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Abstract

We discuss the ellipticity properties of an enhanced model of poroelastic
continua called dilatational strain gradient elasticity. Within the theory there
exists a deformation energy density given as a function of strains and gradient
of dilatation. We show that the equilibrium equations are elliptic in the sense
of Douglis–Nirenberg. These conditions are more general than the ordinary
and strong ellipticity but keep almost all necessary properties of equilibrium
equations. In particular, the loss of the ellipticity could be considered as a
criterion of a strain localization or material instability.

Keywords: Douglis–Nirenberg ellipticity, strong ellipticity, strain gradient
elasticity, poroelasticity, dilatational strain gradient elasticity

1. Introduction

Partial differential equations (PDEs) constitute a basis of physics and
mechanics of solids and fluids. Considering systems of PDEs we usually dis-
tinguish hyperbolic, parabolic and elliptic systems. The latter almost relate
to statics or to quasistatics. Among definitions of elliptic systems of PDEs5

one can find ordinary ellipticity or Petrowsky ellipticity (Petrowsky, 1939),
strong ellipticity (Vishik, 1951; Nirenberg, 1955), Douglas–Nirenberg ellip-
ticity (Douglis & Nirenberg, 1955), or even more general definitions (Vole-
vich, 1965), see also Agranovich (1997). From the mathematical point of
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view ellipticity brings regularity of solutions, solvability and well-posedness10

of corresponding boundary-value problems. From the physical point of view,
a violation of ellipticity may result in a certain material instability such as
a strain localization, folding, and appearance of multiple solutions, it may
also prevent wave propagation in certain points or in some directions. In
particular, Hill (1962) and Rice (1976) considered loss of ellipticity as a cri-15

terion for detection of strain localization and transition to a plastic regime
of deformation, see also Bigoni (2012); Staber et al. (2021) and the refer-
ences therein. So the analysis of ellipticity conditions brings an essential a
priori information about a solution of a problem under consideration and a
possible material response. Moreover, even for finite deformations ellipticity20

conditions take a form of algebraic problem that is more simple, in general.
Within the classic nonlinear elasticity ellipticity conditions were ana-

lyzed in many works, summarized in (Lurie, 1990; Ogden, 1997; Truesdell
& Noll, 2004). It was shown how the strong ellipticity and its weak form
called Hadamard’s inequality relate to infinitesimal stability. In particular,25

infinitesimal stability implies Hadamard’s inequality. So the latter can serve
as a necessary condition of stability and a violation of Hadamard’s inequality
can indicate possible instabilities. The converse statement, i.e. the strong
ellipticity results in stability for a particular affine class of deformations and
for Dirichlet’s boundary conditions. Strong ellipticity was studied also for30

so-called implicit constitutive relations in Mai & Walton (2015a,b).
For the enhanced models of continua such as micropolar and strain gra-

dient media, the connection of ellipticity with strain localization phenomena
and material instabilities is similar to the case of simple materials, in general.
Localization of deformations in micropolar elastoplastic solids with connec-35

tions to the loss of ellipticity was studied by De Borst (1991); De Borst
et al. (1993); De Borst & Muhlhaus (1992); Dietsche et al. (1993); Tejchman
& Bauer (1996), see also more recent papers by Hasanyan & Waas (2018);
Russo et al. (2020) and the references therein. Ellipticity and its relation
to waves propagation and instabilities in micropolar solids was analysed by40

Eremeyev (2005); Lakes (2018, 2021); Soldatos et al. (2021); Passarella et al.
(2011). Another model of continua related to strain localization is based
on strain gradient approach, see e.g. Muhlhaus & Aifantis (1991); Fleck
& Hutchinson (2001, 1993). Ellipticity within the strain gradient elasticity
was considered by Eremeyev (2021); Eremeyev & Reccia (2022); Eremeyev45

& Lazar (2022).
Considering strain gradient media it is worth to mention the couple-
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stress theory introduced by Koiter (1964); Toupin (1962); Mindlin & Tiersten
(1962) as a possible simplest version of the strain gradient models. With its
modified version by Yang et al. (2002) it was used for modelling materials50

and thin-walled structures at the micro- and nanoscales, see e.g. recent pa-
pers by Zhang & Liu (2020); Farajpour et al. (2020); Dastjerdi et al. (2020);
Malikan et al. (2020); Malikan & Eremeyev (2023); Nobili & Volpini (2021);
Dehrouyeh-Semnani & Mostafaei (2021); Dehrouyeh-Semnani (2021); Dast-
jerdi et al. (2021); Shahmohammadi et al. (2023), and the reviews by Ghayesh55

& Farajpour (2019); Kong (2021). The couple-stress theory could be also
considered as a micropolar medium with constraint rotations, see Nowacki
(1970); Eremeyev et al. (2013). Within the couple-stress theory the loss of
ellipticity and related material instabilities were analysed by Gourgiotis &
Bigoni (2016a,b, 2017); Bigoni & Gourgiotis (2016). In particular, in (Gour-60

giotis & Bigoni, 2016a) it was remarked that the principal part of the symbol
of the operator is degenerate, so that the system of PDEs in couple-stress
elasticity is not elliptic in the standard sense. Nonetheless, by considering a
modified equivalent couple-stress operator adding to the governing operator
an additional fourth-order operator as a sort of null Lagrangian, ellipticity65

conditions may still be defined. These procedure involved not only the fourth-
order part of the couple stress operator but also the second-order part of the
operator. It is closely related to the fact that P-waves are not dispersive
in couple stress theory, but S-waves are.. For an isotropic and orthotropic
materials the modified conditions of ellipticity were given in (Gourgiotis &70

Bigoni, 2016a,b), where one can see that loss of ellipticity results in folding of
the material. Similar observation on non-ellipticity was made by Eremeyev
et al. (2023), where another transformation towards elliptic formulation was
done.

The aim of this paper is to discuss ellipticity conditions for the dilata-75

tional strain gradient elasticity (Eremeyev et al., 2021; Lurie et al., 2021). In
the case of small deformations this model complements the couple-stress the-
ory by Mindlin & Tiersten (1962) to the gradient complete Toupin–Mindlin
strain gradient elasticity (Toupin, 1962; Mindlin & Eshel, 1968; Mindlin,
1964). The model can be applied to pressure sensitive materials such as80

considered in the poroelasticity by Nunziato & Cowin (1979); Cowin & Nun-
ziato (1983); Coussy (2004). In this case a possible violation of ellipticity
may model pressure-induced phase changes in porous solids or other local-
ization phenomena. As an example, one can mention materials with voids
and related analysis given by Chiriţă & Ghiba (2010). Let us also note that85
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the discussed model belongs to the class of constitutive equations with scalar
microstructure Capriz (1989); Eringen (1999). Among of such media it is
worth to mention two-phase mixtures (Clayton, 2022) and other models of
porous media discussed in (Sciarra et al., 2008; Liu et al., 2021; Rajagopal,
2021; Zheng et al., 2022; Kazemian et al., 2022; Zhou et al., 2023; Ma et al.,90

2022).
The reminder of the paper is organized as follows. In Section 2 we briefly

recall the Douglis–Nirenberg ellipticity definition as in (Douglis & Nirenberg,
1955). The main content of the paper is given in Section 3. Here we introduce
the governing equations of the dilatational strain gradient elasticity and show95

that the linearized equations does not form an elliptic in ordinary sense.
Nevertheless, we can show that another form of equilibrium equations is
elliptic in the Douglis–Nirenberg sense. This form is similar to one used for
linearized Navier-Stokes equations of incompressible fluids which also form a
Douglis–Nirenberg elliptic system (Volevich, 1965).100

2. Douglis–Nirenberg ellipticity

Let us recall the definition of the Douglis–Nirenberg ellipticity. Let
w = (w1(X), w2(X), . . . , wN(X)) be a vector of unknown functions, whereas
b = (b1(X), b2(X), . . . , bN(X)) be a vector of given functions. For w(X) we
consider the following system of linear differential equations105

A(X, D)w = b, (1)

or in the component form

N∑
k=1

Amk(X, D)wk = bm, m = 1, . . . , N. (2)

Hereinafter we have used the following standard notations: X = (X1, . . . , Xn)
is a position vector, Xp, p = 1, . . . , n, are Cartesian coordinates. Moreover,
Amk(X, D) is a linear differential operator of order αmk

Amk(X, D) =
∑

|α|≤αmk

a
(α)
mk(X)Dα, (3)

where D = (D1, . . . , Dn), Dp = −i∂/∂xp, i =
√
−1, α = (α1, . . . , αn) is a110

multiindex, |α| = α1 + . . .+αn, αp ≥ 0 are integers, p = 1, . . . , n. In addition
we assume that Amk = 0 if αmk < 0.
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Following Douglis & Nirenberg (1955), we assume that αmk = sm + tk,
where sp and tp are some integers. We introduce the principal symbol of (1)
by the formula115

A0(X, ξ) = detA(X, ξ), Amk =
∑

|α|=sm+tk

a
(α)
mk(X)ξα, ξ ∈ Rn. (4)

The Douglis–Nirenberg ellipticity at the point X means that

A0(X, ξ) ̸= 0, ∀ ξ ∈ Rn, ξ ̸= 0. (5)

Within the Douglis–Nirenberg ellipticity one explicitly assumed that each
equation and each dependent variable in (2) can have different orders of
differentiation. Note that if sp = 0 and tp = t we have the simplest case of
ordinary ellipticity. Petrowsky considered also more general case with sp = 0120

and different tp. Strong ellipticity conditions involves ordinary ellipticity.

3. Dilatational strain gradient elasticity

3.1. Governing equations

Following Eremeyev et al. (2021) let us briefly introduce the basic equa-
tions of the dilatational strain gradient elasticity. A deformation of an elastic125

solid body can be modelled as an invertible differentiable mapping

x = x(X),

where x and X are position vectors in a reference and current placement,
respectively. Within the model there exists a strain energy density introduced
as a function of deformation gradient F and the gradient of its determinant
J , i.e. the gradient of volume change,130

W = W (F,k), F = ∇x, k = ∇J, J = detF, (6)

where ∇ is the referential nabla-operator.
The Lagrangian equilibrium equations take the form (Eremeyev et al.,

2021)
∇ ·P−∇ ·

[
(∇ ·m)JF−T

]
+ ρf = 0, (7)

where P and m are the first Piola–Kirchhoff stress tensor and the first Piola–
Kirchhoff double force vector, “·” stands for the dot product, ρ is a mass135
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density in the reference placement, and f is a mass force vector. P and m
are given by formulae

P =
∂W

∂F
, m =

∂W

∂k
.

The case of small deformations was also studied by Eremeyev et al. (2021);
Lurie et al. (2021). For an isotropic solid the strain energy density has the
form140

W =
1

2
λe2 + µε : ε +

1

2
βk · k, (8)

where

ε =
1

2
(∇u + ∇uT ), u = x−X,

e =tr ε = ∇ · u, k = ∇e = ∇∇ · u,

λ and µ are Lamé moduli, β is an additional elastic modulus related to
gradient of dilatation, and “:” denotes the double dot product. The stress
tensor and the double stress vector transform to

P = λeI + 2µε, m = βk, (9)

whereas the equilibrium equation (7) takes the form145

µ∆u + (µ + λ)∇∇ · u− β∆∇∇ · u + ρf = 0, ∆ = ∇ · ∇. (10)

Hereinafter I is the 3D unit tensor.

3.2. Loss of ordinary ellipticity

The considered model is a particular case of the general strain gradi-
ent elasticity introduced by (Toupin, 1962; Mindlin & Eshel, 1968; Mindlin,
1964), see also Bertram & Forest (2020); Bertram (2023). So ordinary150

and strong ellipticity of (7) can be studied within general framework as in
(Mareno & Healey, 2006; Eremeyev, 2021; Eremeyev & Lazar, 2022). Consid-
ering this model in the case of small deformations it was noted by Eremeyev
et al. (2023) that the equilibrium equations in displacements (10) does con-
stitute neither ordinary elliptic nor strongly elliptic system as the principal155

symbol is degenerated. The same conclusion is valid for finite deformations.
Indeed, the principal symbol of (7) has the form of a dyad

A(ξ) = J2ξ · ∂2W

∂k∂k
· ξ (ξ · F−T ) ⊗ (ξ · F−T ), (11)
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where ⊗ is the dyadic product. Obviously, here detA(ξ) = 0 and the condi-
tions of ordinary ellipticity is violated. Since ordinary ellipticity is a necessary
condition of the strong ellipticity, the latter is also violated.160

3.3. Douglis–Nirenberg ellipticity

In order to bring ellipticity properties to the equilibrium equations we use
a certain correspondence between the dilatational strain gradient elasticity
and the poroelasticity by Nunziato & Cowin (1979). We reformulate the
equilibrium equations as follows. First, we introduce a new scalar variable165

φ as an additional kinematical descriptor, “porosity” in the sense of the
nonlinear poroelasticty. So a strain energy density takes the form

W = W (F,∇φ).

Treating φ as independent field subjected to the constarint

φ = J ≡ detF, (12)

we come to the following system of equations

∇ ·P−∇ · (γJF−T ) + ρf = 0, P =
∂W

∂F
, (13)

∇ ·m− γ = 0, m =
∂W

∂∇φ
. (14)

Here γ is a Lagrange multiplier related to (12). Excluding it from (13) and170

(14) we get again (7). Instead, we consider (13), (14), and (12) as a system
of PDEs with respect to w = (u, φ, γ). As this system consists of PDEs
of different order, it cannot be treated using standard ellipticity definition.
On the other hand, the Douglis–Nirenberg ellipticity works and brings the
following inequality175

detA(ξ) ̸= 0, A(ξ) =


Q(ξ) 0 −iξ · JF−T

0 ξ · ∂2W

∂k∂k
· ξ 0

iξ · JF−T 0 0

 , (15)

where Q(ξ) is the classic acoustic tensor given by the formulae

Qij = Cminjξmξn, C =
∂2W

∂F∂F
.

7



Here we used the following set of integers sp and tp, p = 1, . . . , 5:

t1 = 3, t2 = 3, t3 = 3, t4 = 3, t5 = 2,

s1 = −1, s2 = −1, s3 = −1, s4 = −1, s5 = −2.

With another technique similar, but not the same, constraints were ob-
tained by Zee & Sternberg (1983) for incompressible materials .180

What is remarkable is that the Douglis–Nirenberg ellipticity condition
(15) includes also the classic ellipticity condition, i.e. the condition of non-
singularity of the acoustic tensor. This is an essential difference from the
strong ellipticity conditions which do not imply such constraints, see Ere-
meyev (2021); Eremeyev & Lazar (2022).185

In order to clarify the Douglis–Nirenberg ellipticity condition let us study
the case of small deformations in more details. Now system (13), (14), and
(12) take the form

µ∆u + (λ + µ)∇∇ · u−∇γ + ρf = 0, (16)

β∆φ− γ = 0, (17)

φ−∇ · u = 0. (18)

The corresponding symbolic representation of the differential operator A(X, D)
in (1) is given by190 

−µξ · ξI− (λ + µ)ξ ⊗ ξ 0 −iξ

0 −βξ · ξ −1

iξ 1 0

 .

As a result, the principal symbol introduced in (4) has the form

A0(X, ξ) = detA(ξ), (19)

A(ξ) =
−µξ2 − (λ + µ)ξ21 −(λ + µ)ξ1ξ2 −(λ + µ)ξ1ξ3 0 −iξ1
−(λ + µ)ξ2ξ1 −µξ2 − (λ + µ)ξ22 −(λ + µ)ξ2ξ3 0 −iξ2
−(λ + µ)ξ3ξ1 −(λ + µ)ξ3ξ2 −µξ2 − (λ + µ)ξ23 0 −iξ3

0 0 0 −βξ2 0
iξ1 iξ2 iξ3 0 0

 ,
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where ξ2 = ξ · ξ. Here we have the formula

detA(ξ) = βµ2ξ8. (20)

As a result, the the Douglis–Nirenberg ellipticity conditions take the form of
two inequalities195

β ̸= 0, µ ̸= 0. (21)

We can see that the ellipticity conditions include constraints for first-order
and higher order elastic moduli.

These inequalities could be also obtained if one decompose the displace-
ments using the Helmholtz decomposition u = ∇Φ + ∇ × Ψ, ∇ · Ψ = 0,
where Φ and Ψ are potentials. For the latter we have two equations200

(λ + 2µ)∆Φ − β∆2Φ + f = 0,

µ∆Ψ + p = 0,

where we also used the Helmholtz decomposition of the mass force ρf =
∇f + ∇ × p. Obviously, both equations are elliptic if and only if (21) are
fulfilled.

4. Conclusions

We demonstrated that the dilatational strain gradient elasticity belongs205

to the class of elliptic systems in the Douglis–Nirenberg sense. So the general
theory of elliptic systems could be applied to these models of continua. Let
also note that unlike the ordinary ellipticity the Douglis–Nirenberg ellipticity
is invariant under change of variables, so it could be more useful for various
transformations of the systems under considerations. Similar results one can210

expect for other models with additional scalar degree of freedom. In addi-
tion we demonstrated that the provided conditions of ellipticity inherited the
ones from the simple materials. In other words they includes inequalities for
low- and high-order elastic moduli, whereas the standard ellipticity requires
constrains for higher order elastic moduli, see e.g. Eremeyev & Lazar (2022).215

The approach based on the Douglis–Nirenberg definition could be also use-
ful for other models of elasticity, such as ones with implicit or incremental
constitutive relations Rajagopal (2007); Rajagopal & Srinivasa (2007).
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Chiriţă, S., & Ghiba, I.-D. (2010). Strong ellipticity and progressive waves
in elastic materials with voids. Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Sciences , 466 , 439–458.

Clayton, J. D. (2022). Analysis of shock waves in a mixture theory of a
thermoelastic solid and fluid with distinct temperatures. International240

Journal of Engineering Science, 175 , 103675.

Coussy, O. (2004). Poromechanics . Chichester: John Wiley & Sons.

Cowin, S. C., & Nunziato, J. W. (1983). Linear elastic materials with voids.
Journal of Elasticity , 13 , 125–147.
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