall stress as a function of cavity expansion 1 

velocity in dry (а) and wet (b) sands: the solid line, the dotted line with triangles, the dash-2 

dot lines and the dashed line with squares correspond to the results obtained using equations 3 

(20), (17а), (17b) and (17b) for . 4 

 5 

It can be seen in Fig. 18 that the cavity wall stresses in the medium with Mohr-Coulomb-6 

Tresca’s yield criterion can, accurately enough for engineering purposes, be determined without 7 

using equations (19), (20), by employing interpolation over the cavity expansion velocity range 8 

. 9 

 10 

5.3. Comparing the numerical and experimental results 11 

The force acting on a spherical head projectile penetrating into soil at constant velocity 12 

, equal to impact velocity, is determined by integrating stresses over the contact surface and 13 

is related with the form and penetration velocity of the projectile as 14 

    (33а) 15 

where  is the cross-section area of the sphere,  is the current penetration 16 

depth, related with projectile radius R, axis z  is directed along the symmetry axis of the 17 

projectile and against its motion, , t is current penetration time. 18 

Angle  j is now introduced, which is counted from the apex of the sphere in the direction 19 

of the free surface corresponding to dimensionless penetration depth  . Equation (33а) 20 

can be transformed as follows: 21 

 .   (33b) 22 
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According to the Cavity Expansion Model (CEM), normal stress acting on the surface of 1 

the projectile is identified with pressure acting on the wall of the expanding spherical cavity. As 2 

it was shown above, this pressure can be represented in the form of a quadratic relation 3 

,      (34) 4 

where  is the normal component of the penetration velocity vector, ,  are 5 

constant coefficients depending on the physical-mechanical properties of the medium, the 6 

geometry of the striker and other components.  7 

Tangent stresses on the surface of the body moving through the medium will be defined 8 

according to Coulomb’s friction model 9 

,      (35) 10 

where  is a constant coefficient of surface friction. 11 

After integrating equation (33), taking into account (34), (35), resistance to a spherical 12 

penetrator as a function of impact velocity will have the following form: 13 

, , , 14 

, , ,  (36) 15 

Substituting into (36) the values of j, equal to a flow separation angle, , yields the 16 

maximum values of the force resisting penetration in the framework of СЕМ, taking into account 17 

surface friction. 18 

The flow separation angle was taken to be , the friction coefficient for dry 19 

sand was , and for wet sand . These values were assumed to be proportional to 20 

the internal friction coefficient, i.е., remained constant at . At , the values of the 21 

sliding friction coefficient were assumed to be equal to , over the interval  a 22 

linear interpolation was used. 23 
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Fig. 19 demonstrates good agreement between the approximation results and the 1 

experimental data for both dry and water-saturated sand without introducing any correcting 2 

coefficients. In the velocity range, for which the experimental data for dry sand were obtained 3 

(impact velocities up to 400 m/s), Mohr-Coulomb’s yield criterion is true, whereas Tresca’s limit 4 

comes to produce significant effects at impact velocities over 500 m/s.  5 

  

Fig. 19. Resistance force to penetration of a rigid spherical striker into dry (а) and wet 6 

(b) sand as a function of impact velocity: the inverted experiment [41] (the dark and light 7 

dots) and the approximation using the solution of the cavity expansion problem (the 8 

definition of the curves is the same as in Fig. 18). 9 

 10 

The use of Mohr-Coulomb’s with Tresca’s-limit yield criterion is more justified for wet 11 

sand. At low impact velocities (up to 200 m/s), internal friction plays an important role, whereas 12 

at higher velocities the limitation of the yield strength in the framework of Tresca’s yield 13 

criterion manifests itself.  14 

Indeed, high-speed penetrators are here considered, where resistance to shear of the soil 15 

medium can be neglected. Normal pressure on the surface moving at velocity  will be 16 

expressed by equation (17b) without the first addend: . The 17 

stress on the contact surface will be written as , where  is resistance 18 

coefficient. Then, assuming that  (upper bound), the evaluation of coefficient  as a 19 
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function of shock adiabat parameter will be: . With  varying 1 

in the range , the resistance coefficient changes in the range 1, which is 2 

close enough to the results of [52], where the values of the coefficient of resistance to a flat-3 

nosed penetrator, , were obtained.  4 

 5 

6. Conclusions 6 

1. The linear shock adiabats  for both dry and wet sand were obtained in our 7 

plane-wave shock experiments. These data were close to those obtained earlier in the inverse 8 

impact experiment technique by using a measure bar with a flat end. 9 

2. As applied to the problem of the penetration of rigid bodies into soft soils, a self-10 

similar analytical solution has been obtained for a one-dimensional problem of the expansion of 11 

a spherical cavity from a point in an infinite soil medium. The solution was obtained under the 12 

assumption of elastic-plastic deformation of the soil with the Mohr-Coulomb-Tresca’s-limit 13 

yield criterion. 14 

3. It is shown numerically that when solving the problem of cavity expansion in a soft 15 

soil, it is necessary to take into account the formation of a plastic shock wave propagating 16 

through the undisturbed portion of the soil. 17 

4. The parametric analysis of the linearized rigid-plastic solution showed that it is a good 18 

approximation of the dependence of pressure at the boundary of the cavity on the speed of its 19 

expansion as applied to a wide class of soft soils. 20 

5. On the basis of the proposed analytical solution, a method has been developed for 21 

calculating the resistance force of a rigid body to penetrate into soft soil. The dependence of the 22 

maximum value of the resistance force to the introduction of a rigid sphere into dry and water-23 

saturated sand, when the impact velocity varies in the range from 50 to 400 m/s, has been 24 

obtained. 25 
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6. Comparison of the results for determining penetration resistance forces obtained 1 

analytically, numerically and experimentally showed their qualitative and quantitative good 2 

correspondence to each other. In this regard, when solving problems of penetration into soft 3 

soils, a simple analytical solution can be successfully applied. 4 

5 
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Appendix А 1 

The equation of motion in system (1) is written, neglecting the convective components of 2 

the time derivative of velocity: 3 

, . 4 

The radial and circumferential small strains in an elastic medium in conditions of 5 

spherical symmetry are defined in terms of displacements as , . The stress-strain 6 

relation is described by Hooke’s law: , 7 

.  8 

As before, stresses in compression are assumed to be positive. 9 

The dynamic equation of an elastic medium in terms of displacements, in the case of 10 

spherical symmetry, is transformed into the following form: 11 

,    (А1) 12 

where  is the velocity of propagation of the longitudinal 13 

wave front in an elastic medium. 14 

Following [3], it is assumed that ,  are, respectively a dimensionless 15 

coordinate and a dimensionless displacement, c is the plastic wave front velocity (i.e the velocity 16 

of the elastic-plastic interface), then the derivatives are transformed as follows, accounting for 17 

these changes of variables: 18 

, , ,  19 

where primes denote differentiation with respect to x. 20 

The conditions on the boundary of the elastic deformation region are then considered. On 21 

the boundary with the unperturbed region, the displacement is equal to zero. On the elastic-22 
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plastic interface  the condition of plastic yield holds, as well as 1 

Hooke’s law: , whence, due to the continuity of the stress components, one 2 

has: , . Transformation of the derivatives and substitution into 3 

equation (А1) and boundary conditions yield the following boundary-value problem for a 4 

second-order ordinary differential equation in terms of the dimensionless displacement: 5 

,  ,   (А2) 6 

, . 7 

To find a general solution to the differential equation, several transformations are done. 8 

Substituting , one obtains the following equation:  9 

. 10 

Substitutions ,   yield a first-order equation for : 11 

 or , a general solution for which is function 12 

 depending on an arbitrary constant А. Then the series of transformations: 13 

, , : , , result in the following 14 

expression for the dimensionless displacement: , where B is another 15 

integration constant.  16 

To define constants А, B, the boundary conditions in problem (А2) are used. From the 17 

first boundary condition it follows that , thus,  18 

    (А3) 19 
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Now by an expression for determining the dimensionless velocity  1 

, ,    (А4) 2 

the radial component of the stress tensor and the volumetric strain will be derived: 3 

   (А5) 4 

.    (А6) 5 

Employing now equality (А6), equations for both dimensionless velocity (А4) and stress 6 

(А5) can be transformed into the following form:  7 

, .  (А7) 8 

To define the integration constant А, the second boundary condition of the boundary-9 

value problem (А2) is considered. Strain difference for  is defined as 10 

. Thus, constant А is determined by solving the equation 11 

. 12 

This problem was solved earlier in [3], using Tresca’s yield condition. Consider Mohr-13 

Coulomb-Tresca’s plasticity condition; in this case function f2 becomes: 14 

, . 15 

So, for  one has:  16 

     (А8) 17 

where: , . 18 

Expressions (А7), (А8) for  will define the boundary conditions for the problem from 19 

Section 3.2. as a function of the value of : 20 
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= ,  = ,   (А9) 1 

where  is defined by expression (А6), , . 2 

In the limiting case, for , which corresponds to equality , equations (А9) take 3 

the form defined by Hugoniot’s relations at the jump: = , 4 

. 5 

6 
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