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A B S T R A C T

We discuss the ellipticity properties of an enhanced model of poroelastic continua called
dilatational strain gradient elasticity. Within the theory there exists a deformation energy
density given as a function of strains and gradient of dilatation. We show that the equilibrium
equations are elliptic in the sense of Douglis–Nirenberg. These conditions are more general
than the ordinary and strong ellipticity but keep almost all necessary properties of equilibrium
equations. In particular, the loss of the ellipticity could be considered as a criterion of a strain
localization or material instability.

. Introduction

Partial differential equations (PDEs) constitute a basis of physics and mechanics of solids and fluids. Considering systems
f PDEs we usually distinguish hyperbolic, parabolic and elliptic systems. The latter almost relate to statics or to quasistatics.
mong definitions of elliptic systems of PDEs one can find ordinary ellipticity or Petrowsky ellipticity (Petrowsky, 1939), strong
llipticity (Nirenberg, 1955; Vishik, 1951), Douglas–Nirenberg ellipticity (Douglis & Nirenberg, 1955), or even more general
efinitions (Volevich, 1965), see also Agranovich (1997). From the mathematical point of view ellipticity brings regularity of
olutions, solvability and well-posedness of corresponding boundary-value problems. From the physical point of view, a violation of
llipticity may result in a certain material instability such as a strain localization, folding, and appearance of multiple solutions, it
ay also prevent wave propagation in certain points or in some directions. In particular, Hill (1962) and Rice (1976) considered loss

f ellipticity as a criterion for detection of strain localization and transition to a plastic regime of deformation, see also Bigoni (2012)
nd Staber et al. (2021) and the references therein. So the analysis of ellipticity conditions brings an essential a priori information
bout a solution of a problem under consideration and a possible material response. Moreover, even for finite deformations ellipticity
onditions take a form of algebraic problem that is more simple, in general.

Within the classic nonlinear elasticity ellipticity conditions were analysed in many works, summarized in Lurie (1990), Ogden
1997) and Truesdell and Noll (2004). It was shown how the strong ellipticity and its weak form called Hadamard’s inequality relate
o infinitesimal stability. In particular, infinitesimal stability implies Hadamard’s inequality. So the latter can serve as a necessary
ondition of stability and a violation of Hadamard’s inequality can indicate possible instabilities. The converse statement, i.e. the
trong ellipticity results in stability for a particular affine class of deformations and for Dirichlet’s boundary conditions. Strong
llipticity was studied also for so-called implicit constitutive relations in Mai and Walton (2015a, 2015b).

For the enhanced models of continua such as micropolar and strain gradient media, the connection of ellipticity with strain
ocalization phenomena and material instabilities is similar to the case of simple materials, in general. Localization of deformations
n micropolar elastoplastic solids with connections to the loss of ellipticity was studied by De Borst (1991), De Borst and Muhlhaus
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(1992), De Borst et al. (1993), Dietsche et al. (1993) and Tejchman and Bauer (1996), see also more recent papers by Hasanyan and
Waas (2018) and Russo et al. (2020) and the references therein. Ellipticity and its relation to waves propagation and instabilities in
micropolar solids was analysed by Eremeyev (2005), Lakes (2018, 2021), Passarella et al. (2011) and Soldatos et al. (2021). Another
model of continua related to strain localization is based on strain gradient approach, see e.g. Fleck and Hutchinson (1993, 2001)
and Muhlhaus and Aifantis (1991). Ellipticity within the strain gradient elasticity was considered by Eremeyev (2021), Eremeyev
and Reccia (2022) and Eremeyev and Lazar (2022).

Considering strain gradient media it is worth to mention the couple-stress theory introduced by Koiter (1964), Toupin (1962)
nd Mindlin and Tiersten (1962) as a possible simplest version of the strain gradient models. With its modified version by Yang
t al. (2002) it was used for modelling materials and thin-walled structures at the micro- and nanoscales, see e.g. recent papers
y Dastjerdi et al. (2020, 2021), Dehrouyeh-Semnani (2021), Dehrouyeh-Semnani and Mostafaei (2021), Farajpour et al. (2020),
alikan and Eremeyev (2023), Malikan et al. (2020), Nobili and Volpini (2021), Zhang and Liu (2020) and Shahmohammadi et al.

2023), and the reviews by Ghayesh and Farajpour (2019) and Kong (2021). The couple-stress theory could be also considered as
micropolar medium with constraint rotations, see Nowacki (1970) and Eremeyev et al. (2013). Within the couple-stress theory

he loss of ellipticity and related material instabilities were analysed by Bigoni and Gourgiotis (2016) and Gourgiotis and Bigoni
2016a, 2016b, 2017). In particular, in Gourgiotis and Bigoni (2016a) it was remarked that the principal part of the symbol of the
perator is degenerate, so that the system of PDEs in couple-stress elasticity is not elliptic in the standard sense. Nonetheless, by
onsidering a modified equivalent couple-stress operator adding to the governing operator an additional fourth-order operator as a
ort of null Lagrangian, ellipticity conditions may still be defined. These procedure involved not only the fourth-order part of the
ouple stress operator but also the second-order part of the operator. It is closely related to the fact that P-waves are not dispersive
n couple stress theory, but S-waves are.. For an isotropic and orthotropic materials the modified conditions of ellipticity were
iven in Gourgiotis and Bigoni (2016a, 2016b), where one can see that loss of ellipticity results in folding of the material. Similar
bservation on non-ellipticity was made by Eremeyev et al. (2023), where another transformation towards elliptic formulation was
one.

The aim of this paper is to discuss ellipticity conditions for the dilatational strain gradient elasticity (Eremeyev et al., 2021;
urie et al., 2021). In the case of small deformations this model complements the couple-stress theory by Mindlin and Tiersten
1962) to the gradient complete Toupin–Mindlin strain gradient elasticity (Mindlin, 1964; Mindlin & Eshel, 1968; Toupin, 1962).
he model can be applied to pressure sensitive materials such as considered in the poroelasticity by Coussy (2004), Cowin and
unziato (1983) and Nunziato and Cowin (1979). In this case a possible violation of ellipticity may model pressure-induced phase
hanges in porous solids or other localization phenomena. As an example, one can mention materials with voids and related analysis
iven by Chiriţă and Ghiba (2010). Let us also note that the discussed model belongs to the class of constitutive equations with
calar microstructure (Capriz, 1989; Eringen, 1999). Among of such media it is worth to mention two-phase mixtures (Clayton,
022) and other models of porous media discussed in Kazemian et al. (2022), Liu et al. (2021), Ma et al. (2022), Rajagopal (2021),
ciarra et al. (2008), Zheng et al. (2022) and Zhou et al. (2023).

The reminder of the paper is organized as follows. In Section 2 we briefly recall the Douglis–Nirenberg ellipticity definition as
n Douglis and Nirenberg (1955). The main content of the paper is given in Section 3. Here we introduce the governing equations
f the dilatational strain gradient elasticity and show that the linearized equations does not form an elliptic in ordinary sense.
evertheless, we can show that another form of equilibrium equations is elliptic in the Douglis–Nirenberg sense. This form is

imilar to one used for linearized Navier–Stokes equations of incompressible fluids which also form a Douglis–Nirenberg elliptic
ystem (Volevich, 1965).

. Douglis–Nirenberg ellipticity

Let us recall the definition of the Douglis–Nirenberg ellipticity. Let 𝐰 = (𝑤1(𝐗), 𝑤2(𝐗),… , 𝑤𝑁 (𝐗)) be a vector of unknown
unctions, whereas 𝐛 = (𝑏1(𝐗), 𝑏2(𝐗),… , 𝑏𝑁 (𝐗)) be a vector of given functions. For 𝐰(𝐗) we consider the following system of linear

differential equations

(𝐗, 𝐷)𝐰 = 𝐛, (1)

or in the component form
𝑁
∑

𝑘=1
𝑚𝑘(𝐗, 𝐷)𝑤𝑘 = 𝑏𝑚, 𝑚 = 1,… , 𝑁. (2)

Hereinafter we have used the following standard notations: 𝐗 = (𝑋1,… , 𝑋𝑛) is a position vector, 𝑋𝑝, 𝑝 = 1,… , 𝑛, are Cartesian
coordinates. Moreover, 𝑚𝑘(𝐗, 𝐷) is a linear differential operator of order 𝛼𝑚𝑘

𝑚𝑘(𝐗, 𝐷) =
∑

|𝛼|≤𝛼𝑚𝑘

𝑎(𝛼)𝑚𝑘(𝐗)𝐷
𝛼 , (3)

where 𝐷 = (𝐷1,… , 𝐷𝑛), 𝐷𝑝 = −𝑖𝜕∕𝜕𝑥𝑝, 𝑖 =
√

−1, 𝛼 = (𝛼1,… , 𝛼𝑛) is a multiindex, |𝛼| = 𝛼1 +⋯ + 𝛼𝑛, 𝛼𝑝 ≥ 0 are integers, 𝑝 = 1,… , 𝑛.
n addition we assume that 𝑚𝑘 = 0 if 𝛼𝑚𝑘 < 0.

Following Douglis and Nirenberg (1955), we assume that 𝛼𝑚𝑘 = 𝑠𝑚 + 𝑡𝑘, where 𝑠𝑝 and 𝑡𝑝 are some integers. We introduce the
rincipal symbol of (1) by the formula

𝐴0(𝐗, 𝝃) = det A(𝐗, 𝝃), A𝑚𝑘 =
∑

𝑎(𝛼)𝑚𝑘(𝐗)𝝃
𝛼 , 𝝃 ∈ R𝑛. (4)
2

|𝛼|=𝑠𝑚+𝑡𝑘
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The Douglis–Nirenberg ellipticity at the point 𝐗 means that

𝐴0(𝐗, 𝝃) ≠ 0, ∀ 𝝃 ∈ R𝑛, 𝝃 ≠ 𝟎. (5)

ithin the Douglis–Nirenberg ellipticity one explicitly assumed that each equation and each dependent variable in (2) can have
ifferent orders of differentiation. Note that if 𝑠𝑝 = 0 and 𝑡𝑝 = 𝑡 we have the simplest case of ordinary ellipticity. Petrowsky considered
lso more general case with 𝑠𝑝 = 0 and different 𝑡𝑝. Strong ellipticity conditions involves ordinary ellipticity.

. Dilatational strain gradient elasticity

.1. Governing equations

Following Eremeyev et al. (2021) let us briefly introduce the basic equations of the dilatational strain gradient elasticity. A
eformation of an elastic solid body can be modelled as an invertible differentiable mapping

𝐱 = 𝐱(𝐗),

here 𝐱 and 𝐗 are position vectors in a reference and current placement, respectively. Within the model there exists a strain energy
ensity introduced as a function of deformation gradient 𝐅 and the gradient of its determinant 𝐽 , i.e. the gradient of volume change,

𝑊 = 𝑊 (𝐅,𝐤), 𝐅 = ∇𝐱, 𝐤 = ∇𝐽 , 𝐽 = det 𝐅, (6)

here ∇ is the referential nabla-operator.
The Lagrangian equilibrium equations take the form (Eremeyev et al., 2021)

∇ ⋅ 𝐏 − ∇ ⋅
[

(∇ ⋅𝐦)𝐽𝐅−𝑇 ] + 𝜌𝐟 = 𝟎, (7)

where 𝐏 and 𝐦 are the first Piola–Kirchhoff stress tensor and the first Piola–Kirchhoff double force vector, ‘‘⋅’’ stands for the dot
roduct, 𝜌 is a mass density in the reference placement, and 𝐟 is a mass force vector. 𝐏 and 𝐦 are given by formulae

𝐏 = 𝜕𝑊
𝜕𝐅

, 𝐦 = 𝜕𝑊
𝜕𝐤

.

The case of small deformations was also studied by Eremeyev et al. (2021) and Lurie et al. (2021). For an isotropic solid the
strain energy density has the form

𝑊 = 1
2
𝜆𝑒2 + 𝜇𝜺 ∶ 𝜺 + 1

2
𝛽𝐤 ⋅ 𝐤, (8)

here

𝜺 =1
2
(∇𝐮 + ∇𝐮𝑇 ), 𝐮 = 𝐱 − 𝐗,

𝑒 =tr 𝜺 = ∇ ⋅ 𝐮, 𝐤 = ∇𝑒 = ∇∇ ⋅ 𝐮,

and 𝜇 are Lamé moduli, 𝛽 is an additional elastic modulus related to gradient of dilatation, and ‘‘∶’’ denotes the double dot product.
he stress tensor and the double stress vector transform to

𝐏 = 𝜆𝑒𝐈 + 2𝜇𝜺, 𝐦 = 𝛽𝐤, (9)

hereas the equilibrium equation (7) takes the form

𝜇𝛥𝐮 + (𝜇 + 𝜆)∇∇ ⋅ 𝐮 − 𝛽𝛥∇∇ ⋅ 𝐮 + 𝜌𝐟 = 𝟎, 𝛥 = ∇ ⋅ ∇. (10)

Hereinafter 𝐈 is the 3D unit tensor.

3.2. Loss of ordinary ellipticity

The considered model is a particular case of the general strain gradient elasticity introduced by Mindlin (1964), Mindlin and
Eshel (1968) and Toupin (1962), see also Bertram (2023) and Bertram and Forest (2020). So ordinary and strong ellipticity of
(7) can be studied within general framework as in Eremeyev (2021), Eremeyev and Lazar (2022) and Mareno and Healey (2006).
Considering this model in the case of small deformations it was noted by Eremeyev et al. (2023) that the equilibrium equations in
displacements (10) does constitute neither ordinary elliptic nor strongly elliptic system as the principal symbol is degenerated. The
same conclusion is valid for finite deformations. Indeed, the principal symbol of (7) has the form of a dyad

A(𝝃) = 𝐽 2𝝃 ⋅ 𝜕
2𝑊

𝜕𝐤𝜕𝐤
⋅ 𝝃 (𝝃 ⋅ 𝐅−𝑇 )⊗ (𝝃 ⋅ 𝐅−𝑇 ), (11)

where ⊗ is the dyadic product. Obviously, here det A(𝝃) = 0 and the conditions of ordinary ellipticity is violated. Since ordinary
ellipticity is a necessary condition of the strong ellipticity, the latter is also violated.
3
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3.3. Douglis–Nirenberg ellipticity

In order to bring ellipticity properties to the equilibrium equations we use a certain correspondence between the dilatational
train gradient elasticity and the poroelasticity by Nunziato and Cowin (1979). We reformulate the equilibrium equations as follows.
irst, we introduce a new scalar variable 𝜑 as an additional kinematical descriptor, ‘‘porosity’’ in the sense of the nonlinear

poroelasticity. So a strain energy density takes the form

𝑊 = 𝑊 (𝐅,∇𝜑).

Treating 𝜑 as independent field subjected to the constraint

𝜑 = 𝐽 ≡ det 𝐅, (12)

we come to the following system of equations

∇ ⋅ 𝐏 − ∇ ⋅ (𝛾𝐽𝐅−𝑇 ) + 𝜌𝐟 = 𝟎, 𝐏 = 𝜕𝑊
𝜕𝐅

, (13)

∇ ⋅𝐦 − 𝛾 = 0, 𝐦 = 𝜕𝑊
𝜕∇𝜑

. (14)

Here 𝛾 is a Lagrange multiplier related to (12). Excluding it from (13) and (14) we get again (7). Instead, we consider (13), (14),
and (12) as a system of PDEs with respect to 𝐰 = (𝐮, 𝜑, 𝛾). As this system consists of PDEs of different order, it cannot be treated
using standard ellipticity definition. On the other hand, the Douglis–Nirenberg ellipticity works and brings the following inequality

det A(𝝃) ≠ 0, A(𝝃) =
⎛

⎜

⎜

⎜

⎝

𝐐(𝝃) 𝟎 −𝑖𝝃 ⋅ 𝐽𝐅−𝑇

0 𝝃 ⋅ 𝜕
2𝑊

𝜕𝐤𝜕𝐤
⋅ 𝝃 0

𝑖𝝃 ⋅ 𝐽𝐅−𝑇 0 0

⎞

⎟

⎟

⎟

⎠

, (15)

where 𝐐(𝝃) is the classic acoustic tensor given by the formulae

𝑄𝑖𝑗 = 𝐶𝑚𝑖𝑛𝑗𝜉𝑚𝜉𝑛, 𝐂 = 𝜕2𝑊
𝜕𝐅𝜕𝐅

.

Here we used the following set of integers 𝑠𝑝 and 𝑡𝑝, 𝑝 = 1,… , 5:

𝑡1 = 3, 𝑡2 = 3, 𝑡3 = 3, 𝑡4 = 3, 𝑡5 = 2,

𝑠1 = −1, 𝑠2 = −1, 𝑠3 = −1, 𝑠4 = −1, 𝑠5 = −2.

With another technique similar, but not the same, constraints were obtained by Zee and Sternberg (1983) for incompressible
materials .

What is remarkable is that the Douglis–Nirenberg ellipticity condition (15) includes also the classic ellipticity condition, i.e. the
condition of non-singularity of the acoustic tensor. This is an essential difference from the strong ellipticity conditions which do not
imply such constraints, see Eremeyev (2021) and Eremeyev and Lazar (2022).

In order to clarify the Douglis–Nirenberg ellipticity condition let us study the case of small deformations in more details. Now
system (13), (14), and (12) take the form

𝜇𝛥𝐮 + (𝜆 + 𝜇)∇∇ ⋅ 𝐮 − ∇𝛾 + 𝜌𝐟 = 𝟎, (16)

𝛽𝛥𝜑 − 𝛾 = 0, (17)

𝜑 − ∇ ⋅ 𝐮 = 0. (18)

The corresponding symbolic representation of the differential operator (𝐗, 𝐷) in (1) is given by

⎛

⎜

⎜

⎝

−𝜇𝝃 ⋅ 𝝃𝐈 − (𝜆 + 𝜇)𝝃 ⊗ 𝝃 𝟎 −𝑖𝝃
0 −𝛽𝝃 ⋅ 𝝃 −1
𝑖𝝃 1 0

⎞

⎟

⎟

⎠

.

As a result, the principal symbol introduced in (4) has the form

𝐴0(𝐗, 𝝃) = det A(𝝃), (19)

A(𝝃) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇𝜉2 − (𝜆 + 𝜇)𝜉21 −(𝜆 + 𝜇)𝜉1𝜉2 −(𝜆 + 𝜇)𝜉1𝜉3 0 −𝑖𝜉1
−(𝜆 + 𝜇)𝜉2𝜉1 −𝜇𝜉2 − (𝜆 + 𝜇)𝜉22 −(𝜆 + 𝜇)𝜉2𝜉3 0 −𝑖𝜉2
−(𝜆 + 𝜇)𝜉3𝜉1 −(𝜆 + 𝜇)𝜉3𝜉2 −𝜇𝜉2 − (𝜆 + 𝜇)𝜉23 0 −𝑖𝜉3

0 0 0 −𝛽𝜉2 0
𝑖𝜉1 𝑖𝜉2 𝑖𝜉3 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

4
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where 𝜉2 = 𝝃 ⋅ 𝝃. Here we have the formula

det A(𝝃) = 𝛽𝜇2𝜉8. (20)

As a result, the Douglis–Nirenberg ellipticity conditions take the form of two inequalities

𝛽 ≠ 0, 𝜇 ≠ 0. (21)

We can see that the ellipticity conditions include constraints for first-order and higher order elastic moduli.
These inequalities could be also obtained if one decompose the displacements using the Helmholtz decomposition 𝐮 = ∇𝛷+∇×𝜳 ,

∇ ⋅ 𝜳 = 0, where 𝛷 and 𝜳 are potentials. For the latter we have two equations

(𝜆 + 2𝜇)𝛥𝛷 − 𝛽𝛥2𝛷 + 𝑓 = 0,

𝜇𝛥𝜳 + 𝐩 = 𝟎,

where we also used the Helmholtz decomposition of the mass force 𝜌𝐟 = ∇𝑓 + ∇ × 𝐩. Obviously, both equations are elliptic if and
only if (21) are fulfilled.

4. Conclusions

We demonstrated that the dilatational strain gradient elasticity belongs to the class of elliptic systems in the Douglis–Nirenberg
sense. So the general theory of elliptic systems could be applied to these models of continua. Let also note that unlike the
ordinary ellipticity the Douglis–Nirenberg ellipticity is invariant under change of variables, so it could be more useful for various
transformations of the systems under considerations. Similar results one can expect for other models with additional scalar degree
of freedom. In addition we demonstrated that the provided conditions of ellipticity inherited the ones from the simple materials. In
other words they includes inequalities for low- and high-order elastic moduli, whereas the standard ellipticity requires constrains for
higher order elastic moduli, see e.g. Eremeyev and Lazar (2022). The approach based on the Douglis–Nirenberg definition could be
also useful for other models of elasticity, such as ones with implicit or incremental constitutive relations (Rajagopal, 2007; Rajagopal
& Srinivasa, 2007).
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