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Summary paragraph 15 

The nitrogen isotopic composition of sedimentary rocks (δ15N) can trace redox-dependent 16 

biological pathways and early Earth oxygenation1,2. However, there is no substantial change in 17 

the sedimentary δ15N record across the Great Oxidation Event ~2.45 Ga3, a prominent redox 18 

change. This argues for a temporal decoupling between the emergence of the first oxygen-based 19 

oxidative pathways of the nitrogen cycle and the accumulation of atmospheric oxygen after 20 

~2.45 Ga3. The transition between both states displays strongly positive δ15N values (10-50‰) 21 

in rocks deposited between 2.8 and 2.6 Ga, but their origin and spatial extent remains 22 

uncertain4,5. Here we report strongly positive δ15N values (> 30‰) in the ca. 2.68 Ga old 23 

shallow to deep marine sedimentary deposit of the Serra Sul Formation6, Amazonian Craton, 24 

Brazil. Our findings are best explained by regionally variable extents of ammonium oxidation 25 

to N2 or N2O tied to a cryptic oxygen cycle, implying that oxygenic photosynthesis was 26 

operating 2.7 Ga ago. Molecular oxygen production likely shifted the redox potential so that an 27 

intermediate N cycle based on ammonium oxidation developed before nitrate accumulation in 28 

surface waters. We propose to name this period, when strongly positive nitrogen isotopic 29 

compositions are superimposed on the usual range of Precambrian δ15N values, the Nitrogen 30 

Isotope Event (NIE). We suggest that it marks the earliest steps of the biogeochemical 31 

reorganizations that led to the Great Oxidation Event. 32 

N isotopes record water column oxidation 33 

Nitrogen is an essential nutrient for the biosphere, exerting a strong control on biological 34 

productivity through the availability of its “fixed” bioavailable forms, including ammonium 35 

(NH4+), nitrite (NO2-) and nitrate (NO3-), which can all be readily uptaken by primary producers. 36 

The nitrogen isotope composition (δ15N=[(15N/14N)sample/(15N/14N)standard]-1, where the standard 37 

is N2 in air) of these nitrogen forms is controlled by microbially-mediated metabolic reactions, 38 



most of them sensitive to the redox state of the water column. When assimilated, N species 39 

transfer their isotope signature to the organic matter, which can subsequently be preserved in 40 

sedimentary rocks7. Nitrogen isotopes in the sedimentary record thus represent an ideal tool for 41 

investigating the joint temporal evolution of surface environments oxidation and primary 42 

productivity. 43 

Despite being largely present in the atmosphere as gaseous N2 (δ15N=0‰), nitrogen in this 44 

form can only be assimilated by diazotrophs, nitrogenase-bearing prokaryotes capable of 45 

biological N2 fixation. Fractionation imparted by biological N2 fixation with classical Mo-based 46 

nitrogenase ranges from -2‰ to +2‰, whereas alternative nitrogenase using Fe or V as 47 

cofactors can impart negative fractionation as large as -8‰8. The mineralization of organic 48 

matter derived from diazotrophic activity in the water column or in sediments, namely 49 

ammonification9, provides most of the bioavailable nitrogen to the biosphere as ammonium 50 

(NH4+) without significant isotope fractionation10. In anoxic conditions, ammonium released 51 

during organic matter mineralization is rapidly and quantitatively assimilated into biomass. 52 

Hence, even if ammonium assimilation preferentially incorporates 14N, its fractionation is rarely 53 

expressed in the sedimentary record. In oxic conditions, ammonium can either be assimilated 54 

or nitrified to nitrite and nitrate, enriching residual ammonium by up to +35‰11. In modern 55 

environments, where oxygen levels are in excess, ammonium is oxidized quantitatively, 56 

preventing the fractionation associated with ammonium oxidation from being expressed. Nitrite 57 

and nitrate are in turn assimilated by photosynthetic organisms or biologically reduced, either 58 

through denitrification or anaerobic ammonium oxidation (anammox) in dysoxic and anoxic 59 

conditions9,12. Denitrification and anammox are the major oceanic sinks of fixed nitrogen, 60 

releasing N2O or N2 back to the atmosphere. Both of these sinks impart a large nitrogen isotope 61 

fractionation of around +30‰9, leaving behind 15N-enriched residual nitrate that can be uptaken 62 

by primary producers and subsequently transferred to the sediments. In modern environments, 63 

and by extension any sediment deposited under oxic conditions, δ15N values around +5‰ are 64 

interpreted to reflect the balance between N2 fixation inputs and denitrification/anammox 65 

outputs from the water column and surface sediments. 66 

A unique Neoarchean δ15N record 67 

The secular evolution of sedimentary δ15N values shifts from a mode of +2‰ between 3.8 68 

and 2.8 Ga in the Archean to a mode of +5‰ between 2.5 and 1.8 Ga1. Based on this framework, 69 

and assuming that (i) atmospheric N2 isotope composition (δ15NN2=0‰) has remained stable 70 

since the Paleoarchean13,14, and that (ii) N2 assimilation through biological nitrogen fixation 71 

provides the fixed-N source needed to sustain biomass production since at least 3.2 Ga2,15, this 72 

evolution has mostly been attributed to a major change in the nitrogen biogeochemical cycle. 73 

From being ammonium-dominated in the essentially anoxic Archean oceans and lakes, 74 

including in their surface waters, the N-biogeochemical cycle would have evolved to nitrate-75 

dominated after 2.5 Ga in transiently oxic surface waters1,2,16–20. Intriguingly, there is no 76 

significant change in the sedimentary δ15N record across the Great Oxidation Event (GOE) 77 

(e.g.3; Figure 1A), which is widely considered as the most prominent redox change in Earth 78 

history. This argues for a temporal decoupling between the emergence of the first oxygen-based 79 

oxidative pathway of the biogeochemical nitrogen cycle and the accumulation of free oxygen 80 

in the atmosphere after 2.45 Ga. 81 



The transition between both states, occurring at the end of the Archean, displays strongly 82 

positive δ15N values (between +10 and +50‰, Figure 1A) recorded in sedimentary rocks 83 

deposited between 2.8 and 2.6 Ga in at least 5 different locations4,5,21–24 (Supplementary Table 84 

1). They have been interpreted in various ways (Supplementary Table 1), including: (i) 85 

metamorphic alteration of the original isotopic signature21, (ii) a 15N-enriched atmospheric 86 

reservoir derived from chondrite-like material22,23, (iii) the onset of an oxidative pathway in the 87 

nitrogen cycle, arguing for the presence of cryptic oxygen in an otherwise anoxic ocean, prior 88 

to the oxygenation of the atmosphere4, and more recently (iv) NH3 degassing from alkaline 89 

waters of restricted lacustrine environments5,24. This latter hypothesis has gained momentum 90 

because the most positive δ15N values reported so far are associated with extreme negative 91 

δ13Corg values25 (Figure 1B) and stem from the Tumbiana Formation in the Pilbara Craton, now 92 

firmly demonstrated to have been deposited in an alkaline lake26. Yet it implies that the relative 93 

synchronicity of these positive δ15N values and their occurrence right at the transition between 94 

the two δ15N distribution modes would have happened incidentally. 95 

Here we take the opportunity of the discovery of a new occurrence of extreme δ15N and δ13Corg 96 

values from the Serra Sul Formation, Amazonian Craton, Brazil, deposited between 2684 ± 10 97 

Ma and 2627 ± 11 Ma6,27,28, to reassess the significance of these positive δ15N values. This 98 

Neoarchean formation is representative of a marine shelf system with a sedimentary sequence 99 

ranging from shallow to deep-water environments with slope instabilities and debris flow6 100 

(Extended Data). Two drill cores intercepting the Serra Sul Formation, GT13 and GT16 101 

(Extended Data, Extended Data Figure 1), were studied. They display polygenic and flat-pebble 102 

conglomerates interbedded with fine-grained siliciclastic sediments6 indicating the presence of 103 

sediments from both shallow and deep water environments, respectively (Figure 2; Extended 104 

Data; Extended Data Figure 1). 105 

Organic carbon and nitrogen concentrations and isotopic compositions for the two studied 106 

drill cores are reported in Table 1, Figure 1 and Figure 2. For both drill cores, δ15N values are 107 

markedly positive, from +13.9 to +37.5‰, with mean values of +32.9 ± 3.4‰ (n = 11) and 108 

+24.6 ± 6.0‰ (n = 13) for GT13 and GT16, respectively. δ13Corg values are 13C-depleted, 109 

ranging from -30.4 to -51.8‰, with comparable mean values (-40.0 ± 1.2‰ for GT13 and -44.1 110 

± 6.1‰ for GT16). Overall, carbon and nitrogen concentrations and isotopic compositions 111 

appear relatively homogeneous throughout drill core GT13, compared to the more scattered 112 

signal in drill core GT16. No variations were observed with respect to lithological features or 113 

facies changes (Figure 2). 114 

Defining a Nitrogen Isotope Event (NIE) 115 

Overall, despite different geological settings, depositional environments, and 116 

paleogeography, this new occurrence of a paired δ15N-δ13Corg excursion recorded in the 117 

Amazonian Craton is within the range of the one reported in the Pilbara Craton, suggesting that 118 

these extremely positive δ15N values are inherent to the 2.8-2.6 Ga time interval. Importantly, 119 

since these extreme values coexist with less extreme values (Figure 1; i.e. δ15N from -1 to 120 

+6‰1) in other Neoarchean basins at sub-greenschist facies, regional controls must be at play. 121 

This extreme range of δ15N values seems to be unique in the geological record and we propose 122 

to single it out as the Nitrogen Isotope Event (NIE). 123 



In order to investigate the nature of this NIE, we can first focus on the significance of the 124 

extremely positive δ15N values, starting with the reassessment of previously proposed 125 

hypotheses. The hypothesis of a 15N-enriched atmospheric reservoir derived from chondrite-126 

like material22,23 can be ruled out because (i) such a contribution from 15N-enriched 127 

extraterrestrial material should be observed well before 2.8 Ga (Figure 1) and (ii) the abundance 128 

of δ15N extreme values should decrease with time, in contrast with the unique sharp peak 129 

recorded between 2.8 and 2.6 Ga (Figure 1). Furthermore, while micrometeorites have been 130 

reported in the Tumbiana Formation29, there is no evidence for contribution of extraterrestrial 131 

material within the Serra Sul Formation. 132 

Several lines of evidence can also be used to rule out metamorphic alteration as the 133 

mechanism responsible for extreme δ15N values, at least in the Serra Sul Formation. Indeed, 134 

known diagenetic, metamorphic or hydrothermal processes rarely enrich sedimentary nitrogen 135 

in 15N to an extent of more than 10‰1,30, while δ15N values in the Serra Sul Formation range 136 

from +14 to +38‰. Moreover, metamorphism in the Serra Sul Formation does not exceed the 137 

greenschist facies (Supplementary Information), implying a negligible impact of post-138 

depositional processes on the studied samples31,32. Last but not least, no correlations were 139 

observed between Total N content (TN) and δ15N (R2 < 0.14), Total Organic Carbon content 140 

(TOC)/TN ratios and δ15N (R2 < 0.20), or δ15N and δ13Corg (R2 < 0.26) (Extended Data Figure 141 

2). 142 

Finally, the hypothesis of positive ammonium δ15N values resulting from NH3 degassing at 143 

high pH5,24 proposed as an explanation for extreme δ15N values in the 2.72 Ga Tumbiana 144 

Formation does not hold for the Serra Sul Formation, unless the ocean also had a high pH at the 145 

time. Indeed, at pH > 9.2, NH4+ dissociates to NH3, which can degas to the atmosphere with a 146 

strong isotope fractionation (+45‰ at 23°C33). When assimilated, the residual 15N-enriched 147 

NH4+ transfers its signature to the organic matter, which can subsequently be preserved in 148 

sedimentary rocks. Although such strong fractionations have never been recorded in modern 149 

alkaline environments, this hypothesis is well suited for the Tumbiana Formation, which was 150 

deposited in a restricted lacustrine setting with a substratum made of alkaline rocks26. The 151 

abiotic loss of nitrogen from the water column caused by ammonia degassing also provides a 152 

consistent explanation for the low TN and high TOC/TN of sediments from this formation5. 153 

However, samples from the Serra Sul Formation analyzed here neither show a strong TN 154 

depletion compared to other Neoarchean sedimentary rocks, nor any evidence of being 155 

deposited under a highly alkaline water column. They are representative of shallow to deep 156 

marine depositional environments, with neither evaporitic facies nor carbonates 157 

(Supplementary Information). If we assume that the ocean pH at the time was lower than 9.234, 158 

NH3 degassing cannot solely account for the extremely positive δ15N values of the Serra Sul 159 

Formation. 160 

Accordingly, none of these hypotheses can explain the NIE. The only one left to explore is a 161 

change in the biological nitrogen cycle, which is shown from today’s sedimentary record35 and 162 

likely also in the Precambrian1, to be regionally controlled. 163 

A transitional state in the N cycle 164 



Only a few metabolic pathways of the N-biogeochemical cycle can lead to a 15N-enrichment 165 

of fixed nitrogen species. N2 fixation with classic Fe-Mo nitrogenase does not impart any 166 

significant fractionation9, and Fe-Fe or Fe-V alternative nitrogenases generate organic matter 167 

with a negative δ15N8. Ammonification has a negligible impact on the δ15N9. Partial biological 168 

assimilation of NH4+ can enrich organic matter in 14N (ɛ ≈ -4‰ to -27‰36) if the pool of 169 

ammonium is progressively distilled but not quantitatively consumed37. However, the expected 170 

distribution of δ15N values following partial assimilation alone should be centered around 0‰, 171 

displaying both the upwelled 15N-depleted and the sinking 15N-enriched pools of ammonium. 172 

This mechanism has been proposed to explain a single set of Neoarchean δ15N values38, yet the 173 

two complementary fractions have never been recovered from the same study site. Our reported 174 

δ15N data from the Serra Sul Formation are centered around +28‰, with no negative values 175 

(Figure 2). Therefore, they are inconsistent with the distillation of an NH4+ reservoir by a simple 176 

assimilation process. None of the above-mentioned pathways can produce the extremely 177 

positive δ15N values recorded in the Serra Sul Formation. An oxidative pathway that strongly 178 

fractionates N isotopes must therefore have been at play. 179 

The strongly fractionating metabolism commonly considered for the moderately positive δ15N 180 

values recorded from 2.5 Ga onwards is non quantitative denitrification16,17,19,20, which in the 181 

modern ocean occurs in dysoxic parts of the water column. It requires both nitrification and a 182 

large and consistently oxic surface water layer where nitrate can accumulate. In this case, it is 183 

the isotope composition of the enriched residual nitrate that is expressed and recorded in the 184 

sediments. Although denitrification can induce isotope fractionation by as much as 30‰ in 185 

nitrate-replete conditions39, the observed range of δ15N values should be significantly smaller, 186 

as it depends on the isotope mass balance between N2-fixation and denitrification in Oxygen 187 

Minimum Zones (OMZs) or sediments. As an example, in the modern ocean where nitrate is 188 

stable both in the photic zone and in deeper waters, and thus not fully denitrified, δ15N values 189 

only reach up to +15‰ in OMZs9,35,39. 190 

For both drill core samples of the Serra Sul Formation, ammonium is expected to be the 191 

dominant fixed nitrogen species40. We thus propose a scenario where the mechanism 192 

responsible for the positive δ15N values is ammonium oxidation to N2, N2O, or NO2-, tied to a 193 

cryptic oxygen cycle. Ammonium oxidation isotope fractionation can reach up to +55‰ when 194 

ammonium is co-oxidized with methane by methanotrophs41 and up to +38‰ when ammonium 195 

is oxidized by ammonium-oxidizing bacteria and archaea42. Importantly, as for denitrification, 196 

the isotope expression of this oxidative pathway requires ammonium oxidation to be non 197 

quantitative. 198 

In the anoxic ocean of the early Neoarchean, ammonium oxidation can only take place in the 199 

photic zone where photosynthesis occurs and generates the electrochemical potential necessary 200 

to oxidize ammonium. In this photic zone, ammonium oxidation must be in competition with 201 

ammonium assimilation, since photosynthetizers require N for their growth. From there, several 202 

cases can be envisioned. If photosynthesis hardly generates the necessary oxidants for 203 

ammonium oxidation, then ammonium is essentially assimilated by photosynthetizers and, 204 

depending on its rate of assimilation, its 15N-enrichment will be low to null. 15N-depletion can 205 

even happen, which may explain the slightly negative δ15N values reported during the NIE38. If 206 

photosynthesis generates enough oxidants to oxidize much of the ammonium before it can be 207 

assimilated, 15N-enrichments will also be low or null as N would be supplied by N2-fixation. 208 

As a result, a nitrogen cycle comprising the different pathways of ammonium oxidation to 209 



gaseous N-species continuously escaping the system can generate all the range of δ15N values 210 

reported during the NIE, from mildly negative to extremely positive depending on regional 211 

controls on primary productivity and ammonium supply. 212 

In summary, similarly to nitrate-dominated environments where δ15NNO3- values are 213 

regionally controlled (ranging from 0 to 15‰) and depend on the mass and isotope balance 214 

between N sources (N2-fixation and nitrate supply) and N sinks (denitrification in the water 215 

column, in the sediments and nitrate assimilation), in an ammonium-dominated environment, 216 

the δ15NNH4 values would depend on the mass and isotope balance between N2-fixation, 217 

ammonium supply, ammonium oxidation and ammonium assimilation. The extreme range of 218 

δ15N values recorded in the Tumbiana Formation is even better explained by ammonia 219 

degassing occurring alongside ammonium oxidation, which together could drive δ15N values 220 

up to +50‰. 221 

From the NIE to the GOE 222 

For such a transitional state to occur during the Neoarchean, photosynthesis must have been 223 

generating oxidants able to oxidize ammonium into volatile gaseous species. Most metabolic 224 

pathways oxidizing ammonium need O2. Even canonical anaerobic ammonium oxidation 225 

(anammox) requires the presence of nitrite, which cannot be produced without O243. In a fully 226 

anoxic world, in the absence of oxygenic photosynthesis, only the Feammox reaction has been 227 

suggested as a biological mechanism associated with ammonium oxidation44. However, this 228 

pathway has been substantiated for iron-rich depositional environments and associated with 229 

only slightly positive δ15N values44. 230 

Dioxygen is therefore necessary to account for ammonium oxidation during the NIE. The 231 

preservation of a sulfur mass independent fractionation signal in both the Serra Sul and 232 

Tumbiana sediments45,46 indicates, however, that free O2 was not accumulating in the ocean 233 

and atmosphere at that time. Free O2 must have been present at a low level but in sufficient 234 

amounts to fuel ammonium oxidation. Indeed, in modern nitrite-rich anoxic marine zones, 235 

ammonium oxidation occurs at nanomolar oxygen concentrations, compatible with anoxic 236 

surrounding waters47. The overall low levels of O2 would also prevent the accumulation of 237 

nitrate if any was formed, which would have been quantitatively converted into N2 or N2O.  238 

This intermediate state of the N-cycle would have ended progressively as O2 supply in the 239 

photic zone surpassed ammonium supply. With increasing O2 concentrations, ammonium 240 

oxidation would have proceeded up to nitrate production in dysoxic surface water masses. As 241 

their size grew, these dysoxic surface water masses became connected, and extended deeper 242 

than the photic zone. Nitrate was able to accumulate, turning the N-cycle to a new steady state 243 

where denitrification and anammox became the main drivers of the δ15N sedimentary record. 244 

We conclude that the extreme range of nitrogen isotope signatures recorded in the 2.8-2.6 Ga 245 

time interval reflect micro-aerobic conditions prone to the emergence of ammonium oxidation. 246 

The NIE would thus mark the emergence of biological oxidative nitrogen cycling in surface 247 

oceans transitioning from fully anoxic to coexisting anoxic and dysoxic water masses and might 248 

underline one of the very first steps of the GOE. 249 
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Figure 1. Compilation of paired Precambrian sedimentary δ15N (a) and δ13Corg (b) data, 357 

including all lithologies. The different colours represent the various metamorphic grades 358 

(lower than greenschist (light green), greenschist (medium green), higher than greenschist (dark 359 

green) facies). The studied samples are represented by circled red dots. They experienced only 360 

limited metamorphic conditions, not higher than greenschist facies. 361 

Figure 2. Carbon and nitrogen geochemical and isotopic profiles for drill cores GT13 and 362 

GT16. Stratigraphic logs simplified from ref 6. Dotted lines correspond to mean values. Error 363 

bars for δ15N measurements represent s.d. 364 

Table 1. Data featuring drill core ID, sample depth (m), TOC (wt. %, whole rock), TN (ppm, 365 

wholerock), TOC/TN, δ13Corg (‰ vs. PDB), and δ15Nbulk (‰ vs. air), for all samples analyzed 366 

along the GT13 and GT16 drill cores. Standard deviation (SD) and number of replicates (Nb 367 

repl.) are given for all parameters. 368 
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METHODS 372 

Sampling. Twenty-four samples were chosen along the two studied drill cores (11 samples for 373 

drill core GT13 and 13 samples for drill core GT16) according to their organic matter content 374 

(TOC>0.02% in the digestion residue), that mostly reflects their potential in containing enough 375 

nitrogen for analysis. 376 

Chemical treatment prior to C and N analyses. Samples were first crushed into powder using 377 

a ring and puck mill in order to obtain sample powder smaller than 60 μm. Carbonate-free 378 

residues were obtained by mixing sample powders with 6N HCl for two successive digestion 379 

steps: first at room temperature for 24h, then at 80°C for 4h. Samples were then rinsed with 380 

deionized distilled water to a neutral pH and oven-dried at 40°C for 48h. 381 

C isotopic analyses. The decarbonated residues were poured into tin capsules (50 to 80 mg of 382 

powder) and weighted using a Sartorius M2P ultra-balance before TOC and δ13Corg 383 

measurements were performed using a Thermo Fisher Scientific Flash Smart elemental 384 

analyser, coupled to a Thermo Fisher Scientific Delta V isotope ratio mass spectrometer (EA-385 

IRMS) via a Conflo IV interface. Certified USGS40 (δ13Corg = -26.39‰, TOC = 40.82 wt.%) 386 

and caffeine IAEA-600 (δ13Corg = -27.77‰, TOC = 49.48 wt.%) reference materials were used 387 

for the calibration. Total organic carbon (TOC) contents are expressed in dry weight percentage 388 

(wt.%) of the non-decarbonated bulk powder and isotope results are reported in delta-notation 389 

relative to V-PDB. Each measurement session included three to four standards measurements 390 

at the beginning and at the end, as well as one standard measurement every 12 samples. The 391 

mean δ13Corg precision for standards is better than 0.35‰ and the mean accuracy better than 392 

0.28‰. Each sample was duplicated. The mean external reproducibility (2σ), based on sample 393 

replicate analyses and including powder resampling and reprocessing via chemical treatment, 394 

is ± 0.012 wt.% for the TOC content and ± 0.26‰ for the δ13Corg.  395 

N isotopic analyses. As all samples contain less than 50 ppm N, the EA-IRMS method applied 396 

for carbon analyses is not sensitive enough for reliable bulk nitrogen isotopic analyses1,48. 397 

Samples were therefore analyzed at IPGP using the “classical sealed-tube combustion method” 398 

as described in1,49. In brief, N2 was produced offline through sealed-tube Dumas combustion 399 

and cryogenically purified in a vacuum line. Up to 400 mg of decarbonated residual powder 400 

was put into a quartz tube with CuO and Cu wires, purified beforehand at 900°C for 2h in a 401 

muffle furnace to prevent contamination. Samples were degassed for 12h at 150°C under 402 

vacuum to remove adsorbed atmospheric N2 and organics. Quartz tubes were then sealed 403 

directly under vacuum and combusted in a muffle furnace at 950°C for 6h under oxidizing 404 

conditions by oxygen liberated from the CuO wires, then cooled at 600°C for 2h, allowing 405 

residual oxygen to combine with cupric oxide and nitrous oxide to be reduced by copper, and 406 

finally cooled to ambient temperature50. The extraction yield for this protocol is 100% for both 407 

organic and mineral nitrogen51, including ammonium in minerals such as phyllosilicates. The 408 

content of each quartz tube was released in the vacuum line with a tube cracker, where CO2 and 409 

H2O were trapped cryogenically to avoid any subsequent isobaric interferences. The purified 410 

incondensable N2 gas was concentrated into a calibrated volume for quantification using a 411 

Toepler pump (Hg manometer). Standard analytical procedures for nitrogen usually include 412 

CaO in the reagents to trap gaseous CO2 and H2O from the samples50. Given that the addition 413 

of CaO significantly contributes to analytical blanks51, we performed a few tests which show 414 

that the addition of CaO does not yield significant δ15N differences. Samples were consequently 415 



analyzed without the addition of CaO. Purified N2 was analyzed by dual-inlet mass 416 

spectrometry using a ThermoFinnigan DeltaPlus XP IRMS. Possible air contamination and 417 

isobaric interferences (due to CO) were monitored by scanning of m/z 12 (C from CO2, CO, 418 

CH4 or organic compounds), 18 (H2O), 30 (C18O), 32 (O2), 40 (atmospheric Ar) and 44 (CO2). 419 

Analytical blanks for the entire procedure are <0.02 micromoles N, which represents a mean of 420 

7% of the gas (17% of the gas for the smallest sample and less than 3% for more concentrated 421 

samples). TN and δ15N values have been individually corrected from the blank contribution, 422 

using the reference blank value of δ15N = -3.7‰51. On average, blank-corrected δ15N values are 423 

2.3‰ higher than their raw counterparts (from 1.2‰ to 3.9‰ higher). External δ15N 424 

reproducibility ranged between 0.1 and 3.5‰ with a mean of 1.5 ± 1.5‰ (n = 6). Samples that 425 

were replicated are reported in Table 1. International standards were used in a prior study to 426 

calibrate both the EA method and the sealed tube combustion method52: it showed that results 427 

obtained using the EA-IRMS compared well to those obtained using the sealed tube method 428 

presented here. Accuracy was monitored by measuring certified materials IAEA-N1 (+0.4 ± 429 

0.2‰) and IAEA-N2 (+20.3 ± 0.2‰), and IPGP internal standard MS#5 (+14.9 ± 0.5‰)52. In 430 

addition, samples from the Buck Reef Chert Formation44, displaying known TN and δ15N values 431 

that strongly differ from the Serra Sul samples, were measured throughout all measurement 432 

sessions as internal quality standards. 433 

Geological context of the Serra Sul and Tumbiana formations 434 

Here we present a short description of the geological context of the Serra Sul Formation, 435 

Amazonian Craton (Extended Data Figure 3A), and point out the main similarities and 436 

differences with the Tumbiana Formation, Pilbara Craton, where similar strongly positive δ15N 437 

values have been reported5,46. The age of the Serra Sul Formation is constrained between 2684 438 

± 10 Ma (U-Pb on detrital zircon6) and 2627 ± 11 Ma (Re-Os dating on molybdenite28; Extended 439 

Data Figure 4). This indicates that the Serra Sul Formation is slightly younger than the 440 

Tumbiana Formation, which was deposited around 2724 ± 5 Ma (U-Pb on volcanic zircon)53 to 441 

≤2715 ± 6 Ma (U-Pb on detrital zircon)54. Importantly, paleomagnetic investigations indicate 442 

that at about 2.75 Ga the Carajás Basin was located at a low latitude (3.4 ± 8.5°)32, whereas the 443 

Hamersley Basin in which the Tumbiana Formation deposited was located at high to mid 444 

paleolatitude (between 51.5 ± 7.0° and 32.1 ± 5.7°)55. Both the Serra Sul6,31,56 and the 445 

Tumbiana57 formations experienced low-grade (≤ 300°C) greenschist facies metamorphism. 446 

The Serra Sul Formation was deposited in the Carajás Basin, southeast Amazonian Craton 447 

(Extended Data Figure 3A, B). The basement of the basin comprises various Meso- to 448 

Neoarchean rocks58 capped by a 4 to 6 km thick basaltic series of the ca. 2.75 Ga Parauapebas 449 

Large Igneous Province (PLIP)27. Soon after the main magmatic pulse of the PLIP, infilling of 450 

the rift initiated with the deposition of iron formations (IFs) of the Carajás Formation (Extended 451 

Data Figure 4). These IFs are characterized by strong positive Eu anomalies indicating the 452 

influence of high-temperature hydrothermal fluids in seawater59, absence of Ce anomalies 453 

arguing for ambient reducing conditions during deposition59, and occurrence of positive La and 454 

Y anomalies59 typical of chemical sediments deposited in oceanic setting60. In addition, Fe and 455 

C isotope data indicate that deposition of the IFs was mediated by anoxygenic photosynthetic 456 

organisms59. The transition from the Carajás to Serra Sul formations is marked by several IFs 457 

layers up to 10 m thick, grading upward into detrital terrigenous sedimentary rocks including 458 

sandstones, siltstones, conglomerates and flat pebble conglomerates6,61–65. The presence of BIFs 459 

at the base of the Serra Sul Formation61 indicates marine environments, and the different 460 



sedimentary features of this formation point toward subaqueous environments ranging from 461 

shallow to deep water settings influenced by slope instability and gravity flow processes6,62,63. 462 

The Serra Sul Formation does not preserve evidence of contemporaneous volcanic activity6. 463 

These lithologies and environments contrast with those of the Tumbiana Formation, which 464 

comprises mainly stromatolitic and fenestrate carbonates, calcareous sandstones, various 465 

volcanic and volcaniclastic rocks including tuffs, lapillis and tuffaceous sandstones, and other 466 

detrital facies including conglomerates and flat pebbles conglomerates5,26,46,57,66. Contrarily to 467 

the Serra Sul Formation, the presence of tuffs and lapillis argues for active volcanic activity 468 

during the deposition of the Tumbiana Formation66. Various sedimentary structures such as 469 

desiccation cracks point to shallow subaqueous environments subjected to frequent 470 

emersion26,66. Geochemical characteristics of chemical sedimentary rocks of the Tumbiana 471 

Formation, such as nearly chondritic Y/Ho and the absence of positive Y anomaly, point to 472 

lacustrine subaqueous environments26,66, and strongly positive δ15N values have been suggested 473 

to evidence alkaline waters5. 474 

Studied drill cores 475 

Samples were collected from two diamond-drilled cores separated by about 1.75 km from each 476 

other and intersecting the Serra Sul Formation in the east of the Carajás Basin (Extended Data 477 

Figure 3C). These drill cores (GT-41-FURO-13 and GT-41-FURO-16) have been selected due 478 

to their low metamorphic and hydrothermal overprints, with only rare occurrences of quartz-479 

chlorite-bearing micro-veins. Both drill cores, named thereafter GT13 and GT16, exhibit 480 

similar lithologies and sedimentary facies, but no attempt was made to correlate them, so that 481 

their relative stratigraphic positions remain unconstrained. A detailed description of 482 

sedimentary facies is presented in ref.6 and summarized below. 483 

The most common facies association comprises polymictic conglomerates interbedded with 484 

sandstones and siltstones with various sedimentary features attesting an overall excellent 485 

preservation state (Extended Data Figure 1). This facies association is interpreted to represent 486 

deep water environment, where conglomerates and coarse sandstones were deposited by 487 

subaqueous mass flow, cohesive debris flow or hyper-concentrated density flow67–72. 488 

The other facies association identified consists of sandstone, siltstone and flat pebble 489 

conglomerates made up of intraclastic granules to pebbles (Extended Data Figure 1). Flat pebble 490 

conglomerates are interpreted to result from the failure and subsequent reworking of compacted 491 

to loosely consolidated shoreface deposits73. The limited transport by mass movement of 492 

shoreface deposits and occurrence of wave ripples in sandstones and siltstones suggest 493 

relatively shallow water environments (shoreface to upper offshore). 494 

Preservation of the primary N isotope signature 495 

As post-depositional modifications of sedimentary δ15N can occur during diagenesis and 496 

metamorphism, it is essential to evaluate the effects of such processes. It seems unlikely that 497 

organic matter remineralization during diagenesis significantly impacted the Serra Sul 498 

Formation δ15N record since early diagenesis under anoxic conditions does not seem to shift 499 

organic matter δ15N values by more than 1‰74, and the measured values range from +10 to 500 

+35‰. 501 



The Serra Sul Formation has undergone metamorphism in the greenschist facies6. While an 502 

increase in δ15N and a decrease in TN is usually seen during prograde metamorphism75–78, 503 

studies on coal series show that nitrogen loss from organic matter during anthracitization is not 504 

associated with significant δ15N increase79–81. The absence of covariation between δ15N and 505 

TOC/TN in the Serra Sul Formation argues against a strong modification of δ15N values due to 506 

metamorphic N-loss (Extended Data Figure 2). Moreover, maximum isotopic enrichments 507 

documented for greenschist facies metamorphism are below 2‰78,82, which is small compared 508 

to the reported range of measured δ15N in the Serra Sul Formation (between +10‰ and +35‰). 509 

Secondary modification of δ15N values can also occur during metasomatic ammonium addition 510 

through hydrothermal recycling, which tends to decrease the TOC/TN and either increase or 511 

decrease the δ15N depending on the isotopic signature of recycled sediments30,83. The relative 512 

constancy of TOC/TN along the core argues against any heterogeneous secondary overprint of 513 

the nitrogen record, either by metamorphism or by metasomatism. Finally, the absence of 514 

significant δ15N differences between facies also argues against a metamorphic or metasomatic 515 

modification, as samples of different lithologies would react differently to thermal alteration. 516 
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EXTENDED DATA ITEMS 643 

Extended Data Figure 1. Sedimentological logs of the drill cores GT13 and GT16 with 644 

photographs of the main facies and sedimentary structures. Arrows point to the 645 

stratigraphic top. Top left photograph: conglomerate with oriented clasts and sandy matrix; 646 

middle left: alternations of siltstone and fine sandstone; bottom left and middle: syn-647 

sedimentary, centimetric-scale faults within fine sandstone to siltstone. Top right: sandstone 648 

with wave ripples, framboidal pyrite (blue circles) and load casts. Middle right: normally graded 649 

conglomerate with rounded quartz pebbles and sub-angular sedimentary clasts, grading to 650 

coarse sandstone. Bottom right: flat pebble conglomerate comprising elongated and deformed 651 

intraformational clasts. 652 

Extended Data Figure 2. Crossplots for drill cores GT13 (orange) and GT16 (red): TOC 653 

(wt. %) vs. TN (ppm); δ15N (‰ vs. air) vs. TN (ppm); δ15N (‰ vs. air) vs. TOC/TN and δ13Corg 654 

(‰ vs. PDB) vs. δ15N (‰ vs. air). 655 

Extended Data Figure 3. Maps illustrating the location of the Carajás Basin. a, Main 656 

tectonic elements of South America84. b, Geological map of the Carajás Basin85. c, Location of 657 

the drill cores. 658 

Extended Data Figure 4. Main sedimentary units of the Carajás Basin and age constraints. 659 

1: ref.86; 2, 3: ref.87; 4: ref.88; 5: ref.6; 6: ref.28. 660 
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