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A B S T R A C T

We introduce a new rheological nonlinear model for some granular media such as masonries.
The latter may demonstrate a rather complex behaviour. In fact, considering a masonry one
can see that relative rotations of bricks are most important in comparison with deformation of
bricks themselves. As a result, one gets stresses and couple stresses as static characteristics of
such a medium. Using the Cosserat point approach for modelling of orientational interactions
between masonry elements we provide a deformation energy for such a medium which takes
into account both material and geometrical nonlinearity.

. Introduction

Granular materials constitute a rather challenging object for continuum mechanics. In fact, they may demonstrate both fluid-
nd solid-like behaviour, see e.g. Capriz et al. (2008), Castellanos (2005), de Gennes (1998, 1999), Hutter and Rajagopal (1994),
achanov and Sevostianov (2005), Nedderman (1992) and Suiker and de Borst (2005). Moreover, their properties may essentially de-
end on the interactions between granules. Even in the case of solid-like granular media such as a masonry adhesion/friction/sliding
f bricks may be more crucial than their mechanical properties. Considering kinematics of granular media and granules themselves
ne can see that relative rotations of granules are also essential. So one can expect appearance of couple stresses as a response to
otational degrees of freedom. This observation makes rather natural to exploit the Cosserat continuum model for such a medium.

The aim of this paper is to introduce a nonlinear rheological model for a class of granular media which includes masonries. As
masonry represents a highly inhomogeneous material it is quite natural to use some homogenization techniques for introducing

n effective medium, see e.g. Addessi et al. (2013), Anthoine (1995), Bacigalupo and Gambarotta (2012), Cecchi and Sab (2002),
iana et al. (2023), Gatta and Addessi (2023), Lourenço (2010), Luciano and Sacco (1997) and Sacco (2009). Such an approach is
articularly suitable for masonry-like materials whose mechanical behaviour is strongly influenced by the internal microstructure.
ince the arrangement of the bricks plays a crucial role at the macroscopic level, discrete models – where the constitutive elements
f the masonry are modelled separately, see for example Lemos (2007) – may be preferable to properly account for this. At the
ame time, however, the computational requirements limit their applicability to small parts of buildings, requiring the adoption of
ore efficient models. Macro-element models – where masonry structures are represented by simplified equivalent structures, such

s a system of non-linear beams, see for example Magenes and Calvi (1997) – are usually adopted by practitioners thanks to the
ossibility of analysing real buildings, but the description of the masonry material is too coarse. In this context, continuum models
where the masonry is modelled as an equivalent continuum able to take into account the internal microstructure, i.e. obtained

hrough homogenization techniques, see the review by Lourenço et al. (1997) – can be an effective solution.
As mentioned by Forest and Sab (1998) instead of having classic Cauchy continuum as an effective medium it could be more

fficient to use generalized continua such as Cosserat continuum. This is particularly true in the case of masonry, which may have
otations depending by the interlocking of the bricks. The basic idea of our approach is related to Cosserat-point model by Rubin
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Fig. 1. Two bricks with a mortar layer.

1985, 2000), see also Jabareen and Pestes (2020) and Jabareen and Rubin (2008) and the references therein, and to nonlinear
osserat continuum model (Eremeyev et al., 2013; Eringen, 1999), in general. Here we consider both material and geometrical
onlinearities, taking into account finite translations and rotations. In the literature one can find various applications of Cosserat
ontinuum model to granular media and masonries, see e.g. Addessi et al. (2010), Casolo (2006), Colatosti et al. (2023), De Bellis
nd Addessi (2011), Masiani et al. (1995), Masiani and Trovalusci (1996), Pau and Trovalusci (2012), Reccia et al. (2018), Salerno
nd De Felice (2009), Stefanou et al. (2008), Tejchman (2008), Thatikonda et al. (2024), Tian et al. (2023), Trovalusci and Masiani
2003) and Trovalusci and Pau (2014), see also the reviews by Baraldi et al. (2015) and D’Altri et al. (2020).

The remainder of the paper is organized as follows. First, in Section 2 we consider experimentally observed behaviour of a such
edium. We discuss responses to tension–compression, shear, and relative rotations. For simplicity we assume that our medium

onsists of rigid bricks with highly deformable (soft) thin interfacial layers. We provide three types of response called ‘‘real’’,
‘simplified’’, and ‘‘ideal’’. Then, in Section 3 we use these dependencies to introduce a continuum model. First, we briefly recall
asic equations of polar media paying most attention to geometrical sense of strain measures as discussed in Eremeyev et al. (2013),
ringen (1999) and Pietraszkiewicz and Eremeyev (2009). Finally, we present the deformation energy as a sum of energies related
o tension-compression, shear, torsion, and bending. Its dependence on masonry ordering, i.e. lattice type, is also discussed.

. Rheology observations

Masonry is a composite heterogeneous material characterized by an internal microstructure at the mesoscale, consisting of a
ystem of rigid elements – blocks (natural stones, square or rough) or bricks (artificial regular units) – interacting with each other
hrough deformable or non-deformable unilateral interfaces with no or very low tensile strength and resistant to sliding by friction.
asonry makes up a large proportion of the world’s existing buildings: much of the historical architectural heritage consists of
onumental masonry structures, and in many countries ordinary residential buildings are typically constructed of masonry. Its
echanical behaviour is interesting because it exhibits a highly non-linear behaviour, even for loads far from collapse, and very
ifferent responses to compression and tension, with a usually high compressive strength coupled with a very low or uncertain tensile
trength, so that it is often considered to be a non-tensile material (Angelillo, 1993; Del Piero, 1989, 1998; Heyman, 1966). Moreover,
his complex behaviour is strongly influenced by the constructive characteristics of the masonry: the quality of the constituent
aterials, the size of the bricks, the thickness of the joints, the arrangement of the bricks, the bonds, etc. The typological diversity,

omposite nature, heterogeneity and anisotropy of masonry make it difficult to describe its mechanical behaviour.
Experimental studies of masonries were provided in a series of works, see e.g. Baraldi et al. (2021), Dhanasekar et al. (1985),

ourenço et al. (1998), Page (1981) and Vasconcelos and Lourenço (2009a, 2009b). For example, Page (1981) presented non-trivial
imit surface under biaxial tension–compression. In particular, Cosserat’s effects, such as the orthotropic shear behaviour of brick
asonry, were tested recently by Thatikonda et al. (2024).

Here we focus on a simple example of masonry consisting of two bricks connected by an intermediate joint, as shown in Fig. 1.
he bricks are assumed to be rigid, while the joint is highly deformable. The following describes the physics of the interaction in
erms of compressive-tensile, shear and moment stresses. In particular, the different responses to compression and tension, sliding
n relation to shear and relative rotations between the bricks due to moment are highlighted. Both ‘‘real’’, ‘‘simplified’’ and ‘‘ideal’’
ehaviour are considered.

.1. Tension–compression

A typical loading curve for tension-compression test is given in Fig. 2 (curve I). Here 𝜎 and 𝜀 are engineering stress and
ngineering strain, respectively. One can see that the mortar material response is not symmetric with respect to tension and
ompression. Moreover, the material has very low strength under tension. As a result, a simplified linear version can be used as
resented in Fig. 2 (curve II). Here 𝜎∗ and 𝜀∗ are maximal tensile stress and strain, respectively. The corresponding strain energy
an be defined through the standard formula

𝑊𝑇𝐶 = 𝜎 𝑑𝜀. (1)
2

∫
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Fig. 2. Tension-compression loading curves. Curves I, II, and III correspond to real, linear simplified, and ideal models.

Fig. 3. Loading curves for shear. Curves I, II, and III correspond to real, linear simplified, and ideal models.

In particular, for dependence II it could be calculated as follows

𝑊 𝐼𝐼
𝑇𝐶 =

{ 1
2
𝐸𝜀2, 𝜀 < 𝜀∗

𝜎∗𝜀, 𝜀 > 𝜀∗
, (2)

where 𝐸 is the Young modulus. Let us note that in the case of simplified version of constitutive equations we may face an issue
related to nonexistence of derivative at 𝜀 = 𝜀∗.

As an essential simplification of such a behaviour the non-tension model can be also used, see curve III in Fig. 2. Here material has
no tensile strength and become rigid under compression (has unlimited strength under compression). Formally, this case corresponds
to 𝐸 = ∞ and 𝜎∗ = 0.

2.2. Shear and sliding

Similar but symmetric behaviour can be observed for shear (sliding), see Fig. 3, where again we present three models (curves I,
II, III). Here 𝜏 and 𝛾 are tangent stress and shear strain, respectively, with ultimate values 𝜏∗ and 𝛾∗. The strain energy is defined
by the formula

𝑊𝑆ℎ = ∫ 𝜏 𝑑𝛾, (3)

that results in the case of simplified model (curve II) in the equation

𝑊 𝐼𝐼
𝑆ℎ =

{1
2
𝜇𝛾2, |𝛾| < 𝛾∗
∗ ∗

, (4)
3

𝜏 𝛾, |𝛾| > 𝛾
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Fig. 4. Moment — relative rotation. Curves I, II, and III correspond to real, linear simplified, and ideal models.

here 𝜇 is a shear modulus.
The ideal model III corresponds to the Coulomb friction law.

.3. Bending

Considering relative rotations of two bricks we can also introduce three models, see Fig. 4. As in the case of tension-compression
nd shear here we face also with limiting behaviour. Here 𝑀 and 𝜅 are the moment and relative rotation, respectively. Due to
eometrical constraints 𝜅 has also a limit value 𝜅∗ whereas 𝑀∗ corresponds to maximal admissible moment in an elastic regime.

In the case of linear model (curve II) the general formula for the strain energy

𝑊𝐵 = ∫ 𝑀 𝑑𝜅, (5)

results in

𝑊 𝐼𝐼
𝐵 =

{1
2
𝐾𝜅2, |𝜅| < 𝜅∗

∞, |𝜅| = 𝜅∗
, (6)

where 𝐾 is a bending stiffness.
The ideal model (curve III) is similar to rigid-plastic solids but with respect to rotations. It is interesting to note that this

constitutive relation is similar to strain-limiting elasticity by Rajagopal (2011). Indeed, unlike the previous cases where we face
stress-limiting constitutive relations, in the latter case one see limiting rotations.

2.4. Torsion

The case of torsion is similar to shear presented above. Here we again may provide three models with limiting torsional moment
𝑀∗𝑡 and torsion 𝜅∗

𝑡 . Related to curve II the linear model corresponds to the following strain energy

𝑊𝑇 = ∫ 𝑀𝑡 𝑑𝜅𝑡 (7)

with

𝑊 𝐼𝐼
𝑇 =

⎧

⎪

⎨

⎪

⎩

1
2
𝐾𝑡𝜅

2
𝑡 , |𝜅| < 𝜅∗

𝑀∗
𝑡 𝜅𝑡, |𝜅| ≥ 𝜅∗

𝑡

, (8)

where 𝐾 is a torsional stiffness (see Fig. 5).
4

𝑡
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Fig. 5. Torsional moment — relative rotation. Curves I, II, and III correspond to real, linear simplified, and ideal models.

. Continuum model

In the following, using the previous observations, we discuss the relevant continuum model.

.1. Micropolar finite elasticity

First, let us briefly recall the basic equations of the Cosserat continuum in the case of finite deformations. The kinematics of
osserat continuum can be described using two descriptors, i.e. translations and rotations (Eremeyev et al., 2013; Eringen, 1999;
ietraszkiewicz & Eremeyev, 2009)

𝐱 = 𝐗 + 𝐮(𝐗, 𝑡), 𝐐 = 𝐐(𝐗, 𝑡), (9)

where 𝐱 and 𝐗 are the position vectors defined in current and reference placements, respectively, 𝑡 is time, 𝐮 is the vector of
translations, and 𝐐 is the orthogonal tensor of microrotations.

For hyperelastic materials there exists a deformation energy 𝑊 introduced as a function of two Lagrangian strain measures

𝑊 = 𝑊 (𝐄,𝐊), (10)

where

𝐄 = 𝐐𝑇 ⋅ 𝐅, 𝐊 = −1
2
𝝐 ∶ (𝐐𝑇 ⋅ 𝐺𝑟𝑎𝑑𝐐). (11)

In (11) 𝐅 = 𝐺𝑟𝑎𝑑 𝐱 is the deformation gradient, 𝐺𝑟𝑎𝑑 is the Lagrangian gradient operator, 𝝐 = −𝐈 × 𝐈 is the permutation tensor, 𝐈 is
he 3D unit tensor, ⋅, ∶, and × stand for the dot, double dot, and cross products, respectively.

Corresponding stress tensors are given by

𝐏 = 𝐐 ⋅
𝜕𝑊
𝜕𝐄

, 𝐒 = 𝐐 ⋅
𝜕𝑊
𝜕𝐊

. (12)

Here 𝐏 and 𝐒 are the first kind Piola–Kirchhoff stress and couple stress tensors, respectively. Determination of 𝑊 constitute a rather
complex problem, so in the following we specify it using experimental observations of the previous sections.

3.2. Two bricks and mortar: micropolar point of view

Let us consider first interactions of two rigid bricks of dimensions 𝑎, 𝑏, 𝑐, connected via a thin interfacial layer of thickness 2ℎ, see
Fig. 6. An energy stored in the layer entirely depends on the relative motion of bricks. The latter consist of relative translations and
relative rotations. As in the case of rigid body dynamics, see e.g. Eremeyev et al. (2013), we can introduce the vector of translation
as a displacement of their centres of mass. In addition, rotations can be described using a rotation tensor. So for two bricks we
introduce two vectors of translation, i.e. 𝐮1 and 𝐮2, and two rotation tensors 𝐐1 and 𝐐2, respectively. As a result, the total energy
f the interfacial layer can be considered as a function of relative translations and relative rotations

𝑇

5

𝑈12 = 𝑈 (𝐯,𝐑), 𝐯 = 𝐮1 − 𝐮2 = 𝐱1 − 𝐱2, 𝐑 = 𝐐1 ⋅𝐐2 . (13)
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Fig. 6. Deformation of two bricks with a deformable interface.

Here 𝐱1 and 𝐱2 are the position vectors of the bricks in the current placement, see Fig. 6.
Considering our two bricks as material point of a continuum we can assume that there exist two smooth field 𝐮 = 𝐮(𝐗, 𝑡) and

𝐐 = 𝐐(𝐗, 𝑡) such that 𝐮𝛼 = 𝐮(𝐗𝛼 , 𝑡) and 𝐐𝛼 = 𝐐(𝐗𝛼 , 𝑡), 𝛼 = 1, 2. As a result, 𝐯 and 𝐑 can be represented as follows

𝐯 ≈ −2(𝑏 + ℎ)𝐅 ⋅ 𝐍, 𝐑 = 𝐈 − 2(𝑏 + ℎ)𝐈 ×𝐊 ⋅ 𝐍. (14)

ere 𝑏 is the thickness of the brick, 2ℎ is the mean thickness of the interfacial layer, and 𝐍 is the unit normal in the reference
lacement, see Fig. 6. As a result, we can see that 𝑈12 is a function of 𝐄 and 𝐊 taken at a point that is the centre of mass of the total
tructure, 𝑈12 = 𝑈12(𝐄,𝐊). Considering the system of two bricks and the interface as a representative volume element (RVE), we can
ee that the deformation energy density 𝑊 could be introduced as follows: 𝑊 = 𝑈12∕𝑉 , where 𝑉 = 2𝑎𝑏𝑐 + 2𝑎𝑏ℎ is total volume of

the system. One can see similarities with the Cosserat point approach by Jabareen and Pestes (2020), Jabareen and Rubin (2008)
and Rubin (1985, 2000). Indeed, here we replaced the 3D interfacial layer by a material point which possesses both strains as in
the case of 3D Cosserat continuum.

The approach described above can be extended to a system of connected bricks. Depending on the chosen RVE we can obtain
similar expression for the deformation energy density. Before we specify the form of 𝑈12 using three models based on experimental
observations.

First, let us discuss tension-compression deformations only of two bricks as shown in Fig. 6. So here we have stretching/elongation
in 𝑋2 direction. Note that in this case 𝐐 = 𝐈 is constant. So the deformation energy stored in this system depends on 𝐸22 only:
𝑊 = 𝑊 (𝐸22). Considering the experimental data for tension/compression tests we can use Eq. (2) as a deformation energy.

Similarly, we can treat the shear test. From geometrical sense of 𝐄 it follows that now 𝑊 depends only on 𝐸12: 𝑊 = 𝑊 (𝐸12).
Again, we can use Eq. (4) as a form of 𝑊 .

Taking into account the geometrical sense of 𝐊, see Eremeyev et al. (2013) and Pietraszkiewicz and Eremeyev (2009), we can
see that the stored energy related to relative rotations will have of form 𝑊 = 𝑊 (𝐾12). As a function we can use Eq. (6).

Summarizing our analysis of deformations of two bricks we can came to the following representation of the deformation energy

𝑊12 = 𝑐1𝑊𝑇𝐶 (𝐢2 ⋅ 𝐄 ⋅ 𝐢2) + 𝑐2𝑊𝑆ℎ(𝐢1 ⋅ 𝐄 ⋅ 𝐢2) + 𝑐3𝑊𝐵(𝐢1 ⋅𝐊 ⋅ 𝐢2). (15)

Here 𝑐1, 𝑐2, and 𝑐3 are normalizing coefficients related to the ratio of the volume of the mortar to the whole volume 𝑉 . In the
following for simplicity we assume that they are equal and we omit them just keeping the same notations for the deformation
energies. Note that this equation relates to the following deformations: tension–compression in 𝑋2 direction, shear in 𝑋2−𝑋1 plane,
and relative rotations about 𝑋1-axis. If we consider other shear in 𝑋3-direction, bending about 𝑋3-axis, and torsion about 𝑋2-axis

e came to more symmetric case

𝑊12 =𝑊𝑇𝐶 (𝐢2 ⋅ 𝐄 ⋅ 𝐢2)
+𝑊𝑆ℎ(𝐢1 ⋅ 𝐄 ⋅ 𝐢2) +𝑊𝑆ℎ(𝐢3 ⋅ 𝐄 ⋅ 𝐢2)

+ 𝑊 (𝐢 ⋅𝐊 ⋅ 𝐢 ) +𝑊 (𝐢 ⋅𝐊 ⋅ 𝐢 ) +𝑊 (𝐢 ⋅𝐊 ⋅ 𝐢 ). (16)
6
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Fig. 7. Brick panel with selected RVE.

Fig. 8. RVE (bounded by dashed rectangle) with five Cosserat points.

Obviously, such a deformation energy can describe only a particular oriented material. Indeed, it has preferable direction related
to 𝑋2-axis. For a masonry consisting of a system of bricks connected in various ways this approach should be modified accordingly.

3.3. Constitutive equations of masonry-like media: micropolar point of view

Let us considering a periodic masonry, see Fig. 7, where block dimensions and joint thickness are the same reported in the
previous section, see Fig. 6. The regularity of the brickwork is represented by the so-called ‘‘running bond’’ pattern, where each
brick is surrounded by six neighbours through six interfaces. In the pattern considered, the width of the horizontal interfaces is
equal to half the block width 𝑎∕2 and the height of the vertical interfaces is equal to the block thickness 𝑏. By varying the ratio
between the thickness and width 𝑏∕𝑎 of the bricks, it is also possible to describe the so-called ‘‘head-bond’’ pattern and, more
generally, to consider the influence of the local size effect due to such a periodic arrangement of bricks on the global behaviour of
the masonry. In the case of periodic masonry, it is possible to identify a representative volume element (RVE) that represents the
entire masonry panel through its repetition. The RVE provides all the mechanical and geometrical characteristics of the masonry at
the micro level required to fully describe the entire masonry at the macro level, thus taking into account the internal microstructure.
Two centre-symmetric RVEs are usually chosen for such masonry patterns (Salerno & De Felice, 2009): a classical one with a brick
𝐵𝑖,𝑗 in the centre of the cell, surrounded by four horizontal and two vertical joints connecting it to the six adjacent bricks; a second
one in which, instead, a vertical joint 𝑃𝑖,𝑗 – modelled by means of Cosserat point, a zero-dimension Cosserat continuum – is in the
centre of the cell, surrounded by four horizontal joints connecting it to four adjacent bricks. We refer to the latter RVE, reported in
Fig. 8, which has been shown to be more suitable for deriving the micropolar continuum in the case of masonry, see Baraldi et al.
(2015).

For the considered RVE, and referring to Eq. (16), the deformation energy is obtained by the sum of the energies 𝑊𝑇𝐶 , 𝑊𝑆ℎ,
and 𝑊𝐵 , related of the relative displacements and rotations ate interfaces between the four bricks:

𝑊𝑅𝑉 𝐸 =4𝑐1𝑊𝑇𝐶 (𝐢2 ⋅ 𝐄 ⋅ 𝐢2) + 𝑐2𝑊𝑇𝐶 (𝐢1 ⋅ 𝐄 ⋅ 𝐢1)
+ 4𝑐1𝑊𝑆ℎ(𝐢1 ⋅ 𝐄 ⋅ 𝐢2) + 𝑐2𝑊𝑆ℎ(𝐢2 ⋅ 𝐄 ⋅ 𝐢1)

+ 4𝑐 𝑊 (𝐢 ⋅𝐊 ⋅ 𝐢 ) + 𝑐 𝑊 (𝐢 ⋅𝐊 ⋅ 𝐢 ), (17)
7
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where 𝑐1 = 𝑎ℎ∕𝐴, 𝑐2 = 2𝑏ℎ∕𝐴, 𝐴 = 2𝑎𝑏+2ℎ𝑎+2ℎ𝑏. Now the stored energy of the RVE is reduced to five Cosserat points. Considering
ther types of RVE one reduce the energy to another system of Cosserat points, in general. Note that the latter formula relates to
n-plane deformations. It could be easily extended for 3D deformations adding additional terms.

. Conclusions

Here we have presented a simple nonlinear model which can capture behaviour of some granular media such as a regular
asonry. It is probably simplest nontrivial form of constitutive equations of micropolar solids that are relevant to observed

xperimental data. In particular, we assumed the additivity of energetic terms related to different types of deformations. On the
ther hand, such an approach is quite natural. For example, there is no coupling between compression and shear, relative rotations
nd shear. Nevertheless, having in hands relatively simple rheological elements one can update the model towards more complex
ehaviour. For example, other block-lattice structures could be considered, such as Amanat et al. (2022) and Mahoney and Siegmund
2022). Also other types of interactions could be introduced. In particular, considering long-range interactions we may come to
onlocal models that maybe essential at small scales, see e.g. recent discussions by Jiang et al. (2022), Malikan et al. (2023) and
ussillo et al. (2022). Moreover, more sophisticated models of interfaces between blocks could be used here, see e.g. recent papers
y Eremeyev (2024), Feng and Li (2023) and Kattis et al. (2024), and the references therein. As future developments the presented
odel could be used as follows. First, it could be applied for numerical analysis of deformations of masonry panels considering
ifferent masonry textures, width-to-height panel ratios and panel-to-bricks scale factors. To this end a software such as COMSOL
aybe applied. In order to consider nondestructive evaluation of the masonry structures it is possible to consider ultrasonic wave
ropagation for different types of loading. Finally, considering nonlinearity some mathematical properties could be studied as a loss
f ellipticity which can bring strain localization and further fracture of the masonry structures.
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