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Abstract

Smart contracts (SC) are software programs that reside and run over a blockchain. The

code can be written in different languages with the common purpose of implementing vari-

ous kinds of transactions onto the hosting blockchain. They are ruled by the blockchain

infrastructure with the intent to automatically implement the typical conditions of traditional

contracts. Programs must satisfy context-dependent constraints which are quite different

from traditional software code. In particular, since the bytecode is uploaded in the hosting

blockchain, the size, computational resources, interaction between different parts of the

program are all limited. This is true even if the specific programming languages implement

more or less the same constructs as that of traditional languages: there is not the same free-

dom as in normal software development. The working hypothesis used in this article is that

Smart Contract specific constraints should be captured by specific software metrics (that

may differ from traditional software metrics). We tested this hypothesis on 85K Smart Con-

tracts written in Solidity and uploaded on the Ethereum blockchain. We analyzed Smart

Contracts from two repositories “Etherscan” and “Smart Corpus” and we computed the

statistics of a set of software metrics related to Smart Contracts and compared them to the

metrics extracted from more traditional software projects. Our results show that generally,

Smart Contract metrics have more restricted ranges than the corresponding metrics in

traditional software systems. Some of the stylized facts, like power law in the tail of the

distribution of some metrics, are only approximate but the lines of code follow a log-normal

distribution which reminds us of the same behaviour already found in traditional software

systems.

1 Introduction

Smart Contracts have gained tremendous popularity in the past few years, to the point that bil-

lions of US Dollars are currently exchanged every day using such a technology. However, since

the release of the Ethereum platform in 2015, there have been many cases in which the execu-

tion of Smart Contracts managing Ether coins led to problems or conflicts. Smart Contracts

rely on a non-standard software life-cycle, according to which, for instance, delivered applica-

tions can hardly be updated or bugs resolved by releasing a new version of the software. Fur-

thermore, their code must satisfy constraints typical of the domain such as the following:
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• they must be light. Smart Contact definitions are limited in size because of structural con-

straints imposed by the Blockchain infrastructure and the mining cost;

• Smart Contract execution has a per operation cost so their execution must be limited;

• once published Smart Contracts are immutable: indeed a blockchain is based on the append-

only mechanism—then code under the form of bytecode is inserted into a blockchain block

once and forever [1];

• floating point values cannot be used due to the consensus among all the nodes on the block-

chain status which contrasts with the possibility of different rounded values of floating point

numbers on machines with different precision;

• random number generators cannot be used for the same reason and in their place hashing

functions are commonly used.

The idea of Smart Contracts was originally described by cryptographer Nick Szabo in 1997,

as a kind of digital vending machine [2].

Smart contracts are self-applying agreements, or contracts, implemented through a com-

puter program whose execution enforces the terms of the contract. The idea is to remove a

central supervisory authority, entity or organization that both parties must trust and delegate

that role to the correct execution of a computer program. Such a scheme can therefore count

on a decentralized system managed automatically by computers, and Blockchain technology is

the tool to deliver the trust model envisaged by smart contracts.

Since smart contracts are stored on a blockchain, they are public and transparent, immuta-

ble and decentralised, and since blockchain resources are costly, their code size cannot exceed

domain-specific constraints. Immutability means that when a smart contract is created, it can-

not be changed again.

Smart contracts can be applied to many different scenarios: banks could use them to issue

loans or to offer automatic payments; insurance companies could use them to automatically

process claims according to agreed terms; postal companies could use them for payments

on delivery. In the following, we mainly refer to the Ethereum technology without losing

generality.

A Smart Contract (SC) is a full-fledged program stored in a blockchain by a contract-creation
transaction. A SC is identified by a contract address generated upon a success creation transac-

tion. A blockchain state is therefore a mapping from addresses to accounts. Each SC account

holds an amount of virtual coins (Ether in our case), and has its own private state and storage.
Fig 1 illustrates how smart contracts work by comparing smart contracts to traditional con-

tracts. “Smart contracts” differ from traditional contracts in that they are computer programs

that automate certain aspects of an agreement between two parties through the use of block-

chain technology. Indeed, blockchains provide security, permanence, and immutability

through the replication of the smart contract code across multiple nodes.

The most used SC programming language is Solidity which runs on the Ethereum Virtual

Machine (EVM) on the Ethereum blockchain. Since this is currently the most popular para-

digm, we focus our attention on Solidity. An Ethereum SC account hence typically holds its

executable code and a state consisting of:

• a private storage

• the amount of virtual coins (Ether) it holds, i.e. the contract balance.

Users can transfer Ether coins using transactions, like in Bitcoin, and additionally can

invoke contracts using contract-invoking transactions. Conceptually, Ethereum can be viewed
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as a huge transaction-based state machine, where its state is updated after every transaction

and stored in the blockchain.

Smart Contracts source code manipulate variables in the same way as traditional imperative

programs. At the lowest level the code of an Ethereum SC is a stack-based bytecode language

run by an Ethereum virtual machine (EVM) in each node. SC developers define contracts

using high-level programming languages. One such language for Ethereum is Solidity [3] (a

JavaScript-like language), which is compiled into EVM bytecode. Once a SC is created at an

address X, it is possible to invoke it by sending a contract-invoking transaction to the address

X. A contract-invoking transaction typically includes:

• payment (to the contract) for the execution (in Ether).

• input data for the invocation.

Fig 1. Smart contract vs. traditional contract.

https://doi.org/10.1371/journal.pone.0281043.g001
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1.1 Working example

Fig 2 shows a simple example of SC reported in [4], which rewards anyone who solves a prob-

lem and submit the solution to the SC. This contract has been selected as an example of an old

style solidity smart contracts, in fact many of the constructs it uses are now deprecated, but

it is instructive since it also represents how the solidity language and the metrics used in it

changed along time.

A contract-creation transaction containing the EVM bytecode for the contract in Fig 2 is

sent to miners. Eventually, the transaction will be accepted in a block, and all miners will

Fig 2. Smart contracts example.

https://doi.org/10.1371/journal.pone.0281043.g002
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update their local copy of the blockchain: first a unique address for the contract is generated in

the block, then each miner executes locally the constructor of the Puzzle contract, and a local

storage is allocated in the blockchain. Finally the EVM bytecode of the anonymous function of

Puzzle (Lines 16+) is added to the storage.

When a contract-invoking transaction is sent to the address of Puzzle, the function defined

at Line 16 is executed by default. All information about the sender, the amount of Ether sent to

the contract, and the input data of the invoking transaction are stored in a default input vari-

able called msg. In this example, the owner (namely the user that created the contract) can

update the reward (Line 21) by sending Ether coins stored in msg.value (if statement at

Line 17), after sending back the current reward to the owner (Line 20).

In the same way, any other user can submit a solution to Puzzle by a contract-invoking
transaction with a payload (i.e., msg.data) to claim the reward (Lines 22-29). When a cor-

rect solution is submitted, the contract sends the reward to the sender (Line 26).

1.2 Gas system

It is worth remarking that a Smart Contract is run on the blockchain by each miner determin-

istically replicating the execution of the Smart Contract’s bytecode on the local copy of the

blockchain. This, for instance, implies that to guarantee coherence across the copies of the

blockchain, code must be executed in a strictly deterministic way (and therefore, for instance,

the generation of random numbers may be problematic).

Solidity, and in general high-level Smart Contract’s languages, are Turing complete in

Ethereum. Note that in a decentralised blockchain architecture Turing completeness may be

problematic, e.g., the replicated execution of infinite loops may potentially freeze the whole

network.

To ensure fair compensation for expended computation efforts and limit the use of

resources, Ethereum pays miners some fees, proportionally to the required computation. Spe-

cifically, each instruction in the Ethereum bytecode requires a pre-specified amount of gas
(paid in Ether coins). When users send a contract-invoking transaction, they must specify the

amount of gas provided for the execution, called gasLimit, as well as the price for each gas unit

called gasPrice. A miner who includes the transaction in his proposed block receives the trans-

action fee corresponding to the amount of gas that the execution has actually burned, multi-

plied by gasPrice. If some execution requires more gas than gasLimit, the execution terminates

with an exception, and the state is rolled back to the initial state of the execution. In this case

the user pays all the gasLimit to the miner as a counter-measure against resource-exhausting

attacks [5].

The code in Fig 2 displays typical features of the Solidity Smart Contract’s code: the Con-
tract declaration, addresses declarations and mapping, owner data managing and the functions

with the specific code for implementing the contract and transactions between blockchain

addresses. Most of the control structures from JavaScript are available in Solidity except for

switch and goto. So there is: if, else, while, do, for, break, continue, return [6],

with the usual semantics known from C or JavaScript.

Functions of the current contract can be called directly (Internal Function Calls), also

recursively. These function calls are translated into simple jumps inside the EVM. This has the

effect that the current memory is not cleared, i.e., passing memory references to internally-

called functions is very efficient. Only functions of the same contract can be called internally.

The expressions this.g(); and c.g(); (where c is a contract instance) are also valid

function calls, but this time, the function will be called as External Function Call, via a message

call and not directly via jumps. Functions of other contracts have to be called externally. For
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an external call, all function arguments have to be copied to memory. When calling functions

of other contracts, the amount of cryptocurrency (Wei) sent with the call and the gas can be

specified with special options .value() and .gas() respectively. Inheritance between

contracts is also supported.

Since Smart Contracts are closely related to classes of object-oriented programming lan-

guages, it is straightforward to define and compute some of the software metrics typically

encountered in object-oriented software systems, like number of lines of code, comments,

number of methods or functions, cyclomatic complexity and so on, while it is somehow more

difficult to recognize software metrics related to communication between smart contracts,

since these can be ruled by blockchain transactions among contracts, which can act somehow

as code libraries.

On the other hand smart contracts are deployed and work on the blockchain infrastructure

and it is thus likely that typical value of the same metrics can differ from the typical values of

the same metrics in traditional software systems.

It became thus interesting, even from a software engineering point of view, to perform a sta-

tistical analysis of Smart Contract software metrics and to compare the data with those dis-

played by traditional software systems. It would also be of primary interest to examine the

connection between software metrics and software quality, a field of research well established

in traditional software, in the specific domain of smart contracts given that it is well known

that Smart Contract code vulnerability have been exploited to stole value in cryptocurrencies

from smart contracts [3, 5, 7, 8].

In this paper, we perform the analysis on a data set of 85K smart contracts downloaded

from 1) etherscan.io, a platform allowing enhanced browsing of Ethereum blockchain and

smart contracts and 2) smart corpus [9], an organized smart contract repository.

Motivations for this study arise from the need to measure software artifacts in the specific

case of Smart Contracts code. In fact there are no studies involving a full statistical analysis of

the metrics properties for such software artifacts in the new paradigm of blockchain systems.

Knowledge of software metrics statistical properties is fundamental for controlling software

production process, software quality as well as to perform fault prediction and to identify code

smells.

We collected the blockchain addresses, the Solidity source code, the ABI and the bytecode

of each contract and extracted a set of standard and SC-specific software metrics such as num-

ber of lines of smart contract code (LOCs), line of comments, blank lines, number of functions,

cyclomatic complexity, number of events calls, number of mappings to addresses, number of

payable, number of modifiable and so on. We analyzed the statistical distributions underlying

such metrics to discover if they exhibit the same statistical properties typical of standard soft-

ware systems [10–12] or if the SM constraints act so that a sensible variation in these distribu-

tions can be detected. Furthermore, we devise a path to the analysis of which and to what

extent the SC metrics influence Smart Contract’s performance, usage in the blockchain, vul-

nerabilities, and possible other factors related to the specific contracts which can be reflected

on the domain of application for which the smart contract has been deployed, like, for exam-

ple, to implement and rule an initial coin offer (ICO), to control a chain of certification like in

medical applications and so on.

2 Related work

Blockchain technology and Smart Contracts rose an exponentially increasing interest in the

last years in different fields of research. Organizations such as banking and financial institu-

tions, and public and regulatory bodies, started to explicitly talk of the importance of these
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new technologies. Software Engineering specific for blockchain applications and Smart Con-

tract is still in its infancy [13] and in particular the investigation of the relationships among

Smart Contracts Software Metrics (SCSM) and code quality, SC performances, vulnerability,

maintainability and other software features is completely lacking. Smart Contracts and block-

chain have been discussed in many textbooks [14] and documents over the internet, where

white papers usually cover the specific topic of interest [15–19].

Ethereum defines a smart contract as a transaction protocol that executes the terms of a

contract or group of contracts on a cryptographic blockchain [20]. Smart Contracts operate

autonomously with no entity controlling the majority of its tokens, and its data and records of

operation must be cryptographically stored in a public, decentralized blockchain [14].

Smart Contract vulnerabilities have been analyzed in [21–23]. A taxonomy of Smart Con-

tract is performed in [22], where Smart Contracts are classified according to their purpose.

These are divided into wallets, financial, notary, game, and library.

Authors in [4] investigate the security of running smart contracts based on Ethereum in an

open distributed network like those of cryptocurrencies and introduce several new security

problems in which an adversary can manipulate smart contract execution to gain profit.

Obviously Smart Contract scientific literature is limited due to their recent creation. On

the other hand there is a plethora of results and information to rely on produced in the last

decades for what concerns the relationship among software metrics and software quality,

maintainability, reliability, performance defectiveness and so on.

Measuring software to get information about its properties and quality is one of the main

issues in modern software engineering.

Limiting ourselves to object-oriented (OO) software, one of the first works dealing with this

problem is the one by Chidamber and Kemerer (CK), who introduced the popular CK metrics

suite for OO software systems [24]. In fact, different empirical studies showed significant cor-

relations between some of CK metrics and bug-proneness [24–28]. Metrics have been defined

also on software graphs and were found most correlated to software quality [29–32]. Tosun

et al. applied Social Networks Analysis to OO software metrics source code to assess defect pre-

diction performance of these metrics [33]

The CK [34] suite is historically the most adopted and validated to analyze bug-proneness

of software systems [24, 27].

CK suite was adopted by practitioners [24] and is also incorporated into several industrial

software development tools. Based on the study of eight medium-sized systems developed by

students, Basili et al. [25] were among the first to find that Object-Oriented metrics are corre-

lated to defect density. Considering industry data from software developed in C++ and Java,

Subramanyam and Krishnan [26] showed that CK metrics are significantly associated with

defects. Among others, Gyimóthy et al. [27], studying a Open Source system, validated the use-

fulness of these metrics for fault-proneness prediction.

CK metrics are intended to measure the degree of coupling and cohesion of classes in

object-oriented software contexts. Statistical analysis has also been used in literature to detect

typical features of complex software and to relate the statistical properties to software quality.

Recently, some researchers have started to study the field of software to find and study

associated power-law distributions. In fact, many software systems have reached such a huge

dimension that it looks sensible to treat them using the stochastic random graph approach

[35].

Examples of these properties are the lines of code of a class, a function or a method; the

number of times a function or a method is called in the system; the number of time a given

name is given to a method or a variable, and so on.
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Some authors already found significant power-laws in software systems. Cai and Yin [11]

found that the degree distribution of software execution processes may follow a power-law

or display small-world effects. Potanin et al. [36] showed that the graphs formed by run-

time objects, and by the references between them in object-oriented applications, are char-

acterized by a power-law tail in the distribution of node degrees. Valverde et al. [37, 38]

found similar properties studying the graph formed by the classes and their relationships in

large object-oriented projects. They found that software systems are highly heterogeneous

small world networks with scale-free distributions of the connection degree. Wheeldon and

Counsell [12] identified twelve power laws in object-oriented class relationships of Java pro-

grams. In particular, they analyzed the distribution of class references, methods, construc-

tors, field and interfaces in classes, and the distribution of method parameters and return

types. Myers [39] found similar results on large C and C++ open source systems, consider-

ing the collaborative diagrams of the modules within procedural projects and of the classes

within the Object-oriented projects. He also computed the correlation between some met-

rics concerning software size and graph topological measures, revealing that nodes with

large output degree tend to evolve more rapidly than nodes with large input degree. Other

authors found power-laws studying C/C++ source code files, where graph edges are the

files, while the “include” relationships between them are the links [40, 41]. Tamai and Naka-

tani [42], proposed a statistical model to analyze and explain the distributions found for the

number of methods per class, and for the lines of code per method, in a large object-oriented

system.

While most of these studies are based on static languages, such like C++ and Java, Marchesi

et al. [43] provide evidence that a similar behavior is displayed also by dynamic languages such

as Smalltalk. Concas et al. found power-law and log-normal distributions in some properties

of Smalltalk and Java software systems—the number of times a name is given to a variable or a

method, the number of calls to methods with the same name, the number of immediate sub-

classes of a given class in five large object-oriented software system [10, 44]. The Pareto princi-

ple is used to describe how faults in large software systems are distributed over modules [45–

49]. Baxter et al. [50] found power-law and Log-normal distributions in the class relationship

in Java programs. They proposed a simple generative model that reproduces the features

observed in real software graph degree distributions. Ichii et al. [51] investigated software com-

ponent graphs composed of Java classes finding that in-degree distribution follows the power

law distribution and the out-degree distribution does not follow the power-law. Louridas et al.

[52], in a recent work, show that incoming and outgoing links distributions have in common

long, fat tails at different levels of abstraction, in diverse systems and languages (C, Java, Perl

and Ruby). They report the impact of their findings on several aspects of software engineering:

reuse, quality assurance and optimization.

Given the vast literature investingating power law distributions in software systems, we

choose to investigate these properties, also in SC software not only to look for power-law

behaviour, but also because some features are related to design and coding guidelines, to soft-

ware quality and also to Chidamber and Kemerer (CK) NOC metrics [24].

Wheeldon and Counsell [12], as well as other researchers, found power-laws in the distribu-

tions of many software properties, such as the number of fields, methods and constructors of

classes, the number of interfaces implemented by classes, the number of subclasses of each

class, as well as the number of classes referenced as field variables and the number of classes

which contain references to classes as field variables. Thus, there is much evidence that power-

laws are a general feature of software systems. Concas et al. [44] explained the underlying

mechanism through a model based on a single Yule process in place during the software crea-

tion and evolution.
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More recently affect metrics have been investigated revealing how during software develop-

ment productivity and software quality can be highly influenced by developers moods [53–58].

In [59] authors review papers relating to smart contracts metrics and other five specific top-

ics: smart contract testing, smart contract code analysis, smart contract security, Dapp perfor-

mance, and blockchain applications.

A few studies investigated SC metrics and collected a curated repository of SC [9, 59–62].

In [63] authors examined SCs extracted from various Ethereum blockchain-oriented soft-

ware projects hosted on GitHub.com, extracting also a suite of object-oriented metrics, to eval-

uate their structural characteristics.

More recently, deep learning neural networks have been used [64, 65] where to develop a

deep learning framework for detecting fraudulent smart contracts on blockchain systems and

hybrid deep learning models combining different word embedding methods, for smart con-

tract vulnerability detection.

3 Experimental set-up

Etherscan [66] is a web based platform which allows for Ethereum blockchain exploration of

all blockchain addresses. It allows one to recover Smart Contracts bytecode, ABI, and it collects

also Smart Contract source codes in Solidity Part of the data used in this paper (15% of the

total) have been retrieved by analyzed the blockchain addresses related to the available source

code on Etherscan. These addresses have been used to systematically download the code of the

Solidity contracts, as well as the bytecode and information associated with the ABI.

Smart contracts analyzed in this study can be found online through a tool named Smart

Corpus [9]. Smart Corpus is a collection of over 100K smart contracts categorized by software

metrics (number of lines of code, cyclomatic complexity, etc.) and uses cases (banks, finance,

betting, hectares, etc.). A detailed description of the Smart Corpus tool and its related publica-

tion can be found here (https://aphd.github.io/smart-corpus/). After collected and locally

stored Solidity code, bytecode, and ABI infos, we built a code parser to extract the software

metrics of our interest for each smart contract. We also manually explored the code to get

insights into the more relevant information to eventually extract from the data and to get a fla-

vour of the main features of the overall dataset. This exploratory analysis allowed us to note

how the same contract code is often replicated and deployed to different blockchain addresses

or deployed with very little changes. This pattern reveals how many contracts are simply exper-

iments or are deployed to the blockchain for testing and then modified according to test’s

results. They usually appear in a series of neighbour blockchain blocks. The dataset has thus a

little bias but the overall effect is negligible in our analysis since there are very few cases of rep-

licated Solidity code.

The dataset source code has been then parsed for computing total lines of code associated

to a specific blockchain address, the number of smart contracts inside a single address code

(the analogous of classes into java files, e.g., compilation units), blank lines, comment lines,

number of static calls to events, number of modifiers, number of functions, number of payable

functions, cyclomatic complexity as the simplest McCabe definition [67], and number of map-

pings to addresses.

We also computed the size of the associated bytecode and of the vector of contract’s ABIs.

These are the Application Binary Interfaces, defining the interface definition of any smart con-

tract, known at compilation time and static. All contracts will have the interface definitions of

any contracts they call available at compile-time [68]. This specification does not address con-

tracts whose interface is dynamic or otherwise known only at run-time.

PLOS ONE Smart metrics: A statistical analysis of solidity smart contracts software metrics distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0281043 April 12, 2023 9 / 31

https://aphd.github.io/smart-corpus/
https://doi.org/10.1371/journal.pone.0281043


The data set is structured to keep track of the specific Smart Contract address so that any

blockchain address related Smart Contract metrics (SCEM: smart contract external metrics)

can be fully analyzed in relationship with the software metrics self-contained into the Smart

Contract Solidity code (SCIM: smart contract internal metrics). For example, it is possible

to investigate interactions with other Smart Contracts, gas consumption and cryptocurrency

exchanges.

ABI metrics in particular are the Smart Contract interface and reflect the external exposure

of the Smart Contract towards blockchain calls from other addresses, which can be interaction

with other Smart Contracts as well.

It is worth noting that not all the measures related to addresses stay constant but many of

them depend on the time of analysis and cannot be defined among the Smart Contract metrics,

and others can simply be contract variables, like the amount of ether stored into the contract,

the number of owners in a multi owned contract, the contract performance, or popularity in

terms of calls to the contract. In such cases, much care is needed to evaluate the relationship

between Smart Contract software metrics and other blockchain-related measures, not only

because they may be time-varying, but also because other external factors can be in place. For

example, the success of a contract could be defined in terms of calls to that contract, but if the

contract implements an Initial Coin Offer, then most likely the contract in itself, measured as

software code, has probably little to do with it.

For each software metric we computed standard statistics like average, median, maxima

and minima values and standard deviation. Furthermore we verified what kind of statistical

distribution these metrics belong to. This is particularly important when comparing Smart

Contract’s source code with other source code metrics, e.g., Java source code, for standard soft-

ware projects. In fact the literature on software metrics demonstrates that there exist statistical

distributions which are typical of specific metrics regardless the programming language used

for software development [69].

In particular LOC, coupling metrics, like fan-in and fan-out, and other software metrics are

known to display a fat tail in their statistical distribution [52] regardless the programming lan-

guage, the platform or the software paradigm adopted for a software project.

Due to the domain specific constraints the Smart Contract software must satisfy to, in par-

ticular limited size resources, it is not granted that such software metrics respect the canonical

statistical distributions found in general purpose software projects. It is one of the aims of this

research to verify and eventually discuss such a conjecture.

4 Results

The smart contracts’ source code was analysed with a tool named PASO. Thanks to this tool

the smart contract’s source code can be represented as an abstract syntax tree (AST). Based on

the AST, software metrics and patterns in smart contract codes have been evaluated and com-

puted. Detailed information about this tool and its publication can be found online at this link

(https://aphd.github.io/paso/).

We started analyzing centrality and dispersion measures for all the computed metrics, like

mean, average, median, and standard deviation, interquartile range, and total variation range.

These statistics provide a summary of the overall behavior for the metrics values. In particular,

for asymmetric distributions, centrality measure differs from one another, and in the case of

power laws, distributions the largest values of the metrics can be order of magnitude larger

than central and low values.

Many minima values result set to zero, since there are a few contracts with almost no code.

The results on central tendency measures in Table 1 show that the mean is constantly larger
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than the median, (almost always of about two third) which is a feature typical of right skewed

distributions. One simple reason explaining this fact is the lower bound posed to all the

metrics by the fact that they are defined null or positive, while in principle, large values are

not bounded. A little exception is represented by the Bytecode metric which features values for

mean and median very close to each other, suggesting a distribution shape which may be not

really skewed. Standard deviations are all comparable with the mean, meaning a large disper-

sion of values around the last, but there are not cases where it is much large than the mean or

the media. Values of standard deviation much larger than the mean might be instead the case

for power law distributions and such behavior has already been observed in software metrics

for typical software systems [12, 44].

The maxima are all much larger than the corresponding means and medians, often reach

one or two order of magnitude larger and only in a few cases three orders of magnitude.

Finally the 90th percentiles are comparable with a displacement of some standard deviation

from the mean. All these results suggest that the selected Smart Contracts metrics might not

display fat tail or power law distributions which are instead found in the literature for corre-

sponding metrics of standard software systems.

Nevertheless outlier values appear for all the metrics and the values in Table 1 are not

exhaustive for explaining completely their statistical properties.

Table 2 shows the Solidity programming statements statistics computed for all the 85K Smart

Contracts composing our dataset. Based on statements’ statistic, a typical Smart Contract con-

sists of almost 10 IF’s statements, 5 EMIT’s statements and 1.5 iteration statements. The same

overall distribution of statement types was obtained in different periods of time with varying ver-

sions of solidity. So the statistic tends to be relatively stable. Notably, the number of iteration

Table 1. Centrality and dispersion statistics computed for all the Smart Contract software metrics.

variable Mean Median Std Min Max IQR 10th 90th

total_lines 586.96 317.00 937.23 1 25,920 525.00 93.00 1,373.00

blanks 91.69 54.00 160.31 0 4,045 77.00 13.00 201.00

functions 44.96 28.00 66.27 0 1,256 36.00 9.00 95.00

payable 2.00 1.00 6.40 0 205 2.00 0.00 5.00

events 5.08 3.00 6.08 0 137 4.00 1.00 11.00

mapping 4.11 3.00 4.67 0 155 2.00 0.00 8.00

modifiers 1.86 1.00 2.48 0 40 3.00 0.00 5.00

contracts 7.29 5.00 9.52 1 227 6.00 2.00 14.00

interfaces 1.28 0.00 2.55 0 52 1.00 0.00 5.00

libraries 1.22 1.00 1.87 0 36 2.00 0.00 3.00

addresses 55.27 36.00 91.31 0 2,500 40.00 9.00 108.00

cyclomatic 66.50 36.00 105.66 0 2,318 55.00 13.00 146.00

comments 72.77 38.00 198.16 0 25,536 68.00 1.00 154.00

abiLength 221.60 144.00 586.81 0 34,728 113.00 66.00 310.00

abiStringLength 4,644 3,886 3,282 2 48,274 3,030 1,671 8,375

bytecode 12,483 9,606 9,953 2 49,152 10,714 3,336 26,921

LOC 306.63 167.00 529.08 1 14,151 240.75 64.00 663.00

block 47.83 28.00 72.34 0 1,534 39.00 10.00 102.00

isFallback 0.38 0.00 0.55 0 8 1.00 0.00 1.00

isVirtual 4.70 0.00 17.98 0 462 0.00 0.00 18.00

pure 5.58 4.00 9.67 0 209 7.00 0.00 13.00

view 12.22 6.00 28.86 0 650 14.00 0.00 33.00

https://doi.org/10.1371/journal.pone.0281043.t001
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statements per line of code (0.005) is two orders of magnitude smaller than other programming

languages such as Java (0.121), C and python. The number of conditional statements per line of

code (0.033) is one order of magnitude smaller than other programming languages such as Java

(0.142), C and python. The third most used statement in Smart Contracts after the return state-

ment and IF statement is the EMIT’s statement. The Emit statement is used to release an event

in a Smart Contracts, which can be read by the client in a decentralized application (dApp).

To perform a complete analysis, we proceed in two steps. We perform a first qualitative inves-

tigation analyzing the histograms for all the metrics, then we use more complex statistical models

for best fitting the Empirical Complementary Cumulative Distribution Function to extract quan-

titative information on Smart Contracts software metrics. The histogram patterns are well

known to depend on the bin size and number, as well as on the local density of points into the

various ranges. Nevertheless they can be an helpful instrument to get insight into the distribution

shape general features, namely if there may be fat tails, bulk initial distribution values and so on.

On the contrary the best fittings functions with statistical models provide precise values of core

parameters and can be compared with those reported in literature for standard software metrics.

In Figs 3–5 we report the histograms for all the Smart Contracts software metrics in the

same order they are reported in Table 1. To make the histograms more readable, the range of

the last bin is highlighted with a different fill colour. The orange-colored bin represents the

outlier aggregation. The general shape can be distinguished into two categories. From one side

there are those metrics whose ranges of variations are quite limited and maximum values are

below 250, like Payable, Events, Mapping, Modifiable. For such metrics the histograms contain

too few different values which does not allow to display a power law behavior. In particular

Payable and Modifiable appear also to have a bell shape which allows to exclude a general

power law distribution. For Events and Mapping the shape may suggest a power law behavior

which is limited by the upper bounds reached by the maximum metric values. This deserves to

be better investigated using statistical distribution modeling.

From the other side the metrics which reach values large enough (whose maxima are over

250) contain enough points to well populate the histograms. Also in this case many metrics

have bell shaped distributions with limited asymmetry and skewness. This feature can be

ascribed to the limited range of values these metrics can reach. In fact, in cases where the met-

rics can assume virtually arbitrary large values, many orders of magnitude larger that their

mean values, the bell shape disappear and the shape presents a strong asymmetry with a high

skewness. This is the behavior observed in literature for metrics in common software systems.

The only cases where a full power law distribution may approximately hold are those related to

Table 2. Statements statistics computed for all the Smart Contracts.

variable Mean Median Std Min Max IQR 10th 90th

ifStatement 9.97 3.00 23.04 0 621 10.00 0.00 22.00

doWhileStatement 0.00 0.00 0.09 0 7 0.00 0.00 0.00

emitStatement 4.93 4.00 6.96 0 130 7.00 0.00 11.00

whileStatement 0.33 0.00 1.11 0 24 0.00 0.00 1.00

forStatement 0.95 0.00 2.26 0 13 1.00 0.00 3.00

inlineAssemblyStatement 0.90 0.00 2.98 0 81 1.00 0.00 2.00

returnStatement 21.80 14.00 30.05 0 712 19.00 3.00 45.00

revertStatement 0.01 0.00 0.30 0 37 0.00 0.00 0.00

throwStatement 0.53 0.00 2.96 0 75 0.00 0.00 0.00

tryStatement 0.06 0.00 0.41 0 25 0.00 0.00 0.00

https://doi.org/10.1371/journal.pone.0281043.t002
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the lines of code, like total lines of code, blank lines, comments and LOC. But also in these

cases the upper bound of the values of the metrics does not allow to fully acknowledge for the

power law. This seems to be a structural difference with respect to standard software systems

where the number of lines of code for a class, for example in Java systems, may easily reach

tens of thousands. In fact such systems rely on service classes containing many methods and

code lines, whilst Smart Contracts code relies basically on the self contained code.

It is interesting to note the bell shaped behavior of the ABI metrics and of the Bytecode met-

ric, which strongly differ from the shapes associated to lines of code or in general to other met-

rics. In the case of ABI this means that the amount of exposure of Smart Contracts to external

interactions has a typical scale, provided by clear central values, even if the variance may be

quite large. In other words Smart Contract exposure to the blockchain is very similar for most

of the contracts, with no significative outliers, regardless the contract size in terms of LOC or

other metrics. The bytecode displays a rather similar but less symmetric bell shape. In this case

the behavior is clearly governed by the size constraints imposed by the costs of uploading very

large Smart Contracts on the blockchain.

4.1 Analysing distributions of the metrics grouped by the pragma version

This section analyzes the distribution of some software metrics, such as the number of lines of

code (LOC), the number of empty lines (Blanks), the number of functions (Functions) and the

Fig 3. Histogram distributions of the metrics Total lines, Blanks, Function and Payable.

https://doi.org/10.1371/journal.pone.0281043.g003
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number of payable functions (payable), grouped by the pragma version. The pragma version is

a directive which specifies how a compiler should process its input. The pragma version is not

part of the grammar of a solidity programming language. The pragma version changes over

time, as it is a way to identify the language used to categorize the states of solidity program

language as it is developed and released. Smart Contracts should be annotated following this

directive to avoid to be compiled by future compiler versions that might introduce incompati-

ble changes. Despite this recommendation, not all smart contracts follow the pragma directive.

The data set we consider in this paper consists of 85K of Smart Contracts and 19% of them

did not follow the pragma directive. However, only the smart contracts following the pragma

directive will be analysed to show a possible change or trend in how the smart contracts are

developed over time.

For the following software metrics, functions, LOC and ABI, the peak of the distribution of

smart contracts having the pragma version 0.5.* directives is shifted to the right compared to

the smart contracts having the pragma version 0.4.* directives. As to what concerns the shape

of the curves, the shape of the curve is broader in smart contracts having the pragma version

0.5.* directives, becoming progressively sharper with the decreasing of smart contracts having

the pragma version 0.4.* directives.

Fig 4. Histogram distributions of the metrics Events, Mapping, Modifier and Contract.

https://doi.org/10.1371/journal.pone.0281043.g004
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4.2 Analysis of the number of contracts, libraries and interfaces

This section analyzes the number of Contracts, Libraries and Interfaces used in Smart Con-

tracts written in solidity language during the time frame period from the year 2016 to the year

2021. Smart Contracts written in Solidity Program language consist of a number of contract

declarations. Contracts in Solidity Program language are similar to classes in object-oriented

programming (OOP) languages and, as in the case of OOP languages, there are four types of

Fig 5. Histogram distributions of the metrics Address, Cyclomatic, Comments, ABI, Bytecode and LOCS.

https://doi.org/10.1371/journal.pone.0281043.g005

PLOS ONE Smart metrics: A statistical analysis of solidity smart contracts software metrics distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0281043 April 12, 2023 15 / 31

https://doi.org/10.1371/journal.pone.0281043.g005
https://doi.org/10.1371/journal.pone.0281043


smart contracts: Abstract Contract, Interface Contract, Concrete Contract and Library Con-

tract. In the following sections, the definition of each contract type will be provided and the

use of these different contracts over the last 4 years will be analyzed.

4.2.1 Abstract contract. Contracts are marked as Abstract Contracts when at least one of

their functions lacks an implementation, as in the following example 1

Listing 1. Abstract Contract Example
35 // Abstract Contract
36 contract Notify
37 {
38 event Notified (address indexed _from, uint indexed _amount);
39 // functions signature
40 function notify (address _from, uint _amount) public returns
(bool);
41 }

The functions that lack the implementation are named Abstract Functions. If a contract

extends an Abstract Contract, it has to implement or define all the Abstract Functions of the

extended Abstract Class, otherwise, it will be an Abstract Contract itself. Abstract contracts

allow the use of patterns, such as the Template Method Design Pattern, and they allow to

remove code duplication.

4.2.2 Interfaces and libraries. Interface Contract was introduced in Solidity v0.4.11 on

3rd May 2017 [7]. An Interface Contract is similar to an Abstract Contract, but it cannot have

any functions implemented. There are further restrictions such as it cannot inherit other Con-

tracts or Interfaces.

Interface Contracts allow decoupling the definition of a contract from its implementation,

providing better extensibility. In fact, when a Contract Interface is defined, the implementa-

tions of a new Contract can be provided for any existing functions without modifying their

declarations. Interface Contracts are denoted by the interface keyword as in the following

example 2

Listing 2. Interface Contract Example
42 // Interface Contract
43 interface Notify
44 {
45 event Notified(address indexed _from, uint indexed _amount);
46 // functions signature
47 function notify(address _from, uint _amount) public returns
(bool);
48 }

A Concrete Contract has the implementation of all functions that are declared in the body

of the contract. When a Concrete Contract implements an Interface Contract, it must provide

the implementation of all the functions that are defined within the Interface implemented. If a

contract extends an Abstract Contract, it needs to provide implementations for all functions

not implemented in the extended Abstract Contract.

Library Contracts are similar to Concrete Contracts, but their purpose is different. A library

is a type of contract that does not allow to use functions, such as Payable and Fallback, which

provide a mechanism to collect or receive funds in Ethers. These limitations are enforced at

compile-time, therefore making it impossible for a library to hold funds. A library is defined

with the keyword library (library C {}) in the same way a contract is defined (contract A {}).

Library Contracts are used to extract code away from the other Contracts for maintainability

and reuse purposes.

Figs 6 and 7 show a growing trend in many software metrics such as the average number of

LOC, Bytecode, number of interfaces, number of libraries, programming statements until the
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solidity version 0.7. Starting from solidity version v0.8 the trend is reversed. A plausible expla-

nation for this trend can be found in the features’ changes of the Solidity programming lan-

guage described in section 6.

Fig 8 shows the frequency distribution of Lines of Code (LOC) for Smart Contract written

respectively with Solidity version v0.4 (from 2016 to 2018) and Solidity v.0.8 (from 2020

onwards). Many Smart Contracts written before 2017 are in the LOC range from 0 to 500, and

most of the Smart Contracts written after the 2020 year are in a larger LOC range between 0-

1000. Moreover, the number of smart contracts having a LOC range between 4K-14K is one

order of magnitude greater for smart contracts written after 2020.

4.2.3 Replicated smart contracts. In this section we explain when and why we consider

two Smart Contracts as different Smart Contracts. This is important for the aims of the paper

because the results depend on the definition of replicated Smart Contracts. Some features of

the Smart Contracts motivating the section are indeed the following ones:

Fig 6. The average number of interfaces and libraries in Smart Contract.

https://doi.org/10.1371/journal.pone.0281043.g006
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• Distinguishability. Each Smart Contract in the Ethereum Blockchain is distinguishable

from any other as it is identified by a unique address, i.e. a hash of 160 bits, and its code is

stored on the blockchain. Smart Contracts can be deployed in the network by a user or by

another Smart Contract or a cryptocurrency wallet. Each time a Smart Contract is deployed

in the network, either in the main or in the test network, a unique address is associated with

the Smart Contract even in the case the source code of two or more Smart Contracts is the

same.

• Immutability. A user has no permission to change any Smart Contract deployed in the

Blockchain. For example, if the user wants to correct a bug s/he is forced to redeploy the

Fig 7. The average number of LOC and Bytecodes per Smart Contract.

https://doi.org/10.1371/journal.pone.0281043.g007
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Smart Contract with a new unique address. As a result, on the blockchain there might be

two or more almost identical Smart Contracts with different addresses. The fact that differ-

ent addresses refer to the same Smart Contract lead us to suppose that many Smart Contracts

might simply be “experiments” or contracts deployed in the blockchain to test and then

modified according to the test results.

• Inheritance. The languages used to write Smart Contracts, such as Solidity, support multiple

inheritance. When a Smart Contract inherits from multiple Smart Contracts, only a single

Smart Contract is created on the blockchain, and the code from all the inherited Smart Con-

tracts is copied into the new Smart Contract.

Based on these features, three ways to define the uniqueness of a smart contract will be

outlined.

• Smart Contract A is different from a Smart Contract B because A and B have distinguishable

addresses.

• Smart Contract A is different from a Smart Contract B if there is at least one different metric

value.

• Smart Contract A is different from a Smart Contract B inheriting from the same Smart Con-

tract C if the shared part of C does not overcome a given threshold, for example 80% of the

code lines (LOC).

5 Statistical modeling

In order to get insights on the behavior of the statistical distributions underlying Smart Con-

tracts software metrics we perform a best fitting analysis using a power law statistical distribu-

tion for best fitting the tails of the empirical distributions. Furthermore we performed a

second analysis making use of the Log-normal statistical model. In fact, even when the power

law model well represent the data in the tail it usually is unable to best fit the complete range of

values in the statistical distributions.

To show the results of such analysis we don’t use histograms anymore, which are a rough

approximation of a Probability Density Function (PDF).

Fig 8. Smart Contracts’ LOC distribution vs. pragma version.

https://doi.org/10.1371/journal.pone.0281043.g008
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Our methodology does not neglect any data and the use of cumulative complementary dis-

tributions allows to fully represent the statistical properties of the system analyzed (the block-

chain software metrics in this specific case). This allows to model the system with analytical

statistical distributions which provide more detailed and reliable information since all data

points are included into the model.

The histogram representation in fact carries many drawbacks, in particular when data are

power-law distributed in the tail. The problems with representing the empirical PDF are that it is

sensitive to the binning of the histogram used to calculate the frequencies of occurrence, and that

bins with very few elements are very sensitive to statistical noise. This causes a noisy spread of

the points in the tail of the distribution, where the most interesting data lie. Furthermore, because

of the binning, the information relative to each single data is lost. All these aspects make difficult

to verify the power-law behavior in the tail. To overcome these problems from now on we sys-

tematically report the experimental CCDF (Complementary Cumulative Distribution Function)

in log-log scale, as well as the best-fitting curves in many cases. This is convenient because, if the

PDF (probability distribution function) has a power-law in the tail, the log-log plot displays a

straight line for the raw data. This is a necessary but by no means a sufficient condition for

power-law behavior. Thus we used log-log plots only for convenience of graphical representa-

tion, but all our calculations (CDF, CCDF, best fit procedures and the same analytical distribu-

tion functions we use) are always in normal scale. With this representation, there is no

dependence on the binning, nor artificial statistical noise added to the tail of the data. If the PDF

exhibits a power-law, so does the CCDF, with an exponent increased by one. Fitting the tail of

the CCDF, or even the entire distribution, results in a major improvement in the quality of fit.

An exhaustive discussion of all these issues may be found in [70]. This approach has already been

proposed in literature to explain the power-law in the tail of various software properties [44, 52].

The CCDF is defined as 1 − CDF, where the CDF (Cumulative Distribution Function) is

the integral of the PDF. Denoting by p(x) the probability distribution function, by P(x) the

CDF, and by G(x) the CCDF, we have:

GðxÞ ¼ 1 � PðxÞ ð1Þ

PðxÞ ¼ pðX � xÞ ¼
Z x

� 1

pðx0Þdx0 ð2Þ

GðxÞ ¼ pðX � xÞ ¼
Z 1

x
pðx0Þdx0 ð3Þ

The first distribution that we describe is the well-known Log-normal distribution. If we

model a stochastic process in which new elements are introduced into the system units in

amounts proportional to the actual number of the elements they contain, then the resulting ele-

ment distribution is log-normal. All the units should have the same constant chance for being

selected for the introduction of new elements [70]. This general scheme has been demonstrated

to suit large software systems where, during software development, new classes are introduced

into the system, and new dependencies –links– among them are created [52, 71]. The Log-nor-

mal has also been used to analyze the distribution of Lines of Code [72]. The Log-normal distri-

bution has been also proposed in literature to explain different software properties ([52, 69, 73]).

Mathematically it is expressed by:

pðxÞ ¼
1
ffiffiffiffiffiffiffiffi
2ps
p

x
e�

lnðxÞ� m
2sð Þ

2
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It exhibits a quasi-power-law behavior for a range of values, and provides high quality fits

for data with power-law distribution with a final cut-off. Since in real data largest values are

always limited and cannot actually tend to infinity, the log-normal is a very good candidate for

fitting power-laws distributed data with a finite-size effect. Furthermore, it does not diverge

for small values of the variable, and thus may also fit well the bulk of the distribution in the

small values range.

The power-law is mathematically formulated as:

pðxÞ ’ x� a ð5Þ

where α is the power-law exponent, the only parameter which characterizes the distribution,

besides a normalization factor. Since for α� 1 the function diverges in the origin, it cannot

represent real data for its entire range of values. A lower cut-off, generally indicated x0, has to

be introduced, and the power-law holds above x0. Thus, when fitting real data, this cut-off acts

as a second parameter to be adjusted for best fitting purposes. Consequently, the data distribu-

tion is said to have a power-law in the tail, namely above x0.

In Fig 9 we show the best fitting plot for the power law model for the metrics Total lines,

Blanks, Function, and Payable. The power law in the tail is clearly failed by all metrics. In Fig

10 Mapping and Modifier seems to follow a power law, confirmed also by the low values

(D� 0.05) of the Kolmogorof-Smirnov significance test value, but the range where the metrics

behave according to a power law regime is too small.

Fig 11 finally shows that a good candidate for a power law in the tail is the LOC metric, sup-

ported by a KS coefficient of significance of about 0.039. This suggests that also for the Smart

Contract code the main size metric in software, the lines of code, shows properties similar to

those of standard software systems. Also the Address metric displays a reasonable power law

regime for a range of its values, showing a behaviour similar to that found for the metric

“Name of Variables” in Java software [44]. Thus the usage of the keyword “Address” in Smart

Contracts occurs in quantities which remind the usage of variable names in Java.

We then analyzed all the statistical distributions using a log-normal best fitting model.

In Fig 11 we show the Log-normal best fitting curves together with the empirical cumulative

distribution functions for the Smart Contracts metrics Total lines, Blanks, Function and Pay-

able. The first three metrics are nicely fitted by the Log-normal statistical distribution in the

bulk, for low values of the metrics, but not in the tail, even if the R2 is quite close to one for

each case (R2� 0.95). Such result confirms the previous one obtained for the power law

model. The best fitting lacks mainly in the tail of the distribution, as expected. In fact the

empirical distribution drops more rapidly than the best fitting curve because of the cut-off for

large values of the metrics. This may be explained by the hypothesis that Smart Contract size

metrics, like Total Lines of code, Functions and Blanks are upper bounded according to the

size constraints associated to the deployment of Smart Contracts into the blockchain. The Pay-

able metric results in a too poor statistic to be well fitted by a Log-normal distribution.

Fig 11 show the metrics Events, Mapping, Modifier and Contract. Mapping cannot be well

fitted by a Log-normal, as it was very well explained by a power law in the range corresponding

to the bulk of the distribution rather than in the tail. Also Events and Modifier do not suite a

Lo-gnormal distribution and their R2 values are lower than 0.95. Finally Contract is quite well

approximated in the bulk, but not in the tail, confirming once again the power law best fitting

results.

Finally Fig 11 shows that the initial parts of Bytecode and ABI metrics well overlap with the

Log-normal but as soon as the values crosses the central ones observed in the corresponding
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histograms the Log-normal curves tend to miss the empirical ones which drops quickly and do

not display power law in the tail.

Address, Cyclomatic ad Comments rapidly drop with respect to the Log-normal model,

even if the initial part presents some overlap with it. Again this may be ascribed to the upper

bounds which limit the range of values reachable by these metrics. In particular Comments are

less, on average, than in traditional software development. This is maybe due to the fact that

Smart Contract software code is written with specific purpose and constraints, so that the

same patterns are most likely found and do not need comment lines.

Fig 9. Power law and Log normal best fitting of the metrics Total lines, Blanks, Function and Payable.

https://doi.org/10.1371/journal.pone.0281043.g009
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Finally the LOC metric is quite well represented by the Log-normal distribution both on

the bulk and in the tail, and presents an R2 value larger than 0.98. This is quite in agreement

with the results found in literature for the LOC metric in traditional software systems [44]. In

some sense, this result is different from results obtained in similar studies, since it seems that

this metric is not influenced by the peculiarity that can belong to Smart Contract software and

tends to preserve the same statistical features found in traditional software systems.

Table 3 shows the final fitting parameters for the Power Law and Log-Normal distributions.

We reported the xmin and α estimated parameters for the Power Law and xmin, log(μ) and log(σ)

estimated parameters for the Log-Normal.

Fig 10. Power law and Log normal best fitting of the metrics Events, Mapping, Modifier and Contract.

https://doi.org/10.1371/journal.pone.0281043.g010
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We validated our results using the bootstrap methodology in order to provide a 95% confi-

dence interval for the estimated parameters. By default, the bootstrap function will use the

Max Likelihood Estimator (MLE) to infer the parameter values and check all values of xmin.

The bootstrap procedure resamples the dataset with replacement for a large number of

Fig 11. Power law and Log normal best fitting of the metrics Address, Cyclomatic, Comments, ABI, Bytecode and

LOCS.

https://doi.org/10.1371/journal.pone.0281043.g011
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iterations (1000 in our case), for each iteration, all the parameter are estimated and at the end,

a confidence interval is calculated. The bootstrap procedure provides more robust results.

In Table 3 we report the results of the bootstrap procedure, a 95% confidence intervals for

the α parameter of the Power Law and log(μ) and log(σ) parameters of the Log-Normal is pro-

vided in the column next to each parameter.

6 Discussion

This section investigates the implications of the research based on the findings of our study.

Some of the findings are the following:

• The Solidity program language has different styles of programming when compared to other

high-level programming languages because of computational cost constraints and to be eas-

ier to understand for non-expert users.

• In the last two years the way of writing the smart contracts has been changing due to the the

introduction new programme features in the last version of the compiler and because the

Solidity developers started to implement more complex business logic over time.

As to what concerns the Solidity programming style, based on our findings (see Table 2),

the number of iteration statements and conditional statements per line of code is respectively

two and three orders of magnitude smaller than other high-level programming languages such

as Java, C and python. Some relevant studies on this subject are [60, 73]. Furthermore authors

in [74] show how cyclomatic complexity on Java code can reach very high values [74].

We assume that Smart Contract developers might have a tendency to minimize the use of

branch statements (IF) and iterative statements (FOR, WHILE) because these instructions

have a high computational cost when compared to other program statements such as the

bitwise operations. Moreover, we assume that in order to increase public trust, the solidity

developers tend to write smart contracts easy to understand. Indeed, a program easy to under-

stand should have a low cyclomatic complexity although literature shows that readability, as

intended by humans, weakly correlates with low cyclomatic metrics [75].

Table 3. Fitting parameters for the power law and log-normal distributions. The xmin and α estimated parameters are reported for the Power Law. For the Log-Normal

the xmin, log(μ) and log(σ) estimated parameters are reported.

Power Law Log Normal

Metric xmin α 95% CI xmin log(μ) 95% CI log(σ) 95% CI

total lines 1323 3.33 3.327;3.341 150 5.75 5.748;5.758 1.105 1.104;1.108

blanks 308 2.94 2.925;2.949 23 3.97 3.972;3.984 1.032 1.029;1.033

functions 108 3.29 3.286;3.299 25 2.81 2.811;2.837 1.14 1.138;1.145

payable 5 3.01 2.994;3.021 1 0.29 0.296;0.312 1.16 1.155;1.160

events 11 3.29 3.282;3.295 3 1.08 1.071;1.084 0.965 0.963;0.967

mapping 3 2.92 2.915;2.935 4 0.28 0.26;0.31 1.06 1.064;1.076

modifiers 5 3.42 3.412;3.434 3 0.68 0.66;0.95 0.806 0.803;0.816

contracts 10 3.61 3.601;3.623 3 0.42 0.41;0.439 1.02 1.025;1.037

addresses 108 3.08 3.072;3.088 32 2.62 2.59;2.64 1.2 1.212;1.224

cyclomatic 161 3.15 3.145;3.159 36 3.68 3.675;3.698 1.04 1.041;1.049

comments 149 2.75 2.746;2.755 50 3.33 3.31;3.347 1.28 1.274;1.284

abi 174 3.1 3.095;3.155 3370 8.59 8.478;8.623 0.53 0.493;0.567

bytecode 11052 3.46 3.409;3.499 1830 9.02 8.993;9.032 0.65 0.642;0.661

LOC 148 2.62 2.574;2.642 161 0.38 -0.31;1.68 1.9 1.684;1.992

https://doi.org/10.1371/journal.pone.0281043.t003
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As far as the change in programming style, we observed at least two different distributions

of software metrics data. First, many Smart Contracts written before 2017 are in the LOC

range from 0 to 500, and most of the Smart Contracts written after 2020 year are in a larger

LOC range between 0-1000. Moreover, the number of smart contracts written after 2020 and

having a LOC in the outlier values (between 4K-14K) is one order of magnitude greater when

compared to smart contracts written before 2017 and having a LOC in the same interval. The

larger LOC range for Smart Contracts written after 2020 can be explained by the fact that the

business logic of some Smart Contracts is deployed both 1) in longer source code and 2) in dif-

ferent Smart Contract addresses via specific pattern programs to bypass the source code size

limit. Indeed, a Smart Contract has a code size limit equal to 24576 bytes and this limit was

introduced to prevent denial-of-service (DOS) attacks. Originally, this limit was not a problem

because the business logic of smart contracts was very simple as highlighted by our findings

(LOC range from 0 to 500). However, in the last few years, the Solidity developers added more

and more functionalities to their smart contracts until at some point they reached a code size

limit. If the Solidity developers exceed this code size limit equal to 24576 bytes, they will not be

allowed deploying the Smart Contract on the blockchain network. According to the grey litera-

ture, in the last few years, the Smart Contract size limit was overcome by using the “diamond

pattern”. A “diamond Smart Contract” is a contract that gets its external functions from other

contracts (called “facets”). On the contrary in traditional software power laws are commonly

identified (eg. in Java programs) for general “size” metrics, defined for example in terms of the

number of methods, constructors and other class features, where very large values of such met-

rics are commonly found [12].

Second, we observed a growing trend in many software metrics, such as the average number

of LOC, Bytecode, number of interfaces, number of libraries, programming statements until

the solidity version 0.7. Starting from Solidity version v0.8 the trend is reversed. A plausible

explanation for this trend can be found in the changes of features in the Solidity programming

language. The change of some features of the Solidity programming language is influencing

the way Solidity software developers implement smart contracts from version 0.8 (released on

16 Dec 2020). Indeed, until Solidity version 0.7 (released on 28 July 2020), some characteristics

of Solidity could lead many programming developers to introduce bugs in Smart Contracts.

Fortunately, it was possible to mitigate the introduction of bugs by using external libraries

such as OpenZepelling. For example, arithmetic operations in Solidity did not throw excep-

tions when an overflow occurred up to version 0.7 (the last release was on 16 Dec 2020).

Indeed, this characteristic of Solidity can easily result in bugs, because programmers usually

assume that a calculation that exceeds the memory space throws an error as in other high-level

programming languages. Actually, starting from version 0.8, the Solidity compiler throws an

exception when an overflow occurs in arithmetic operations. This means that the Solidity

developers can update a Smart Contract or write a new Smart Contract via the newest compiler

version without using external libraries, thus resulting in a Smart Contract smaller in size.

7 Conclusions

In this paper we studied Smart Contracts software metrics extracted from a data set of more

than 85K Smart Contracts deployed on the Ethereum blockchain. We were interested in deter-

mining if, given the peculiarity related Smart Contract software development, the correspond-

ing software metrics present differences in their statistical properties with respect to metrics

extracted from traditional software systems and already largely studied in literature.

The assumptions are that resources are limited on the blockchain and such limitations may

influence the way Smart Contracts are written. Our analysis dealt with source code metrics as
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well as with ABI and bytecode of Smart Contracts. Our main results show that, overall, the

exposure of Smart Contracts to the interaction with the blockchain as qualitatively measured

in terms of ABI size are quite similar to each other and there are not outliers Contracts. The

distribution is compatible with a bell shaped statistical distribution where most of values tend

to lie around a central value with some dispersion around it.

In general Smart Contracts metrics tend to suffer from blockchain limited resources con-

straints, since they tend to assume limited upper values. There is not the ubiquitous presence

of fat tail distributions where there are values very far from the mean, even order of magnitude

larger, as typical in traditional software. In Smart Contract software metrics large variations

from the mean are substantially unknown and all the values are generally into a range of few

standard deviations from the mean.

Finally the Smart Contract lines of code is the metric which more closely follow the statisti-

cal distribution of the corresponding metric in traditional software system and shows a trun-

cated power law in the tail and an overall distribution which is well explained by a Log-normal

distribution.
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