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Gustav Kirchhoff has been credited, among many other renowned achievements, as the first scientist who tackled and
solved the problem of studying the transversal vibrations of beams with variable cross-section. His contribution, which
was presented in 1879 and published in the following year, is nowadays almost forgotten in the international scientific
community, with the only exception of the German-speaking countries. For this reason it is rediscovered and thoroughly
discussed here, with an exegetical approach. For completeness’ sake a complete translation into English (the first one, to
the best of the authors’ knowledge) is provided in the appendix for the interested readers.
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1 Introduction1

The outspreading of the ideals of the Enlightenment age and the outbreak of French revolution produced in the world,2

among many other effects, the decline of Latin language as the lingua franca of scientific communication, as it has been for3

centuries before1. As a consequence the language used by G. W. Leibniz, I. Newton, D. Bernoulli, L. Euler in the world of4

Mechanics was suddenly superseded by national languages, so that around 1830 a French Mechanician like Augustin-Louis5

Cauchy (1789–1857) was publishing in French his researches, while in the meantime the Italian Gabrio Piola (1794–1850)6

published his in Italian (see, e.g. [13], [10], [11], [12]) and the German Friedrich W. Bessel (1784–1846) used German7

for his; the most noticeable exception being Carl Friedrich Gauss (1777–1855), who still used to publish in Latin up to8

1832. It is important to remark that the use of different languages did not block the spreading of the research work nor9

prevent at all fruitful discussions between these scientists: hence, the existence in the XIX century of a multi-lingual10

international community of mechanicians, where no single language was prevailing on the other ones, has to be seen as a11

happy occurrence in the history of science. A different trend took place instead in the last 70 years, namely after the end of12

WWII, since English increasingly became the de facto standard language for scientific communication, thus bringing to a13

rapid fading of all other foreign languages for exchanging research results. As a consequence many important cornerstones14

of Mechanics were forgotten simply because they were written in a different language and English translations were not15

available.16

This is precisely what has happened to the Memoir that Gustav Kirchhoff devoted to the transversal vibrations of17

variable-section beams, which started a fruitful research vein during the last twenty years of the XIX and in the XX18

century: nowadays it is, wrongly, overlooked. For precisely the purpose of reviving this important research work, it has19

been translated into English for the first time, to the best of the authors’ knowledge, and it is here proposed again along20

with a commentary and complete analysis of the procedure which Kirchhoff followed in his way of exposing the relevant21

theory.22

∗ Corresponding author, e-mail: antonio.cazzani@unica.it, Phone: +39–070–6755420, Fax: +39–070–6755418
∗∗ e-mail: rosati@unina.it, Phone: +39–081–7683723, Fax: +39–081–7683332
∗∗∗ e-mail: peter.ruge@tu-dresden.de
1 The consequences of the loss of a common language for science has always produced remarkable effects: for a detailed discussion of this point, see

the outstanding book by L. Russo [53].
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The theory of transversal vibration of uniform beams, which had been developed as a result of the researches started23

by Daniel Bernoulli (1700–1782) and Leonhard Euler (1707–1783), had already reached a rather complete development at24

Kirchhoff’s time. For instance, in the framework of linear elastic behavior, experimental results had been already estab-25

lished, exploiting an acoustic background, by Ernst F. Chladni (1756–1827) [8] in 1830. By the year 1858 a reasonably26

complete understanding of the vibration modes of a uniform beam for different boundary conditions were already available27

since Joseph Stefan (1835–1893), who is mostly famous nowadays for the Stefan-Boltzmann law of radiation, published28

his paper On the transversal vibrations of an elastic beam, [58].29

The topic of the essay is the study of transversal vibrations of a tapered (variable cross-section) cantilever beam in the30

vertical plane containing the beam axis (z) and one of the principal inertia axis (x) of each cross-section. The general case31

is first given a solution; subsequently attention is focused on beams having the shape of linearly varying wedges and cones.32

In particular, Kirchhoff’s aim was to provide the computation of the fundamental frequency (tone) and of the maximum33

deflection at the free end, under the condition that the maximum elastic strain is not exceeded anywhere along the beam;34

solutions were then compared to the case of a uniform beam.35

The rest of the paper is organized as follows: in Section 2 a brief sketch of Kirchhoff’s life and his achievements36

in Mechanics are outlined; then, in Section 3 a detailed analysis of Kirchhoff’s procedure is presented and commented37

upon. Section 4 gives some details about Kirchhoff’s legacy in the theory of transversal vibrations of tapered beams. In38

Appendix A some pieces of information about the different versions of this memoir and their availability, as well as some39

translation notes are presented. Finally the English translation of the unabridged essay is given in Appendix B.40

2 Kirchhoff’s life and contribution to Mechanics41

A short resumé of Kirchhoff’s life, giving an essential view of the most important achievements, is here presented; the42

interested reader can find a more detailed description in the commemorative writing of Robert von Helmholtz (1862–43

1889) [64], the eldest son of Hermann Helmholtz and of his second wife Anna von Mohl (1834–1899). An English44

translation of this writing is also available [65]. More specifical descriptions of Kirchhoff’s contribution to several branches45

of Physics, mostly spectroscopy, can be found in [67], [16], [55], [59], [9].46

2.1 Kirchhoff’s life47

Gustav Robert Kirchhoff was born on March 12, 1824 in Königsberg, Eastern Prussia (now Kaliningrad, Russia), the son48

of Friedrich Kirchhoff, a law councilor, and of Johanna Henriette Wittke.49

In 1843 he entered Albertus University of Königsberg, which had been founded in 1544: Carl Gustav J. Jacobi (1804–50

1851), Franz E. Neumann (1798–1895) and Friedrich J. Richelot (1808–1875), of whom he married the daughter Clara in51

1857, were his teachers. He graduated from the University in 1847 with researches on electrical current, (Kirchhoff’s laws)52

extending Ohm’s work; it is remarkable that before graduating he had two papers, namely [21], [22]—which he signed53

as Studiosus (i.e. Student) Kirchhoff —published on the highly renowned journal Annalen der Physik, which during years54

1824–1876 was also known as Poggendorffs Annalen, from the name of the Editor-in-chief.55

In 1848, being impossible for him to reach Paris for enjoying a research grant due to the political turmoils of that year,56

he joined Berlin University as a Privatdocent (unpaid post); in 1850 was appointed as an adjunct professor at University57

of Breslau (now Wrocław, Poland); in the same year Kirchhoff published his paper On the equilibrium and motion of an58

elastic disc [23], which is a fundamental contribution to the theory of thin plates, following the pioneering works by Sophie59

Germain (1776–1831), Simeón-Denis Poisson (1781–1840) and Claude-Henri Navier (1785–1836); it was indeed there60

that Kirchhoff gave, for the first time, the correct form of boundary conditions.61

In 1854 he was appointed professor of Physics at University of Heidelberg, with the support of Robert W. Bunsen (1811–62

1899), whom he had already met in Breslau in 1852, and Hermann Helmholtz (1821–1894). There Bunsen and Kirchhoff63

began to cooperate on spectroscopy and in 1860 they coauthored the first paper of a series about Chemical analysis through64

spectral observations [36]. In 1861 they together discovered caesium (Cs) and rubidium (Rb) while studying the chemical65

composition of the Sun via its spectral signature. For their achievements in spectroscopy they were the first recipients in66

1877 of the Davy medal presented by the Royal Society of London.67

After the death, in 1869, of his wife Clara, who left him with four children, Kirchhoff married a second time in 187268

with Luise Brömmel, a matron of the university clinical hospital. In 1875, due to serious health problems produced by a69

fall on the staircase, which compelled him for a long time to move only with crutches or on a wheelchair, and made hard70

for him the life in a laboratory, he accepted the newly created chair of Theoretical Physics at University of Berlin and began71

writing Lectures on Mathematical Physics in 4 volumes. Only the first of them, Mechanics [29], appeared during his life;72

the other three, were posthumously edited by Kurt Hensel (Mathematical Optics [37]) and by Max Planck (Electricity and73

Magnetism [38]; Theory of Heat [39]).74

Copyright line will be provided by the publisher



Prep
rin

t

ZAMM header will be provided by the publisher 3

On October 29, 1879 at the Royal Prussian Academy of Sciences in Berlin he presented the paper On the transversal75

vibrations of a beam of variable cross-section [30], where for the first time the problem of flexural vibrations of non uniform76

beams was addressed and solved.77

a)

b)

c)

Fig. 1 (a) A photographic
portrait of Gustav Robert
Kirchhoff in his late years.
Image taken from [33]. The
same portrait appears in two
commemorative stamps issued
in 1974 on the occasion of
the 150-th anniversary of
Kirchhoff’s birth: (b) Stamp
issued by the Bundespost
Berlin; (c) Stamp issued by
the DDR mail.

In 1883–1884 Gustav Kirchhoff was Rector of the University of Berlin; he died in Berlin on October 17, 1887 and was78

buried in Alter St.-Matthäus graveyard in Berlin-Schöneberg. His grave is still standing.79

A portrait of Kirchhoff in his late years, reproduced here from [33] (the same image appears also in [37]), is shown80

in Figure 1(a). To celebrate the 150-th anniversary of Kirchhoff’s birth, a commemorative stamp was issued in 1974 by81

both mail services of the two then existing (before re-unification) German states, Federal Republic of Germany (BRD) and82

German Democratic Republic (DDR); they are shown respectively in Figure 1(b) and Figure 1(c).83

2.2 Kirchhoff’s scientific contributions84

During his life Kirchhoff, according to the Catalogue of scientific papers edited by the Royal Society of London [56] (see85

vols. 1, 3, 8, 10, 16) authored 64 different2 papers, 7 of them in cooperation: four with Robert Bunsen and three with Gustav86

Hansemann.87

In his Collected essays [33], which were edited by himself during the last part of his life and appeared in 1882, only 3888

contributions are listed; in the Supplement [5], which was edited by Ludwig Boltzmann after Kirchhoff’s death, and was89

printed in 1891, 9 more contributions are reported.90

In the whole scientific production of Kirchhoff, papers dealing with solid and structural mechanics form a relatively small91

group, but some of them played an important role in shaping and developing both disciplines of Theory of Elasticity and92

Strength of Materials. In their monumental work, Todhunter and Pearson [62] devoted 69 pages to Kirchhoff, presenting an93

account of 16 of his works (among them they reviewed [23], [24], [25], [26], [29], [37], [30], [34], [35]). The paper which94

is here taken into consideration has been carefully addressed by them in Art. 1302–1307 (see [62], pages 92–98).95

3 A detailed analysis of Kirchhoff’s solution96

To motivate his research work, Kirchhoff wrote, at the beginning of the paper (see [30] or [31]) these sentences (here97

translated into English): “The transversal vibrations of cylindrical beams are theoretically and experimentally treated in98

2 Emphasis has to be placed on the word different since in those days it was rather common to publish the same paper more than once, eventually in
abridged form, for instance in a journal and in the proceedings of some Academy of Sciences, to ensure a better spreading of the research results.
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detail; the vibrations of a beam whose cross-section is variable are not however, up to now, more closely investigated, even99

though, besides the mathematical interest which they deserve, they possess in this respect a practical one, too, because for100

a beam which oscillates with a free end, the amplitude of vibration of this end can be much larger, without exceeding the101

elasticity limit, when toward this end the beam is tapered, than when the cross-section is everywhere the same.”102

The scope of the work is also clearly defined in the following sentence: “The following considerations are referred to a103

beam which forms a prism or a cone with an extremely small angle, with the edge or the sharp tip at the free end.”104

Starting from these assumptions the analysis is carried out carefully. On the other hand, from this beginning the reader105

can realize how Kirchhoff’s choice of words is precise and how the structure of the speech is fully developed, while preserv-106

ing an admirable clear style. This is outlined, in the above mentioned commemoration by Robert von Helmholtz [64]– [65],107

where it is explicitly written: “The words stand as if hewn in stone, each one at its place, the logical comprehension of108

each duly considered; we find here condensed into a few lines what would have taken others pages to describe; only when109

the existing words seemed not precise enough, he uses circumlocutions and definitions, and that mostly in mathematical110

language.”111

The solution of the vibration problem for tapered beams, as first obtained by Kirchhoff, will be analyzed in detail and112

commented upon where necessary. Figure 2 should allow the reader to follow without difficulties the development; in113

particular a Cartesian reference system is adopted; the z-axis coincides with the beam axis, connecting the centroid of all114

cross-sections; x and y are the principal axes of inertia, and vibrations are assumed to occur in the x-z plane. The origin115

is located at the free end of the beam, while the opposite one is fixed, so that a cantilever beam is obtained. It has to116

be remarked that, for the particular cases considered by Kirchhoff, the orientation of the reference system is optimal for117

imposing the boundary conditions, while this is no more true, in general, if tapered beams having the shape of a frustum of118

an otherwise truncated solid need to be studied.119

2
a

0

2b0

y

z

x

Fig. 2 Perspective sketch illustrating the general case of tapered beams analyzed by Kirchhoff: here a beam with an hyperelliptical
cross-section and different tapers in the x-z and y-z planes is shown. The adopted Cartesian reference system is clearly marked.

After defining the area q and the second area moment k with respect to y of a generic cross-section of the beam,120

see, e.g., eq. (B.1), Kirchhoff introduces (denoting by ξ, µ and E transversal displacement, density, and Young’s modulus,121

respectively) kinetic, eq. (B.2), and potential energy, eq. (B.3), and suggests that the equation of motion could be deduced by122

Hamilton’s principle. Clearly Kirchhoff considers variational principles as a basic tool in Mechanics, following the tradition123

settled by Lagrange and recognizes their importance when exploring new fields in mechanics: see, e.g., [2], [7], [14].124

The governing equation (B.4) is then provided, without any deduction but by taking it from Lord Rayleigh’s refer-125

ence [60], along with the relevant boundary conditions3. In particular, considering that δ is used as the symbol of variation,126

he outlines that for a fixed end or for a free end either shear force or deflection must vanish, as well as either bending127

moment or slope needs to be zero: this is shown in eq. (B.5) (for the general case) and in eq. (B.8) when variables have128

been separated to solve the equation of motion.129

3.1 The analyzed problem, general case130

After presenting the equation of motion, a partial differential one, Kirchhoff proceeds to solve it by separation of variables131

and assuming that the tapered beam is vibrating according to the fundamental frequency: then eq. (B.6) holds, the angular132

frequency λ being a constant and u (vibration mode) depending only on z. The resulting ordinary differential equation133

(ODE) to be solved is then given by eq. (B.7); then he devises a method for solving it by adopting a power series expansion.134

3 It has to be remarked that the idea exploited by Lord Rayleigh to obtain the equation, which was later studied by Kirchhoff, has been used many
times to get Generalized Beam Theories; among many others, see these works: [54], [44], [51], [18], [61], [52].
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3.1.1 Statement of the problem for the general case135

For the general case, see also [62], the following laws of variation of the cross-section are assumed:136

χ(x, y) = 0, x = f1(z
m), y = f2(z

n), (3.1)

where m and n are, in general, real constant values (even though Kirchhoff in the presented applications considers only137

the case where m, n ∈ N), f1, f2 are given functions of the m-th and n-th power of z, respectively, and χ is an implicit138

function of both x and y which describes the contour of the cross-section.139

As an example, for drawing Figure 2 it has been assumed that the boundary of the generic cross-section is defined by140

the equation χ(x, y) = (x/a?)4+(y/b?)4− 1 = 0, and that the maximum extensions a? and b? of the cross-section, in the141

x and y directions respectively, are governed by these taper rules: a? = a0(z/l)
3/2, b? = b0(z/l)

1/3. So the beam, whose142

length l has been assumed equal to 160 has a transversal cross-section defined by a fourth-order Lamé Curve (hyperellipse)143

with semi-diameters a0 = 10 and b0 = 5, (these values are referred to the fixed, built-in end of the beam) and different144

tapers in the x-z (m = 3/2) and y-z (n = 1/3) planes.145

In the original statement and in the resulting eq. (B.9) Kirchhoff expresses this simple assumption in a rather involved146

way.147

Next, denoting by q′ and k′ the values of the cross-section area and second area moment corresponding to z = 1, and148

considering that the former depends linearly on both x and y, while the latter depends cubically on x and linearly on y,149

Kirchhoff succeeds in providing the expressions of q and k for any cross-section, see eq. (B.10), as functions of q′, k′ and150

z alone. Accordingly, the governing ODE becomes eq. (B.11); after the required differentiations and some rearrangements151

are performed, it reads:152

z2m
d4u

dz4
+ 2(3m+ n)z2m−1 d

3u

dz3
+ (3m+ n)(3m+ n− 1)z2m−2 d

2u

dz2
= α2λ2u, (3.2)

where the following short-hand notation has been introduced:153

α =

√
q′µ
k′E

. (3.3)

The solution method adopted by Kirchhoff is the following: a solution (integral) of the previous ODE is sought under the154

form of a series expansion, by setting:155

u =
∞∑

r=0

Arz
h+r, (3.4)

(where, in general, h ∈ R) and substituting in eq. (3.2) to obtain an identity, so that, when both sides of it are multiplied by156

z4−2m, it results:157

zh
∞∑

r=0

(gArz
r − α2λ2Arz

r+4−2m) = 0, (3.5)

where the following short-hand notation has been introduced:158

g = (h+ r)(h+ r − 1)[(h+ r − 2)(h+ r − 3) + 2(h+ r − 2)(3m+ n) + (3m+ n)(3m+ n− 1)]. (3.6)

In order to satisfy eq. (3.5) as an identity, it appears that r has to be an integer multiple of 4 − 2m, say r = s(4 − 2m),159

(s = 0, 1, . . . ,∞) so that eq. (3.4) can be replaced by eq. (B.12); then for s = 0 the fourth-order algebraic equation g = 0,160

the so called indicial equation, has to be solved for h, as shown by eq. (B.13), providing the four roots h1 = 0; h2 = 1;161

h3 = 2 − 3m − n; and h4 = 3 − 3m − n. Finally, by assuming A0 = A, the coefficients A1, A2, etc. of the power162

expansion (B.12) are obtained recursively by placing s = 1 s = 2, and so on (i.e. r = 1(4 − 2m), r = 2(4 − 2m), . . . )163

into eq. (3.6) and then equating the coefficients of the same powers of z in eq. (3.5): the results for the first two terms are164

presented in eq. (B.14) and eq. (B.15). After that Kirchhoff states that the general integral of the ODE (B.11) is obtained165

by choosing h as one of the four roots (h1, h2, h3, h4) of the indicial equation, giving any time a different value to constant166

A and forming the sum of the relevant expressions for u.167

Copyright line will be provided by the publisher
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3.1.2 Properties of the solution168

Kirchhoff then analyzes the solution and, without expanding further the results, makes the following clarifying statements169

• The convergent series representing u proceeds by increasing powers of z if m < 2, by decreasing powers of z if170

m > 2;171

• In the limiting case m = 2 the solution is obtained by the sum of the 4 values that expression (B.16) takes when h is172

chosen as one of the four roots h1, h2, h3, h4 of the resulting indicial equation: g = α2λ2, where g is computed for173

m = 2, as shown by eq. (B.17), and A is given a different value for each value of h;174

• In cases when two of the given values of h coincide, or when one of the factors of A1, A2 disappears, the given form175

of the general integral loses its validity. The correct solution is then obtained by a sum of power series which are partly176

multiplied by ln z. The coefficients are then determined by the same procedure.177

As a consequence, only one of the two constants governing the beam taper, namely m, which controls the cross-section178

variation in the plane of vibration, i.e. in the x-z plane, does actually influence the power series solution.179

Remark 1.180

The outlined method of solution practically coincides with what nowadays is known as Frobenius’ method (see for in-181

stance [19], [20], [6]), which is an improvement of a technique originally developed by Carl G. Neumann (1832–1925) for182

finding the solutions of Bessel’s equation [47]. Ferdinand Georg Frobenius (1849–1917) [17] had already published (in183

1873) his fundamental paper in a well-known journal (Journal für die reine und angewandte Mathematik = Journal for pure184

and applied Mathematics, also known as Crelles Journal from the editor’s name). Kirchhoff himself had already or would185

still have published some contributions (like for instance [23], [25], [27], [28] or [32]) on the same journal, but inexplicably186

he does not make any reference to the work of Frobenius. ¤187

3.2 The analyzed problem, particular cases188

Given the general solution, Kirchhoff studies next two particular cases, namely the linearly-varying wedge (m = 1 and189

n = 0) and the linearly-varying cone (m = n = 1), see Figure 3.190

2
a

0

2b0

y

z

x

a)

2
a
0

2b
0

y

z

x

b)

Fig. 3 Particular cases of tapered beams analyzed by Kirchhoff. (a): Rectangular cross-section and wedge-shaped tapered beam (m = 1,
n = 0), i.e. linear taper in the x direction and no taper in the y direction. (b): Circular or, more generally, elliptical cross-section and
cone-shaped tapered beam (m = n = 1), corresponding to a linear taper in both x and y directions.

For these two considered cases he observes that the fourth-order ODE can be reduced to two second-order ODEs, and191

precisely to some particular differential equations whose integral are Bessel functions with real or imaginary argument.192

This is a convincing proof of his extraordinary ability as an applied mathematician, as already outlined by Helmholtz [65],193

but on the other hand, his way of proceeding, even though leads him to the correct result, is nevertheless rather hermetic194

and obscure, as it has been noticed by Todhunter and Pearson (see [62], page 39: “. . . it must be confessed that Kirchhoff’s195

methods seem, at least to the Editor of the present work, frequently obscure and occasionally wanting in strictness. . . ”) .196

3.3 First particular case: wedge shaped beam with rectangular cross-section197

For the case m = 1 and n = 0 (see Figure 3(a) and eq. (B.18), i.e. tapered beam with rectangular cross-section) the198

ODE (B.11) can be written as eq. (B.19), which may be further expanded as follows199

α2λ2u =
1

z

d

dz
z2

d

dz

1

z

d

dz
z2

du

dz
, (3.7)

Copyright line will be provided by the publisher
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which is equivalent to eq. (B.20), when position (3.3) is recalled. Then Kirchhoff shows that eq. (3.7) is satisfied by either200

of the alternatives shown in eq. (B.21) and eq. (B.22), namely201

1

z

d

dz

(
z2

du

dz

)
= ±uαλ, (3.8)

which, with the substitution202

ζ = zαλ, (3.9)

see eq. (B.23), splits into the following two ODEs:203

ζ
d2u

dζ2
+ 2

du

dζ
+ u = 0; (3.10)

ζ
d2u

dζ2
+ 2

du

dζ
− u = 0, (3.11)

corresponding to eq. (B.25) and eq. (B.24) respectively.204

Remark 2.205

How Kirchhoff could arrive at this result is not clear: however, in a paper bearing the same title as Kirchhoff’s one and206

published in 1973, Vdovič [63] was able to reconstruct all the procedure and to show the correctness of the presented results207

by making use of operator calculus. ¤208

3.3.1 Solution method209

In order to solve these equations, Kirchhoff noticed that if one knows a solution, say ψ, of the following ODE:210

ζ
d2ψ

dζ2
+

dψ

dζ
+ ψ = 0, (3.12)

see eq. (B.27), then the (p− 1)-th derivative of this function ψ, w = dp−1ψ/dζp−1, satisfies the following equation,211

ζ
d2w

dζ2
+ p

dw

dζ
+ w = 0, (3.13)

for any p ∈ N+. In particular, eq. (3.10) is a particular case of eq. (3.13) for p = 2: this means that u = dψ/dζ is a solution212

of eq. (3.10). Similar considerations apply to eq. (3.11): if a solution, e.g. ϕ, is known for the ODE:213

ζ
d2ϕ

dζ2
+

dϕ

dζ
− ϕ = 0, (3.14)

see eq. (B.26), then its first derivative, u = dϕ/dζ is a solution of eq. (3.11), as well as, ∀ p ∈ N+, its (p− 1)-th derivative,214

w = dp−1ϕ/dζp−1 satisfies the general ODE:215

ζ
d2w

dζ2
+ p

dw

dζ
− w = 0. (3.15)

Notice that eq. (3.12) becomes a particular case of the following ODE:216

d2ψ

dζ2
+

1− 2a

ζ

dψ

dζ
+

{
(b cζc−1)2 +

a2 − ν2c2

ζ2

}
ψ = 0 (3.16)

by assuming a = 0, b = 2, c = 1/2, ν = 0. According to von Lommel [42] (see also [69], [20]), the previous ODE can be217

transformed, by a change of both dependent and independent variables of this kind: ψ = vζa; t = ζc into the simpler one:218

t2
d2v

dt2
+ t

dv

dt
+
(
b2t2 − ν2

)
v = 0, (3.17)
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which is a Bessel’s equation in the argument b t. The general integral of the previous ODE is a linear combination of two219

independent solutions:220

v = C1Jν(bt) + C2Yν(bt), (3.18)

where C1, C2 are constants, while Jν and Yν are Bessel functions of the first and second kind of order ν, respectively. For221

every value of ν both Jν and Yν are linearly independent solutions of Bessel’s equation (3.17). The same general integral222

of eq. (3.16), when expressed in the original independent variable becomes:223

ψ = ζa [C1Jν(bζ
c) + C2Yν(bζ

c)] . (3.19)

In this respect we remind that the standard definition of Bessel functions of the first kind of order ν expressed as a series in224

the argument z, with z ∈ C is (see, for instance, [1], [40], [57]):225

Jν(z) =

∞∑

r=0

(−1)r

r!Γ(ν + r + 1)

(z
2

)2r+ν

, (3.20)

where Γ is Euler’s gamma function. Similarly, Bessel functions of the second kind (also known as Neumann or Weber226

functions) of order ν have this series representation in the argument z when ν ∈ N (see, e.g. [20], [40], [57]):227

Yν(z) =
2

π

[
ln

z

2
+ γ

]
Jν(z)−

1

π

ν−1∑

r=0

(ν − r − 1)!

r!

(x
2

)2r−ν

− 1

π

∞∑

r=0

(−1)r
Φ(r) + Φ(ν + r)

r!(ν + r)!

(x
2

)2r+ν

, (3.21)

where228

γ = lim
r→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

r
− ln r

)
= 0.5772156 . . . (3.22)

is Euler-Mascheroni constant and Φ is defined in this way:229

Φ(r) = 1 +
1

2
+

1

3
+ · · ·+ 1

r
; Φ(0) = 0. (3.23)

As a consequence, the complete solution of eq. (3.12) is given by:230

ψ =
[
C1J0(2

√
ζ) + C2Y0(2

√
ζ)
]
= C1ψ1 + C2ψ2. (3.24)

It should be noticed that Kirchhoff does not use a compact notation like that presented in eq. (3.20) and eq. (3.21), but231

provides the first few terms of the series; in particular, see eq. (B.29), what he calls ψ, is simply ψ1 = J0(2
√
ζ), while232

instead of ψ2 = Y0(2
√
ζ), he uses a different solution, which is denoted by ψ′. Indeed eq. (B.31) comes out to be a linear233

combination of J0(2
√
ζ) and Y0(2

√
ζ) and, being such, it is again an independent solution of eq. (3.12). As it can be234

checked, it turns out to be:235

ψ′ =
π

2
Y0(2

√
ζ)− 2γJ0(2

√
ζ).

Remark 3.236

It has to be outlined that throughout the paper Kirchhoff uses a prime to denote a different function, and not the first237

derivative of the given function with respect to the independent variable. ¤238

Similarly to what has been done in eqs. (3.16)–(3.19) for the same suitable values of constant parameters a = 0, b = 2,239

c = 1/2, ν = 0, eq. (3.14) becomes a particular case of an ODE like this:240

d2ϕ

dζ2
+

1− 2a

ζ

dϕ

dζ
−
{
(bcζc−1)2 +

ν2c2 − a2

ζ2

}
ϕ = 0 (3.25)

which can be transformed again (see [20]), by changing both dependent and independent variables in this way: ϕ = vζa;241

τ = ζc, into this ODE:242

τ2
d2v

dτ2
+ τ

dv

dτ
−
(
b2τ2 + ν2

)
v = 0, (3.26)

which is a Bessel’s modified equation, in the argument bτ .243
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Remark 4.244

Bessel’s modified equation can be obtained, as a simple check confirms, by substituting in eq. (3.17) t → iτ , i.e. by245

changing the real variable t with the purely imaginary one iτ ; here i =
√
−1 is the imaginary unit and τ ∈ R. Then, as it246

was recalled by Kirchhoff, the solution of Bessel’s modified equation can be thought of as a Bessel function of imaginary247

argument. ¤248

The general integral of eq. (3.26) is a linear combination of these solutions depending on two constants, D1 and D2:249

v = D1Iν(bτ) +D2Kν(bτ), (3.27)

or, in the original independent variable,250

ϕ = ζa [D1Iν(bζ
c) +D2Kν(bζ

c)] . (3.28)

Differently from eq. (3.19) Iν and Kν are modified Bessel functions of the first and second kind of order ν, respectively,251

and, ∀ ν, are linearly independent solutions of Bessel’s modified equation (3.26).252

Modified Bessel functions of the first kind of order ν, Iν(z), are defined in this standard way (see e.g. [20] or [57]):253

Iν(z) =
∞∑

r=0

1

r!Γ(ν + r + 1)

(z
2

)2r+ν

, (3.29)

and are linked to the corresponding Bessel functions of first kind in this way: Iν(z) = i−νJν(iz). Modified Bessel functions254

of the second kind of order ν (with ν ∈ N), Kν(z) are instead defined in this usual way (see e.g. [20] or [57]):255

Kν(z) =(−1)ν+1
[
ln

z

2
+ γ

]
Iν(z) +

1

2

ν−1∑

r=0

(−1)r(ν − r − 1)!
(x
2

)2r−ν

+
(−1)ν

2

∞∑

r=0

Φ(r) + Φ(ν + r)

r!(ν + r)!

(x
2

)2r+ν

, (3.30)

where γ and Φ(r) are defined by eqs.(3.22)–(3.23).256

In conclusion, the complete solution of eq. (3.14) is given by:257

ϕ =
[
D1I0(2

√
ζ) +D2K0(2

√
ζ)
]
= D1ϕ1 +D2ϕ2. (3.31)

As it has been done before, it is possible to check that the first few terms of the series, eq. (B.28) and eq. (B.30) provided258

by Kirchhoff are related to ϕ1 and ϕ2 above. Indeed in eq. (B.28), what he simply calls ϕ, is exactly ϕ1 = I0(2
√
ζ),259

while instead of ϕ2 = K0(2
√
ζ), he uses a different solution, which is denoted by ϕ′: eq. (B.30) is nothing but a linear260

combination of I0(2
√
ζ) and K0(2

√
ζ) and it turns out to be:261

ϕ′ = −Y0(2
√
ζ)− 2γI0(2

√
ζ).

which still solves eq. (3.14). At this point, taking advantage of eq. (3.13) and eq. (3.15) Kirchhoff recognizes that the262

general expression of u, i.e. the solution of eq. (B.20) is given by:263

u = A1
dϕ

dζ
+A2

dϕ′

dζ
+B1

dψ

dζ
+B2

dψ′

dζ
(3.32)

Kirchhoff’s solution has been reproduced also by Krienen [41], who in 1959 went through all the derivation by explicitly264

introducing Bessel functions.265

3.3.2 Introduction of boundary conditions266

Introducing the boundary conditions in eq. (3.32), Kirchhoff recognizes that, being the pointed edge ζ = 0 free, both267

bending moment k(d2u/dζ) and shear force d/dζ[k(d2u/dζ)] must vanish there, see eq. (B.32); this requires that the two268

ln-type terms, which are singular at zero, must disappear; hence: A2 = 0 and B2 = 0. Of course this circumstance would269

not occur in the case of a tapered beam whose shape is a truncated wedge. Then, by setting A1 = A and B1 = B, u reduces270

to eq. (B.33). On the other hand at the fixed end z = l, i.e. ζ = αλl both u and du/dζ must vanish, see eq. (B.34) and271
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eq. (B.35); however the latter condition, account taken of eq. (B.26) and eq. (B.27), can be replaced by eq. (B.36), and the272

following homogeneous system of algebraic equations is obtained:273




ϕ|ζ=αλl − ψ|ζ=αλl

dϕ

dζ

∣∣∣∣
ζ=αλl

dψ

dζ

∣∣∣∣
ζ=αλl








A

B



 =





0

0



 . (3.33)

Non trivial solutions to eq. (3.33) exist provided that the relevant coefficient matrix becomes singular, and this requires this274

transcendental equation (in the variable λ), which is an equivalent form of eq. (B.37), to be satisfied:275

(
ϕ
dψ

dζ
+ ψ

dϕ

dζ

)∣∣∣∣
ζ=αλl

= 0, (3.34)

So, eq. (3.34) provides the vibration frequencies λ of the beam; but, as Kirchhoff notices, see eq. (B.38), its l.h.s. can be276

written also in this way: d(ϕψ)/dζ; as a consequence, vibration modes can be found as the stationary points of the function277

product (ϕψ)|ζ=αλl. However, to avoid multiplying together two power series, Kirchhoff adopts an ingenuous method to278

find directly the coefficients of the resulting product series. Indeed, see eq. (B.39), he forms the following combinations:279

ψ

(
ζ
d2ϕ

dζ2
+

dϕ

dζ
− ϕ

)
− ϕ

(
ζ
d2ψ

dζ2
+

dψ

dζ
+ ψ

)
= 0, (3.35)

dψ

dζ

(
ζ
d2ϕ

dζ2
+

dϕ

dζ
− ϕ

)
+

dϕ

dζ

(
ζ
d2ψ

dζ2
+

dψ

dζ
+ ψ

)
= 0, (3.36)

ψ

(
ζ
d2ϕ

dζ2
+

dϕ

dζ
− ϕ

)
+ ϕ

(
ζ
d2ψ

dζ2
+

dψ

dζ
+ ψ

)
= 0, (3.37)

and, with some manipulations, he gets respectively eqs. (B.40), (B.41), (B.42). Now, the first two equations (3.35)–(3.36)280

give immediately:281

2ϕψ = − d2

dζ2

(
ζ2

dϕ

dζ

dψ

dζ

)
, (3.38)

while by transforming eq. (3.37) with the help of the identity eq. (B.43), and taking into account that282

ζ
d2

dζ2
(ϕψ) +

d

dζ
(ϕψ) =

d

dζ

[
ζ
d

dζ
(ϕψ)

]
,

it is possible to express the product
dϕ

dζ

dψ

dζ
, appearing in the r.h.s. of eq. (3.38), as in eq. (B.44), which provides an ODE283

for the function product ϕψ. Kirchhoff then looks for a series solution; he plugs an expansion of this kind:284

ϕψ =

∞∑

n=0

Bnζ
2n, (3.39)

into eq. (B.45) and then equates the coefficients of the same powers of ζ. Indeed, with the additional assumption B0 = 1,285

eq. (3.39) coincides with eq. (B.46), where only even powers of the independent variable appear: this is reasonable, since286

the series expansion of ϕ, see e.g., eq. (B.28), only includes terms with alternating signs, while that of ψ, provided by287

eq. (B.29), only positive terms; hence ϕ and ψ exhibit, the same coefficients (when absolute values are considered) for the288

corresponding powers of ζ.289

The recursion formula which allows computing all Bi, once B0 is known, is precisely eq. (B.47); hence the sought290

solution is given by eq. (B.49). Once all terms are multiplied by ζ2 and eq. (B.45) is fully expanded, it becomes:291

ζ4
d4ϕψ

dζ4
+ 5ζ3

d3ϕψ

dζ3
+ 4ζ2

d2ϕψ

dζ2
+ 4ζ2ϕψ = 0. (3.40)

This is a fourth order ODE and admits four linearly independent solutions. It is possible to show, however, that only the292

obtained one is expressible by means of Bessel functions (the other three involve either hypergeometric functions or Meijer293

G-functions, see e.g. [43] or [3]) and, in particular, it comes out ϕψ = J0(2
√
ζ)I0(2

√
ζ).294
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The transcendental equation which gives the frequency of vibration is simply obtained by enforcing eq. (B.38); by taking295

the derivative of eq. (B.49), changing its sign and dividing by ζ to get rid of the physically unfeasible zero solution, it yields,296

after setting ζ2 = 2
√
ζ:297

J1(ζ2)I0(ζ2)− J0(ζ2)I1(ζ2)

ζ3/2
= 0, (3.41)

whose series expansion is given by eq. (B.50). The smallest positive root of eq. (3.41) gives the fundamental frequency of298

vibration of the wedge-tapered beam: the value provided by Kirchhoff, ζ0 = αλ0l = 5.315 is correct to all four significant299

digits. This is not always true, as it will appear in subsequent computations: however the lack of any statement about the300

number of considered series terms, of the number of digits used for performing the computations, etc. makes it impossible301

to exactly reproduce his way of getting the numerical results.302

Consider a rectangular cross-section having at the built-in end depth 2a0, and breadth 2b0; being303

q` = q|z=l = 4a0b0; k` = k|z=l =
1

12
(2a0)

32b0

and q` = q′l, k` = k′l3 from eq. (B.10), one has:304

q′

k′
= α2E

µ
= l2

q`
k`

=
3l2

a20
, (3.42)

taking into account the definition (3.3). Recalling also eq. (B.53), this allows one to express the ratio between the area and305

the second area moment of the cross-section located at z = 1 as a function of the ratio of the corresponding quantities306

evaluated at the built-in end, z = l. Thus, by considering that ζ0 = αλ0l, one infers that the fundamental frequency λ0 can307

be written as:308

λ0 = ζ0

√
E

3µ

a0
l2

(3.43)

which corresponds to eq. (B.54).309

Once vibration frequency is known, it is possible to go back to eq. (3.32) in order to evaluate the corresponding vibration310

mode, u. It follows, from the first row of eq. (3.33): A ϕ|ζ=ζ0
−B ψ|ζ=ζ0

= 0, so that a possible solution is A = ψ|ζ=ζ0
=311

ψ0; B = ϕ|ζ=ζ0
= ϕ0. In particular, it follows, with four decimal digits:312

ϕ0 = 19.2773; ψ0 = −0.2933;

which should be compared with Kirchhoff’s values of eq. (B.58). Finally, considering that dJ0(2
√
ζ)/dζ = −J1(2

√
ζ)/

√
ζ;313

dI0(2
√
ζ)/dζ = +I1(2

√
ζ)/

√
ζ, the complete solution in terms of the vibration mode can be written as in eq. (B.59),314

namely:315

u = −C

(
ψ0I1(2

√
αλ0z)− ϕ0J1(2

√
αλ0z)√

αλ0z

)
, (3.44)

where C is a suitable normalization factor.316

Remark 5.317

Kirchhoff is interested only in evaluating the fundamental frequency and he does not mention higher frequencies of vibra-318

tion, which can be simply computed by looking for subsequent roots of the same eq. (3.41). This has been done for the319

first five modes (see Table 1) by means of a Computer Algebra System (CAS), namely MathematicaTM(version 6.0). The320

roots of the transcendental equation have been computed by using the native function FindRoot, [70] which implements321

a variant of the secants method. Bracketing intervals to isolate roots were defined by properly magnified plots of the corre-322

sponding function. The use of a CAS is essential in solving the above mentioned transcendental equation since it exhibits a323

strongly oscillating behavior, such that a very small deviation in the root value might result in a large error when evaluating324

the equation itself: this requires algorithms that effectively deal with an extended arbitrary precision. In the present paper,325

all roots have been computed by assigning variables with 100 digits precision. Moreover, any computed root has been326

back-substituted in the equation and the associated error, ε, has been checked against a predefined tolerance: it has been327

verified that all provided roots satisfy the corresponding transcendental equation to within |ε| ≤ 1 · 10−100. ¤328
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For practical reasons, numbers reported hereafter are shown only with 15 significant digits and plots were drawn with the329

same criterion; interested readers may, however, ask the authors for the original Mathematica notebook to work with an330

extended arbitrary precision. The corresponding values of ϕ0 and ψ0 entering eq. (3.44) are also given in Table 1, along331

with the particular value of the normalization factor C which produces, for any vibration mode, a unit deflection at the free332

end of the beam.333

Table 1 First five angular frequencies λ0 and vibration mode parameters ϕ0, ψ0, C for a tapered beam with one fixed (built-in) and one
free end, for the case m = 1, n = 0. Results are printed with a precision of 15 digits.

mode λ0 = ζ0/(α l) ϕ0 ψ0 C

1 5.31509942365365 19.2773429030318 −0.293327207223605 −5.10968706930471 · 10−2

2 15.2071679550051 354.444174527919 +0.215553982937386 −2.82303558210937 · 10−3

3 30.0198091456556 7002.87881460655 −0.178464716802568 −1.42794776640271 · 10−4

4 49.7633446379036 143701.863210382 +0.155663762623234 −6.95885955061168 · 10−6

5 74.4400286512835 3018239.52878180 −0.139836734913753 −3.31318950710666 · 10−7

3.3.3 Comparison with a prismatic beam334

Vibration frequencies of a clamped-free uniform beam are governed by the transcendental equation (see [4]):335

cosh(
√
αλ l) cos(

√
αλ l) + 1 = 0. (3.45)

Considering a prismatic beam having the same cross-section at the clamped end as the wedge-shaped tapered beam and336

denoting by ζ0 = αλ0l the smallest root of eq. (3.45), the fundamental frequency is λ0 = ζ0/(α l); its value, when α is337

expressed as in eq. (3.42), is given by eq. (B.55), which is correct to four digits.338

The corresponding vibration mode is instead:339

u(z) = C[A0(cosh
√
αλ0 z + cos

√
αλ0 z)−B0(sinh

√
αλ0 z + sin

√
αλ0 z)], (3.46)

where A0 and B0 are amplitude factors, similarly to ϕ0 and ψ0 in eq. (3.44), and C is a normalization factor which has340

been chosen so as to produce a unit deflection at the free end.341

The natural frequencies of the first five vibration modes and the corresponding values of A0, B0 and C entering into342

eq. (3.46) are reported in Table 2. It is apparent that only for the first mode, the only one investigated by Kirchhoff, the343

frequency of the tapered beam is higher than that of the uniform one.344

Table 2 First five angular frequencies λ0 and vibration mode parameters A0, B0, C for a uniform beam (i.e. a tapered beam with
m = 0, n = 0) having one fixed (built-in) and one free end. Results are printed with a precision of 15 digits.

mode λ0 = ζ0/(α l) A0 B0 C

1 3.51601526850015 1.00000000000000 .734095513702049 +5.00000000000000 · 10−1

2 22.0344915646668 1.00000000000000 1.01846731875921 −5.00000000000000 · 10−1

3 61.6972144135547 1.00000000000000 .999224496517428 +5.00000000000000 · 10−1

4 120.901916052304 1.00000000000000 1.00003355325171 −5.00000000000000 · 10−1

5 199.859530116801 1.00000000000000 0.99999855010865 +5.00000000000000 · 10−1

The vibration modes of the wedge-shaped tapered beam and of the prismatic one are compared in Figure 4.345

Then Kirchhoff addresses another problem, namely that of finding the maximum amplitude of vibration at the free end such346

that the longitudinal elastic strain never exceeds the limit value εmax within the beam, when the beam is vibrating at the347

fundamental frequency. For a prismatic beam (having the same cross-section as that at the fixed one of the tapered beam,348

namely with a cross-section whose half-depth is equal to a0), it is an easy task to show that the maximum strain occurs349

at top/bottom fibres of the cross-section located at the clamped end. For a wedge-shaped tapered beam, this maximum350

longitudinal strain occurs still at the top/bottom fibers of the particular cross-section where the following expression attains351

its maximum value:352

εmax =
d2u

dz2
xmax =

d2u

dz2
a0z

l
, (3.47)
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Fig. 4 Normalized vibration shapes corresponding to modes 1–5 for a beam fixed at the left end (ζ′ = 0) and free at the right one,
(ζ′ = 1); (a): prismatic beam; (b): wedge-shaped tapered beam. In both cases the normalization factor has been chosen such that it
produces a unit displacement at the free end.

where d2u/dz2 is the curvature of the beam, according to Euler-Bernoulli’s theory, and xmax = a0(z/l) is the absolute353

value of the distance, measured along the x-axis of the top/bottom fiber from the cross-section centroid, see eq. (B.56). So354

the position, along the beam axis, of the particular cross-section where εmax occurs, is defined by the condition:355

d

dz

(
a0z

l

d2u

dz2

)
= 0, (3.48)

where u is defined by eq. (3.44). Then, since d2u/dz2 = (αλ0)d
2u/dζ2 and λ0 = ζ0/(αl), see eq. (B.57), it follows that356

eq. (3.48) becomes:357

d

dζ

(
a0ζζ0
l2

d2u

dζ2

)
= 0. (3.49)

By expanding eq. (3.49) Kirchhoff provides eq. (B.61), which, once common factors are simplified, is equivalent to:358

ϕ0

8ζ5/2

[
(3ζ − 9)

√
ζJ0(ζ2)− (12ζ − 9)J1(ζ2)− (4ζ − 9)

√
ζJ2(ζ2) + 4

√
ζJ3(ζ2) + ζJ4(ζ2)

]
+

ψ0

8ζ5/2

[
(3ζ + 9)

√
ζI0(ζ2)− (12ζ + 9)I1(ζ2) + (4ζ + 9)

√
ζI2(ζ2)− 4

√
ζI3(ζ2) + ζI4(ζ2)

]
= 0, (3.50)

where the shorthand notation ζ2 = 2
√
ζ has been adopted again. By solving eq. (3.50) it is found that the maximum strain359

occurs at a position defined by ζε = 3.710, which has to be compared with Kirchhoff’s value, eq. (B.62). In particular, it360

results ζε/ζ0 = 0.698 l. The resulting largest strain is then given by:361

εmax =

(
a0ζζ0
l2

d2u

dζ2

)∣∣∣∣
ζ=ζε

= 4.649C
a0ζ0
l2

, (3.51)

compared to which, Kirchhoff’s value, provided by eq. (B.63) or eq. (B.64), has almost a 7% relative error. On the other362

hand, the longitudinal strain of the top/bottom fiber at the fixed end, is given by:363

εζ0 =

(
a0ζζ0
l2

d2u

dζ2

)∣∣∣∣
ζ=ζ0

= 4.334C
a0ζ0
l2

, (3.52)
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and is therefore lower than εmax. Finally, Kirchhoff evaluates the maximum deflection at the free end, U , corresponding to364

this maximum strain, and since by eq. (3.44)365

U = lim
z→0

u = C(ϕ0 − ψ0) = 19.571C,

he finds that it is possible to eliminate C = U/(ϕ0 − ψ0) from eq. (3.51); then it follows:366

U = 4.209
εl2

a0ζ0
, (3.53)

and this has to be compared with Kirchhoff’s value, eq. (B.67), which is affected again by a relative error around 7%. In any367

case Kirchhoff’s conclusion that the maximum deflection (corresponding to the same value of the maximum longitudinal368

strain) of the tapered beam, see eq. (B.68) is about four times larger than that of the prismatic beam is a fortiori confirmed.369

3.4 Second particular case: cone/pyramid-shaped beam with generic cross-section370

For the case m = 1 and n = 1 (see Figure 3(b) and eq. (B.70), i.e. tapered beam with conical shape) the ODE (B.11) can371

be written as372

α2λ2u =
1

z2
d

dz
z3

d

dz

1

z2
d

dz
z3

du

dz
, (3.54)

which is equivalent to eq. (B.71), when position (3.3) is recalled. Then Kirchhoff shows that eq. (3.54) is satisfied by either373

of the alternatives shown in eq. (B.72), namely374

1

z2
d

dz

(
z3

du

dz

)
= ±uαλ, (3.55)

which, with the substitution eq. (3.9), see eq. (B.73), splits into these two ODEs:375

ζ
d2u

dζ2
+ 3

du

dζ
+ u = 0; (3.56)

ζ
d2u

dζ2
+ 3

du

dζ
− u = 0, (3.57)

corresponding to the alternatives of eq. (B.74).376

3.4.1 Solution method377

It is possible to recognize that eq. (3.13) and eq. (3.15), for the particular value p = 3, coincide with eqs. (3.56)–(3.57);378

this means that the second derivatives of functions ψ and ϕ defined by eq. (3.12) and eq. (3.14) respectively do satisfy the379

same eqs. (3.56)–(3.57). As a consequence, by following the procedure presented in Section 3.3.1 it possible to construct380

the general solution to eq. (3.54):381

u = A1
d2ϕ

dζ2
+A2

d2ϕ′

dζ2
+B1

d2ψ

dζ2
+B2

d2ψ′

dζ2
(3.58)

3.4.2 Introduction of boundary conditions382

Since the pointed edge ζ = 0 is free, both bending moment k(d2u/dζ) and shear force d/dζ[(k(d2u/dζ)] must vanish383

there, see eq. (B.75). As a consequence, the two ln-type terms, which survive to differentiation and are singular at zero,384

must disappear: this implies: A2 = 0 and B2 = 0. Hence u reduces to eq. (B.76) by setting A1 = A and B1 = B.385

However, if the free end z = l (or ζ = αλl) is clamped, both u and du/dζ must vanish there, as eq. (B.77) and eq. (B.78)386

require. On the other hand, by taking the first derivatives of eq. (B.26) and eq. (B.27), it is possible to replace eq. (B.78)387

with eq. (B.79), and the following homogeneous system of algebraic equations is obtained:388




dϕ

dζ

∣∣∣∣
ζ=αλl

− dψ

dζ

∣∣∣∣
ζ=αλl

d2ϕ

dζ2

∣∣∣∣
ζ=αλl

d2ψ

dζ2

∣∣∣∣
ζ=αλl








A

B



 =





0

0



 . (3.59)
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Non trivial solutions to eq. (3.59) do exist provided that the relevant coefficient matrix becomes singular, and this requires389

this transcendental equation (in the variable λ), which is equivalent to eq. (B.80), to be satisfied:390

(
dϕ

dζ

d2ψ

dζ2
+

dψ

dζ

d2ϕ

dζ2

)∣∣∣∣
ζ=αλl

= 0, (3.60)

eq. (3.60) provides the vibration frequencies λ of the beam but, as Kirchhoff notices, see, e.g., eq. (B.81), its l.h.s. can391

be written also in this way: d/dζ[(dϕ/dζ)(dψ/dζ)]; hence, vibration frequencies are the stationary points of the function392

product [(dϕ/dζ)(dψ/dζ)]|ζ=αλl.393

Again, to avoid multiplying two power series, Kirchhoff makes use of eq. (B.44), with the function product ϕψ defined394

by eq. (3.39) and eq. (B.46). Indeed, it follows:395

(
dϕ

dζ

dψ

dζ

)
= −I1(2

√
ζ)J1(2

√
ζ)

ζ
(3.61)

which is equivalent to eq. (B.82). The transcendental equation which gives the frequency of vibration is obtained by396

enforcing eq. (B.81); by taking the derivative of eq. (B.82), changing its sign, dividing by 2ζ to get rid of the physically397

unfeasible zero solution, and adopting the shortcut notation ζ2 = 2
√
ζ, one has398

− 1

4ζ3

{√
ζ[J1(ζ2)(I0(ζ2) + I2(ζ2)) + I1(ζ2)(J0(ζ2)− J2(ζ2))]− 2J1(ζ2)I1(ζ2)

}
= 0, (3.62)

whose series expansion is given by eq. (B.83). The smallest positive root of eq. (3.62) gives the fundamental frequency of399

vibration of the cone-tapered beam: the correct value with four significant digits is ζ0 = αλ0l = 8.719, while Kirchhoff400

provides eq. (B.84), a slightly different value. The angular frequency λ0 is then simply computed by making use of401

eq. (B.85).402

Notice that, at the fixed end z = l, the outer fibres of the beam cross-section lie at a distance a0, measured in the direction403

of the oscillation, from the cross-section centroid. Hence considering also that q` = q|z=l = q′l2; k` = k|z=l = k′l4 on404

account of eq. (B.10), one has405

q′

k′
=

1

l2
q`
k`

, (3.63)

which corresponds to eq. (B.86) since Kirchhoff defines q0 = q` and k0 = k`. This allows expressing again the ratio406

between the area and the second area moment of the cross-section located at z = 1 as a function of the ratio of the407

corresponding quantities evaluated at the built-in end, z = l. Thus, by considering that ζ0 = αλ0l, it follows that the408

fundamental frequency λ0 can be written as in eq. (B.87), showing that it is inversely proportional to the square of the beam409

length.410

Once vibration frequency is known, one may evaluate the corresponding vibration mode, u going back to eq. (3.58).411

It follows, from the first row of eq. (3.59): A (dϕ/dζ)|ζ=ζ0
− B (dψ/dζ)|ζ=ζ0

= 0. A possible solution is then A =412

(dψ/dζ)|ζ=ζ0
= (dψ/dζ)0; B = (dϕ/dζ)|ζ=ζ0

= (dϕ/dζ)0. In particular, it follows, assuming five significant digits:413

(
dϕ

dζ

)

0

= 19.031;

(
dψ

dζ

)

0

= 0.099620; (3.64)

which should be compared with Kirchhoff’s values of eq. (B.91). Then, considering that414

d2ϕ

dζ2
=

−I1(2
√
ζ) +

√
ζ[I2(2

√
ζ) + I0(2

√
ζ)]

2ζ3/2
;

d2ψ

dζ2
=

J1(2
√
ζ) +

√
ζ[J2(2

√
ζ)− J0(2

√
ζ)]

2ζ3/2
, (3.65)

the complete solution in terms of the vibration mode can be written as in eq. (B.92), more precisely:415

u =
C

2(αλ0z)3/2

{(
dψ

dζ

)

0

[−I1(2
√
αλ0z) +

√
αλ0z(I2(2

√
αλ0z) + I0(2

√
αλ0z))]+

(
dϕ

dζ

)

0

[J1(2
√
αλ0z) +

√
αλ0z(J2(2

√
αλ0z)− J0(2

√
αλ0z))]

}
. (3.66)

where C is a suitable normalization factor.416
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Remark 6.417

Kirchhoff is interested only in evaluating the fundamental frequency and he does not mention higher frequencies of vibra-418

tion, which can be simply computed by looking for subsequent roots of eq. (3.62). This has been done for the first five419

modes (see Table 3), as in the previously presented case. Reference values may be compared with those provided by [15].420

In Table 3 also the corresponding values of (dϕ/dζ)0 and (dψ/dζ)0 entering eq. (3.66) are given, along with the particular421

value of the normalization factor C which produces, for any vibration mode, a unit deflection at the free end of the beam.422

¤423

Table 3 First five angular frequencies λ0 and vibration mode parameters (dϕ/dζ)0, (dψ/dζ)0, C for a tapered beam with one fixed
(built-in) and one free end, for the case m = 1, n = 1. Results are printed with a precision of 15 digits.

mode λ0 = ζ0/(αl) (dϕ/dζ)0 (dψ/dζ)0 C

1 8.71925885507992 19.0311180121041 +0.0996198251914283 +1.04543798415395 · 10−1

2 21.1456623878687 270.306035232624 −0.0473872881082891 +7.40031823296399 · 10−3

3 38.4537712277326 4307.29019431664 +0.0290899050614729 +4.64325922465574 · 10−4

4 60.6801387750973 73856.3296625232 −0.0201780837819134 +2.70796092298841 · 10−5

5 87.8339912946009 1330802.38808128 +0.0150508382920721 +1.50285271148661 · 10−6

3.4.3 Comparison with a cylindrical beam424

For a prismatic or cylindrical beam having the same cross-section at the clamped end as the cone-shaped tapered beam the425

fundamental frequency is simply: λ0 = ζ0/(α l), if ζ0 = αλ0l denotes the smallest root of eq. (3.45). When α, provided426

by eq. (3.3), is expressed through eq. (3.63), the value of λ0 is given by eq. (B.88).427

In order to evaluate again the maximum amplitude of vibration at the free end such that maximum longitudinal strain428

never exceeds the elastic limit value within the beam, it is found that such maximum strain, defined by eq. (B.89) does429

not occur at the built-in end, but at a position ζε defined by the condition (B.90), which, again, depends on the vibration430

frequency; the position of the cross-section where the maximum strain is attained is defined by eq. (B.93), which, once431

common factors are simplified, becomes, when ζ2 = 2
√
ζ:432

(
dψ

dζ

)

0

1

16ζ7/2
{ (−3

√
ζ(25 + 8ζ)I0(ζ2) + (75 + 99ζ + 10ζ2)I1(ζ2)−

√
ζ(75 + 32ζ)I2(ζ2)+

(33ζ + 55ζ2)I3(ζ2)− 8ζ3/2I4(ζ2) + ζ2I5(ζ2))}+ (3.67)
(
dϕ

dζ

)

0

1

16ζ7/2
{ (3

√
ζ(25− 8ζ)J0(ζ2)− (75− 99ζ + 10ζ2)J1(ζ2)−

√
ζ(75− 32ζ)J2(ζ2)−

(33ζ − 5ζ2)J3(ζ2)− 8ζ3/2J4(ζ2)− ζ2J5(ζ2))} = 0

By solving eq. (3.67) it is found that the maximum strain occurs at a position defined by ζε = 4.402; this has to be433

compared with Kirchhoff’s value, eq. (B.94), which is affected by a relative error around 1%. It follows that the position of434

the cross-section where maximum longitudinal strain occurs is defined by the ratio ζε/ζ0 = 0.505l. The resulting largest435

longitudinal strain is then, see eq. (B.95):436

εmax =

(
a0ζ0
l2

ζ
d2u

dζ2

)∣∣∣∣
ζ=ζε

= 1.380C
a0ζ0
l2

, (3.68)

which is comparable with Kirchhoff’s value, eq. (B.95). The longitudinal strain of the top/bottom fibre at the fixed end, is437

instead given by:438

εζ0 =

(
a0ζ0
l2

ζ
d2u

dζ2

)∣∣∣∣
ζ=ζ0

= 0.9749C
a0ζ0
l2

, (3.69)

and is therefore lower than εmax. Finally, Kirchhoff evaluates the maximum deflection at the free end, U , corresponding to439

this maximum strain, and since by eq. (3.64) and eq. (3.66):440

U = lim
z→0

u = (C/2)[(dϕ/dζ)0 + (dψ/dζ)0] = 9.565C,

Copyright line will be provided by the publisher



Prep
rin

t

ZAMM header will be provided by the publisher 17

he finds that it is possible to eliminate C = 2U/[(dϕ/dζ)0 + (dψ/dζ)0] from eq. (3.68). It follows, then:441

U = 6.933
εl2

a0ζ0
, (3.70)

and this has to be compared with Kirchhoff’s value, eq. (B.98), which is affected by a relative error less than 1%. So442

Kirchhoff’s conclusion that the maximum deflection (corresponding to the same value of the maximum longitudinal strain)443

of the conical tapered beam, see eq. (B.100), is about seven times larger than that of the cylindrical beam, eq. (B.101),444

is precisely confirmed. In Figure 5 (left) the normalized shapes of vibration for the first five modes are presented for the445

cone-shaped tapered beam: these shapes should be compared with those, shown in Figure 4, of the uniform beam and of446

the wedge-shaped tapered beam. In Figure 5 (right) the maximal longitudinal strain at each cross-section (as a function447

of the normalized coordinate ζ/ζ0) has been plotted for the wedge- and for the cone-shaped tapered beam. It is apparent448

that the maximum of such longitudinal strains does not occur at the fixed end, corresponding to ζ/ζ0 = 1 but at a specific449

location, ζε, which is different for the two considered cases.450
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Fig. 5 (a): Normalized vibration shapes corresponding to modes 1–5 for a cone-shaped tapered beam fixed at the left end, (ζ′ = 0), and
free at the right one, (ζ′ = 1); the normalization factor has been chosen such that it produces a unit displacement at the free end. (b):
Comparison of maximal longitudinal strain at each cross-section as a function of the normalized coordinate ζ/ζ0 for a wedge- and for a
cone-shaped tapered beam.

4 Kirchhoff legacy in the theory of vibration of tapered beams451

In the 90 years after 1880, when his contribution was published for the first time, many extensions to Kirchhoff’s theory452

have been presented: a partial list of the more interesting ones is briefly discussed in the sequel. The interested reader can453

find a short but rather complete historic excursus up to 1965 in the paper by Wang [66]. In particular, in the first years after454

the appearance of Kirchhoff’s essay, tapered beams, whether pointed or truncated, like in the case of a frustum, had been455

mainly a research topic for Mathematical Physicists; instead, in the years following WWII the prevalent interest of aircraft456

applications led many engineers to deal with this challenging topic, which is still an active area of research.457

The first known contribution after Kirchhoff’s appeared in 1888 and was authored by F. Meyer zur Capellen [45], who458

studied some other particular cases, like that of a beam with constant depth and variable width, and provided also the459

vibration frequencies of higher-order modes. Other noteworthy contributions in the field of Mathematical Physics came460

from Morrow [46], Ward [68], Nicholson [48] and [49], Wrinch [71] and [72], and Ono [50]. Among them a particular461

mention deserves, Dorothy Wrinch (1894–1976), a female scientist and the first woman to receive a D.Sc. from Oxford;462

her fame is mostly due to the research work she did after 1932 on the the mathematical modeling of the structure of proteins463

and cells, but in the early years she worked mainly on classical topics like mathematical logic and applied mathematics.464
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A Kirchhoff’s paper on the dynamics of tapered beams: versions, structure and468

translation notes469

In this Section some notes about the different versions of the paper, as well about its structure, translation and editing are470

provided, to allow the interested reader to compare the original German texts and the English translation.471

There exist three versions of the same paper with minimal differences, mostly misprint corrections, but different number472

of pages, due to different typing and compositions, namely:473

1. the 1879 version [30] (14 pages), which appeared on the “Monatsberichte der königlich preussischen Akademie der474

Wissenschaften zu Berlin”, (Monthly reports of the Royal Prussian Academy of Sciences at Berlin), and will be referred475

shortly by MAW; the full-text4 can be freely downloaded by following the given link.476

2. the 1880 version [31] (12 pages), which appeared on the “Annalen der Physik und Chemie”, (Annals of Physics477

and Chemistry), also known (between 1877 and 1899) by the name of the editor-in-chief, Gustav Heinrich Wiede-478

mann (1826–1899), as Wiedemanns Annalen; in particular, volume 237 of the whole collection corresponds to Wid.479

Ann. 1, while the last one, Wid. Ann. 69 corresponds to volume 305. This version will be referred shortly by AdP; its480

full-text5 may be freely retrieved by following the given link.481

3. the 1882 version [33] (13 pages), which was included by Kirchhoff himself in his “Gesammelte Abhandlungen”,482

(Collected essays); this last version will be simply referred to as GA and its full-text6 ,7 may be retrieved at one of the483

given links.484

The three versions exhibit very small differences, mostly linked to different typographic conventions: for instance, MAW485

and GA do not have punctuation marks before displayed equations, while AdP does. In the translation the same convention486

used by MAW has been adopted. In any case, there is no equation numbering, no subdivisions into sections, and only one487

interruption is marked; moreover, only two references are mentioned: J.W. Strutt (Lord Rayleigh: 1842–1919) [60] and a488

work by Kirchhoff himself [23].489

Language recalls often acoustic or music theory expressions (Quinte = fifth, Grundton = fundamental tone, etc.) since490

most motivations for studying structural vibration problems were coming from the need of understanding the production of491

sound: this was indeed the first aim of both Chladni [8] and Lord Rayleigh [60].492

The German language has steadily evolved since Kirchhoff’s times, and the spelling of some words has changed. To493

provide some examples, Theil is now spelled Teil, Hülfe is replaced by Hilfe, cylindrisch is written as zylindrisch, Coor-494

dinatensystem, Excursion are substituted by Koordinatensystem, Exkursion and Coëfficient becomes Koeffizient. Similarly,495

verbal forms like variirt are now spelled as variiert, etc.496

For ease of reference, all beginnings of a new page have been marked with the source text (within brackets) followed497

by the page number, e.g. [MAW: 817] denotes the beginning of page 817 in the MAW text, and so on. In the presented498

translation, again for ease of reference, all equations, which are unnumbered in the original text, have been given a number.499

Some minor misprints, which are still standing in all versions of the paper, have been corrected, e.g. the wrong use of partial500

derivatives instead of ordinary ones in MAW: 820, lines 2 and 3 from top, the missing index i in symbol B, MAW: 821, one501

line above eq. (B.46), or the missing denominator in the r.h.s of eq. (B.47). Additions to the text to make it more intelligible502

are denoted by angle brackets like these: < . . . >.503

A different problem arises since Kirchhoff used the same symbol x with two different meanings: in the text and in504

eqs. (B.1), (B.9) as a coordinate measured along the principal inertia axis corresponding to the direction of oscillation; in505

eq. (B.23) and following as a properly scaled coordinate measured along the beam length. Of course, the use of different506

meaning for the same symbol might create confusion in the reader and for this reason, following the notation employed507

by Todhunter and Pearson [62] the scaled coordinate defined by the above mentioned eq. (B.23) has been substituted by508

the symbol ζ, which replaces x in all following occurrences. For similar reason, to avoid using with different meaning the509

same symbol in the comments, what Kirchhoff denotes by a (e.g. the half-depth of the cross-section at the fixed end z = l),510

see eq. (B.53) and following, has been replaced by a0.511

4 https://de.wikisource.org/wiki/Monatsberichte_der_Königlich_Preussischen_Akademie.
5 https://de.wikisource.org/wiki/Annalen_der_Physik.
6 https://books.google.it/books?isbn=1143798961.
7 https://archive.org/details/gesammelteabhan01unkngoog.
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Finally, the standard dot notation has been adopted for decimal numbers, i.e. one tenth is represented as 0.10, while in512

all versions of the original paper Kirchhoff made use of the comma notation (1/10 = 0,10).513

B On the transversal vibrations of a beam of variable cross-section by G. Kirchhoff514

The transversal vibrations of cylindrical beams are theoretically and experimentally treated in detail; the vibrations of515

a beam whose cross-section is variable are not however, [GA: 340] up to now, more closely investigated, even though,516

besides the mathematical interest which they deserve, they possess in this respect a practical one, too, because for a beam517

which oscillates with a free end, the amplitude of vibration of this end can be much larger, without exceeding the elasticity518

limit, when toward this end the beam is tapered, than when the cross-section is everywhere the same. The following519

considerations are referred to a beam which forms a prism or a cone with an extremely small angle, with the edge or the520

sharp tip at the free end.521

For the moment a beam is taken into consideration, whose cross-section, which has arbitrary shape, only varies in522

the direction of the length such that cross-sections become infinitesimal, their centroids lie along a straight line and their523

principal axes have the same directions. A beam like that can carry out small oscillations, by which displacements in one524

of these two directions < namely x or y > occur; such oscillations attention are concerned; the differential equation itself is525

knowna and is easily deduced with the help of Hamilton’s principle. Let the line, which the centroids of the cross-sections526

form in the equilibrium position, be the z-axis of an orthogonal coordinate system, and let the direction of the principal axis527

of a cross-section, which happens to be parallel to the oscillations, the direction of the x-axis. Let moreover be [MAW: 816;528

AdP: 502]529

q =

∫∫
dxdy , k =

∫∫
x2dxdy (B.1)

the integrations extended to the corresponding cross-section depending on the variable z, ξ the displacement of the centroid530

of this cross-section as a function of time t, µ the density, E the elastic coefficient of the material of the beam; then the531

kinetic energy is532

µ

2

∫
dz q

(
∂ξ

∂t

)2

(B.2)

and the potential energy of the beam533

E

2

∫
dzk

(
∂2ξ

∂z2

)2

, (B.3)

[GA: 341] the integrations being extended along the length of the beam. It follows from here the partial differential equation534

qµ
∂2ξ

∂t2
= −E

∂2

∂z2

(
k
∂2ξ

∂z2

)
, (B.4)

and, < under the assumption that > at both ends of the beam no forces act, which produce work, i.e., when the ends are free535

or fixed, it follows further, that for each end536

∂

∂z

(
k
∂2

∂z2

)
δξ and k

∂2

∂z2
δ
∂ξ

∂z
(B.5)

do vanish.537

We limit ourselves to the analysis of oscillations by which the beam produces one simple vibration mode, hence one can538

put539

ξ = u sinλt, (B.6)

where u represents a function of z, and λ is a constant.540

For u one has therefore the ordinary differential equation541

qµλ2u = E
d2

dz2

(
k
d2u

dz2

)
(B.7)

a The theory of sound by John William Strutt, London 1877, Vol. I, page 240.
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and the boundary condition, that at each end542

d

dz

(
k
d2u

dz2

)
δu and k

d2u

dz2
δ
du

dz
(B.8)

do vanish.543

[MAW: 817] The general integral of this differential equation is obtained without difficulty when the change of the544

cross-section is such that the equation of its contour is an equation between these variables:545

x

zm
and

y

zn
(B.9)

where m and n represent two constants. Defining by q′ and k′ the values of q and k for z = 1, it is therefore546

q = q′zm+n, k = k′z3m+n, (B.10)

[AdP: 503] hence the differential equation:547

q′µλ2zm+nu = Ek′
d2

dz2

(
z3m+n d

2u

dz2

)
. (B.11)

An integral of this equation is obtained by setting548

u = Azh +A1z
h+(4−2m) +A2z

h+2(4−2m) + . . . (B.12)

where h is determined by the 4th-degree equation549

h(h− 1)(h− 2 + 3m+ n)(h− 3 + 3m+ n) = 0 (B.13)

[GA: 342] and the coefficients A1, A2, . . . by equations550

q′uλ2

k′E
A =A1(h+ 4− 2m)(h− 1 + 4− 2m) (B.14)

(h− 2 + 4− 2m+ 3m+ n)(h− 3 + 4− 2m+ 3m+ n)

q′uλ2

k′E
A1 =A2(h+ 2(4− 2m))(h− 1 + 2(4− 2m)) (B.15)

(h− 2 + 2(4− 2m) + 3m+ n)(h− 3 + 2(4− 2m) + 3m+ n)

and so on. If one chooses the values for h one after another according to the 4 values 0, 1, 2− 3m− n, 3− 3m− n, gives551

to the arbitrary constant A different values, and forms the sum of the obtained expressions for u, then one gets the general552

integral of the mentioned differential equation. The convergent series by which the same general integral is represented553

proceed by increasing or decreasing powers of z, according to m being smaller or larger [MAW: 818] than 2. In the limiting554

case m = 2, u is equal to the sum of the 4 values which the expression555

Azh (B.16)

takes, when one places inside h a root of the 4th-degree equation556

h(h− 1)(h+ 4 + n)(h+ 3 + n) =
q′µλ2

k′E
(B.17)

and chooses the arbitrary constant A always different.557

Even in other cases the developed form of the general integral of the differential equation loses its validity, i.e. when two558

of the indicated values for h become equal to each other, or when one of the factors within brackets, which appear with A1,559

A2, . . . in the equations < which have been > established for these quantities, [AdP: 504] disappears. A valid form of the560

integral is obtained then, when one thinks of the value of m changing by an extremely small amount; then one finds it as a561

sum of power-series which are partly multiplied by ln z; the coefficients can be found as well directly from the differential562

equation.563

From here on, only the cases with m = 1, n = 0 or m = 1, n = 1 will be treated. In any of these cases the 4th-order564

differential equation can be reduced to 2nd-order differential equations [GA: 343] whose integral are Bessel’s functions565

with real or imaginary argument.566
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Let be now567

m = 1, n = 0; (B.18)

this occurs when the beam is delimited in the width direction by 2 parallel planes, and in the depth by 2 planes making each568

other an infinitesimal angle at the tip, hence when the beam forms a very sharp prism. The differential equation is then569

q′µλ2

k′E
zu =

d2

dz2
z3

d2u

dz2
(B.19)

or, what is the same,570

q′µλ2

k′E
u =

1

z

d

dz
z2

d

dz

1

z

d

dz
z2

du

dz
. (B.20)

[MAW: 819] It is satisfied, when it is571

1

z

d

dz
z2

du

dz
= uλ

√
q′µ
k′E

(B.21)

and also, when572

1

z

d

dz
z2

du

dz
= −uλ

√
q′µ
k′E

. (B.22)

It follows from here that, setting573

zλ

√
q′µ
k′E

= ζ, (B.23)

the general integral of the differential equation valid for u is equal to the general integrals of the differential equations574

[AdP: 505]575

ζ
d2u

dζ2
+ 2

du

dζ
=u (B.24)

ζ
d2u

dζ2
+ 2

du

dζ
=− u. (B.25)

Now let ϕ and φ be certain integrals of the equations576

ζ
d2ϕ

dζ2
+

dϕ

dζ
=ϕ (B.26)

ζ
d2ψ

dζ2
+

dψ

dζ
=− ψ, (B.27)

with577

ϕ =1 +
ζ

12
+

ζ2

(1 · 2)2 +
ζ3

(1 · 2 · 3)2 + . . . (B.28)

ψ =1− ζ

12
+

ζ2

(1 · 2)2 − ζ3

(1 · 2 · 3)2 + . . . , (B.29)

[GA: 344] let ϕ′ and ψ′ be additional integrals of the same equation, namely578

ϕ′ =ϕ ln ζ − 2

(
ζ

12
+

ζ2(1 + 1
2 )

(1 · 2)2 +
ζ3(1 + 1

2 + 1
3 )

(1 · 2 · 3)2 + ·
)

(B.30)

ψ′ =ψ ln ζ + 2

(
ζ

12
− ζ2(1 + 1

2 )

(1 · 2)2 +
ζ3(1 + 1

2 + 1
3 )

(1 · 2 · 3)2 − ·
)
; (B.31)
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[MAW: 820] the general expression for u is then the sum of the differential quotients
dϕ

dζ
,
dϕ′

dζ
,
dψ

dζ
,
dψ′

dζ
, which are579

multiplied by arbitrary constants.580

For one end of the beam let z, and hence ζ, be infinitesimally small, and let this end be free; then for an infinitesimally581

small ζ:582

ζ3
d2u

dζ2
and

d

dζ
ζ3

d2u

dζ2
(B.32)

must vanish; this occurs, when the coefficients of
dϕ′

dζ
,
dψ′

dζ
in the expression of u are set equal to zero, hence u appears as583

u = A
dϕ

dζ
+B

dψ

dζ
. (B.33)

Let the second end of the beam be constrained in such a way, that for it u and
du

dz
, hence also

du

dζ
must vanish; for this584

end it is then585

0 = A
dϕ

dζ
+B

dψ

dζ
(B.34)

and586

0 = A
d2ϕ

dζ2
+B

d2ψ

dζ2
, (B.35)

[AdP: 506] hence also, according to the differential equations, which ϕ and ψ satisfy,587

0 = Aϕ−Bψ, (B.36)

therefore588

0 = ϕ
dψ

dζ
+ ψ

dϕ

dζ
(B.37)

or589

0 =
d(ϕψ)

dζ
. (B.38)

This is the equation from where are to be determined the values of λ, i.e. the oscillation numbers of the vibration modes590

which the beam [MAW: 821; GA: 345] can produce. For this development it can be useful < adopting > the method which591

I have used in a general case in my work on the vibrations of a circular plateb.592

The differential equations for ϕ and ψ are multiplied593

by ψ or by
dψ

dζ
or by ψ

−ϕ
dϕ

dζ
ϕ

(B.39)

and added every time, so one obtains:594

2ϕψ =
d

dζ
ζ

(
ψ
dϕ

dζ
− ϕ

dψ

dζ

)
, (B.40)

ψ
dϕ

dζ
− ϕ

dψ

dζ
= −1

ζ

d

dζ
ζ2

dϕ

dζ

dψ

dζ
, (B.41)

ζ

(
ψ
d2ϕ

dζ2
+ ϕ

d2ψ

dζ2

)
+

dϕψ

dζ
= 0. (B.42)

b Crelle’s Journal, vol. 40. [page 51, 1850].
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The last of these equations is transformed with the help of the identity595

d2ϕψ

dζ2
= ψ

d2ϕ

dζ2
+ ϕ

d2ψ

dζ2
+ 2

dϕ

dζ

dψ

dζ
, (B.43)

so it becomes596

dϕ

dζ

dψ

dζ
=

1

2ζ

d

dζ
ζ
d(ϕψ)

dζ
. (B.44)

From here it results for ϕψ the fourth-order differential equation:597

4ϕψ = − d2

dζ2
ζ
d

dζ
ζ
d(ϕψ)

dζ
, (B.45)

and this determines the coefficients Bi in the equation598

ϕψ = 1 +B1ζ
2 +B2ζ

4 +B3ζ
6 + . . . , (B.46)

which immediately follows from the expressions of ϕ and ψ. [AdP: 507] One finds [MAW: 822]599

Bn = − Bn−1

n2 · (2n− 1) · 2n, (B.47)

and when one defines600

1·2·3· . . . n through n! (B.48)

it follows601

ϕψ = 1− ζ2

(1!)22!
+

ζ4

(2!)24!
− ζ6

(3!)26!
+ . . . . (B.49)

[GA: 346] The equation, which has to be used for the determination of the vibration frequencies, is therefore602

0 = 1− ζ2

(2!)23!
+

ζ4

(3!)25!
− ζ6

(4!)27!
+ . . . . (B.50)

Let ζ0 be the smallest positive root of this equation, which provides the fundamental frequency of the beam. Without603

difficulty one finds:604

ζ0 = 5.315. (B.51)

The length of the beam is l, so that605

lλ

√
q′µ
k′E

= ζ0; (B.52)

from which the value of λ for the fundamental frequency can be computed. Let 2a0 be the depth of the beam at the built-in606

end; it is then607

q′

k′
=

3l2

a20
, (B.53)

and hence608

λ = 5.315

√
E

3µ

a0
l2
. (B.54)

For the prism-shaped beam therefore, like for the parallelepiped one, the oscillation number of the fundamental frequency609

is inversely proportional to the square of the length and directly proportional to the depth, when the depth is measured at610
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the fixed end. For equal values of a0 and l the fundamental frequency of the prismatic beam is higher than that of the611

parallelepipedal; for the latter it is indeed612

λ = 3.516

√
E

3µ

a0
l2
, (B.55)

so that the fundamental frequency of the prismatic beam is approximately the fifth8 of the fundamental frequency of the613

parallelepiped.614

[MAW: 823] Now it will be examined how large the amplitude of oscillation of the free end of the prismatic end might615

be, when [AdP: 508] the magnitude of strain must not exceed anywhere a given limit.616

The maximum of the strain in any cross-section occurs when the beam has experienced its largest bending deflection at617

the upper or [GA: 347] at the lower side, and this maximum is equal to the absolute value of618

a0z

l

d2u

dz2
(B.56)

i.e. of619

a0ζ0
l2

ζ
d2u

dζ2
(B.57)

This expression gets, when ζ increases from 0 to ζ0, a maximum for a particular value of ζ which must be computed. Let620

one define the values of ϕ and ψ for ζ = ζ0 by ϕ0 and ψ0; it is then:621

ϕ0 = 19.2772, ψ0 = −0.2934, (B.58)

and one can set622

u = −C

(
ϕ0

dψ

dζ
+ ψ0

dϕ

dζ

)
, (B.59)

where C is a constant. The condition for the sought maximum is therefore623

0 = ϕ0
d

dζ
ζ
d3ψ

dζ3
+ ψ0

d

dζ
ζ
d3ϕ

dζ3
(B.60)

or:624

0 = ϕ0

(
1

3!
− 2ζ

1!4!
+

3ζ2

2!5!
− 4ζ3

3!6!
+ . . .

)
− ψ0

(
1

3!
+

2ζ

1!4!
+

3ζ2

2!5!
+

4ζ3

3!6!
+ . . .

)
(B.61)

The smallest root of this equation, and the only one lying between 0 and ζ0, is625

= 3.688. (B.62)

[MAW: 824] For this value of ζ it is626

ζ

(
ϕ0

d3ψ

dζ3
+ ψ0

d3ϕ

dζ3

)
= −4.992. (B.63)

For ζ = ζ0 the same expression is = −4.333. If the largest strain is denoted by ε, then it is627

ε = C
a0ζ0
l2

4.992. (B.64)

[AdP: 509] Now let U be the largest deflection of the free end of the beam; hence628

U = C(ϕ0 − ψ0) (B.65)

8 [Note of translators]: i.e. with terms borrowed from music, in a 3 : 2 ratio to the fundamental frequency of the parallelepipedal beam.
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[GA: 348] which means629

= C·19.563, (B.66)

so that630

U = ε
l2

a0ζ0
3.919, (B.67)

or by substitution into the equation which determines λ,631

U = ε
1

λ

√
E

3µ
·3.919. (B.68)

For the vibrations corresponding to the fundamental frequency of the parallelepipedal beam one finds the maximum strain632

at the fixed end, and between this maximum and the largest deflection at the free end there exists the relationship633

U = ε
1

λ

√
E

3µ
. (B.69)

From here one sees, that for equal material and equal period of oscillation, the prismatic beam can produce deflection634

amplitudes about 4 times larger than the parallelepiped.635

—ooo—636

[MAW: 825] Now, in a similar way, it will be treated the case in which the beam forms a very pointed cone. The differential637

equation of its vibrations is then, according to the previous observations638

q′µλ2

k′E
z2u =

d2

dz2
z4

d2u

dz2
. (B.70)

This can be written as639

q′µλ2

k′E
u =

1

z2
d

dz
z3

d

dz

1

z2
d

dz
z3

du

dz
, (B.71)

and it is satisfied when one sets:640

1

z2
d

dz
z3

du

dz
= ±uλ

√
q′µ
k′E

. (B.72)

When making once more641

ζ = zλ

√
q′µ
k′E

, (B.73)

[GA: 349] so < it follows > from there that the general expression of u is the sum of the general integrals of the two642

differential equations643

ζ
d2u

dζ2
+ 3

du

dζ
= ±u. (B.74)

[AdP: 510] The symbols ϕ, ψ, ϕ′, ψ′ are used with the same meaning as above, and therefore u is a homogeneous linear644

function of
d2ϕ

dζ2
,
d2ψ

dζ2
,
d2ϕ′

dζ2
,
d2ψ′

dζ2
, whose coefficients are arbitrary constants. Now one end of the beam has to be free645

and for that end z must be infinitesimally small; as a consequence, for an infinitesimally small ζ,646

ζ4
d2u

dζ2
and

d

dζ
ζ4

d2u

dζ2
(B.75)
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must vanish; this requires that the coefficients of
d2ϕ′

dζ2
and of

d2ψ′

dζ2
are set equal to zero. From that one has:647

u = A
d2ϕ

dζ2
+B

d2ψ

dζ2
. (B.76)

[MAW: 826] For the second end of the beam let again u = 0 and
du

dz
= 0, which means648

A
d2ϕ

dζ2
+B

d2ψ

dζ2
=0 (B.77)

A
d3ϕ

dζ3
+B

d3ψ

dζ3
=0; (B.78)

for the same end it must be also649

A
dϕ

dζ
−B

dψ

dζ
= 0, (B.79)

so that650

dϕ

dζ

d2ψ

dζ2
+

dψ

dζ

d2ϕ

dζ2
= 0 (B.80)

or651

d

dζ

dϕ

dζ

dψ

dζ
= 0. (B.81)

For the given development for ϕψ it follows then652

−dϕ

dζ

dψ

dζ
= 1− ζ2

1!2!3!
+

ζ4

2!3!5!
− ζ6

3!4!7!
+ . . . ; (B.82)

and hence the equation to be satisfied for the fixed end is [GA: 350]653

0 =
1

2!3!
− ζ2

1!3!5!
+

ζ4

2!4!7!
− ζ6

3!5!9!
+ . . . . (B.83)

Again ζ0 is defined as the smallest root of this equation, corresponding therefore to the fundamental frequency of the beam;654

this gives:655

ζ0 = 8.718. (B.84)

The value of z for the built-in end of the beam is again l; hence, also here one has656

lλ

√
q′µ
k′E

= ζ0. (B.85)

[AdP: 511] If the values of q and k for z = l are defined by q0 and k0, then657

q′

k′
=

q0
k0

l2. (B.86)

[MAW: 827] From here it follows that658

λ = 8.718

√
k0E

q0µ

1

l2
. (B.87)

Therefore also here the frequency of oscillations of the fundamental mode is inversely proportional to the square of the659

length, provided that the cross-section at the fixed end are equal in both cases. For a cylindrical beam, constrained only at660

one end, for which q and k assume the values q0 and k0, and having length l, the fundamental frequency is661

λ = 3.516

√
k0E

q0µ

1

l2
, (B.88)
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so that the frequency of the fundamental mode for the conical and the cylindrical beam behave like 8.718 : 3.516.662

For what concerns the strains in the conical beam, their maximum in any cross-section is663

a0ζ0
l2

ζ
d2u

dζ2
, (B.89)

when a0 denotes the maximum distance, in the direction of the oscillation, of the outer fibre of the cross-section from its664

centroid. Hence the maximum occurs for a value of ζ which satisfies this equation665

0 =
d

dζ
ζ
d2u

dζ2
. (B.90)

For ζ = ζ0 it is [GA: 351]666

dϕ

dζ
= 19.024

dψ

dζ
= 0.099534 (B.91)

thus giving667

u = C

(
0.09953

d2ϕ

dζ2
+ 19.024

d2ψ

dζ2

)
, (B.92)

and668

0 = 0.09953

(
1

4!
+

2ζ

1!5!
+

3ζ2

2!6!
+ . . .

)
+ 19.024

(
1

4!
− 2ζ

1!5!
+

3ζ2

2!6!
− . . .

)
. (B.93)

[MAW: 828; AdP: 512] The smallest root of this equation is669

ζ = 4.464. (B.94)

For this value of ζ it is670

1

C
ζ
d2u

dζ2
= 1.388. (B.95)

For ζ = ζ0 the same expression is = 0.9734. Again, let ε denote the maximum magnitude of strain, then one gets671

ε = C · a0ζ0
l2

· 1.338. (B.96)

Let U be the largest deflection of the free end of the beam, so it is672

U = C · 9.592, (B.97)

therefore673

U = ε· l2

a0ζ0
·6.889 (B.98)

or, since674

l2

ζ0
=

1

λ

√
k0E

q0µ
, (B.99)

675

U = ε
1

λ

1

a0

√
k0E

q0µ
· 6.889. (B.100)

For a cylindrical beam whose fixed end has the same dimensions, < the largest deflection at the free end > for the funda-676

mental frequency is677

U = ε
1

λ

1

a0

√
k0E

q0µ
, (B.101)

such that for equal materials and equal periods of the oscillations the conical beam might produce amplitudes of oscillation678

at the free end about 7 times larger than the cylindrical one.679

The style of the following references should be used in all documents.680
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