
Journal of Cybersecurity , 2024, tyae015
https://doi.org/10.1093/cybsec/tyae015

Research paper

A risk estimation study of native code

vulnerabilities in Android applications

Silvia Lucia Sanna

* , Diego Soi , Davide Maiorca , Giorgio Fumera ,
Giorgio Giacinto

Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Piazza d’Armi, Italy

∗Corresponding author. E-mail: silvial.sanna@unica.it

Received 23 October 2023; revised 12 April 2024; accepted 25 July 2024

Abstract

Android is the most used operating system (OS) worldwide for mobile devices, with hundreds of thousands of apps
downloaded daily. Although these apps are primarily written in Java and Kotlin, advanced functionalities such as
graphics or cryptography are provided through native C/C ++ libraries. These libraries can be affected by common
vulnerabilities in C/C ++ code (e.g. memory errors such as buffer overflow), through which attackers can read/modify
data or execute arbitrary code. The detection and assessment of vulnerabilities in Android native code have only been
recently explored by previous research work. In this paper, we propose a fast risk-based approach that provides a
risk score related to the native part of an Android application. In this way, before an app is released, the developer
can check whether the app may contain vulnerabilities in the native code and, whether present, patch them to publish
a more secure application. To this end, we first use fast regular expressions to detect library versions and possible
vulnerable functions. Then, we apply scores extracted from a vulnerability database to the analyzed application, thus
obtaining a risk score representative of the whole app. We demonstrate the validity of our approach by performing a
large-scale analysis on more than 100 000 applications (but only 40% contained native code) and 15 popular libraries
carrying known vulnerabilities. The attained results show that many applications contain well-known vulnerabilities
that miscreants can potentially exploit, posing serious concerns about the security of the whole Android applications
landscape.

Keywords: vulnerability detection; Android app; native code

I

T

t

t

c

v

t

v

i

e

v

a

a

(

c

o

F

m

(

A

c

c

r

a

o

l

i

b

i

c

t

©
A
m

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/10/1/tyae015/7744932 by guest on 05 Septem

ber 2024
ntroduction

he usage of mobile devices is increasingly growing due to their con-
inuous advancements that allow people to carry out very different
asks, from surfing the internet to accessing banking or medical ac-
ounts. Smartphones are also extensively employed as multimedia de-
ices (e.g. to watch movies or play games) and as aids for payment au-
hentication and Public Administration services. Unfortunately, this
ariety of usage allows attackers to exploit vulnerabilities (by resort-
ng to, e.g. phishing emails and messages or by exploiting memory
rrors) to take control of the target devices.

Among the various operating systems available for mobile de-
ices, Android is the most used worldwide [1], and many of its
pplications can feature hundreds of millions of downloads. These
pps often need to interact with native activities and components
e.g. camera and microphone) available through native code (typi-
ally C/C ++) implementation, which may be written from scratch
The Author(s) 2024. Published by Oxford University Press. This is an Open Access article
ttribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), wh
edium, provided the original work is properly cited. For commercial re-use, please contac
r taken from third-party libraries such as Libpng and OpenCV .
or brevity, we refer to native third-party libraries as products . In
ost cases, developers use publicly available libraries such as Libpng

for image management) by importing them into their projects.
s native libraries are written in memory-unsafe languages, they
an suffer from typical vulnerabilities caused by wrong source
ode programming or design. Improperly managing pointers, ar-
ays, and API calls can lead to overflow attacks or other vulner-
bilities. A simple example of possible memory errors is buffer
verflow , which allows an attacker to send an input whose size is
arger than required, thus writing data outside bounds and caus-
ng unpredictable behaviors. Exploiting vulnerabilities in native li-
raries can affect the functionality of the whole application, lead-

ng to some data exposure or, in the worst cases, to the loss of
ontrol of the device. For this reason, it is essential to manage
he security of the used libraries when developing an Android ap-
1 distributed under the terms of the Creative Commons
ich permits non-commercial re-use, distribution, and reproduction in any
t journals.permissions@oup.com

https://doi.org/10.1093/cybsec/tyae015
http://orcid.org/0009-0002-8269-9777
https://orcid.org/0009-0009-0092-9067
http://orcid.org/0000-0003-2640-4663
http://orcid.org/0000-0001-5300-226X
http://orcid.org/0000-0002-5759-3017
mailto:silvial.sanna@unica.it
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com

2 Sanna et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/10/1/tyae015/7744932 by guest on 05 Septem

ber 2024
plication. Previous research works have only recently pointed out
the need for better native code safety and vulnerability analysis
[2].

However, finding and analyzing vulnerabilities is a very time- and
resource-consuming task requiring in-depth static and dynamic anal-
ysis of the native layer and its interaction with the Java/Kotlin code
[2]. Recent works also showed several validation problems related to
the effective reachability of vulnerable functions [3]. These issues may
discourage analyzing the native layer security in their apps, thus of-
ten overlooking even well-known issues of public products. We pro-
pose a probabilistic approach that vulnerability researchers can use
to have a first basic idea of the vulnerability to be checked manu-
ally. Our vulnerability detection on Android native code can be in-
cluded in the process of producing and maintaining the software bill
of materials (SBOM), a detailed inventory of software components
and their ingredients essential in software security and supply chain
risk management (as described by the American Cybersecurity and
Infrastructure Security Agency [4]). Different organizations worked
on that, such as NIST [5], who released in February 2022 guidelines
to be followed by developers and companies as a means of cyber-
attack prevention. In fact, SBOM has been introduced to provide
guidance on the level of risk associated with the software, whether
stand-alone or integrated into systems (such as in the case of Android
native code). SBOM defines the most dangerous vulnerabilities and
gives a global risk indication of the software vulnerabilities, stating
the components with a greater likelihood of being affected (as in our
methodology).

This paper proposes an alternative strategy for native code vul-
nerability identification that does not involve resource-heavy ana-
lyzes but leverages on public knowledge of known issues . The idea
is to yield a quick, lightweight approach that gives an idea of an ap-
plication’s possible known risks to take immediate actions to address
them. This is done through a risk assessment algorithm that leverages
a combination of quick code analysis and public domain knowledge
to provide a score of possible dangerousness of the application based
on the vulnerabilities found.

More specifically, our contributions can be summarized as fol-
lows: (i) we propose a minimal complexity native code analysis strat-
egy oriented to the search for known vulnerabilities and issues by
leveraging public domain knowledge ; (ii) we define a risk assessment
algorithm that provides a dangerousness score that can aid security
researchers to take immediate actions to patch the analyzed appli-
cations; and (iii) we evaluate our methodology through a large-scale
analysis on 100 000 APKs taken from the widespread application
repository Androzoo 1 , but results are focused on 38 348 apks, which
are those using at least one native library. To the best of our knowl-
edge, no risk assessment algorithm or methodology has been pub-
lished for vulnerabilities in the native code. The results attained in
this paper demonstrate that a risk-based approach can be strongly
beneficial in swiftly assessing vulnerabilities in Android applications,
thus addressing this problem by working on their early detection and
prevention.

The remainder of this paper is structured as follows: sec-
tion “Technical background” presents a technical background about
Android applications structure and vulnerabilities. Previous research
is illustrated in section “Related works,” while the applied method-
ology is presented in section “Methodology and implementation
details.” Results are reported in section “Results.” Finally, sec-
tion “Summary, limitations, and future works” discusses the lim-
1 https:// androzoo.uni.lu/
its and the future works that may be conducted to improve this
work.

Technical background

Before introducing our methodology, some concepts need a brief ex-
planation to provide the reader with basic knowledge about the core
elements of Android applications and native code.

Advanced RISC machine

ARM, the acronym for Advanced RISC Machine 2 , is the hardware
architecture on which Android operating system (OS) and apps are
executed. It is commonly implemented in embedded systems, where
developers design and sell the processor’s architecture to vendors
such as Samsung, Lenovo, and Oppo. ARM is based on RISC (i.e.
reduced instruction set computer), an architecture with a smaller in-
struction set than x86/64 but with more general-purpose registers
and a load/store mechanism. As an example, to modify a value of a
register, it is required to move the value to the register (with the in-
struction load), make the desired arithmetic operations, and save it
back to memory (with the instruction store).

Regarding arithmetic operations, the architecture reduces branch
complexity and number of instructions by supporting conditional ex-
ecution (less than equal , greater than equal) and barrel instructions (shift
and rotation). ARM is also useful for implementing co-processors by
allowing the execution of different tasks to different cores of one pro-
cessor. Hence, the program execution time is inversely proportional
to the number of cores.

Android OS

The proprietary open-source Android OS [6], published by Google
in the early 2000s, is the operating system running on ARM hard-
ware and on which apps are built. Android mostly features six main
layers [7]: (i) Android system apps , featuring apps for standard activ-
ities (e.g. SMS, calendar, emails); (ii) J a v a API fr amew ork containing
Android APIs to make different software components communicate
with each other; (iii) native libraries and core system services written
in C/C ++ to manage activities and interact with physical device com-
ponents; (iv) Android runtime to manage runtime for executing An-
droid apps since Android 5.0; (v) hardware abstraction la y er (HAL),
which is a software-hardware interaction layer that employs specific
hardware interface description language (HIDL), allowing detach-
ment between OS and drivers (autonomous upgrade); and (vi) Linux
kernel , based on an upgraded version of Linux kernel to such plat-
form.

An interesting characteristic of Android OS is the permission
level. In low-level mode, users and groups can access file systems and
specific resources. Conversely, permissions are restricted in high-level
mode, and apps are installed.

Android applications and framework layers are executed in An-
droid runtime (AR T). AR T is the runtime system that executes Dalvik
Executable format and Dalvik bytecode. Since Android 5.0 Lol-
lipop, it replaces the Dalvik virtual machine (DVM), a register and
Java-based virtual machine designed to give an efficient abstraction
layer to the OS. With the DVM, developers had to partially com-
pile the app, while the DVM did the other parts at runtime. In-
stead, in ART, Dalvik bytecode is compiled for ARM assembly dur-
2 https:// www.arm.com/

https://androzoo.uni.lu/
https://www.arm.com/

Risk estimation study of native code vulnerabilities in Android applications 3

i

i

A

A

t

O

d

p

a

t

O

a

f

p

a

n

a

w

s

N

A

t

d

l

c

b

b

m

T

n

s

a

t

l

s

w

o

3

C

O

i

d

P

p

o

a

t

v

t

p

a

b

b

O

3

v

o

d

t

s

s

b

v

m

R

I

b

a

t

i

a

t

s

a

s

o

e

t

t

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/10/1/tyae015/7744932 by guest on 05 Septem

ber 2024
ng installation, and the app can run directly by executing machine
nstructions.

ndroid apps

s described in the previous paragraph, Android apps [8] work in
he Android application layer, which allows developers to extend
S functionalities without altering lower levels. To build an An-
roid app, developers write source code in Java/Kotlin that is com-
iled to .class files. Then, these are translated to Dalvik bytecode
nd compiled to a single .dex file (Dalvik executable), which is op-
imized, loaded, and interpreted by the DVM when the app is run.
nce the app is compiled, it is packed as an .APK file, a sort of zip

rchive containing all files needed for its execution, and structured as
ollows:

� AndroidManifest.xml , a file containing components and permis-
sions needed by the app;

� classes.dex containing the assembled source code (i.e. list of
classes, methods, and bytecode);

� res , a directory containing all elements related to the visual pre-
sentation;

� assets , a directory containing external resources used by the app
while under execution;

� META-INF , a directory with the files used by the Java platform
to interpret and configure the app;

� lib , a directory containing all platform-dependent native libraries
written in C/C ++ and compiled in the different ABIs (application
binary interface 3) found in different sub-directories.

Each app is also made of four different active asynchronous com-
onent types. These are the activities , entry points for user inter-
ction; services , general-purpose entry points to keep the app run-
ing in the background; broadcast receiv er s , intercommunication
ctivities between the apps and the system; and content providers ,
hose aim is to allow apps to store and share data in the file

ystem.

ative libraries

s explained before, developers use native code to interact with na-
ive components and hardware. Moreover, developers can use An-
roid NDK (Native Developer Kit [9]) to import third-party native
ibraries without re-implementing them. These libraries are typically
ompiled C/C ++ code with two kinds of extensions: .so , which can
e defined as native shared libraries; and .a , namely native static li-
raries, which are those linked to others.

Once compiled, the libraries are ELF (executable and linkable for-
at) files like the ones resulting from compiling a C code for Linux.
he three most essential headers are (i) ELF header , with the magic
umber to recognize the file format, compilation architecture, ver-
ion, and information about sections; (ii) program header to create
 process image; and (iii) section header containing all the file’s sec-
ions (.bss , .data , .text , etc.).

The analysis of an ELF can be performed with several command-
ine tools (e.g. readelf and elfdump), reverse engineering software
uch as IDAPro and Ghidra, or Python libraries like pwntools, which
ere employed in this work as explained later in section “Method-
logy and implementation details.”
 An application binary interface (ABI) is an interface between the operating
system and its applications. Each ABI is defined in Android by the combi-
nation of CPU and instruction set because each device uses its own.

t

4

ommon vulnerability exposure

nce a vulnerability is found in any application or hardware, it
s often disclosed in a public dataset following the CVE stan-
ard [10] with a name featuring the form CVE-DisclosureYear-
rogressiveNumberForThatYear . Each database entry contains the
roduct (i.e. an extensive library known commercially, such as Libpng
r OpenCV), the affected product vendors, the publication date, and
 human-readable description. The latter is very important, as it con-
ains information about the vulnerability, such as the name of the
ulnerable product (with the version) and the name of the function
hat allows the attack to be carried out. Sometimes, the attack and
rocedure to patch the vulnerability are also described. Each CVE is
lso quantified with a score according to CVSS (Common Vulnera-
ility Score System) [11]. The latter defines three metric groups:

– Base metric , a constant severity value over time and across the
user platform. It is composed of the Exploitability metric , which
expresses the ease and technical levels required to exploit the vul-
nerability, and the Impact metric that quantifies the damage due
to a successful exploit;

- Temporal metric , a severity value that considers vulnerability’s
changes over time but is constant across the user platform;

- Environmental metric , which reflects severity scores depending
on the user’s environment, possibly considering the presence
of defence systems and security controls to mitigate the conse-
quences of an attack.

At the moment of writing this paper, different vulnerabilities have
een published for Android: about 6305 vulnerabilities in Android
S by Google, more than 100 by Samsung; only 2 for Motorola; only
 vulnerabilities regarding Android hardware. Additionally, some
ulnerabilities directly concern Android applications (the majority
f them regarding Java management). Notably, vulnerabilities in An-
roid native code cannot be addressed easily and directly as the na-
ive code is mostly embedded in other third-party libraries (see later
ections of this work).

Up to now, there are different public databases containing CVEs,
uch as Mitre CVE [12], CVE Details [13], and National Vulnera-
ility Database by NIST (NVD) [14]. Most public databases about
ulnerabilities are derived from Mitre, but they add some details and
ore technical information.

isk assessment

n this work, we developed a risk assessment algorithm for vulnera-
ilities in the native code of Android applications. We now provide
 brief introduction to the topic.

Risk assessment includes a set of techniques and methods to de-
ermine the risk of an asset in a specific scenario. It is not only used
n cybersecurity, but it is a general concept that can be applied to
lmost every field where undesired events could affect and damage
he system. Given a specific scenario and a potential threat to an as-
et, we have to evaluate the likelihood of the threat damaging the
sset 4 in a quantitative (with numbers and specific metric measure),
emi-quantitative (with numbers without a specific metric measure),
r qualitative (with specific terms) way. The threat is often consid-
red a deliberate attack, depending on the attacker’s capability and
he infrastructure protection mechanisms. The damage, of course, is
he loss of infrastructure when the attack is successful. Technically,
he risk assessment procedure involves tests such as penetration tests
 In cybersecurity, the asset is the technical infrastructure we have to protect
from cybercriminals.

4 Sanna et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/10/1/tyae015/7744932 by guest on 05 Septem

ber 2024
and simulation attacks where the company assesses the likelihood
of being attacked. In general, after a risk assessment study, the com-
pany takes countermeasures to improve the protection of the assets.
Different standards have been published about risk assessment, such
as ISO 27005:2008 [15] (the one we used in this work) and NIST

800-30.

Related works

Identifying Android native code vulnerabilities is one of the emerging
research fields of cybersecurity, and as far as we know, very few works
have been published on this topic. The prominent one is Librarian
[2], where the authors studied vulnerabilities in the top 200 Android
apps downloaded from the Google Play Store from September 2013
to May 2020. They studied a new algorithm called bin2sim , capable
of extracting six features from each ELF in the app. Additionally, by
applying binary similarities techniques, the tool correctly identifies
different libraries and versions, implementing a whitelist approach
for vulnerability detection. Despite the accuracy of this tool, their
methodology is very heavy from the point of view of computational
complexity. Moreover, they only say whether the APK and the native
library are vulnerable or not without assigning a risk score. Since it
is one of the most recent works on this topic, we decided to compare
our methodology with their results, as we also based the product
selection on their criteria and considered the ± 2 years time elapsed
to patch a vulnerability. As described in section “Comparison with
Librarian results,” we had to find a way to compare our risk score
on their dataset with their result because of the lack of score in their
results.

Although the early versions of the CVSS score have not been
designed as a metric for risk estimation, over the years, the metric
evolved to provide a reliable measure to evaluate the impact of vul-
nerabilities and exploits. One of the seminal works that pointed out
the weaknesses of the previous versions of CVSS was the paper by
Allodi and Massacci [16], who in 2014 criticized the usage of pure
CVSS base score without considering the presence of exploits in the
wild for a given vulnerability. The authors proposed a novel way
to include known attacks by merging CVEs published in NVD and
exploits released on exploit-db (repository of computer software ex-
ploits and exploitable vulnerabilities), eits (black markets exploits),
and sym (vulnerabilities exploited in the wild). By employing this
methodology, they could assess the limitations of the CVSS score first
version and reduce the risk sensitivity according to the known ex-
ploits of 45%. The third version of CVSS (v3.1, the one used in this
work for the experimental part) is more consistent. A brand new ver-
sion has been released during this writing: CVSS v4.0 reinforces the
concept of CVSS as not just a mere base score, as it considers threats,
environments, attack requirements, user interactions, and other met-
rics focused on a more real CVSS value, as suggested by Allodi and
Massacci.

Other works addressed vulnerability detection. For example,
Alves et al. [17] studied the correlation between software metrics and
software vulnerabilities. The authors claim that metrics exist to iden-
tify bad software, which is also harder to verify and maintain, with
unnoticed or inadvertently introduced vulnerabilities. The authors
compiled 5750 vulnerabilities from Linux Kernel, Mozilla, Xen Hy-
pervisor, httpd, and glibc. Analyzing 2875 security patches, they dis-
tinguished vulnerable and safe functions. The results emphasize early
vulnerability management and the need for developers to use multiple
metrics for predicting code vulnerabilities. Even Madeiros et al. [18]
addressed this topic with a study on software metrics useful to de-
tect security vulnerabilities in software development. They analyzed
various software metrics, such as complexity and coupling metrics, as
well as other structural quality indicators, and identified patterns and
correlations indicating the presence of security vulnerabilities. The
authors established a correlation between specific project-level met-
rics and the number of vulnerabilities present in the software systems.
They also found a specific group of discriminative metrics different
across the software systems but present in all of them and valuable
to distinguish between vulnerable and non-vulnerable code. The soft-
ware metrics were identified using a genetics algorithm and a random

forest classifier. Instead, in [19], a method called MVP (matching vul-
nerabilities and patches) has been presented to detect vulnerabilities
using patch-enhanced vulnerability signatures with low false positive
and false negative rates. This methodology can distinguish between
already patched vulnerabilities and generate accurate vulnerability
and patch signatures to improve vulnerability detection accuracy. Du
et al. developed LEOPARD [20], a framework in a lightweight ap-
proach to help security experts detect potentially vulnerable func-
tions in a code base without prior knowledge of the known vulner-
abilities. Leopard combines complexity and vulnerability metrics to
identify potentially vulnerable functions, providing a more compre-
hensive vulnerability assessment. The vulnerability is detected at all
levels of complexity without missing the low-complex ones. For this
purpose, the authors used a binning-and-ranking approach, where
functions are grouped into bins based on complexity metrics and then
ranked within each bin using vulnerability metrics. The framework
covers a substantial portion of vulnerable functions identified, while
only a fraction is flagged as potentially vulnerable, outperforming
machine learning and static analysis methods.

Another interesting problem regarding vulnerability detection is
reachability , i.e. analyzing whether or not a vulnerable function is
called in the app during its execution. Borzachiello et al. proposed
DroidReach [3], a tool to detect reachable APIs using heuristic and
symbolic execution. They were able to represent all possible paths
a function may take within the inter-procedural control-flow graph
(ICFG), whose aim is to encode all paths starting from an applica-
tion entry point. Due to the complex methodology introduced in their
work and the high computational complexity, we did not implement
it in our work but considered this case in the risk methodology. In-
stead, we highlighted the imported library issue in our work as they
did.

Recently, Ruggia et al. [21] developed a new methodology to re-
verse engineer Android apps, focusing on identifying suspicious pat-
terns related to native components. They used suspicious tags to train
a machine learning algorithm for binary classification. In particular,
they developed a static tool that analyzes the code blocks responsible
for suspicious behaviors in detail. This work demonstrates the use of
native code in malicious Android applications so that the analysis is
more complex and the maliciousness is better achieved.

One of the first studies on Android native code exploits was pro-
posed in 2013 by Fedler et al. [22]. They introduced different tech-
niques to provide various levels of protection against all known lo-
cal root exploits without affecting the user experience. Their miti-
gation reduced the exploitability of Android devices. In those years,
very few Android applications used native code, and their approach
was unsuccessful in exploiting and targeting flaws in the DVM.
Nowadays, more applications use native code, and Android archi-
tecture has changed. It is also worth noting that even popular tools
for Android APK vulnerability detection, such as MobSF [23] and
Qark [24], and SEBASTiAn [25] do not look for vulnerabilities in
the native code, even whether they are good vulnerability detection
tools.

Risk estimation study of native code vulnerabilities in Android applications 5

c

p

[

b

J

A

a

[

a

o

w

f

s

p

u

t

s

b

fi

t

t

o

o

a

b

c

c

t

A

n

b

b

s

D

a

n

t

c

c

c

t

c

t

i

o

I

r

d

a

t

w

t

a

a

i

i

d

w

p

b

z

v

t

v

S

s

a

c

i

t

g

M

T

t

t

b

f

e

t

e

t

w

f

a

a

m

p

a

a

p

n

(

O

d

t

(

a

f

B

A

t

l

t

o

a

e

i

s

m

l

v

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/10/1/tyae015/7744932 by guest on 05 Septem

ber 2024
Fuzzing is another technique to detect vulnerabilities, and re-
ently, it has also been used in Android native code. One of the most
opular fuzzers is AFL ++ , which has been adapted in Frida mode
 26] to interact and fuzz Android applications: detect the vulnera-
ility in the C/C ++ code and also check the interaction with the
ava/Kotlin code. Other tools have been released, such as Android-
FL [27] and Libfuzzer [28]. All these tools are resource-consuming
nd sometimes could be more efficient in detecting. Different works
 29] are focusing on fuzzing Android native components, but, as far
s we know at the moment of writing this paper, none of them focuses
n fuzzing Android application native code.

Android CVE analysis has been studied by Brant et al. in [30]
ith a focus on the Android security bulletin within the last six years

rom 2022. According to them, to have more secure Android systems,
ecurity bulletin updates must be designed with specific tests and im-
rove code coverage of patched files. Only 13% of security bulletin
pdates contain fixed test files for that particular update, and among
hese, only 42.8% have full patch coverage. Even if the percentage is
till low, this is an interesting result, meaning that the community is
eginning to address Android security and vulnerability detection.

LibRadar [31] demonstrated that a whitelist approach is inef-
cient because package names can be modified in many ways. For
his reason, they released a detection tool based on stable code fea-
ures that are obfuscation-resilient, such as APIs, which are also
bfuscation-resilient. We tried to use their approach, but at the time
f this writing, the tool was no more accessible. Another interesting
pproach is the one proposed by Li et al. [32], which identifies li-
raries according to reference and inheritance relations between Java
lasses, methods, and other app metadata. Notably, a native library
annot be identified only according to Java interaction and inheri-
ance, but specific C code syntaxes must be considered.

Other works such as GoingNative [33], NativeGuard [34], and
ppCage [35] focused only on the isolation and secure sandboxing of
ative code in Android applications by running the app in a protected
ut unrealistic environment. These methodologies are fundamental
ut cannot be considered in a real-world scenario where customized
andboxes are rarely employed. On the contrary, Ndroid [36] and
roidNative [37] focused on data flow between Java and native code

nd native code control flow patterns, also for malware detection. Fi-
ally, AdDetect [38] is a framework for advertisement library detec-
ion using semantic analysis with machine learning and hierarchical
lustering techniques. The interaction between native code and Java
ode is critical and must be considered, even if we are limited to C
ode vulnerability detection in our work.

As the “Introduction”mentions, most of these works feature high
ime and space computational complexity. For example, using ma-
hine learning approaches, an extensive dataset of samples is needed
o train the model correctly, and the fine-tuning of the model can
ntroduce additional complexities. On the other hand, the method-
logies above in the literature have a good accuracy in the results.
nstead, the methodology we propose in this paper needs very few
esources; it is fast to execute even with a large-scale dataset and
oes not need any dataset on which to train the machine learning
lgorithms.

One of the scenarios for which this work has been developed is
he SBOM, as explained in the “Introduction.”This concept has been
ell explained by Zahan et al. [39], where they discuss the impor-

ance of SBOM in improving cybersecurity, highlighting its benefits
nd challenges. The work has been based on the Log4Shell vulner-
bility: a zero-day remote code execution vulnerability discovered
n Apache Log4j that significantly impacted software organizations
n December 2021 despite a few months earlier, EO (Executive Or-
er) 14028 [40] recognized SBOMs as a practice for enhancing soft-
are supply chain security, and NTIA released a report of minimum
oints to use SBOM in risk reduction. After the Log4Shell vulnera-
ility, NIST recognized SBOM as one of the official practices organi-
ations must follow to reduce cyber attacks and listed it in the first
ersion of the Secure Software Development Framework. Moreover,
he industries following SBOMs were able to identify the Log4Shell
ulnerability rapidly and had a more effective response.

In the work, Zahan et al. [39] highlight the benefits of using
BOMs, which include risk management, vulnerability detection,
upply chain transparency, proactive management of security risks,
nd effective response to cyber threats. As part of EO 14028, SBOMs
an improve the nation’s cybersecurity, but it still has to be standard-
zed in the industry, and some challenges still must be solved, such as
he standardization of data requirements, the enhancement of solid
uidelines, and the practitioners’ collaboration.

ethodology and implementation details

his section illustrates the methodology used for vulnerability detec-
ion in the native code of Android applications. First, we describe
he creation of the purpose-specific database. Then, we detail the li-
rary extraction algorithm we developed to analyze the information
rom each APK studied. Lastly, the risk assessment algorithm is fully
xplained.

Given an APK, we extract the native library from its lib direc-
ory. As the compiled library is an ELF file, we need specific reverse
ngineering tools and techniques to extract data for vulnerability de-
ection. Such data is the list of functions and the product name, along
ith the version to which the library belongs. Once we have this in-

ormation, we can match this result with a database of known vulner-
bilities. The database is purpose-specific , containing for each CVE
 field with the affected vulnerable version and function. At the mo-
ent of this writing, there is no publicly available database for this
urpose, and with this specific structure, a system can easily access
nd read it.

We need a list of N products to construct the database, which
re those whose vulnerabilities we want to look for in the apps. The
roduct matching process is a whitelist approach that assumes that
one of the Android app’s developers has changed the library name
keeping the real one employed during compilation time in the NDK).
nce we have a match between the library under analysis and the
atabase, we can assign a risk assessment score to the CVE found in
he analyzed library. Our purpose is to give a risk value to each library
according to the risk of each CVE found) and, consequently, to each
pp to provide an alarm to developers and security researchers. The
ollowing sections will explain in more detail the methodology.

uilding a custom CVE database

 CVE database is essential to check whether the extracted data from
he analyzed library have been declared in a published vulnerability
isting. We decided to employ a custom database to reduce the query
ime to a public online database. Hence, our local database is a dump
f data contained in the online selected website of CVEs (e.g. NVD)
nd with fields organized according to the aim of the research. As
xplained in section “Common vulnerability exposure,” the essential
nformation about a vulnerability is the product’s name with the ver-
ion and the vulnerable functions of the library. All this information
ay be found inside the human-readable description. It does not fol-

ow a specific syntax such as “In product P of v er sion v.n , there is a
ulnerable function F. , ” so we need to employ natural language pro-

6 Sanna et al.

Table 1. CVE descriptions and corresponding vulnerable product version.

Description Vulnerable product version

In product P before version v.n , the F function can be used for buffer overflow. Every version < = v.n is vulnerable
In product P version v.n , F function can be used for attack Version == v.n is vulnerable
In product P version v.n and after , F function can lead to buffer overflow. Every version > = v.n is vulnerable

Figure 1. Workflow of the approach to extract, analyze, and associate native libraries, specifically in the use-case of vulnerability researchers.

6 strings tool in Linux is capable of retrieving all printable sequences of char-

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/10/1/tyae015/7744932 by guest on 05 Septem

ber 2024
cessing (NLP) techniques to process the description and extract the
valuable data. Specifically, we employed Python nltk library 5 , adapt-
ing it to our use case and syntax.

The product name is easily matched with one of the N selected
products, and whether one is mentioned inside the description, we
know that the CVE has been found in that specific product. This can
be further confirmed by searching all vulnerabilities by product name
in the public database.

The version of the library affected by the CVE is always a number
that may come after the word v er sion , the product name, or preced-
ing words with the meaning of after or before . Some examples are
described in Table 1 : (i) whether there is a word with the meaning
of before (i.e. before, prior , earlier , etc.), every product version lower
than the one found in the description is vulnerable; (ii) whether there
is a word with the meaning of after (i.e. after, following, successive),
every product version higher than the one found in the description is
vulnerable; and (iii) whether no word with the precedents meaning
is found, the affected product version is only the one found in the
description.

The last data to extract from the description is the function name .
We rely our strategy on how programmers typically recognize func-
tion names and give names to functions. Then, by looking at some
CVE descriptions, we noticed that the function is never declared as,
e.g. function F , represented uniquely by its name. The function name
usually contains specific symbols (i.e. _, ::, (), etc.). Moreover, whether
the name is made up of more than one word, it is camel-cased. As an
example, makeSum is made up of two words: make and Sum. In other
cases, the function is not found, which means that the whole product
version is vulnerable, but no description of the vulnerable function is
provided.

This methodology was developed in iterative steps with manual
cross-validation to check whether the algorithm worked correctly.

Library extraction, analysis, and association

The overall approach, subdivided into library extraction, analysis,
and association, is depicted in Fig. 1 . The presented methodology
5 https:// www.nltk.org/
can be used as it is by vulnerability researchers and adapted for de-
velopers to release a secure Android application.

Libr ary extr action is the first step of the analysis part, and, as the
name states, it consists of the extraction of the compiled library (ELF
file) from the Android application. It is done by unzipping .so files
from the lib directory of each APK. Indeed, libraries are compiled
according to different ABIs and saved inside the application. We can
choose to extract libraries only for specific architectures or to ana-
lyze libraries for all available ABIs. In this work, we considered all
ELF files from armeabi-v7a directory and, if not available, looked for
arm64-v8a or x86_64 as they represent the most popular architectures.

Library analysis is the part where we need to extract from the li-
brary the data for vulnerability detection. In particular, we need to
know the list of functions in the library and the product name and
the version to which the library belongs. This step can be done with
different reverse engineering tools, such as Ghidra and its Python ex-
tension for automation. Typically, the product name and its version
can be retrieved in the strings section (.rodata section), while the de-
fined functions in the ELF file can be retrieved from the Symbol Ta-
ble section. In this work, we used pwntools [41], a popular Python
framework for binary analysis and exploitation. Specifically, we em-
ployed its ELF module, which allows the analysis of ELF files from

which the strings and the list of functions are extracted. The version
is taken from the result of the strings Linux utility.6 At the same time,
the functions are found inside the Symbol Table of the ELF without
considering .got and .plt sections. A difficulty comes when binaries are
stripped 7 where not all function names are available, or the names
are unrecognizable.

Library association is the part where each ELF file is associated
with at least one of the selected N products. This is a crucial task:
whether we do not link each ELF file to its related product, we can-
not determine whether the ELF file contains vulnerabilities, hence as-
signing a risk assessment score. Section “Related works” illustrates
that different works used binary similarities techniques or machine
acters from the.rodata section of an ELF.
7 A stripped binary is a binary without some debugging symbols and so with

a lack of data.

https://www.nltk.org/

Risk estimation study of native code vulnerabilities in Android applications 7

Table 2. Mapping from semi-quantitative to qualitative values of

the product between threat and impact.

Semi-quantitative value Qualitative value

90 ÷ 100 CRITICAL

89 ÷ 70 HIGH

69 ÷ 40 MEDIUM

39 ÷ 0 LOW

l

fi

a

O

v

F

t

l

m

t

t

a

t

s

(

p

D

d

A

b

c

w

f

a

w

R

W

l

r

b

d

i

f

r

d

t

v

w

C

o

s

w

t

s

a

b

v

s

r

i

l

s

s

t

a

l

r

fi

o

f

t

o

u

w

a

R

I

d

t

a

p

A

S

s

r

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/10/1/tyae015/7744932 by guest on 05 Septem

ber 2024
earning algorithms; however, we decided to apply a simple identi-
cation algorithm because we know that every product uses a clear
nd unique syntax in strings and function names. For example, in
penCV , we can find strings like Gener al Configur ation for OpenCV

.n to declare the version and xxxx_cv_xxxx in the function names.
or this reason, whether we find these syntaxes in strings and func-
ions, we can link the analyzed ELF file to a product.

Some binaries can be linked to multiple products due to imported
ibraries. Indeed, in a compiled library, there can be traces of the pri-
ary library and the secondary libraries (i.e. the ones employed by

he primary). We considered the ELF files belonging to all the re-
rieved products in this case, as a proper distinction between primary
nd secondary libraries can be hard to carry out in practice (an issue
hat has also been highlighted by Borzachiello et al. [3]).

When developers use our methodology, thanks to the library as-
ociation step, they can find vulnerabilities in the secondary library
i.e. a library contained in the main library they are importing in the
roject as described here above) and take actions to mitigate them.
evelopers also use the library extraction and analysis part as we
esigned because when importing a third-party native library in an
ndroid project for apk creation, Android Studio compiles the li-
rary, and to analyze it, developers have to extract and analyze the
ompiled ELF file as security analysts do. Instead, when developers
ant to check whether the native library contains vulnerabilities be-

ore importing them into the Android Studio project to create the
pplication, they can immediately check the database, find a version
ith fewer vulnerabilities, and patch them.

isk assessment algorithm

e developed a risk assessment algorithm to give a risk value to each
ibrary (and consequently to each app) to provide an alarm to secu-
ity researchers. Even though a CVE is present in the analyzed li-
raries within an ELF, we are not 100% sure that it is exploitable
ue to stripped binaries, imported products, and without consider-
ng the reachability problem. Moreover, developers can rename the
unctions, patch their content, or use obfuscation techniques. For this
eason, we can approach the problem in probabilistic terms , and we
eveloped a semi-quantitative risk assessment algorithm.

According to ISO 27005:2008 [15], the risk can be evaluated as
he product between three factors:

risk = threat ∗ impact ∗ vulnerability . (1)

A threat corresponds to an action that negatively impacts the de-
ice. Hence, the threat factor can be associated with the ease with
hich an attack can be carried out. To quantify it, we can use the
VSS exploitability value since it has a similar definition, regardless
f the attacker’s capabilities. The impact is the damage caused to the
ystem whether the vulnerability is exploited. It can be quantified
ith the CVSS impact value without considering the architecture of

he victim device.
� CRITICAL when the CVE is present and surely exploitable.
� HIGH when a vulnerable library is found within the application,

but we are uncertain about the CVE exploitability because the
vulnerable API is not reachable, or we did not find the vulnerable
function because the binary is stripped.

� MEDIUM when we can make the same assumptions of HIGH
level for functions, but we cannot find the vulnerable version due
to stripped binaries. Indeed, the library could be vulnerable be-
cause developers would be unaware of the dangers of function
whether the CVE were released after the app’s publication. More-
over, apps falling in this category feature a difference between
their release and the CVE publication dates, which are inferior
to two years. According to Librarian [2], two years is the time
developers use to apply a patch and mitigate vulnerability effec-
tiveness after its release. Hence, within this period, it is very likely
that the library would be affected.

� LOW when we cannot state whether the CVE is present. So, we
establish a small level of risk when the found version and func-
tions are not associated with any CVE.

� NONE when no native library is found, or the analyzed ELF files
do not belong to our N products.

Our study aims to establish a qualitative value of the risk. To do
o, we have to rescale the semi-quantitative product between threat
nd impact (in a range between 0 and 100 as both of them have values
etween 0 and 10) into qualitative metrics, as detailed in Table 2 . The
alues have been determined according to the CVSS 3.1 qualitative
everity rating scale. Then, by applying equation (1), we evaluate the
isk according to the matrix in Table 3 . In this way, we have a qual-
tative risk assessment score to assign to each CVE present in each
ibrary of each Android application.

The purpose is to give a risk value to each library (and, con-
equently, to each app) and to provide swift alarms to security re-
earchers. Once they are informed about the risks associated with
he library or application, they can find a way to patch the vulner-
bility (e.g. upgrade the library to a non-vulnerable version, fix the
ibrary, etc.). To this aim, we assigned the highest score of the CVEs
isk level to each library but also saved the affected CVEs in a log
le. For example, whether we find five CVEs with a LOW level and
ne with a MEDIUM level, we assign a MEDIUM risk to the library
or a more effective alarm. Another approach could be evaluating
he average risk, giving the most representative risk: in the previ-
us example, the result should be LOW, but in this way, we would
nderestimate the risk, which is far from our purpose. The same
eighted approach has been adopted for the application risk level

ttribution.

esults

n this section, we illustrate the results of a large-scale analysis con-
ucted on 100 000 APKs from Androzoo. Additionally, to prove
he efficiency of our methodology and risk algorithm and to make
 comparison between our approach and Libriarian [2], we ap-
lied the approach to 32 apps from the published dataset [42] by
lmanee et al.

Since the Librarian dataset employs apps released between
eptember 2013 and May 2020, we downloaded the updated ver-
ions of such apps (February 2023) and whether the vulnerability
isk changed in this amount of time.

8 Sanna et al.

Table 3. Risk matrix to determine the qualitative risk value.

Threat ∗impact \ vulnerability None Low Medium High Critical

Critical Medium High High Critical Critical
High Medium Medium High High Critical
Medium Low Medium Medium High High
Low Low Low Medium Medium High

Table 4. Fifteen selected products to perform the analysis, a brief description of their purpose, the number of released CVEs in the last

5 years, and the percentage of apps in our dataset that contain these products.

Product Description # CVE % Dataset

OpenCV Real-time computer vision 34 5
OpenSSL Secure communication over network 232 1
FFmpeg Manage multimedia files (audio–video) 407 10
Libav 8 FFmpeg fork to manage multimedia files 106 5
Sqlite 3 Database engine 54 8
LibWebp Alternative to PNG, JPEG, GIF 14 5
Libpng Handle PNG images 44 5
Libjpeg-turbo Handle JPEG image format 1 16
Lua Lua language interaction 15 3
Mono Create compatible tools with Framework.NET 20 11
Folly Core library components used by Facebook 3 11
Hermes Fast startup of React Native apps 20 10
React-Native Use React framework in applications 1 77

Figure 2. The pie chart shows the percentage of apps for which a risk level

has been computed by only identifying 15 products. The NONE value means

that the found native code does not belong to any of our 15 selected

products, but it can have vulnerabilities related to other libraries.

8 https:// github.com/ slsanna/ Android _ Native _ Code _ Vulnerability
_Detection/blob/main/a-risk-estimation-study/dataset_app_hash.txt

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/10/1/tyae015/7744932 by guest on 05 Septem

ber 2024
Dataset and products

To apply the study to a large-scale dataset, we downloaded the first
100 000 applications found in the Androzoo collection, which is a
popular dataset developed by the University of Luxembourg with
about 23 million APKs dumped from different markets and years,
also analyzed by various anti-malware engines. Among the 100 000
applications, we selected only 38 348, which contained native code
(see GitHub repository 8). In particular, since this study started in
September 2021, we downloaded the samples considering the list of
apps from Androzoo csv.

Additionally, we built a dataset of products, i.e. a set of N
popular native libraries within the downloaded samples. This is a
necessary step to associate each ELF file with at least one prod-
uct, as expressed in section “Library extraction, analysis, and as-
sociation.” Due to time and space constraints, we selected the
most representative libraries within the 38 384 APKs, considering
the number of published vulnerabilities (CVE) for those libraries
and the representativeness within the app chosen inside the large-
scale dataset. So, in a similar fashion to what was made by Al-
manee et al. [2], given the 38 384 APKs, we made a list of the
native libraries’ names, associated them to their own products,
and computed statistics of the products considering the number
of the published known vulnerabilities and their percentage of
diffusion in the dataset (considering the top products to be se-
lected). At the end, we had a dataset of 15 products: OpenCV,
OpenSSL, FFmpeg, Liba vcodec, Liba vformat, Libswresample, Sqlite 3,
LibWebp, Libpng, Libjpeg-turbo, Lua, Mono, Folly, Hermes, React-
Native .

Large-scale analysis results

Out of the 100 000 downloaded APKs, about 40% of them contained
native code. In particular, there are 38 384 APKs with at least one
native library and a total of 225 638 ELF files. Among these, 44 225
belong to at least one of our 15 products.

https://github.com/slsanna/Android_Native_Code_Vulnerability

Risk estimation study of native code vulnerabilities in Android applications 9

Figure 3. This histogram shows the risk level per year on the analyzed apps. Each year has 2 bars: red/lef t-bot tom bar for HIGH risk, orange/left-upper bar for

MEDIUM risk, and gray/right bar for NONE risk.

Figure 4. The histograms show the vulnerability risk levels (HIGH: red/left bar; MEDIUM: orange/central bar; NONE: gray/right bar) of the apps by markets. On

the left, we plotted the main markets. On the right, we can see a detail of all markets except the Google Play Store.

p

c

b
M

a

m

t

(

a

a

i

r

w

o

C

T

r

i

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/10/1/tyae015/7744932 by guest on 05 Septem

ber 2024
Regarding applications with native code, by considering only the
roducts in the library-identification dataset as defined in Table 4 , we
ould determine the risk for 55% of them. Hence, about 24 000 APKs
elong to at least one of our 15 products with a risk level HIGH–
EDIUM as reported in Fig. 2 .
We also computed some statistics about the apps’ year of release

nd belonging market.
Figure 3 shows that the apps released from 2011 to 2021 have a

edium risk. Note that the NONE label does not mean that applica-
ions are not vulnerable at all, but that they belong to other products
i.e. no product among the selected ones is found). Expanding the an-
lyzed products dataset may increase the number of vulnerable apps.
The market with the most vulnerable applications is Google Play,
s depicted in Fig. 4 . That is a reasonable result because most apps
n the dataset are retrieved from the Google Play Store (Fig. 5). The
eason is that Google Play only limits its checks in understanding
hether an uploaded application can be classified as malware with-
ut considering vulnerabilities.

omparison with Librarian results

o demonstrate our methodology’s effectiveness, we compared our
esults with the ones obtained by Almanee et al. [2] by download-
ng their public dataset of 32 APKs [42] built in 2021. We could

10 Sanna et al.

Figure 5. The histogram compares the number of apps for each market in the Androzoo dataset (green/left bar) and the apps used for vulnerability detection in

our dataset (blue/right bar).

Figure 6. The histogram shows the risk level for the librarian apps (left/olive green bar) and the version on February 2023 (right/coral bar).

CVEs).

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/10/1/tyae015/7744932 by guest on 05 Septem

ber 2024
infer almost the same library identification results by using the same
products for library identification.

While the methodology proposed by Almanee et al. was limited
in saying whether the analyzed app was vulnerable (so only a re-
sult yes/no), our approach gives one of the presented risk levels in
section “Risk Assessment Algorithm,” we have to find a way to com-
pare the results of the two methodologies. Hence, when our method-
ology gives a level to an application to which the other approach
says is vulnerable, we gave the Librarian results in the same risk
level set by our algorithm. On the other hand, when our method-
ology gives a level to an application, but the approach of Amanee
et al. says it is not vulnerable, we gave the value of 0 to the Librar-
ian results. First of all, we infer the same results as the Librarian did
for all applications, except for one, which we detected as MEDIUM

risk, but the Librarian says it has no vulnerabilities. From the re-
sults, we can affirm that 47% of the apps have a HIGH risk level,
41% MEDIUM risk level, and 12% of the apps do not have vul-
nerable native code libraries (i.e. their products do not belong to
our or Librarian dataset of products; the products do not contain

Risk estimation study of native code vulnerabilities in Android applications 11

C

T

L

c

f

t

n

t

s

b

o

v

o

n

i

t

a

S

I

a

d

t

W

v

e

t

v

c

b

t

A

r

i

b

r

t

r

a

p

n

t

u

n

i

f

d

p

h

e

t

A
T

i

R

A
S

M

i

M

G

(

C

F
T

d

h

“

F

R

1

2

3

4

5

6

7

8

9

1

1

1
1
1

1

1

1

1

1

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/10/1/tyae015/7744932 by guest on 05 Septem

ber 2024
omparison with updated Librarian dataset

he last experiment we performed was on the last version of the
ibrarian apps, downloaded on February 2023, used as a dataset to
heck whether the risk changed. As Fig. 6 shows, we can state that
or the 55% of the apps, the risk was reduced; for the 10% of them,
he risk remained constant, and for the 2% of them, it increased. The
ull results are caused by native code that does not belong to any of
he selected 15 products.

As seen in Fig. 2 , the selected 15 products are still insufficient to
can all apps, even though they are the most popular . Moreover , Face-
ook, Instagram, Messenger, and WhatsApp use native code devel-
ped by Meta instead of importing third parties as in the Librarian’s
ersion.

From the graph in Fig. 3 , we have seen that the risk reduces
ver time, which is expected whether we consider that various vul-
erabilities have been addressed over the years. However, it is also

nteresting that the risk for various apps has not changed over
ime , questioning the quality of vulnerability addressing in popular
pplications.

ummary, limitations, and future works

n this work, we proposed a simple and fast approach for vulner-
bility detection in Android native code by developing the first
atabase of CVEs for vulnerability detection by easily accessing
he vulnerable version of each app and its vulnerable functions.

e combined this with developing a risk assessment algorithm for
ulnerability management.

We demonstrated that even a simple approach like ours is
fficient for vulnerable library identification, as we have been able
o reproduce the same results as previous works by highlighting
ulnerable applications on a much larger scale. Our methodology
an aid developers and security researchers mitigate immediate risks
y recommending fine-grained application patching, thus allowing
hem to release more secure Android applications in the different
ndroid markets.

However, our methodology does not consider issues such as
eachability to determine whether vulnerable functions are accessible
n apps and stripped binaries to assess the presence of the vulnera-
le function’s name in the binary. In fact, our solution gives security
esearchers and developers a risk score so they can manually check
he vulnerability. To better score the functions’ reachability, security
esearchers can refer to other tools such as DroidReach [3]. Addition-
lly, we do not check whether or not the vulnerable library has been
atched. Indeed, even though the analyzed ELF file matches a vul-
erable version or the function name, developers may have patched
he function’s body, for which binary similarities techniques must be
sed. Developers can also rename the functions or obfuscate their
ame (as well as the content). For these cases, our whitelist approach

s insufficient to determine the risk and match whether the found
unction is in the vulnerability database. All these issues can be ad-
ressed in future research works.

In the future, we plan to address these issues by extending the
roduct dataset and including as many libraries as possible to check
ow the risk changes. Concerning library identification, we plan to
xtract unique functions from each version of the products and use
hem as features for nachine learning algorithms.

cknowledgements

his work was carried out while Silvia Lucia Sanna was enrolled in the Ital-
an National Doctorate on Artificial Intelligence run by Sapienza University of
ome in collaboration with the University of Cagliari.
uthor contribution

ilvia Lucia Sanna (Conceptualization, Data curation, Formal analysis,
ethodology, Software, Writing – original draft, Writing – review & edit-

ng), Diego Soi (Writing – original draft, Writing – review & editing), Davide
aiorca (Methodology, Project administration, Writing – review & editing),
iorgio Fumera (Methodology, Writing – review & editing), Giorgio Giacinto

Methodology, Writing – review & editing).

onflict of interest statement : The authors declare no competing interest.

unding

his work was partially supported by project SERICS (PE00000014) un-
er the NRRP MUR program funded by the EU - NGEU. This work
as been partially funded by Fondazione di Sardegna under the project
TrustML: Towards Machine Learning that Humans Can Trust,” CUP:
73C22001320007.

eferences

. StatCounter-GlobalStats. Mobile operating system Market Share World-
wide. https://gs.statcounter.com/os- market- share#monthly- 200901- 20
2309 (Last Access: 15/09/2023).

. Almanee S, Ünal A, Payer M. et al. Too quiet in the library: an
empirical study of security updates in Android apps’ native code. In:
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE) . 2021, 1347–59.

. Borzacchiello L, Coppa E, Maiorca D. et al. Reach me if you can: on
native vulnerability reachability in Android apps. In: V Atluri, R Di
Pietro, CD Jensen, W Meng (eds.), Computer Security—ESORICS 2022 .
Cham: Springer Nature Switzerland, 2022, 701–22.

. Software Bill of Materials. https://www.cisa.gov/sbom (Last Access:
20/03/2024).

. Secure Software Development Framework. https:// csrc.nist.gov/ projects/s
sdf#ssdf-practices (Last Access: 20/03/2024).

. Android Operating System. https:// source.android.com/ (Last Access:
15/05/2023).

. Android Platform Architecture. https:// developer.android.com/ guide/ plat
form (Last Access: 15/05/2023).

. Android Platform Architecture. https:// developer.android.com/ guide/ topi
cs/manifest/manifest-intro (Last Access: 15/05/2023).

. Android NDK. https:// developer.android.com/ ndk/ guides (Last Access:
15/05/2023).

0. Common Vulnerability and Exposure (CVE). https:// www.cve.org/ Abou
t/Overview (Last Access: 15/05/2023).

1. Common Vulnerability Scoring System (CVSS). https://www.first.org/cvs
s/v3.1/user-guide (Last Access: 15/05/2023).

2. Mitre CVE. https:// cve.mitre.org/ (Last Access: 15/05/2023).
3. CVE Details. https:// www.cvedetails.com/ (Last Access: 15/05/2023).
4. National Vulnerability Database from NIST. https:// nvd.nist.gov/ (Last

Access: 15/05/2023).
5. ISO/IEC 27005:2008 Information technology — Security techniques —

Information security risk management. https:// www.iso.org/ standard/421
07.html (Last Access: 15/05/2023).

6. Allodi L, Massacci F. Comparing vulnerability severity and exploits using
case-control studies. ACM Trans Inf Syst Secur 2014; 17 : 1–20 https://do
i.org/ 10.1145/ 2630069 .

7. Alves H, dos Santos Neto BF, Antunes N. Software metrics and se-
curity vulnerabilities: dataset and exploratory study. 2016 12th Euro-
pean Dependable Computing Conference (EDCC) .2016, 37–44. https:
// doi.org/ 10.1109/ EDCC.2016.34 .

8. Medeiros N, Ivaki NR, Costa P. et al. Software metrics as indicators
of security vulnerabilities. 2017 IEEE 28th International Symposium on
Software Reliability Engineering (ISSRE) . 2017, 216–27.

9. Xiao Y, Chen B, Yu C. et al. MVP: detecting vulnerabilities us-
ing patch-enhanced vulnerability signatures. In: 29th USENIX Security

https://gs.statcounter.com/os-market-share#monthly-200901-202309
https://www.cisa.gov/sbom\protect \unhbox \voidb@x \penalty \@M \
https://csrc.nist.gov/projects/ssdf#ssdf-practices
https://source.android.com/
https://developer.android.com/guide/platform
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/ndk/guides
https://www.cve.org/About/Overview
https://www.first.org/cvss/v3.1/user-guide
https://cve.mitre.org/
https://www.cvedetails.com/
https://nvd.nist.gov/
https://www.iso.org/standard/42107.html
https://doi.org/10.1145/2630069
https://doi.org/10.1109/EDCC.2016.34

12 Sanna et al.

Symposium (USENIX Security 20) . Boston: USENIX Association, 2020,

tional Conference on Software Engineering Companion (ICSE-C) . Austin,

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/10/1/ty
1165–82.
20. Du X, Chen B, Li Y. et al. LEOPARD: identifying vulnerable code for vul-

nerability assessment through program metrics. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE) . 2019, Mon-
tréal: IEEE/A CM, 60–71.

21. Ruggia A, Possemato A, Dambra S. et al. The dark side of native code
on android. TechRxiv 2022, 1 : 1–33.

22. Fedler R, Kulicke M, Schütte J. Native code execution control for attack
mitigation on android. In: Proceedings of the Third ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices. SPSM ’13 . New

York, NY: Association for Computing Machinery, 2013, 15–20.
23. Mobile security framework (MobSF). https://github.com/MobSF/Mobile-

Security- Framework- MobSF (Last Access: 27/07/2023).
24. Quick Android Review Kit (Qark). https:// github.com/linkedin/ qark (Last

Access: 27/07/2023).
25. Pagano F, Romdhana A, Caputo D. et al. SEBASTiAn: a static and ex-

tensible black-box application security testing tool for iOS and Android
applications. SoftwareX 2023; 23 : 101448. https:// doi.org/ 10.1016/ j.soft
x.2023.101448 .

26. Android greybox fuzzing with AFL ++ Frida mode. https://blog.quark
slab.com/android- greybox- fuzzing- with- afl- frida- mode.html (Last Ac-
cess: 27/07/2023)

27. android-afl. https:// github.com/ele7enxxh/andr oid-afl/ blob/master/ RE
ADME.md (Last Access: 27/07/2023).

28. Fuzzing with libfuzzer. https:// source.android.com/docs/ secur ity/test/ libf
uzzer (Last Access: 27/07/2023).

29. Liu B, Zhang C, Gong G. et al. FANS: fuzzing android native system ser-
vices via automated interface analysis. In: 29th USENIX Security Sympo-
sium (USENIX Security 20) . Berkeley, California: USENIX Association,
2020, 307–23.

30. Brant CD, Yavuz T. A Study on the Testing of Android Security Patches.
In: 2022 IEEE Conference on Communications and Netw or k Security
(CNS) . Austin, TX: IEEE, 2022, 217–25.

31. Ma Z, Wang H, Guo Y. et al. LibRadar: fast and accurate detection of
third-party libraries in Android apps. In: 2016 IEEE/ACM 38th Interna-
© The Author(s) 2024. Published by Oxford University Press. This is an Open Access article
License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercia
properly cited. For commercial re-use, please contact journals.permissions@oup.com
TX: IEEE/ACM, 2016, 653–6.
32. Li M, Wang W, Wang P. et al. LibD: scalable and pre-

cise third-party library detection in Android markets. In: 2017
IEEE/ACM 39th International Conference on Software En-
gineering (ICSE) . Buenos Aires, Argentina: IEEE/ACM, 2017,
335–46.

33. Afonso VM, de Geus PL, Bianchi A. et al. Going native: using a large-
scale analysis of android apps to create a practical native-code sandboxing

policy. In: Netw or k and Distributed System Security Symposium . Reston,
VA: Internet Society. 2016.

34. Sun M, Tan G. NativeGuard: protecting android applications from third-
party native libraries. WiSec ’14 , New York, NY: Association for Com-
puting Machinery, 2014, 165–76.

35. Zhou Y, Patel K, Wu L. et al. Hybrid user-level sandboxing of third-party
Android apps. ASIA CCS ’15. New York, NY: Association for Computing
Machinery, 2015, 19–30.

36. Xue L, Qian C, Zhou H. et al. NDroid: toward tracking information
flows across multiple Android contexts. IEEE T Inf Foren Sec 2019; 14 :
814–28. https:// doi.org/ 10.1109/ TIFS.2018.2866347 .

37. Alam S, Qu Z, Riley RD. et al. DroidNative: semantic-based detection
of Android native code malware. CoRR 2016. abs/1602.04693 18

38. Narayanan A, Chen L, Chan CK. AdDetect: automated detec-
tion of android ad libraries using semantic analysis. In: 2014
IEEE Ninth International Conference on Intelligent Sensors,
Sensor Netw or ks and Information Processing (ISSNIP) . 2014,
1–6. Singapore: IEEE Xplore.

39. Zahan N, Lin E, Tamanna M. et al. Software bills of mate-
rials are required. are we there yet?. IEEE Secur Priv 2023; 21 :
82–8.

40. NIST. EXECUTIVE ORDER 14028, IMPROVING THE NATION’S
C YBER SECURITY. https://www.nist.gov/itl/executive- order- 14028- imp
roving- nations- cybersecurity (Last Access: 20/03/2024).

41. Pwntools. http:// docs.pwntools.com/ en/latest/ (Last Access: 10/07/2023).
42. Librarian GitHub Repository. https:// github.com/salmanee/ Librarian

(Last Access: 08/09/2023).
 distributed under the terms of the Creative Commons Attribution-NonCommercial
l re-use, distribution, and reproduction in any medium, provided the original work is

ae015/7744932 by guest on 05 Septem
ber 2024

https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/linkedin/qark
https://doi.org/10.1016/j.softx.2023.101448
https://blog.quarkslab.com/android-greybox-fuzzing-with-afl-frida-mode.html
https://github.com/ele7enxxh/andr oid-afl/blob/master/README.md
https://source.android.com/docs/secur ity/test/libfuzzer
https://doi.org/10.1109/TIFS.2018.2866347
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
http://docs.pwntools.com/en/latest/
https://github.com/salmanee/Librarian
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com

	Introduction
	Technical background
	Related works
	Methodology and implementation details
	Results
	Summary, limitations, and future works
	Acknowledgements
	Author contribution
	Funding
	References

