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Abstract

In this paper, effective properties of Miura-ori patterned sheets are
studied. The thickness of the facets is allowed to have considerably
large values, hence the structural response of the system cannot be
determined by considering only the kinematics of the folding. In par-
ticular, large negative values of the Poisson’s ratio have been observed
for particular sets of parameters. Numerical outcomes, for periodic
and finite systems, have been validated by an experimental campaign,
where several specimens with different geometries and materials have
been tested. The elastic fields of the specimens have been measured
with the Digital Image Correlation method.
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1 Introduction

Auxetic media are characterised by a negative value of Poisson’s ratio, namely
they expand (or contract) laterally when stretched (or compressed) longitudinally.
The term auzetic, firstly used by Evans in this context, derives from the Greek
word “auxetos”, which means “that may be increased” [27]. The Poisson’s ratio
of an isotropic material is in the range (—1,0.5), while for an anisotropic medium
both the lower and upper limits cease to hold [98].

Auxetic materials offer enhanced performance for many engineering applica-
tions in comparison with traditional materials. In terms of mechanical properties,
auxeticity can be exploited to obtain higher indentation resistance [15, 28], in-
creased fracture toughness [49, 19] and longer fatigue life [30]. Auxetic systems
can also be employed to achieve either enhanced energy dissipation [86, 31, 114, 70]
or improved acoustic energy harvesting [54, 25]. In addition, auxetic structures
can deform into dome shapes when subjected to bending, thus exhibiting syn-
clastic curvature instead of the typical anticlastic curvature of common structures
[24, 67].

Due to their increasing potentialities, the use of auxetic media has been pro-
posed in different fields. For instance, medical devices based on auxetic technology,
such as dilators to open arteries in case of coronary angioplasty [109, 7, 32|, biopros-
theses [84] and smart bandages [102], have been designed. In sports equipments,
auxetic foams and textiles have been fabricated to improve impact protection,
comfort and flexibility [23]. In structural health monitoring, significant progress
has been made by designing smart sensors and actuators exploiting auxeticity
[1, 50, 51]. In aircraft industry, auxetic structures have been used for the design
of morphing airfoil [34, 10].

Examples of naturally occurring materials with negative Poisson’s ratio have
recently been discovered, including some classes of crystals [5, 60, 38, 33], biolog-
ical tissues [100, 52] and blood vessels [97]. However, these natural examples are
rare, hence artificially designed geometries leading to auxetic behaviour have been
proposed in the literature. The latter are mainly based on the following mecha-
nisms: reentrant structures [48, 18, 57,9, 73, 115], star-shaped inclusions and pores
[96, 66], chirality [74, 85, 37, 93, 9, 2, 71, 68, 89], rotating units [35, 17], pores and
cuts [36, 95, 90, 13, 14, 8, 69, 4], instabilities [6, 91, 46], two-dimensional and three-
dimensional lattices [11, 12, 16|, and other approaches [77, 83, 47, 79, 103, 29, 72].

An alternative idea to create an auxetic medium is to use origami techniques,
namely the craft of folding paper. In particular, the Miura-ori pattern is considered
here. Named after his inventor, the Japanese astrophysicist Koryo Miura [65],
the Miura-ori folding consists in tessellating a surface by parallelograms, where
the latter are rigid so that the deformation is produced by the folding/unfolding



at the creases. Since the tessellation leads to structures with high strength and
very low weight, the Miura-ori pattern has been employed in many fields, such as
aerospace (e.g., for the deployable structure of satellites), biomedical engineering
(e.g., stents) and automotive industry (e.g., airbags) [61]. Recently, Miura-type
structures have received many attentions in other areas like aerodynamics [113],
stretchable circuit boards [55], conductive elastomers [42] and biosignal recording
for health monitoring [41].

Miura-ori tessellations can deform to achieve a desired configuration without
yielding. This feature, together with auxeticity and low weight, provides promising
potentials for various applications like elastic energy absorption [99] and design of
cores of sandwich plates [78, 108]. The mechanical response and energy absorption
capabilities of Miura-ori sheet have been investigated in [58] with different experi-
mental tests, i.e. out-of-plane compression, three-point-bending and in-plane com-
pressions along the two principal directions. Design of helmets based on stacked
layers of the Miura-Ori folding pattern has also been presented in [39]. Further,
the behaviour of Miura-ori patterned metamaterials subjected to dynamic in-plane
[45] and out-of-plane [62] compression has been studied by means of numerical and
experimental methods. Clearly, the pattern angles as well as the thickness of the
facets affect the amount of absorbed energy. For example, in dynamic in-plane
problems [45], increasing the angle 6, (see Fig. 1) improves the capacity of energy
absorbtion. On the other hand, considering out-of-plane compression [62], smaller
acute angle of panels is preferable in protection purposes and impact absorbers.

The possibility for an origami pattern to “morph” between a Miura mode and
an eggbox mode has allowed for a tunable switch of the Poisson’s ratio within
a range from negative to positive values [75], and an interesting experimental
demonstration involving large deformations and based on a novel Saint-Venant
gripping constraint is given in [64]. Origami-inspired metamaterials have also
been employed to vary the coefficient of thermal expansion from negative to zero
or even positive values [112]. In addition, hydrogenation has been exploited in [63]
to transform two-dimensional graphene into three-dimensional graphene origami,
whose Poisson’s ratio has been determined by means of molecular dynamics sim-
ulations and verified by continuum modelling. Metamaterials based on origami
patters are characterised not only by auxeticity, but also by bistability and self-
locking [110, 44]. Moreover, the composite Miura-ori sheet can be considered as
an acoustic metamaterial that possesses both tunable properties (with respect to
folding angle) and programmable properties (with respect to geometry of panels)
for designing large band, low-frequency acoustic switches [76].

Some methods for manufacturing Miura-ori patterns, such as cold gas-pressure
folding for aluminium as the base material, have been introduced in [87]. Based
on the multimodal assembly of Miura-Ori tubes and using 3D direct laser writing



(DLW), microscale origami metamaterials have been fabricated and their struc-
tural response has been characterised using in situ scanning electron microscope
(SEM) [56]. In that study, kinematic models and nonlinear finite element analysis
for auxetic responses and stiffnesses have been employed, as well as Bloch—Floquet
finite element analysis for mechanical stability. Studying mechanical response of
folded plates as building blocks of many origami/kirigami patterns can pave the
way to understanding the behaviour of the entire structure. More recently, vibra-
tion characteristics of folded plates have been studied by using the first order shear
deformation theory (FSDT) for modelling the facets and use of linear springs for
modeling the folds [92].

Finally, it is noted that alternative designs starting from the classical Miura-ori
folded structures have been proposed. For instance, a mathematical framework has
been introduced in [22] for designing Miura-based cylindrical origami structures
with different patterns and cross-sectional shapes, that are foldable and devel-
opable. In other studies [80, 81, 82], geometric symmetries of Miura-ori pattern
have been developed, and foldability has been investigated. The dislocation of zig-
zag strips with resulting introduction of holes has led to lighter systems that are
also prone to modifications [26]. Activating predefined creases on curved origami
pattern has led to accomplish in situ stiffness manipulation covering positive, zero,
and negative values [111]. Tunable auxeticity and superflexibility have been ob-
tained in [40] with graphene origami structures. In another study [107], arc-Miura
specimens have been manufactured using a stamping process and their mechanical
properties under a quasi-static out-of-plane compressive load have been studied,
showing that arc-Miura structures have better energy absorption than the corre-
sponding monolithic arches. Weft-knitted Miura-ori folded fabric has been devised
to produce three-dimensional structures with negative Poisson’s ratio [59]. In ad-
dition, two novel origami-based tessellations have been proposed to obtain effective
elastic moduli that are larger than those of Miura-ori patterns [105]. Quasi-static
and dynamic mechanical properties of graded metamaterials that are made by
stacking Miura-ori patterns with different geometric properties have been inves-
tigated in order to gain better energy absorption capacity [106]. Programmable
properties of origami structures of higher-order elements, made of simple Miura
patterns, have also investigated in [43].

In the literature, Miura-ori folded structures have been mainly studied as as-
semblies of rigid parallelograms that can undergo relative rotations at the creases.
Accordingly, the deformation analysis has been performed by means of kinematic
considerations together with simple relationships based on the fact that the elas-
ticity of the medium is concentrated on the creases, introducing equivalent discrete
springs [88, 104].

Nevertheless, in view of large-scale production, it is of primary interest to



consider folded structures, which do not display neither jumps nor variation of the
thickness at the interfaces between different facets and to include their deformation
in the homogenisation analysis. This is the main issue that is addressed in this
work, where the effective properties of Miura-ori folded structures with different
microstructure parameters are evaluated both numerically and experimentally.

In this paper, the unit cells of periodically folded Miura-ori structures are
assumed to be elastic, thus they are studied as either plates (where the out-of-
plane and the in-plane behaviours are coupled) or solid elements depending on
the thickness, which is not assumed to be negligibly small. This allows to create
more resistant mechanical systems, whose deformation does not depend only on
the geometry, but also on the elastic constants of the material.

The plan of the paper is as follows. In Section 2, the design of the folded struc-
ture and the methods to analyse it are described in detail: the geometry of the
unit cell is specified in Section 2.1, the periodic and finite systems are presented
in Sections 2.2 and 2.3 respectively, and the experimental setup and approach are
detailed in Section 2.4. The effective elastic properties of the origami-inspired sys-
tem are evaluated numerically in Section 3.1, and the numerical results are checked
against experimental outcomes in Section 3.2. In Section 4, the results of the work
are discussed: in Section 4.1, an overall analysis of the effective mechanical be-
haviour of the structured medium is carried out based on a thorough parametric
analysis, where it is shown that the Poisson’s ratio can reach very negative val-
ues; in Section 4.2, concluding remarks are provided. Finally, in Appendix A, the
negligible effect of out-of-plane displacements on the in-plane auxetic behaviour of
the folded structure is demonstrated; in Appendix B, the numerical outcomes of a
non-linear analysis are presented and discussed.

2 Design and methods

2.1 Geometry of the unit cell

The elastic system under investigation is based on a Miura-ori folding pattern,
consisting of a repetitive arrangement of unit cells, as shown in Fig. 1(a). Each
unit cell has uniform thickness ¢ (see part (b)), where ¢ is measured in the direction
perpendicular to the facets. The middle surface of the unit cell is made of four
identical parallelograms, characterised by the side lengths a and b and the crease
angle ¢ (see part (c)). In the same figure, the folding angle 0; and the angles 62,
n1 and 72 are also indicated.

The configuration of the middle surface of the unit cell will be defined by using
the parameters a, b, 71 and 79. Of course, a different parametrisation can be



Figure 1: Miura-ori folded structure: (a) system comprising 5 x 5 unit cells, designed
by means of a Miura-ori-like tessellation technique; (b) three-dimensional representation
of the unit cell, having uniform thickness ¢, measured in the direction of the normal n to
the facets; (c) geometrical parameters characterising the middle surface of the unit cell.
In the figure, a = b, n1 = 125° and 7y = 50°. The angles ¢, 01 and 0, are defined as
functions of 71 and 72 in (1).



applied, considering that the following relationships hold:

cos(p) = sin (%) cos (%) , (1a)
cos(n1) + cos(nz) [cos(m) + 3] —

)= conln) ¢ o) )~ 15 .

o cos(nz) — cos(n1) [cos(n2) — 3] + .

(B2) = o) + o) [costm) — 1] + (1e)

Vice versa, knowing ¢, 61 and 63, the angles n; and 72 can be calculated from

cos (%) — cos (%) sin(y) (2a)
sin (%) — sin <921> sin(y) . (2b)

The dimensions of the unit cell, denoted as L, B and H in Fig. 1(c), are given
by

= 2asin < ) (3a)
= 2bsin ( ) (3b)
H—acos(2>, (3¢)

respectively.

2.2 Periodic model

The unit cell in Figs. 1(b) and 1(c) is built in the finite element package Comsol
Multiphysics [20] with a continuous three-dimensional model. Standard periodic
conditions are imposed at the boundaries of the elementary cell, as discussed in
[13, 4]. The mesh consists of tetrahedral elements, whose size is small enough to
ensure convergence of the results’.

The homogenised behaviour of the periodic folded structure is orthotropic,
as also verified numerically. Considering also that the interest is in the effective

IThe mesh has been chosen in order to have at least four elements along the thickness,
even though convergence could be reached with fewer elements. As an example, for ¢t = 1
mm, the mesh assuring convergence of results consists of a total number of degrees of
freedom of the order 3.6 x 10%. Tt has also been checked that with a different type of finite
elements, namely hexahedral, a mesh with a similar number of degrees of freedom leads
to very close results.



behaviour in the x — y plane, the relationship between the reduced strain tensor €
and the reduced stress tensor o can be written in the form

1 v
€xx o - EL;E 0 Oz
e=8So — €yy . T, 0 Tyy | > (4)
1
€y 0 0 WGy Oy

where S denotes the symmetric compliance matriz.
The finite element code is capable of providing the stiffness matriz C, which
is the inverse of the compliance matrix:

F. Eac”yac
1—veyvys 1—vayvys
C=5"'=|_Euu By 0 |- (5)

1—veyvya 1—veyvya

0 0 2G4

Accordingly, the entries C1; and Cs; represent the macroscopic stress components
0ze and o, respectively, produced by applying a macroscopic strain €;, = 1, and
SO om.

The terms of C' are calculated from the finite element model as follows. Periodic
conditions are applied on the boundary faces with normal vectors in the z—y plane,
while homogeneous Neumann boundary conditions are imposed on the other faces.
The periodic conditions are expressed in terms of kinematic quantities, associated
with macroscopic deformations. First, a macroscopic strain €., is imposed and
the corresponding macroscopic stresses are obtained as average over the unit cell
of the local stress components; successively, the same procedure is applied to the
other two strain components. In this way, the entries in the stiffness matrix C
are determined. Then, the effective elastic properties of the structure (namely,
E., Ey, Vyy, vy, and Gyy) can be easily found by solving an algebraic system of 5
equations using (5).

The thermodynamic limitations for orthotropic media, associated with the
positiveness of strain energy, are discussed in [53, 21]. When homogenisation is
limited to the z — y plane, the restrictions are simplified as follows:

E., E,, Gyy >0, (6a)
1 — vgylye >0, (6b)

Vya| < fy . (6¢)

\/F
|Vay| < \/Ez (6d)



2.3 Finite structure

An alternative approach consists in examining the finite system, shown in Fig.
2(a), which is intended to reproduce the real specimen, described in Section 2.4.1.
The folded part of the structure comprises 9 x 11 unit cells.

The structure in Fig. 2(a) is modelled with a finite element code, developed
in Comsol Multiphysics. On the bottom surface, parallel to the zz-plane, the
displacements are prevented; conversely, a uniform displacement along the y-axis,
denoted as vg, is applied on the top surface parallel to the zz-plane.

The Poisson’s ratio is evaluated by calculating the displacements at the points
A to D in Fig. 2(a), that are located in a central region to avoid boundary
effects. More specifically, vy, = —€za/€yy, Where €, = (up — ua)/(xzp — ) and
eyy = (v —vc)/(yp — ye).

2.4 Experimental validation

In order to demonstrate the validity of the numerical methods described in the
previous sections, an extensive experimental campaign has been carried out, where
specimens of different materials and geometries have been produced and tested in
the Experimental Mechanics Laboratory of the University of Cagliari.

2.4.1 Specimen design and production

The specimen consists of a matrix of 9 x 11 Miura-ori cells, as illustrated in Fig.
2(b). In order to avoid boundary effects, the measurements are taken in the
central region of the specimen. The edges perpendicular to the loading direction
are designed to grip the specimen in an easier and repeatable way, especially in
terms of alignment.

The materials used in the first campaign of tests are polymers such as PLA
(Polylactic Acid) and ABS (Acrylonitrile Butadiene Styrene); in this perspective,
it is observed that it is of great importance to make the gripped zone stiffer than the
core itself, because excessive pressure exerted by grips may cause large localised
deformations or even failure before the test starts. In order to overcome this
problem, M6 nuts are inserted to better distribute the applied load and, hence,
reduce stress concentration; since they are stiffer than the polymers, the M6 nuts
preserve the structural integrity of the specimen in the gripped zone.

The Miura-ori geometry is known to have amazing advantages in terms of
mechanical response [88], but it conceals significant manufacturing problems. This
kind of issue is due to the geometry itself: using conventional milling appears
ineffective because it is impossible to preserve the cell’s sharp edges, since the
mill has a non-zero fillet radius. The tool length is another critical parameter in
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Figure 2: (a) Finite structure containing a tessellation of unit cells as in Fig. 1, subjected
to a uniform displacement along the y-axis (and null displacements in the two perpendic-
ular directions) at the top surface and constrained in all directions at the bottom surface.
(b) Specimen’s geometry used in experimental tests: (I) top, (II) front and (III) lateral
view; the values of Poisson’s ratio are evaluated experimentally from the average deforma-
tion components, measured in different areas of the specimen (some representative regions
are shown here).
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this kind of process, so the conventional cutting technologies must be avoided.
Several manufacturing techniques were proposed in the literature, among which
the so-called “Cold Gas-Pressure Folding”, developed in [87], represents one of the
most advanced methods. In this article 3D printing technology, in particular the
FFF (Fused Filament Fabrication), has been used to manufacture models based
on Miura-ori folding pattern. This technique, also employed in [101], appears
to be suitable since it preserves all the specifications of Miura-ori geometry. In
particular, the edges are sharp and the thickness is uniform, with no over-deposit
of fused material. The printer is a Prusa i3 MK2, characterised by a Cartesian
kinematic scheme (see Fig. 3(a)).

2.4.2 Experimental setup

The experimental setup consists of a servo-hydraulic multi-purpose MTS Land-
mark 370 test machine (see Fig. 3(b)), equipped with a load cell having a range
of £100kN and a hydraulic actuator with the same load capacity. The tests have
been conducted in a displacement-controlled way. An image is acquired at each
displacement step, in order to use the Digital Image Correlation (DIC) technique
(described below). The camera is a monochromatic Allied Vision Pike F341b,
equipped with a Schneider Makro lens to ensure a global vision of the specimen.
The experimental apparatus employed to perform the tensile test on the specimen
and the measurement devices are illustrated in Fig. 3(c).

The first experimental campaign consists of nine specimens of different thick-
ness, five of which are made of PLA while the remaining four are obtained from
ABS filaments. The Poisson’s ratio of both these materials, that has been ob-
tained experimentally by means of a classical traction test, is equal to 0.35. It is
also pointed out that the thickness is measured perpendicularly between the two
faces of a facet, as in Fig. 1(b).

The acquired images have been processed with an in-house software for DIC
analysis. DIC is an optical technique, whose main goal is the identification of the
displacement field between a reference image (e.g., at rest) and a target one after
motion [94]. First, the specimen surface is treated with an isotropic pattern (e.g,
sprayed with an aerograph). Then, the image is partitioned in small areas, named
subsets, and DIC aims to find the displacement of each subset in the target image
[94]. The key assumption is that the pixel intensity never changes during motion,
namely, the optical flow remain constant through the test (this requirement is
never fully satisfied because of several noise sources, but the change of intensity
is negligibly small for the purpose of the current experimental campaign). Figure
3(d) highlights the uniform enlightenment of the specimen provided by the lamp.

The entire Region of Interest (ROI) is partitioned into a mesh, in which the

11
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Figure 3: (a) 3D printer used in the production of the specimens, one of which is shown in
the picture; (b) Universal Test Machine MTS Landmark 370; (c¢) experimental apparatus
with measurement devices; (d) specimen uniformly enlightened by the lamp, with details
of the gripping system.
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displacement field inside each element is controlled by nodal parameters [3]. This
method gives several advantages in terms of displacement standard deviation re-
duction [3].

The Poisson’s ratio is estimated as the (negative) ratio between the transverse
and the longitudinal engineering strains. The latter have been calculated from
the displacements measured in different regions, some of which are indicated with
different green hues in Fig. 2(b). Further, the Poisson’s ratios at different loading
steps have been computed. Then, the averages and standard deviations of v,, have
been determined referring to the whole set of data for all the considered regions
and for all the loading steps within the elastic range.

3 Results

3.1 Numerical determination of the effective elastic
properties

In this section, it is demonstrated that the elastic structure in Fig. 1(a) is auxetic
in the zy-plane by showing that the Poisson’s ratio vy, is negative. The latter
is calculated for both the periodic and finite structures, presented in Sections 2.2
and 2.3, respectively.

It is assumed that the material composing the folded structure is isotropic, with
Young’s modulus E,, = 3035 MPa and Poisson’s ratio v,, = 0.35. These values
correspond to the elastic constants of PLA (Polylactic Acid), used to produce the
specimens described in Section 2.4.1. The geometrical parameters of the unit cell
are taken as @ = b = 10 mm, 7; = 125° and 72 = 50°.

3.1.1 Periodic model

Different values for the thickness ¢ are considered, within the range (0,10] mm.
The results of the periodic analysis are reported in Fig. 4 by a black solid line.
It is apparent that the Poisson’s ratio v,, is a monotonically increasing function
of the thickness. Furthermore, for sufficiently low values of the thickness v,, < 0,
hence the structure expands in the z-direction when stretched in the y-direction
(see also Fig. 1).

When the thickness tends to zero, three-dimensional brick elements cannot be
used to create the mesh, but shells are preferable to model the facets of the unit
cell?. Following a procedure similar to that outlined in Section 2.2, the grey solid

2The chosen mesh of the shell model, consisting of triangular elements, is characterised
by around 1.0 x 10* degrees of freedom.
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Figure 4: Effective Poisson’s ratio v, versus the thickness ¢ (black solid line), calculated
for a = b = 10 mm, 7 = 125° and 12 = 50°. The black dashed line indicates the limit
of vy, for large values of the thickness; this limit coincides with the Poisson’s ratio of the
material. The grey solid line is obtained with a shell model. In the insets, illustrations of
the periodic cell for different values of the thickness ¢ are presented.
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curve in Fig. 4 is determined employing shell elements. It is noted that when t — 0
the Poisson’s ratio approaches a finite value, equal to —4.4, that corresponds to
the value predicted by the Miura-ori sheets [88], as explained in more detail in
Section 4. On the other hand, for large values of the thickness v,, tends to the
Poisson’s ratio of the material v,,, as expected.

3.1.2 Finite structure

The deformed shape of the finite system in the zy-plane, computed for a thickness
equal to t = 0.85 mm and an imposed displacement vy = 10 mm, is illustrated in
Figs. 5(a) and 5(b). The deformed configuration clearly shows that the system is
auxetic. In part (a), the displacement component v in the y-direction is presented;
it is evident that v increases linearly along the positive y-axis. In part (b), the
displacement component u in the x-direction is symmetric with respect to the
central line of the model parallel to the y-axis. It is important to underline that
the model deforms exhibiting displacements also in the z-direction; nevertheless,
the presence of out-of-plane displacements does not alter the in-plane behaviour
of the system (see Appendix A).

The comparative analysis between the numerical results of the unit cell and
the finite specimen shows that, for a thickness ¢ = 0.85 mm, the finite model yields
vy, = —0.53, while the periodic analysis provides vy, = —0.55. For ¢ = 1.70 mm,
the Poisson’s ratios of the finite structure and of the periodic system are instead
given by v, = 0.01 and vy, = —0.03, respectively. After checking for other values
of the thickness, which are not given here for brevity, it is concluded that the
agreement, between the finite and the periodic systems is satisfactorily good.

The periodic analysis will also be employed in the discussion in Section 4.1 to
investigate the effect of different parameters on the effective Poisson’s ratio of the
folded structure.

3.2 Experimental results

The cells of the specimens have the same dimensions as those considered in Section
3.1, namely a = b = 10 mm, 7; = 125° and 7y = 50° (see Fig. 1(c)).

Figure 6 includes all the results obtained from the experimental tests. The
black and blued dots indicate the values of the effective Poisson’s ratio for PLA
and ABS specimens, respectively. The data corresponding to PLA and ABS show
a similar tendency as the thickness is varied.

On the other hand, the black solid line in Fig. 6 indicates the numerical results,
computed from the periodic analysis. The comparison between the experimental
and numerical findings shows that the experimental points are very close to the

15
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Figure 5: Colour maps of the displacement component along the (a) y-direction and (b)
z-direction. The points where the displacements are calculated for the evaluation of the
Poisson’s ratio are highlighted in Fig. 2(a). In the simulations, « = b = 10 mm, ¢ = 0.85
mm, 7, = 125°, 2 = 50° and vy = 10 mm (refer to Fig. 2(a)).
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Figure 6: Comparison between experimental outcomes (dots with error bars) and nu-
merical results (lines). The geometrical parameters of the microstructure are identical to
those considered in Fig. 4.

curve determined numerically and follow a similar trend. Nonetheless, the exper-
imental data lie below the curve. This can be explained by considering that the
FFF technology is based on filament deposition, so it introduces a certain degree
of anisotropy that is difficult to model in the numerical computations.

The anisotropy issue can be resolved by using a different technique to fabricate
the specimens. Accordingly, in a second experimental campaign, a set of silicon
specimens have been produced using a mold, that is designed according to the
actual specimen’s geometry. The silicon is a fluid rubber, that has been poured
in the mold and then cured to obtain the desired mechanical and geometrical
properties. The values of the effective Poisson’s ratio of the silicon specimens for
four different thicknesses are reported in Fig. 6, where they are represented by red
dots.

The Poisson’s ratio of silicon is 0.48. Accordingly, the experimental outcomes
are compared with the red dashed line shown in Fig. 6, that is calculated numeri-
cally by taking v,,, = 0.48. In this case, the comparison between the experimental
and numerical results shows an even better agreement, removing the unknown
effect of the anisotropy introduced by FFF technique.

The results of the DIC analysis obtained for an ABS specimen having thickness
t = 0.83 mm are shown in Fig. 7. In particular, parts (a) and (b) present the fields

17
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Figure 7: Results of DIC post-processing for an ABS specimen with ¢+ = 0.83 mm: (a)
displacement component v in the y-direction; (b) displacement component u in the z-
direction; small deformation components (c) €.z, (d) €,y and (e) €,. The values of the
displacement components in the legends are given in pixels.
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of the displacement components v and u, respectively, which clearly emphasise the
auxetic behaviour of the Miura-ori model. Conversely, parts (c) and (d) show the
small deformation fields €,, and €,,, while part (e) illustrates the distribution of
the €, component of the strain tensor. The deformation fields further prove that
the effective Poisson’s ratio vy, is negative, since the average values of both the
strain components €, and €, are clearly positive. In addition, the similarity of
the field distribution in each cell and the effect of the boundary conditions on the
finite specimen can be noted.

In the video included in the Supplementary Material, the same ABS specimen
with thickness ¢ = 0.83 mm is considered. The auxetic behaviour of the folded
structure is clearly shown in the left part of the video. On the right, the diagrams
of the measured load (top) and Poisson’s ratio (bottom) versus the imposed dis-
placement at each step are presented. From these diagrams, it is apparent that,
after an initial settlement, the specimen behaves as a linear elastic material, char-
acterised by a linear relationship between the load and the displacement (top) and
a constant value of the Poisson’s ratio (bottom). Beyond the linear range, the
structure starts undergoing large and subsequently anelastic deformations, which
have not been considered in the present work for the evaluation of the effective
Poisson’s ratio and are left for future investigations.

4 Discussion

4.1 Parametric study

The aim of this section is to discuss how the effective properties of the Miura-ori
structure change as the microstructural parameters n; and 72, characterising its
microgeometry (see Fig. 1(c)), are varied. For this purpose, numerical simulations
are performed in Comsol Multiphysics, using the unit cell in Figs. 1(b) and 1(c)
with periodic conditions imposed on the boundaries.

In the computations, the size of the projection of the periodic cell on the xy-
plane is kept constant and equal to [B = 4 mm]| x [L + bcos(n2/2) = 10 mm].
As in Section 3, the material is assumed to be isotropic, having Young’s modulus
E,, = 3035 MPa and Poisson’s ratio v, = 0.35. Accordingly, the shear modulus
of the material is given by G, = Ep,/[2(1 + vp,)] = 1124 MPa.

In the diagrams presented in the following, the dotted lines indicate the results
provided by the shell model (used when the thickness is in the interval [1075,0.1]
mm), while the continuous lines are obtained with the solid model. Hence, a small
discrepancy is generally observed for ¢ = 0.1 mm. Effective properties have been
evaluated for t/B € (0,0.75], which has been considered as the interval of interest
for technological applications.
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In the simulations, the trends of the effective Poisson’s ratios vy, and v, for
varying thickness ¢t and angle n; are analysed. The graphs representing these
two effective parameters are plotted in Figs. 8(a) and 8(b), respectively, taking
a fixed value of 7, = 50°. It is evident that v,, < 0 when the thickness is
sufficiently small, implying that the Miura-ori folded structure is auxetic. For
very thin models (¢ — 0), the Poisson’s ratio v, is much smaller than —1, so that
the effective orthotropic materials display lateral expansions several times larger
than the applied longitudinal extensions.

For any value of 7; considered in Fig. 8(a), vy, increases monotonically with
t. Moreover, for a fixed value of the thickness, v, increases (i.e. decreases in
amplitude in the auxetic region) as the angle 7 is increased. For every curve, the
minimum value of vy, is attained in the limit when ¢ — 0. On the other hand, the
effective Poisson’s ratio v, exhibits a minimum for a finite positive value of the
thickness ¢. In such a case, the thickness ¢ corresponding to the minimum depends
on the angle 7y, while its minimum values remain in the range v, € (—0.26, —0.25).

Comparing Figs. 8(a) and 8(b), it is apparent that the considered medium is
anisotropic and its auxeticity is more remarkable when the structure is stretched in
the y-direction than in the z-direction, since |1y, | > |vzy| in the range of thicknesses
where the medium is auxetic.

In Fig. 8(c), the values of the thickness for which the Miura-ori folded structure
is characterised by null Poisson’s ratios are reported as functions of angle n;. Of
course, the diagram is a monotonically decreasing function of 7, as can also be
inferred from Figs. 8(a) and 8(b).

It is also interesting to note that, when the thickness tends to zero, the struc-
ture behaves like a Miura-ori sheet, whose Poisson’s ratio can be determined only
kinematically. In particular, v, can be calculated as [88] 3

1 1
T Y TR g

The formula above is verified by the independent numerical results reported in Figs.
8(a) and 8(b), where, in this limit ¢ — 0, vy, — —4.599 and v, = v,;! = —0.2174
independently of the value of 7.

In order to fully evaluate the behaviour of the folded structure in the xy-
plane, the effective Young’s moduli F, and E, and the effective shear modulus
Gy are presented in Figs. 9(a), 9(b) and 9(c), respectively. All these properties
are monotonically increasing functions of the thickness. Young’s moduli F, and
E, tend to zero as t — 0, while the curves corresponding to the shear modulus
have finite values, depending on 71, in this limit. This is expected on physical

3Note that v, 6 and vsy, in [88] correspond to ¢, (7 — 62)/2 and v, in this paper.
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grounds, since a Miura-ori sheet (having ¢ — 0) can be stretched longitudinally
without a significant effort, while it provides resistance to in-plane shear loading
or deformation. In addition, for a given value of t, E,, F, and G, increase
by increasing angle 7;. Obviously, for large values of the thickness, the effective
elastic moduli tend to the values of the elastic constants of the material F,, and
G, indicated by the horizontal dashed lines in the figures, where isotropy is also
recovered.

For all values of the parameters, the thermodynamic limitations (6) are always
satisfied. In particular, from Fig. 9 it is apparent that the effective elastic moduli
are all positive. Further, from Fig. 8 it is possible to infer that 1 —v,,v,, is always
positive and tends to zero in the limit when ¢ — 0 (see also (7)).
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The effective behaviour as a function of the angle 72, not reported here for
brevity, gives the same qualitative results as in Figs. 8 and 9, with one important
difference. In analogy with the previous study, v, F,, Ey, and G, are monoton-
ically increasing functions of the thickness ¢, while v, has a minimum at a finite
value of the thickness ¢t ~ 0.1 mm; for t — 0 and ¢ — oo the effective behaviour
tends to the Miura-ori sheet and to the isotropic material one, respectively. How-
ever, when ¢ — 0 the Poisson’s ratios v, and v;, do not tend to constant values,
but to limits that depend on the angle 7y, as in Eq. (7) and consistently with
the findings of [88]. These limits are reported in Figs. 10(a) and 10(b), where the
minima of v, are also given. Once again, it is verified in Fig. 10 that vy, | > |vay|.
The values of ¢t for which the Poisson’s ratios are equal to zero are given in Fig.
10(c) for different values of angle n;.

4.2 Concluding remarks

In this paper, the static behaviour of a Miura-ori folded structure has been inves-
tigated, with special attention on the negative Poisson’s ratios exhibited by the
orthotropic medium. Differently from previous studies [88], the thickness of the
facets can have either small or significantly large values. Consequently, the sys-
tem’s unit cells have been studied as shell or solid elements, depending on the value
of the thickness. Such analysis includes the contribution of the deformation of the
folded plates, the interaction between the in-plane and out-of-plane responses of
the facets, together with the evaluation of the mechanical behaviour of the connect-
ing edge regions between folded plates, for which a full three-dimensional analysis
with solid elements is needed to give accurate results.

When the Miura-ori structure is subjected to a uniaxial tensile load, two com-
peting mechanisms are activated. The first one is based on the rigid rotations of
the facets, while the other one on the lateral contraction of the material (consider-
ing that the latter has positive Poisson’s ratio). For small values of the thickness,
the first mechanism is predominant. As the thickness is increased, the mechanism
associated with rigid rotations tends to diminish with a trend that is faster than
linear reduction.

One of the targets of the study is to give an insight on the mechanical properties
of microstructures which are prone to large-scale industrial production, and the
possibility to choose a considerable value for the thickness allows to employ the
proposed structure in engineering applications, where the load-carrying capacity
is an essential requirement.

The effective properties of the Miura-ori sheet have been determined both
numerically and experimentally. First, periodic analysis has been used to calculate
the homogenised Poisson’s ratios and elastic moduli of the system. Successively, a
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finite Miura-ori structure has been modelled with a finite element code, validating
the results obtained from the periodic structure. Specimens of different materials
and geometries have also been fabricated and tested, and the comparison between
the experimental findings (determined by means of the Digital Image Correlation
technique) and the numerical outcomes has shown a good agreement. Finally, a
parametric analysis has been performed to assess the effect of different geometrical
quantities on the effective properties of the auxetic medium. The limiting values
for Miura-ori sheet and for the folded structure with large thickness are retrieved
and, for the geometrical parameters considered in the present study, |Vye| > |[Vay/,
differently from [88]. The study indicates that the amplitude of v, decreases with
t in the auxetic region, while it is possible to find an optimal thickness (¢ ~ 0.1
mm) that minimizes v,,.

The nonlinear analysis is left for future work, since the regime where consid-
erable geometrical nonlinearities are present overlaps the regime where significant
damage develops due to the stress concentration at the edge interfaces between
the folded plates. In such a case, an accurate study accounting for material and
structural responses deriving from the technology implemented for the production
of the specimens must be considered. Some preliminary results for a hyper-elastic
material with geometrical non-linearities are presented in Appendix B.

It is expected that this model can have important applications in different
fields, such as aerospace, biomedical, civil and mechanical engineering.
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Appendix A. Effect of out-of-plane displace-
ments

The finite structure illustrated in Fig. 2(a) exhibits out-of-plane displacements
when stretched in the y-direction. The colour map of the displacement component
w along the z-axis, given in Fig. A.1, shows that the maximum deflection occurs
in the middle part of the system, with zero out-of-plane displacements at the ends,
in agreement with the imposed boundary conditions.

The out-of-plane deflection does not affect the in-plane auxetic properties of
the folded structure. In order to demonstrate this statement, another numerical
simulation is carried out, where the displacements along the z-direction of the
lowermost vertices of the folded region are prevented. The resulting displacement
fields are presented in Fig. A.2. From the comparison of Figs. A.1 and A.2(c), it
is apparent that in the latter case the out-of-plane displacements w are smaller, as
expected. However, the in-plane displacements v and u do not vary significantly
when the additional constraints are applied (compare parts (a) and (b) of Figs.
5 and A.2). This numerical evidence confirms that, for a linear elastic material
subjected to small displacements, the in-plane and out-of-plane behaviours are
uncoupled.
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Figure A.1: Colour map of the displacement component along the z-direction (the colour
maps of the in-plane displacements of the same finite element model are presented in Fig.

5).

Appendix B. Non-linear analysis

Here, geometrical non-linearities are included into the formulation and the material
is assumed to be Neo-Hookean, with A = 2622.8 MPa and p = 1124.1 MPa. The
initial geometry is characterised by ¢ = b = 10 mm, ¢ = 0.35 mm, 7, = 125°
and 72 = 50°. As shown in Fig. B.1(a), the displacements of the bottom face are
prevented, and a uniform stress along the y-direction is applied at the top face,
where P is the resulting load. The deformed shape of the structure is illustrated in
Fig. B.1(b) with different views; the maximum displacement is denoted by vmax-

The relationship between the external load P and the maximum displacement
in the y-direction vy, is plotted in Fig. B.2(a); the diagram is clearly non-linear,
because of the considered geometrical and material non-linearities. Figure B.2(b)
shows how the Poisson’s ratio v, varies with vmay, exhibiting a monotonically
increasing trend (decreasing in absolute value). This tendency seems to be in
contrast with the experimental results illustrated in the video included in the
Supplementary Material, where the absolute value of the (negative) Poisson’s ratio
increases with the longitudinal displacement. However, the experimental outcomes
in the non-linear regime are dominated by the effect of damage, which needs to
be unavoidably incorporated in the numerical analysis to thoroughly describe the
non-linear mechanical behaviour of the folded structure.
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Figure A.2: Colour maps of the displacement components along the (a) y-, (b) z- and
(¢) z-directions for the finite structure of Fig. 2(a), subjected to an imposed displacement
vg = 10 mm and with zero w displacements imposed at the bottommost vertices of the
folded region.
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Figure B.1: (a) Schematic representation of the non-linear model, with zero displace-
ments at the bottom face and external traction at the top one. (b) Deformed configuration
in (I) top, (II) 3D and (IIT) lateral view; the colour scale indicates the total displacement
field, where the maximum (minimum) value is represented in red (blue) colour.
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Figure B.2: (a) Curve of applied load versus maximum displacement along the y-axis.
(b) Evaluation of Poisson’s ratio vy, as function of the maximum displacement vpax.
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