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We review the recent progress on the extraction of unpolarized TMD PDFs and TMD FFs from
global data sets of Semi-Inclusive Deep-Inelastic Scattering, Drell-Yan and Z boson production. In
particular, we address the tension between the low-energy SIDIS data and the theory predictions, and
explore the impact of the very precise LHC data on the fit results.

KEYWORDS: QCD, hadron structure, hadronization, transverse momentum distributions

Introduction. An accurate knowledge of the unpolarized transverse-momentum-dependent (TMD)
parton distribution functions (PDFs) and fragmentation functions (FFs) is one of the most important
goals for the hadron structure and hadronization physics programs. Understanding their structure with
high precision allows one to unravel the (un)polarized three-dimensional structure of hadrons in mo-
mentum space and has a significant impact on high-energy physics too. Working in a non-perturbative
QCD regime, we need to complement perturbation theory with techniques to access the structure of
the TMD distributions (TMDs). Among the different approaches available (continuum methods, lat-
tice field theory, etc.) we rely on fits of experimental data sets.

SIDIS cross section. In the limit where leptonic and hadronic masses can be neglected, the dif-
ferential cross section for unpolarized semi-inclusive deep-inelastic scattering (SIDIS) at small trans-
verse momentum [1, 3] reads:

dσSIDIS

dx dz d|qT | dQ
=

8π2 α2 z2 |qT |
x Q3

[
1 +
(
1 − Q2

xs

)2]
H(Q, µ) FUU,T

(
x, z, q2

T ,Q
)
, (1)

where x, z are the light-cone fractions associated to the collinear momenta of the incoming and out-
going quarks, respectively [1]; q is the four momentum of the exchanged photon, whose transverse
component in the frame where the incoming and outgoing hadrons are collinear is qT and for which
Q2 = −q2 > 0; α is the QED coupling constant, H is the hard function, and µ the renormalization
scale. Since we are interested only in the small transverse momentum limit, in Eq. (1) we have ne-
glected the contributions from fixed-order calculations at high |qT | and the matching of these to TMD
factorization.

The unpolarized SIDIS structure function FUU,T is defined as [1]:
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where the sum runs over quarks and antiquarks a. The f̃ a
1 (x, b2

T ,Q,Q
2) and D̃a→h

1 (z, b2
T ,Q,Q

2) are, re-
spectively, the Fourier transforms of the unpolarized TMD PDF for a quark a in a proton, f a

1 (x, k2
⊥; Q,Q2),

and the TMD FF for a quark with flavor a fragmenting into a hadron with flavor h, Da→h
1 (z, z2 p2

⊥; Q,Q2).
The variable bT is conjugated via Fourier transform to the transverse momentum qT (and to the par-
tonic transverse momenta k⊥ and p⊥, such that qT = p⊥ − k⊥).

The observable provided by the Hermes and Compass collaborations is the multiplicity, namely
the ratio of the one-hadron inclusive cross section over the fully inclusive one, as a function of the
transverse momentum of the hadron PhT :

M(x, z, |PhT |,Q) =̇
dσSIDIS

dx dz d|PhT | dQ

/dσDIS

dx dQ
, (3)

where PhT is the transverse momentum of the observed hadron in the Breit frame, which is related to
qT as [2]:

qT = −PhT/z . (4)

In Ref. [3] it was demonstrated that the qT -differential cross section in TMD factorization at
the next-to-leading logarithmic accuracy (NLL) is able to correctly predict the normalization and the
shape of the SIDIS multiplicities (apart from a y-dependent normalization factor associated to sys-
tematic experimental effects in the Compass analysis). At variance with Ref. [4], we find a significant
tension between the experimental values for the SIDIS multiplicities and the calculations in TMD
factorization beyond NLL. This tension has been observed independently by other groups and docu-
mented, for example, in Ref. [5]. In order to tackle this discrepancy, we use the method proposed in
Ref. [6], which consists in introducing the following normalization factor:

ω(x, z,Q) =
dσSIDIS

dx dz dQ

/ ∫
d|PhT |

dσSIDIS

dx dz d|PhT | dQ
. (5)

This factor accounts for the difference beyond NLL between the integral of the PhT -dependent SIDIS
cross section and the collinear SIDIS cross section at the corresponding order in perturbation the-
ory. Within the scope of our analysis, which is limited to the small transverse momentum region,
the PhT -differential cross section is approximated with the TMD calculation. Beyond the NLL, the
prefactor becomes different from 1 and, in general, does not depend on PhT and any fit parameter. As
a consequence, the theoretical expression for the multiplicity becomes:

Mω(x, z, |PhT |,Q) = ω(x, z,Q) M(x, z, |PhT |,Q) . (6)

Drell-Yan / Z-boson production cross section. The cross section for Drell-Yan and Z-boson pro-
duction reads:

dσDY/Z

d|qT | dy dQ
=

16π2α2

9Q3 |qT | PH(Q, µ) F1
UU
(
x1, x2, |qT |,Q

)
, (7)

where qT is the transverse momentum of the intermediate boson, y is its rapidity (y = 1
2 ln
( q0+qz

q0−qz

)
), P

is the phase space factor to account for potential cuts on the lepton kinematics [7], andH is the hard
function of the process. At low transverse momentum q2

T ≪ Q2 = q2 > 0 the structure function can
be expressed as a convolution over the partonic transverse momenta of two TMD PDFs:
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1 (x2, b2

T ; Q,Q2) ,

(8)

2

020123-2JPS Conf. Proc. , 020123 (2022)37

Proceedings of the 24th International Spin Symposium (SPIN2021)
Downloaded from journals.jps.jp by 192.84.132.223 on 01/16/23



where ca(Q) are the electro-weak charges [7], x1,2 are the longitudinal momentum fractions, which,
in the small transverse momentum limit, take the values:

x1 =
Q
√

s
ey , x2 =

Q
√

s
e−y . (9)

Transverse momentum distributions. The evolution of TMDs from the initial values of the renor-
malization and rapidity scales µi, ζi, to the final values µ f , ζ f , is given by

f̃ a
1 (x, b2

T ; µ f , ζ f ) = f̃ a
1 (x, b2

T ; µi, ζi) exp
{ ∫ µ f

µi

dµ
µ
γF

[
αs(µ);

ζ

µ2

]} (ζ f

ζi

)−K(|bT |, µi)
, (10)

where αs is the strong coupling constant and K is the Collins-Soper kernel [2]. The same structure
holds for the TMD FF. The scale µi can be conveniently fixed as µb = 2e−γE/|bT |, and thus Eq. (10) is
perturbatively meaningful only at low values of |bT |. The arbitrary matching to the non-perturbative
regime at large |bT | is accomplished by modifying the scale µb as µbT ∗ = 2e−γE/bT ∗, with

bT ∗(|bT |, bmin, bmax) = bmax

(1 − e−|bT |4/b4
max

1 − e−|bT |4/b4
min

)1/4
, (11)

where

bmax = 2e−γE GeV−1 ≈ 1.123 GeV−1 , bmin = 2e−γE/Q . (12)

In this way, bT ∗ saturates to bmax at large |bT |, as suggested by the CSS formalism [2]. At small
|bT |, the arbitrary matching to fixed-order collinear calculations is realized by saturating bT ∗ to bmin.
Accordingly, in the limit |bT | → 0 the Sudakov exponent vanishes, as it should. For the processes
considered in this analysis, it is customary to choose the final scales as µ2

f = ζ f = Q2 [2], which
explains the Q dependence of the structure functions in Eqs. (2) and (8). Given the structure of
the evolution equations, it is possible to introduce power corrections to the renormalization group
equation for the Collins-Soper kernel K [8]. This results in a non-perturbative correction term, gK(b2

T ),
for which we choose a specific functional form:

K(|bT |, µi) = K(bT ∗, µi) + gK(|bT |) , gK(b2
T ) = g2

2
b2

T

4
. (13)

In order not to affect the perturbative calculation at small |bT |, the non-perturbative term needs to
vanish in the limit |bT | → 0. The TMD PDF (FF) at the input scales can be factorized on the basis of
collinear PDFs (FFs):

f̃ a
1 (x, b2

T ; µi, ζi) =
∑

b

∫ 1

x

ds
s

Ca←b(s, |bT |; µi, ζi) f b
1

( x
s

; µi

)
≡ [C ⊗ f1](x, |bT |; µi, ζi) , (14)

where the sum runs over quarks, antiquarks, and the gluon. Since the matching coefficients C are
determined as a perturbative expansion in powers of αs(µb), Eq. (14) is formally valid only at low |bT |
and we introduce a flavor-independent non-perturbative factor to multiply the matching in Eq. (14).
For the TMD PDF it is defined as:

f1 NP(x, b2
T ; Q0) =

g1(x) e−g1(x)
b2
T
4 + λ2 g2

1B(x)
[
1 − g1B(x) b2

T
4

]
e−g1B(x)

b2
T
4 + λ2

2 g1C(x) e−g1C(x)
b2

T
4

g1(x) + λ2 g2
1B(x) + λ2

2 g1C(x)

[ µ2
b

Q2
0

]−gK (b2
T )
,

(15)
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and for the TMD FF, instead, the form is:

D1 NP(z, b2
T ; Q0) =

g3(z) e−g3(z)
b2
T

4z2 +
λF
z2 g2

3B(z)
[
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T
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T
4z2

g3(z) + λF
z2 g2
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[ µ2
b

Q2
0

]−gK (b2
T )
.

(16)

The non-perturbative factors f1 NP, D1 NP → 1 for bT → 0. The gi functions account for the kinematic
dependence of the widths of the distributions:

g{1,1B,1C}(x) = N{1,1B,1C}
xσ{1,2,3}(1 − x)α

2
{1,2,3}

x̂σ{1,2,3}(1 − x̂)α
2
{1,2,3}
, g{3,3B,3C}(z) = N{3,3B,3C}

(zβ{1,2,3} + δ2{1,2,3})(1 − z)γ
2
{1,2,3}

(ẑβ{1,2,3} + δ2{1,2,3})(1 − ẑ)γ
2
{1,2,3}
,

(17)

where x̂ = 0.1, ẑ = 0.5, and Q0 = 1 GeV2.
In total there are 26 free parameters: 1 associated to the non-perturbative part of TMD evolution

(Eq. (13)), 11 related to the non-perturbative part of the TMD PDF (Eqs. (15), (17)), 14 for the non-
perturbative part of the TMD FF (Eqs. (16), (17)).

Experimental data. This fit of unpolarized TMDs is based on the analysis of the “global” set of
the experimental data available to extract unpolarized TMDs, namely Semi-Inclusive DIS, Drell-Yan,
and Z-boson production. Data for electron-positron annihilation into two hadrons are not available
yet. We do not consider data from processes involving jet-based quantities, such as the thrust, given
the significant differences of the involved formalism. We also do not consider data for W-boson pro-
duction, given its relation with the flavor structure of the TMDs [9], which is beyond the scope of
this analysis. In total we analyze 2021 data points, of which 1547 are from SIDIS measured by the
Hermes and Compass collaborations. The first provides unpolarized multiplicities for scattering off a
proton and deuteron target, with identified positive and negative pions and kaons in the final state.
The second provides multiplicities for scattering off a deuteron with identified charged hadrons in the
final state. The rest of the data is for Drell-Yan and Z boson production, both in the collider mode
(from the ATLAS, CMS, CDF, D0, STAR, PHENIX collaborations) and in the fixed-target mode at
low energy (from the E288, E605, E772 collaborations).

Results. This fit is performed at an approximate N3LL perturbative accuracy [7], and we rely
on the following choices for the collinear PDFs and FFs: MMHT2014nnlo68cl for the proton quark
PDFs (to describe the deuteron we rely on the same set and isospin symmetry), DSS14-NLO for
the quark-to-pion FFs, DSS17-NLO for the quark-to-kaon FFs. The lack of an extraction of pion
and kaon FFs at NNLO is what prevents us from reaching a complete N3LL accuracy. On top of
the experimental uncertainties, we associate a theoretical error to the observables computed in TMD
factorization, with two contributions: the first is the hessian error stemming from the aforementioned
collinear parton distributions, which we consider fully correlated; the second is an uncorrelated 0.5%
error that we include as a conservative estimate of the error arising from scale uncertainties and from
the choice of the collinear PDF set.

We implement the following cuts in order to restrict the analysis to the small transverse momen-
tum region (see also Ref. [3] for a similar choice):

|qT | | DY/Z < 0.20 Q , |PhT | | SIDIS < min
{
z Q ,min

[
c1 Q , c2 z Q

]
+ c3

}
GeV , (18)

where c1 = 0.2, c2 = 0.5, c3 = 0.3. In the SIDIS case, the structure of Eq. (18) guarantees that
|qT | < Q, whereas for the Drell-Yan the cut is more stringent. The cut is reduced to 0.18 for the very
precise ATLAS data.
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With 200 Monte Carlo replicas, 2021 data points, and 26 parameters, we obtain a χ2/data of
1.063±0.005. In Fig. 1 we provide an example of the extracted TMDs. The plots show the whole dis-
tributions, including perturbative and non-perturbative components. The shape of the non-perturbative
parts in Eqs. (15) and (16) is crucial for a correct description of the data. In Fig. 1 (b) one can appreci-
ate the contribution of a weighted Gaussian distribution at small transverse momentum. The complete
list of results (theory summary, global statistical estimators, the distribution of best fit parameters and
their correlations, the χ2 distribution and the contributions of each dataset to it, the error function dis-
tribution, the comparison between theory and experimental data, and the extracted TMDs) obtained
from the fit presented in this contribution is available at the following public git repository in the form
of a html file:

https://github.com/MapCollaboration/TMDMAP22-results
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Fig. 1. (a) TMD PDF for a d quark in a proton at Q = 2 GeV and x = 0.01; (b) TMD FF for a d quark
fragmenting into a π− at Q = 2 GeV and z = 0.3. The flavor dependence enters only from the collinear
distributions.
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