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Codiagnosability Enforcement in Labeled Petri Nets
Ning Ran, Tingting Li, Zhou He, and Carla Seatzu

Abstract

This work aims to enforce codiagnosability in labeled Petri nets that are monitored by a series of sites. A
labeled Petri net is codiagnosable with respect to a certain fault, if the occurrence of such a fault could be
detected by at least one of the sites. We assume that codiagnosability is imposed to a non-codiagnosable system
by appropriately positioning additional sensors. In particular, the goal is that of minimizing the cost of the new
sensors. The enumeration of the whole state space is avoided thanks to the notions of basis markings and minimal
explanations. An automaton, called Unfolded Verifier, is introduced to verify codiagnosability. Finally, the set of
optimal labeling functions is obtained solving an integer nonlinear programming problem.

Index Terms

Discrete event systems, fault diagnosis, basis markings, codiagnosability enforcement

I. INTRODUCTION

Diagnosability is an important property that must hold when a fault diagnosis method applies in discrete event
systems (DESs). Diagnosability analysis consists in verifying a priori if failures can be detected in finite steps. A
lot of researchers have proposed a series of methods both in a centralized setting [1]–[3] and in a decentralized
setting [4]–[11].

In a Petri net model, an observable event corresponds to a transition whose occurrence may be monitored by a
sensor. In particular, a transition is said to be observable if it corresponds to an event to which a sensor is associated
in the physical system; unobservable otherwise. We can analyse diagnosability using the information conveyed by
the set of sensors. Sensor configuration may be appropriately modified to make diagnosable a system that is not
diagnosable. In this paper we show how this can be done in a decentralized setting with the aim of minimizing the
total cost associated with the reconfiguration.

Cabasino et al. [12] propose a sensor reconfiguration approach to make a Petri net system diagnosable while
optimizing a certain objective function that typically takes into account the cost of sensors. They analyze diag-
nosability based on the unfolded reachability/coverability graph of the Verifier Net (VN). However, since the scale
of reachability/coverability graph could be quite large, the implementation of the method may reveal unfeasible in
practical cases.

The notion of basis marking was first proposed in [13] for estimating the markings of Petri nets with silent transi-
tions. It provides a compact way to describe the set of reachable markings consistent with the observations. Then this
method was efficiently extended to study some problems related to partial observation, such as diagnosis [14]–[18],
prognosis [19], detectability [20]–[22], etc.

To avoid exhaustive enumeration of the whole state space, [17] improves the computational efficiency of the
diagnosability enforcement approach in [12] by using the notion of basis marking. In more detail, a particular
automaton, called Unfolded Verifier, is defined to perform diagnosability verification of labeled Petri net systems.
The paths in the Unfolded Verifier responsible for undiagnosability are identified, then some transitions in such
paths are relabeled using appropriate rules proposed in [12]. Finally, given an objective function, an optimal labeling
function that guarantees diagnosability is determined.
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This work extends the approach in [17] to a decentralized setting, i.e., enforce codiagnosability in Petri nets using
optimal sensor selection. More precisely, some sites monitor the evolution of the system and a fault is detected
if and only if at least one site is able to do that. If such is the case for any possible occurrence of the fault, the
system is said codiagnosable with respect to such a fault. The notion of Unfolded Verifier and some results are
extended to a decentralized setting. We show how to find the paths in the Unfolded Verifier that are responsible
of the uncodiagnosability of the system. Then, we provide a series of rules for relabeling some transitions in such
paths. Finally, given an objective function that we want to minimize, we find the optimal labeling function solving
an integer nonlinear programming (INLP) problem.

II. PRELIMINARIES

A Petri net (PN) is a 4-tuple N = (P, T, F,W ), where P is the set of places and T is the set of transitions;
F ⊆ (P × T ) ∪ (T × P ) is the set of arcs; W is a mapping that assigns a non-negative integer weight to an arc:
W (x, y) > 0 iff (x, y) ∈ F , and W (x, y) = 0 otherwise, where x, y ∈ P ∪ T . The incidence matrix [N ] is a
|P | × |T | integer matrix with [N ](p, t) = W (t, p)−W (p, t).

A marking m is a mapping from P to N = {0, 1, 2, ...}: m(p) denotes the number of tokens in p. A PN system
with an initial marking m0 is denoted by (N,m0).

A transition t is enabled at m if for each place p in the preset of t: m(p) ≥ W (p, t), and we write m[t⟩. Firing
transition t leads to marking m′ where ∀p ∈ P,m′(p) = m(p)+[N ](p, t), and we write m[t⟩m′. The notation m[σ⟩
is used to denote that transition sequence σ = t1t2...tk is enabled at m. Marking m′′ is reachable from m if there
exists a transition sequence σ such that m[σ⟩m′′. The reachability set of (N,m), denoted by R(N,m), includes
all markings that are reacheable from m. The notations |σ| and π(σ) denote the length of σ and the Parikh vector
of σ, respectively. The set of sequences enabled at m0 is denoted by L(N,m0). The notation t ∈ σ denotes that
σ contains t, and T ′ ∩ σ ̸= ∅ means that there exists at least one transition in T ′ contained in σ.

A PN is: bounded if ∀p ∈ P , ∀m ∈ R(N,m0), m(p) ≤ k, where k is a positive number; deadlock-free if
∀m ∈ R(N,m0), ∃t ∈ T m[t⟩; acyclic if it has no directed circuits.

Let T ′ ⊆ T be a subset of transitions, the new PN N ′ = (P, T ′, F ′,W ) is called the T ′-induced subnet of N ,
where F ′ is the restriction of F to (P × T ′) ∪ (T ′ × P ).

A labeled PN system is a triple (N,m0,L), where L is a labeling function L : T → A∪{ε}, A is the alphabet and
ε is the empty string. A transition associated with ε (a symbol in A) by L is said to be unobservable (observable).
The set of unobservable (observable) transitions is denoted by Tu (To); [N ]u ([N ]o) denotes the restriction of [N ]
to Tu (To).

We extend L as follows: i) L(t) ∈ A, if t ∈ To; ii) L(t) = ε, if t = ε or t ∈ Tu; iii) L(σt) = L(σ)L(t), if
σ ∈ T ∗ and t ∈ T .

Given a label sequence w ∈ A∗, we denote by L−1(w) the set of transition sequences that are consistent with
w, namely L−1(w) = {σ ∈ L(N,m0) | L(σ) = w}. Some transition sequences are indistinguishable if they have
the same labels; distinguishable otherwise.

Let B ⊆ T ∗ be a language, the post-language of B after s is denoted by B/s, i.e., B/s = {s′ ∈ T ∗ | ss′ ∈ B}.

III. PROBLEM FORMULATION

The set Tu of unobservable transitions consists of the set of regular transitions Treg and the set of faults Tf , i.e.,
Tu = Treg ∪ Tf . The set Treg consists of Tr,o and Tr,uo, i.e., Treg = Tr,o ∪ Tr,uo, where Tr,o (Tr,uo) denotes the
set of regular transitions to which it is possible (not possible) to associate a sensor. The set Tf includes r different
fault classes T 1

f , T 2
f , ..., T r

f .

A. Codiagnosability of labeled PNs

A set of sites J = {1, 2, ..., ν} monitors the system with their own masks. We assume that each transition in To

is observable by at least one site, i.e., To =
⋃

j∈J To,j , where To,j ⊆ To is the set of transitions that are observable
by site j. Accordingly, Tu,j = T \ To,j denotes the set of transitions that are unobservable by site j. Moreover, we
assume that none of the symbols in A is the same as the name of a transition, i.e., A ∩ T ̸= ∅.

The alphabet of site j is Aj ⊆ A, and
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Lj(t) =

{
L(t), if L(t) ∈ Aj

ε, otherwise
(1)

denotes the labeling function of site j.
We denote by Ψ(T i

f ) the set of sequences of L(N,m0) ending with a fault in T i
f .

Definition 1 ( [16]): Given a system (N,m0,L) that is deadlock-free after any fault, it is codiagnosable wrt T i
f

if
(∀s ∈ Ψ(T i

f )), (∃K ∈ N), (∀σ ∈ L(N,m0)/s), |σ| ≥ K ⇒
(∃j ∈ J ), (∀σ′ ∈ L−1

j (Lj(sσ))), T i
f ∩ σ′ ̸= ∅

The labeled PN system is codiagnosable if it is codiagnosable wrt all fault classes.
In other words, a labeled PN system is codiagnosable wrt T i

f if at least one site is able to detect any fault in T i
f

in finite steps.

B. Problem definition and relabeling rules

Given a non-codiagnosable system (N,m0,L) monitored by a set J = {1, 2, ..., ν} of sites, our objective is to
identify ν new labeling functions:

Lj,new : T → Aj,new ∪ {ε}, j = 1, 2, . . . , ν,

such that (N,m0,Lnew) is codiagnosable, where Aj,new is the new alphabet of site j, and

Lnew(t) =

{
Lj,new(t), if ∃j ∈ J : Lj,new(t) ∈ Aj,new

ε, otherwise

We also denote Anew =
⋃

j∈J Aj,new.
In simple words, to enforce codiagnosability we select some transitions in the set To∪Tr,o to assign new symbols.

Without loss of generality, the new symbols are the names of the transitions, namely Aj,new = Aj ∪ (To,j ∪ Tr,o).
In particular, the transitions in Tr,o ∪ To are relabeled by two rules:
(R1) Given t ∈ Tr,o, we either relabel it as

• Lnew(t) = t and

Lj,new(t) =

{
t, if j ∈ J̄
ε, otherwise

(2)

for a certain set of sites J̄ ⊆ J ; or
• leave Lnew(t) unchanged as Lnew(t) = ε and Lj,new(t) = ε for all j ∈ J .

(R2) For a transition t ∈ To such that there exists another transition t′ ∈ To that is indistinguishable from t, we
either relabel it as

• Lnew(t) = t and

Lj,new(t) =

{
t, if t ∈ To,j

ε, otherwise
(3)

or
• leave Lnew(t) unchanged as Lnew(t) = L(t) and

Lj,new(t) =

{
L(t), if t ∈ To,j

ε, otherwise
(4)

According to rule R1, transition t ∈ Tr,o may become observable for some sites, assigning to it the new unique
label t, i.e., t itself. According to rule R2, to transition t ∈ To it may be assigned the new unique label t. This
means that t becomes distinguishable for all those sites for which it was already observable.

In the following discussion, we assume that:
(A1) There is one fault class.
(A2) The PN system is bounded.
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(A3) The Tu,j-induced subnets are acyclic for all j ∈ J .
(A4) The PN system is deadlock-free after the occurrence of a fault.
(A5) The PN system (N,m0,Ltotal) is codiagnosable, where Ltotal is defined as follows:

Ltotal(t) =

{
t, if t ∈ To ∪ Tr,o

ε, otherwise.
(5)

and for any site j ∈ J , it holds that

Lj,total(t) =

{
t, if t ∈ To,j ∪ Tr,o

ε, otherwise.
(6)

Assumption A1 is made for simplicity, and will be relaxed in Section VII-B. Assumptions A2 and A3 are
necessary for using the notion of basis marking [15]. The fourth assumption is typical in the literature on fault
diagnosis of DESs and avoids handling the case that a PN system is dead after a fault. The last assumption
guarantees that there exists at least one solution to the considered problem.

IV. EXTENDED BASIS REACHABILITY GRAPH

We first recall some preliminaries proposed in [15], [16].
Definition 2 ( [15]): Given m ∈ R(N,m0) and t ∈ To, the set of explanations of t at m is denoted by

Σ(m, t) = {σ ∈ T ∗
u | m[σ⟩m′,m′[t⟩}, and the set of e-vectors is denoted by Y (m, t) = π(Σ(m, t)).

Definition 3 ( [15]): Given m ∈ R(N,m0) and t ∈ To, the set of minimal explanations of t at m is denoted
by Σmin(m, t) = {σ ∈ Σ(m, t) | ∄σ′ ∈ Σ(m, t) : π(σ′) ⪇ π(σ)}, and the set of minimal e-vectors is denoted by
Ymin(m, t) = π(Σmin(m, t)).

Definition 4 ( [15]): Let w be an observation. The set of pairs (σo ∈ T ∗
o with L(σo) = w and the justification) is

denoted by Ĵ (w) = {(σo, σu), σo ∈ T ∗
o ,L(σo) = w, σu ∈ T ∗

u | [∃σ ∈ L−1(w) : σo = Po(σ), σu = Pu(σ)] ∧ [∄σ′ ∈
L−1(w) : σo = Po(σ

′), σ′
u = Pu(σ

′) ∧ π(σ′
u) ⪇ π(σu)]}, and the set of pairs (σo ∈ T ∗

o with L(σo) = w and the
j-vector) is denoted by Ŷmin(m0, w) = {(σo, y), σo ∈ T ∗

o ,L(σo) = w, y ∈ N|Tu| | ∃(σo, σu) ∈ Ĵ (w) : π(σu) = y}.
Definition 5 ( [15]): Let w be an observation and Ĵ (w) be a set of pairs. The set of basis markings (BM) of w is

denoted by Mb(w) = {m ∈ N|P | | m = m0+[N ]u ·π(σu)+[N ]o ·π(σo), (σo, σu) ∈ Ĵ (w)}, and Mb =
⋃

w∈A∗
Mb(w).

In simple words, a basis marking is a marking that can be reached from the initial marking firing a sequence of
transitions that is consistent with the observation and a sequence of unobservable transitions, interleaved with the
previous sequence, whose firing is strictly necessary to enable it (in the sense that its firing vector is minimal). The
set of basis markings is a subset (usually a strict subset) of the set of reachable markings. Therefore, if the net is
bounded, the set of basis markings is finite.

The following definition is inspired by [16].
Definition 6: An extended basis marking (EBM) is a BM computed assuming that all transitions in Tf ∪ Tr,o are

observable. We denote by Me the set of EBMs.
The set of EBMs can be computed by restricting the minimal explanations to Tr,uo. Hereinafter, we use Y r,uo

min (m, t)
to denote the set of minimal e-vectors restricted to Tr,uo. The set Y r,uo

min (m, t) can be computed by Algorithm 4.4
in [15].

Example 1: Fig. 1 shows a labeled PN model (N,m0,L) of a manufacturing process, where transitions model
operations that should be executed according a certain order, and places represent the working conditions of certain
machines, conveyors, or buffers. With some transitions, sensors are attached, while no sensor is attached to the others.
In this model, To = {t3, t7, t8, t11}, Tu = {t1, t2, t4− t6, t9, t10}, Tf = {t9}, Tr,o = {t1, t4}, Tr,uo = {t2, t5, t6, t10}
and m0 = [1 0 0 0 0 0 0 0 0]T . Let L(t3) = a, L(t7) = b and L(t8) = L(t11) = c. It holds that Σ(m0, t8) = {t1},
while Σ(m0, t11) = ∅. Given a marking m = [0 1 1 0 0 0 0 0 0]T , we have Σ(m, t3) = {ε, t2} and Σmin(m, t3) =
{ε}. It is Y (m, t3) = {[0 0 0 0 0 0 0 0 0 0 0]T , [0 1 0 0 0 0 0 0 0 0 0]T } and Ymin(m, t3) = {[0 0 0 0 0 0 0 0 0 0 0]T }.

Given an observation w = bc, the sets Ĵ (w) = {t7t11, t1t5t6}, Ŷmin(m0, w) = {t7t11, [1 0 0 0 1 1 0 0 0 0 0]T }
and Mb(w) = {[0 0 0 0 0 0 0 0 1]T }.

Finally, the set of EBMs is detailed in Table I.
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Fig. 1: A labeled PN system (N,m0,L).

TABLE I: EBMs of the PN system in Example 1.

Node EBM
m0 [1 0 0 0 0 0 0 0 0]T

m1 [0 1 0 0 0 0 0 0 0]T

m2 [0 0 0 1 0 0 0 0 0]T

m3 [0 0 0 0 0 0 1 0 0]T

m4 [0 0 0 0 0 0 0 1 0]T

m5 [0 0 0 0 0 0 0 0 1]T Fig. 2: EBRG Ge.

Let T ′ = T \ Tf and N ′ be the T ′-induced subnet of N . We denote by (N ′,m0,L′) the nonfailure subnet of
(N,m0,L), where L′ is equal to L restricted to T \ Tf . Therefore, L(N ′,m0) is the set of transitions sequences
of L(N,m0) containing no faults.

The following two graphs are also inspired by [16].
Definition 7: Let (N ′,m0,L′) be the nonfailure subnet of (N,m0,L).
• The Extended Basis Reachability Graph (EBRG) is a finite state automaton Ge = (Me, E,∆,m0), where Me

is the set of EBMs; E ⊆ (To×A)∪Tf ∪Tr,o is the set of event labels; ∆ ⊆ Me×E×Me is the transition relation;
m0 is the initial state.

• The nonfailure EBRG wrt site j, denoted by Gj
e = (M j , Ej ,∆j ,m0), is the EBRG of (N ′,m0,L′) constructed

by assuming that all transitions in To,j ∪ Tr,o (T ′ \ To,j \ Tr,o) are observable (unobservable).
The EBRG Ge is constructed by Algorithm 1. The graph Gj

e can also be constructed using Algorithm 1, by taking
(N ′,m0,L′) as the input, by assuming that the set To,j ∪ Tr,o includes observable transitions and by restricting
minimal explanations to T ′ \ To,j \ Tr,o.

It should be noted that the above algorithm is different from Algorithm 1 in [16] since here we assume that all
transitions in To ∪ Tf ∪ Tr,o are observable, thus the minimal explanations are restricted to Tr,uo.

Example 2: Assume that the system in Example 1 is monitored by two sites with A1 = {a, c} and A2 = {b, c}.
The EBRG Ge is shown in Fig. 2, the nonfailure EBRGs wrt two sites are reported in Fig. 3a and Fig. 3b,
respectively.

(a) (b)

Fig. 3: G1
e: nonfailure EBRG wrt site 1; G2

e: nonfailure EBRG wrt site 2.
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Algorithm 1: EBRG construction
Input: A labeled PN system (N,m0,L).
Output: The EBRG Ge = (Me, E,∆,m0).

1 Let Me = {m0}, E = ∅, ∆ = ∅ and m0 be the initial state.
2 while states with no tag exist in Me, do
3 choose a state m with no tag,
4 for all t ∈ To ∪ Tf ∪ Tr,o, do
5 if Y r,uo

min (m, t) ̸= ∅, then
6 for all y ∈ Y r,uo

min (m, t), do
7 let m′ = m+ [N ]r,uo · y + [N ](·, t).
8 let Me = Me ∪ {m′}.
9 if t ∈ To and L(t) = e, then E = E ∪ {t(e)} and ∆ = ∆ ∪ {(m, t(e),m′)}.

10 ;
11 if t ∈ Tf ∪ Tr,o, then E = E ∪ {t} and ∆ = ∆ ∪ {(m, t,m′)}.;
12 end
13 end
14 end
15 tag state m “old”.
16 end
17 Remove all tags.

V. UNFOLDED VERIFIER

In [17] we introduced the Unfolded Verifier (UV) to analyse diagnosability of PNs in a centralized setting, which
is similar to other tools previously introduced by other authors, in particular [23]. Here we extend the notion of
UV in [17] to a decentralized setting, and propose necessary and sufficient conditions for codiagnosability. For the
sake of simplicity, only two local sites are considered in the following discussion. We will consider the case of ν
sites in Section VII-B.

The Unfolded Verifier (UV) is the finite state automaton constructed by Algorithm 2. In plain words, the UV is
constructed as the parallel composition of the EBRG and the nonfailure EBRGs. The expansion of each path is
terminated when the new state is either dead or “duplicate”. A state (m, l;m1;m2) is said to be a duplicate l-state
if its tag is “duplicate”.

Theorem 1: A labeled PN system is codiagnosable iff there exist no duplicate F-states in its UV.
Proof. This result is derived from two facts: 1) a labeled PN is codiagnosable iff its Verifier has no F-cycles (which
has been proved in [16]), where an F-cycle is a cycle in which all the nodes are F-states, and 2) the UV can
be viewed as the unfolded version of the Verifier. The difference between the construction of the Verifier and the
construction of the UV only consists in the way we deal with repeated nodes: the former merges repeated nodes;
on the contrary, the latter does not, and assigns “duplicate” to a node if it is the same as another node in the path
from the root to it. Hence, the first fact is directly rephrased as the statement of the theorem if we look at the UV.
□

Given an automaton G, the notation m
τ−→
G

m′ indicates m′ is reached from m in G through a sequence τ .
Definition 8: Given an UV U , a sequence τ in U is said to be an elementary F-path wrt L if it starts at the root

of U and ends with a duplicate F-state.
Example 3: For the sake of brevity, the UV U of the system in Fig. 1 is not given here. Fig. 4 shows all the

elementary F-paths in U , and Table II reports the states in these paths. There are 12 elementary F-paths wrt L (τ1
to τ12) and state 14 is a duplicate F-state.

By Definition 8 and Theorem 1, we can directly infer the following result.
Theorem 2: A labeled PN system is codiagnosable iff there exist no elementary F-paths wrt L in its UV.
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Algorithm 2: Construction of the UV
Input: Ge = (Me, E,∆,m0), G1

e = (M1, E1,∆1,m0) and G2
e = (M2, E2,∆2, m0).

Output: The UV U = (MU , EU ,∆U ,mU
0 ).

1 Let MU = {(m0,N;m0;m0)}, EU = ∅, ∆U = ∅, and mU
0 = (m0,N;m0;m0) be the initial state.

2 while states with no tag exist, do
3 choose a state (m, l;m1;m2) with no tag,
4 for all t ∈ To ∪ Tf ∪ Tr,o and all t1, t2 ∈ To ∪ Tr,o, do
5 if t ∈ To,1 ∩ To,2, (m, t,m′) ∈ ∆, (m1, t1,m

′
1) ∈ ∆1, (m2, t2,m

′
2) ∈ ∆2, L1(t) = L1(t1),

L2(t) = L2(t2), then
6 MU = MU ∪ {(m′, l;m′

1;m
′
2)}, EU = EU ∪ {(t, t1, t2)} and

∆U = ∆U ∪ {(m, l;m1;m2), (t, t1, t2), (m
′, l;m′

1;m
′
2)}.

7 end
8 if t ∈ Tf , (m, t,m′) ∈ ∆, then
9 MU = MU ∪ {(m′,F;m1;m2)}, EU = EU ∪ {(t, ε, ε)} and

∆U = ∆U ∪ {(m, l;m1;m2), (t, ε, ε), (m
′,F;m1;m2)}.

10 end
11 if t ∈ To,1 \ To,2, (m, t,m′) ∈ ∆,
12 (m1, t1,m

′
1) ∈ ∆1, L1(t) = L1(t1), then

13 MU = MU ∪ {(m′, l;m′
1;m2)}, EU = EU ∪ {(t, t1, ε)} and

∆U = ∆U ∪ {(m, l;m1;m2), (t, t1, ε), (m
′, l;m′

1;m2)}.
14 end
15 if t ∈ To,2 \ To,1, (m, t,m′) ∈ ∆,
16 (m2, t2,m

′
2) ∈ ∆2, L2(t) = L2(t2), then

17 MU = MU ∪ {(m′, l;m1;m
′
2)}, EU = EU ∪ {(t, ε, t2)} and

∆U = ∆U ∪ {(m, l;m1;m2), (t, ε, t2), (m
′, l;m1;m

′
2)}.

18 end
19 if t ∈ Tr,o, (m, t,m′) ∈ ∆, then
20 MU = MU ∪ {(m′, l;m1;m2)}, EU = EU ∪ {(t, ε, ε)} and ∆U = ∆U ∪ {(m, l;

m1;m2), (t, ε, ε), (m
′, l;m1;m2)}.

21 end
22 if t1 ∈ Tr,o, (m1, t1,m

′
1) ∈ ∆1, then

23 MU = MU ∪ {(m, l;m′
1;m2)}, EU = EU ∪ {(ε, t1, ε)} and

∆U = ∆U ∪ {(m, l;m1;m2), (ε, t1, ε), (m, l;m′
1;m2)}.

24 end
25 if t2 ∈ Tr,o, (m2, t2,m

′
2) ∈ ∆2, then

26 MU = MU ∪ {(m, l;m1;m
′
2)}, EU = EU ∪ {(ε, ε, t2)} and

∆U = ∆U ∪ {(m, l;m1;m2), (ε, ε, t2), (m, l;m1;m
′
2)}.

27 end
28 end
29 if the new state is the same as a state in the path from the initial state to it, then tag it “duplicate".;
30 tag state (m, l;m1;m2) “old".
31 end
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Fig. 4: The elementary F-paths of the labeled PN in Example 1.

TABLE II: The states associated
with the nodes in Fig. 4.

Node States
0 (m0,N;m0;m0)
1 (m1,N;m0;m0)
2 (m0,N;m1;m0)
3 (m0,N;m0;m1)
4 (m1,N;m1;m0)
5 (m1,N;m0;m1)
6 (m0,N;m1;m1)
7 m0,N;m0;m5)
8 (m1,N;m1;m1)
9 (m1,N;m0;m5)
10 (m0,N;m1;m5)
11 (m1,N;m1;m5)
12 (m3,N;m5;m5)
13 (m4,F;m5;m5)
14 (m5,F;m5;m5)

VI. RELABELING OF ELEMENTARY F-PATHS

In this section, we show how to eliminate the elementary F-paths in a UV by relabeling some transitions in such
paths.

A. Relabeling options and conditions on transitions in Tr,o

The arcs of the UV are triples (γi, γj , γk), where
i) γi denotes a transition in Ge or ε;

ii) γj (γk) denotes a transition in G1
e or ε (G2

e or ε).
Based on rules R1 and R2, we consider the relabeling options for all the possible triples (γi, γj , γk) in each

elementary F-path:
(LO1) (γi, γj , γk) = (ti, tj , tk), where ti, tj , tk ∈ To. If i = j = k, we do nothing. Otherwise, we may assign to

ti a new label Lnew(ti) = L1,new(ti) = L2,new(ti) = ti, or/and to tj a new label Lnew(tj) = L1,new(tj) =
L2,new(tj) = tj , or/and to tk a new label Lnew(tk) = L1,new(tk) = L2,new(tk) = tk.

(LO2) (γi, γj , γk) = (ti, tj , ε), where ti, tj ∈ To. If i = j, we do nothing. Otherwise, we may assign to ti a new
label Lnew(ti) = L1,new(ti) = ti, or/and to tj a new label Lnew(ti) = L1,new(tj) = tj .

(LO3) (γi, γj , γk) = (ti, ε, tk), where ti, tk ∈ To. If i = k, we do nothing. Otherwise, we may assign to ti a new
label Lnew(ti) = L2,new(ti) = ti, or/and to tk a new label Lnew(tk) = L2,new(tk) = tk.

(LO4) (γi, γj , γk) = (t, ε, ε), where t ∈ Tr,o. We may make t observable for site 1 or/and site 2, i.e., L1,new(t) = t
or/and L2,new(t) = t.

(LO5) (γi, γj , γk) = (ε, t, ε), where t ∈ Tr,o. We may make t uniquely observable for site 1 or observable for both
sites, i.e., L1,new(t) = t, L2,new(t) = ε or L1,new(t) = L2,new(t) = t.

(LO6) (γi, γj , γk) = (ε, ε, t), where t ∈ Tr,o. We may make t uniquely observable for site 2 or observable for both
sites, i.e., L1,new(t) = ε, L2,new(t) = t or L1,new(t) = L2,new(t) = t.

(LO7) (γi, γj , γk) = (t, ε, ε), where t ∈ Tf . We do nothing since faults cannot be captured by any sensor.
Now, given an elementary F-path in the UV, at least one transition t ∈ To ∪ Tr,o is selected to be relabeled

according to relabeling options LO1 to LO6. In addition, a transition t ∈ Tr,o could be handled provided that it
satisfies the following 5 conditions:
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(C1) transition t ∈ Tr,o should not be uniquely observable for site 1 if it only appears in consecutive triples as
follows:

(t, ε, ε)(ε, t, ε) or (ε, t, ε)(t, ε, ε).

(C2) transition t ∈ Tr,o should not be uniquely observable for site 2 if it only appears in consecutive triples as
follows:

(t, ε, ε)(ε, ε, t) or (ε, ε, t)(t, ε, ε).

(C3) transition t ∈ Tr,o should not be uniquely observable for site 1 and should not be observable for both sites if
it only appears in consecutive triples as follows:

(t, ε, ε)(ε, t, ε)(ε, ε, t) or (ε, ε, t)(ε, t, ε)(t, ε, ε).

(C4) transition t ∈ Tr,o should not be uniquely observable for site 2 and should not be observable for both sites if
it only appears in consecutive triples as follows:

(t, ε, ε)(ε, ε, t)(ε, t, ε) or (ε, t, ε)(ε, ε, t)(t, ε, ε).

(C5) transition t ∈ Tr,o should not be observable for any site if it only appears in consecutive triples as follows:

(ε, t, ε)(t, ε, ε)(ε, ε, t) or (ε, ε, t)(t, ε, ε)(ε, t, ε).

Here we explain condition C1. If t ∈ Tr,o only appears in consecutive triples (t, ε, ε)(ε, t, ε) or (ε, t, ε)(t, ε, ε),
and is uniquely observable for site 1, then the elementary F-path may not be eliminated since the consecutive triples
are replaced by (t, t, ε) under the new labeling function, and the PN system remains non-codiagnosable. Hence,
condition C1 is necessary. Condition C2 is necessary for the same reason.

Condition C3 is explained as follows. Assume that t ∈ Tr,o only appears in consecutive triples (t, ε, ε)(ε, t, ε)(ε, ε, t)
or (ε, ε, t)(ε, t, ε)(t, ε, ε).

• If t is uniquely observable for site 1, then the elementary F-path may not be eliminated since the consecutive
triples are replaced by (t, t, ε)(ε, ε, t) or (ε, ε, t)(t, t, ε) under the new labeling function, and the PN system
remains non-codiagnosable.

• If t is observable for both sites, then the elementary F-path may not be eliminated since the consecutive triples
are replaced by (t, t, t) under the new labeling function, and the PN system remains non-codiagnosable.

Hence, condition C3 is necessary. Condition C4 is necessary for the same reason.
Condition C5 is also necessary. Assume that t ∈ Tr,o only appears in consecutive triples (ε, t, ε)(t, ε, ε)(ε, ε, t)

or (ε, ε, t)(t, ε, ε)(ε, t, ε).
• If t is uniquely observable for site 1, then the elementary F-path may not be eliminated since the triples are

replaced by (t, t, ε)(ε, ε, t) or (ε, ε, t)(t, t, ε) under the new labeling function, and the PN system remains
non-codiagnosable.

• If t is uniquely observable for site 2, then the elementary F-path may not be eliminated since the triples are
replaced by (ε, t, ε)(t, ε, t) or (t, ε, t)(ε, t, ε) under the new labeling function, and the PN system remains
non-codiagnosable.

• If t is observable for both sites, then the elementary F-path may not be eliminated since the triples are replaced
by (t, t, t) under the new labeling function, and the PN system remains non-codiagnosable.

Hence, condition C5 is necessary.

B. Results

We first prove that for site j, if rules R1 and R2 are applied incrementally, distinguishable sequences are still
distinguishable.

Proposition 1: Let L′
1,. . . , L′

ν be the labeling functions obtained from L1,. . . , Lν by applying rules R1 and R2.
For any site j ∈ J , given two transition sequences σ1, σ2 ∈ T ∗, it holds that Lj(σ1) ̸= Lj(σ2) ⇒ L′

j(σ1) ̸= L′
j(σ2).

Proof. We prove this by contraposition, namely we prove that L′
j(σ1) = L′

j(σ2) ⇒ Lj(σ1) = Lj(σ2).
We preliminarily notice that any unobservable transition sequence under L′

j is unobservable under Lj . Similarly,
two transitions that map to the same label in Aj under L′

j also map to the same label under Lj .
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The only changes in the two sequences σ1 and σ2 come from the transitions relabeled by L′
j . Let t be one of

such transitions. Two different cases may occur: i) If t ∈ Tr,o, it holds that Lj(t) = ε; ii) If t ∈ Tj,o, it holds that
Lj(t) ∈ Aj . For both cases, two sequences σ1 and σ2 have the same observation under Lj , i.e., Lj(σ1) = Lj(σ2).
Hence, the result holds. □

Proposition 2: There must exist at least one transition in each elementary F-path that can be relabeled in
accordance with LO1 to LO7, rules R1, R2, and conditions C1 to C5.
Proof. By contradiction, we suppose that there is an elementary F-path that cannot be relabeled according to any
rule. It means that in the path all transitions are in the form of (t, t, t) or (t, t, ε) or (t, ε, t) or LO7 or consecutive
triples of the form (ε, t, ε)(t, ε, ε)(ε, ε, t) or (ε, ε, t)(t, ε, ε)(ε, t, ε). The case of LO7 can be omitted since a fault
can not be relabeled. For the other cases, the elementary F-path may still exist even if all observable transitions
are relabeled and each unobservable transition in Tr,o is observable for both sites. Therefore, the PN is still non-
codiagnosable under the labeling function Ltotal (defined by Eq. (5)), which contradicts Assumption A5. □

The following two propositions prove that elementary F-paths can be eliminated implementing options LO1 to
LO7, rules R1 and R2, and guaranteeing the satisfaction of conditions C1 to C5. In addition, no new elementary
F path is created.

Proposition 3: Let τ = (γi1 , γj1 , γk1
)(γi2 , γj2 , γk2

) . . . (γil , γjl , γkl
) be an elementary F-path relabeled in accor-

dance with LO1 to LO7, rules R1, R2, and conditions C1 to C5. Let σi = γi1γi2 . . . γil , σj = γj1γj2 . . . γjl and
σk = γk1

γk2
. . . γkl

. It holds that: L1,new(σi) ̸= L1,new(σj) or L2,new(σi) ̸= L2,new(σk).
Proof. Since it is possible to relabel at least one transition in τ , we need to consider six different cases, i.e., LO1
to LO6.

Consider the case LO1 and let (ti, tj , tk) be the triple of transitions of interest, where ti ∈ σi, tj ∈ σj , tk ∈ σk
and i = j = k does not hold. Since we assign to ti a new label L1,new(ti) = L2,new(ti) = ti, or/and to tj a
new label L1,new(tj) = L2,new(tj) = tj , or/and to tk a new label L1,new(tk) = L2,new(tk) = tk, it must hold:
L1,new(σi) ̸= L1,new(σj) or L2,new(σi) ̸= L2,new(σk).

Let us consider the case LO2 and let (ti, tj , ε) be the triple of transitions of interest, where ti ∈ σi, tj ∈ σj and
i ̸= j. Since we assign to ti a new label L1,new(ti) = ti, or/and to tj a new label L1,new(tj) = tj , it must hold:
L1,new(σi) ̸= L1,new(σj) or L2,new(σi) ̸= L2,new(σk). An analogous reasoning may be repeated for the case LO3.

Let us consider the case LO4 and let (t, ε, ε) be the triple of transitions of interest, where t ∈ σi. Since we
make t observable for site 1 or/and site 2 and we consider conditions C1 to C5, it cannot be synchronized with
the transition t of nonfailure EBRGs wrt site 1 or/and site 2. Therefore, the result holds. Similar arguments can be
repeated for LO5 and LO6. □

Proposition 4: If all elementary F-paths are relabeled in accordance with options LO1 to LO7, rules R1, R2 and
conditions C1 to C5, then no elementary F-path wrt Lnew is created.
Proof. By contradiction, we suppose that a new elementary F-path is created:

τ = (γi1 , γj1 , γk1
)(γi2 , γj2 , γk2

) . . . (γil , γjl , γkl
)

of length l wrt Lnew. Obviously, there exist three transition sequences si, sj , sk ∈ L(N,m0) satisfying:
i) si ∩ Tf ̸= ∅ and si is arbitrarily long after the fault.

ii) sj ∩ Tf = ∅, sk ∩ Tf = ∅.
iii) L1,new(si) = L1,new(sj) and L2,new(si) = L2,new(sk).
However, by Proposition 1, condition (iii) implies that L1(si) = L1(sj) and L2(si) = L2(sk). Therefore, the three
sequences si, sj , sk form an elementary F-path under the initial labeling function L. Since at least one transition
in it has been relabeled in accordance with LO1 to LO6, rules R1, R2 and conditions C1 to C5, it holds that
L1,new(si) ̸= L1,new(sj) or L2,new(si) ̸= L2,new(sk). Thus leading to a contradiction. □

Theorem 3: Let (N,m0,L) be a non-codiagnosable PN system satisfying assumptions A1 to A5. Let Lnew,
L1,new and L2,new be the labeling functions obtained in accordance with rules R1, R2, relabeling options LO1 to
LO7, and conditions C1 to C5. Then (N,m0,Lnew) is codiagnosable.
Proof. This result is straightforward from Propositions 3 and 4. By Proposition 3, the relabeling procedure disables
all elementary F-paths. By Proposition 4, no new path is created. Therefore, no elementary F-paths exist if they
are all appropriately relabeled. By Theorem 2, the PN system (N,m0,Lnew) is codiagnosable. □



11

VII. OPTIMAL RELABELING USING INTEGER NONLINEAR PROGRAMMING

In this section, we show how to compute an optimal labeling function that minimizes the cost of the new sensors.

A. Construction of nonlinear inequalities

• Given t ∈ To, we define a binary variable vt ∈ {0, 1} as follows:

vt =

{
1, if Lnew(t) = t

0, otherwise
(7)

In other words, vt = 1 denotes that t is relabeled by Lnew.
• Similarly, given t ∈ Tr,o and site j ∈ J , we define a binary variable vjt ∈ {0, 1} as follows (Note that the

superscript j in vjt denotes site j):

vjt =

{
1, if Lj,new(t) = t

0, otherwise
(8)

In other words, vjt = 1 means that t is observable for site j under Lj,new. Moreover, according to Eq. (8), all
the possible relabeling actions on t ∈ Tr,o and their corresponding equations are detailed in Table III.

TABLE III: The relabeling actions on t ∈ Tr,o and their corresponding equations.

Relabeling Action Equation
t is uniquely relabeled by L1,new v1t − v1t v

2
t = 1

t is uniquely relabeled by L2,new v2t − v1t v
2
t = 1

t is relabeled by L1,new and L2,new v1t v
2
t = 1

t is relabeled by L1,new or L2,new v1t + v2t − 2v1t v
2
t = 1

t is relabeled by L1,new or/and L2,new v1t + v2t − v1t v
2
t = 1

For each elementary F-path τ , the following nonlinear inequality is constructed:

Rτ ≥ 1 (9)

where Rτ is obtained by Algorithm 3.
In Algorithm 3, Line 4 to Line 29 correspond to relabeling options LO1 to LO7.
We use the notation R to denote the set of all nonlinear inequalities of the form Eq. (9) obtained with Algorithm

3 while examining each elementary F-path. The following theorem can be proved.
Theorem 4: Let (N,m0,L) be a non-codiagnosable PN system. There exist new labeling functions Lnew, L1,new,

L2,new that are computed eliminating all the elementary F-paths in the UV in accordance with rules R1, R2,
relabeling options LO1 to LO7, and conditions C1 to C5, such that (N,m0,Lnew) is codiagnosable iff R has a
solution.
Proof. (Only if) By Algorithm 3, each inequality in R is obtained by implementing options LO1 to LO7, rules R1,
R2 and conditions C1 to C5 to each elementary F-path. Given an elementary F-path, a transition t ∈ Tr,o may be
relabeled in accordance with rule R1 with LO4/LO5/LO6, while a transition t ∈ To may be relabeled in accordance
with rule R2 with LO1/LO2/LO3. In more detail,

• Rule R1 with LO4/LO5/LO6 are performed respectively by appending “+v1t +v2t −v1t v
2
t ” (Line 18), or “+v1t ”

(Line 23), or “+v2t ” (Line 28) to the left of the inequality.
• Rule R2 with LO1/LO2/LO3 are performed respectively by appending “+vti+vtj+vtk” (Line 6), or “+vti+vtj”

(Line 9), or “+vti + vtk” (Line 12) to the left of the inequality.
Analogously,

• Condition C1 is performed by Line 22 and Line 16,
• Condition C2 is performed by Line 27 and Line 17,
• Condition C3 is performed by Line 26 and Line 14,
• Condition C4 is performed by Line 21 and Line 15,
• Condition C5 is performed by Line 25 and Line 20,
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Algorithm 3: Construction of Rτ

Input: An elementary F-path τ .
Output: Rτ .

1 Let Rτ = 0.
2 Examine each triple (γi, γj , γk) in τ from its root to its leaf.
3 for each triple (γi, γj , γk), do
4 if LO1: (γi, γj , γk) = (ti, tj , tk), where ti, tj , tk ∈ To, then
5 if i = j = k, then do nothing,
6 ;
7 else Rτ = Rτ + vti + vtj + vtk .;
8 end
9 if LO2: (γi, γj , γk) = (ti, tj , ε), where ti, tj ∈ To, then

10 if i = j, then do nothing,
11 ;
12 else Rτ = Rτ + vti + vtj .;
13 end
14 if LO3: (γi, γj , γk) = (ti, ε, tk), where ti, tk ∈ To, then
15 if i = k, then do nothing,
16 ;
17 else Rτ = Rτ + vti + vtk .;
18 end
19 if LO4: (γi, γj , γk) = (t, ε, ε), where t ∈ Tr,o, then
20 if C3: then ;
21 its previous two consecutive triples in the path are (ε, ε, t)(ε, t, ε) and v2t + v1t was added while

examining the two triples, Rτ = Rτ − v1t − v1t v
2
t ,

22 else if C4: its previous two consecutive triples in the path are (ε, t, ε)(ε, ε, t) and v1t + v2t was
added while examining the two triples, then Rτ = Rτ − v2t − v1t v

2
t ,;

23 else if C1: its previous triple in the path is (ε, t, ε) and +v1t was added while examining the triple,
then Rτ = Rτ − v1t + v2t ,;

24 else if C2: its previous triple in the path is (ε, ε, t) and +v2t was added while examining the triple,
then Rτ = Rτ − v2t + v1t ,;

25 else Rτ = Rτ + v1t + v2t − v1t v
2
t .;

26 end
27 if LO5: (γi, γj , γk) = (ε, t, ε), where t ∈ Tr,o, then
28 if C5: its previous two consecutive triples in the path are (ε, ε, t)(t, ε, ε) and +v2t − v2t + v1t was

added while examining the two triples, then Rτ = Rτ − v1t ,;
29 else if C4: then ;
30 its previous two consecutive triples in the path are (t, ε, ε)(ε, ε, t) and +v1t + v2t − v1t v

2
t − v2t + v1t v

2
t

was added while examining the two triples, Rτ = Rτ − v1t v
2
t ,

31 else if C1: its previous triple in the path is (t, ε, ε), +v1t + v2t − v1t v
2
t was added while examining

the triple, then Rτ = Rτ − v1t + v1t v
2
t ,;

32 else Rτ = Rτ + v1t .;
33 end
34 if LO6:(γi, γj , γk) = (ε, ε, t), where t ∈ Tr,o, then
35 if C5: its previous two consecutive triple in the path are (ε, t, ε)(t, ε, ε) and +v1t − v1t + v2t was

added while examining the two triples, then Rτ = Rτ − v2t ,;
36 else if C3: its previous two consecutive triples in the path are (t, ε, ε)(ε, t, ε) and

+v1t + v2t − v1t v
2
t − v1t + v1t v

2
t was added while examining the two triples, then Rτ = Rτ − v1t v

2
t ,;

37 else if C2: its previous triple in the path is (t, ε, ε), +v1t + v2t − v1t v
2
t was added while examining

the triple, then Rτ = Rτ − v2t + v1t v
2
t ,;

38 else Rτ = Rτ + v2t .;
39 end
40 if LO7: γi ∈ Tf , then do nothing.;
41 end
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Finally, LO7 corresponds to Line 29, and “at least one transition should be relabeled” is performed by “≥ 1” in
the inequality.

Hence, R has a solution if there exist new labeling functions Lnew, L1,new, L2,new that are obtained by rules
R1, R2, relabeling options LO1 to LO7, and conditions C1 to C5, with LO1 to LO7, such that (N,m0,Lnew) is
codiagnosable.

(If) Trivially derives from Theorem 3. □

B. Computation of optimal labeling functions by solving INLP

Typically, there exist more than one solution satisfying the set R of nonlinear inequalities. Here we introduce a
performance index and compute a solution that minimizes it.

• Given t ∈ Tr,o, we denote by (c1t c2t ... cνt ) the cost vector of t, where cjt denotes the cost of associating a
sensor to t, therefore its occurrence can be captured by site j.

• Given t ∈ To, ct denotes the cost of associating a sensor to t, therefore it corresponds to a unique label that
can be observed by the sites that are able to originally observe t.

In plain words, when a sensor is attached to an unobservable transition t ∈ Tr,o, the cost depends on the number
of sites that are able to observe t under the new sensor configuration. On the other hand, when a new sensor is
associated with a transition t ∈ To that is already observable under L, in order to make it distinguishable with
respect to the other observable transitions, such a cost is only a function of t. Indeed, by Rule R2, we are assuming
that the set of sensors that may observe a certain observable transition t does not change if t is relabeled.

By solving the following integer nonlinear programming (INLP), the new labeling functions Lnew, L1,new, L2,new

are obtained (The superscripts 1 and 2 denotes site 1 and 2, respectively):
min

∑
t∈Tr,o

(c1t v
1
t + c2t v

2
t ) +

∑
t∈To

ctvt

s.t. R.

(10)

Example 4: Reconsider the PN in Fig. 1. For the sake of simplicity and without loss of generality, each transition
in Tr,o ∪ To is assigned a unitary cost. For each elementary F-path in Fig. 4, we write an inequality according to
Algorithm 3, thus R consists of the following nonlinear inequalities:
v1t1 + v2t1 − v1t1v

2
t1 − v1t1 + v1t1v

2
t1 − v1t1v

2
t1 + v2t4 + vt8 + vt11 ≥ 1

v1t1 + v2t1 − v1t1v
2
t1 − v2t1 + v1t1v

2
t1 − v1t1v

2
t1 + v2t4 + vt8 + vt11 ≥ 1

v1t1 + v2t1 − v1t1v
2
t1 − v2t1 + v1t1v

2
t1 + v2t4 + v1t1 + vt8 + vt11 ≥ 1

v1t1 − v1t1 + v2t1 − v2t1 + v2t4 + vt8 + vt11 ≥ 1
v1t1 + v2t1 − v2t1 − v1t1v

2
t1 + v2t4 + vt8 + vt11 ≥ 1

v1t1 + v2t1 + v2t4 + v1t1 + v2t1 − v1t1v
2
t1 + vt8 + vt11 ≥ 1

v2t1 − v2t1 + v1t1 − v1t1 + v2t4 + vt8 + vt11 ≥ 1
v2t1 − v2t1 + v1t1 + v2t4 + v1t1 + vt8 + vt11 ≥ 1
v2t1 + v1t1 − v1t1 − v1t1v

2
t1 + v2t4 + vt8 + vt11 ≥ 1

v2t1 + v1t1 + v2t4 + v1t1 + v2t1 − v1t1v
2
t1 + vt8 + vt11 ≥ 1

v2t1 + v2t4 + v1t1 + v2t1 − v1t1v
2
t1 − v1t1 + v1t1v

2
t1 + vt8 + vt11 ≥ 1

v2t1 + v2t4 + v1t1 − v1t1 + v2t1 + vt8 + vt11 ≥ 1
We solve the INLP problem (10) with the set of constraints R using the tool LINGO. We obtain the optimal

solution: L1,new(t4) = ε, L2,new(t4) = Lnew(t4) = t4. Note that there exist other optimal solutions such as:
L1,new(t8) = L2,new(t8) = Lnew(t8) = t8 or L1,new(t11) = L2,new(t11) = Lnew(t11) = t11.

Let us now consider the case of r fault classes. For each fault class T i
f , we first construct an UV Ui by considering

all faults in Tf \ T i
f as transitions to whom sensors cannot be attached. By looking at Ui, we compute the set of

all elementary F-paths and construct the set of nonlinear inequalities Ri in accordance with Algorithm 3. The new
labeling functions are finally obtained by solving INLP problem (10) under constraints Ri for i = 1, 2, ..., r.

In the case of ν local sites, we first construct the UV as the parallel composition of the EBRG and the nonfailure
EBRGs wrt all the sites. Then, a set of nonlinear inequalities are obtained by applying relabeling rules to all the
elementary F-paths in the UV. Note that 2ν+3 relabeling options are considered and rules R1, R2 are still available.
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Besides, conditions are responsible for the elimination of each elementary F-path when some consecutive arcs exist
(similar to conditions C1 to C5 in Section VI-A). Finally, the solution is obtained solving an INLP problem.

At the end of this section, we briefly discuss the complexity of the method. Generally speaking, the state space
of the EBRG is much smaller than that of the reachability graph. By Algorithm 3, an elementary F-path contains
at most 2xν+1 + 1 nodes, and a node has at most (|T | + 1)ν+1 − 1 output arcs, where x is the number of states
in Ge. Thus an UV contains at most ((|T |+ 1)ν+1 − 1)2x

ν+1

elementary F-paths. For each elementary F-path, we
need to build a nonlinear inequality according to Algorithm 3. Therefore, the complexity of generating an INLP is
O(((|T |+ 1)ν+1 − 1)2x

ν+1

).

VIII. CONCLUSIONS

The main contribution of this paper consists in proposing an approach to enforce codiagnosability to labeled
Petri nets appropriately by adding sensors to transitions. We use the notion of Verifier and we unfold the Verifier to
identify all paths violating the conditions for codiagnosability, and build an integer nonlinear programming problem
to determine the set of optimal labeling functions. One of our future work consists in considering the optimal sensor
selection problem under more general relabeling rules.
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