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Abstract

A model with 16 moments is here presented in the framework of RET of polyatomic
gases. It furnishes as principal subsystem the relativistic counterpart of a work by
Arima T., Ruggeri T., Sugiyama M.; this is present in literature and treats the non
relativistic case which incorporates relaxation processes of molecular rotation and vi-
bration. Another principal subsystem is the natural extension of the 14 moments model
by Proffs. Pennisi S. and Ruggeri T.; this is also present in literature in the relativistic
framework but where the trace of the third balance equation is neglected. Its extension
is found here for the case when this trace isn’t neglected.
Keyword:Relativistic Extended Thermodynamics, Polyatomic gases.

1 Introduction

We aim to discuss here the following set of balance equations for the description of relativistic
polyatomic gases:

∂α V
α = 0 , ∂α T

αβ = 0 , ∂αA
αβγ = P βγ , ∂αH

α
V = P . (1)

In [1], the authors considered only the first two of these equations and the traceless part of
(1)3, i.e., ∂αA

α<βγ> = I<βγ>; the reason behind this choice was that they wanted to find, in
the non relativistic limit and in the monoatomic limit, the results of the 14 moments models
of the articles [2]-[6]. Moreover, in [1] the case of polyatomic gases was considered when
only one microscopic energy of internal modes is present. Still remaining in this framework,
the article [1] can be extended by considering all the components of the triple tensor Aαβγ

including the trace that was messing in [1]. So we have an equation more, i.e. 15 moments.
The opportunity of this extension is evident from the article [7] where the case of an arbitrary
but fixed number of moments is considered but only to discover an optimal choice of moments.
So it is useful to have a confirmation of the results obtained in [7] for the simpler case of 15
moments. This purpose is realized in the present article.
A second purpose we want to achieve here is to give the relativistic counterpart of the work
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[8]; here the authors consider two microscopic energies of internal modes because they want
describe the relaxation processes of rotational and vibrational modes separately. To reach
this end they decompose the energy of internal mode and the energy of vibrational mode.
For this reason they have an equation more with respect to the article [2], i.e., 15 moments
also in this case. It is natural to wonder if this additional moment is not the same as that
obtained above by considering all the components of the triple tensor Aαβγ. The answer is
negative because its expression at the non-relativistic limit is completely different, as it can
be seen below in eq. (3)7. So we need one additional equation. In such a way one arrives at
a thery of 16 moments. The new equation must be a scalar one, otherwise the total system
will have more than 16 moments. We have reported it in eq. (1)4. It can be justified as the
other equations starting from the kinetic theory. In fact, the relativistic counterpart of the
Boltzmann equation (1) of [8] is pα∂αf = Q where the distribution function f depends on the
position xα, momentum pα, energy of rotational mode IR, energy of vibrational mode IV . If

we multiply it by m
(
1 + 2 IV

m c2

)
ϕ(IR)ψ(IV) and integrate in d IR d IV d~P , then we obtain

the present eq. (1)4. We can see that it is appropriate because at the non-relativistic limit it
gives just eq. (3)5 of [8]. Its generalization to the case of many moments is straightforward
but we don’t report it here for the sake of simplicity; the interested reader can request it and
we will send it to him.
So the present model reachs 2 purposes:

• One is to find the relativistic counterpart of [8], which isn’t present in literature. This is
realized by putting equal to zero the Lagrange multiplier corresponding to the trace of
(1)3; in other words, we consider the subsystem of eqs. (1) according to the definition
of [9].

• Another one is to see what happens if we don’ t drop the trace of (1)3, i.e., the subsystem
of eqs. (1) obtained by putting equal to zero the Lagrange multiplier corresponding to
(1)4.

The field equations are expressed in terms of the tensors

V α = mc

∫
<3

∫ +∞

0

∫ +∞

0

fpαϕ(IR)ψ(IV) d IR d IV d~P ,

Tαβ = c

∫
<3

∫ +∞

0

∫ +∞

0

fpαpβ

(
1 +

I
mc2

)
ϕ(IR)ψ(IV) d IR d IV d~P ,

(2)

Aαβγ =
c

m

∫
<3

∫ +∞

0

∫ +∞

0

fpαpβpγ

(
1 +

2 I
mc2

)
ϕ(IR)ψ(IV) d IR d IV d~P ,

Hα
V = m

∫
<3

∫ +∞

0

∫ +∞

0

fpα

(
1 +

2 IV

mc2

)
ϕ(IR)ψ(IV) d IR d IV d~P ,

where d~P = dp1 dp2 dp3

p0 and I = IR + IV .

In the next section we will calculate the non relativistic limit of the full set of eqs. (1), finding
a 16 moments model for classical extended thermodynamics of polyatomic gases. It encloses
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two important subsystems in the sense of [9]: The natural extension of [1] which is obtained
neglecting eq. (1)4 and the model [8] which comes out by neglecting the trace of eq. (1)3. In
sect. 3 we will impose the Maximum Entropy Principle for these field equations and compare
the results with those of [1]. The resulting system is hyperbolic for every timelike congruence
and the characteristic velocities dont’t exceed the speed of light, We have already proved
these properties and we aim to publish these results in a subsequent article.

2 The non relativistic limit

If we compare eqs. (2)1−3 with those of [1], we see that they are formally the same, except
to substitute I with IR + IV , φ(I) with ϕ(IR)ψ(IV ) and to integrate in d IR d IV instead
of d I. Now the passages used in [1], to obtain the non relativistic limit of its field equations,
aren’t affected by these changes; so we can say that the non relativistic limit of eqs. (1)1,2

and of the traceless part of (1)3, give exactly the eqs. in the first and second block of the
following set

∂t F + ∂k F
k = 0

∂t F
i + ∂k F

ki = 0

∂t F
ij + ∂k F

ki = P ij
F ∂tG

ll + ∂k G
kll = 0 ∂tH

ll
V + ∂k H

kll
V = P ij

V

∂tG
ill + ∂k G

kill = Qill

, (3)

∂t (2Gpppp − F pppp) + ∂i

(
2Gppppi − F ppppi

)
= Ipppp ,

with

FA =

∫
<3

∫ +∞

0

∫ +∞

0

mf ξA d Ĩ d ~ξ , GBll =

∫
<3

∫ +∞

0

∫ +∞

0

mf ξB

(
ξ2 + 2

I
m

)
d Ĩ d ~ξ ,

HCll
V =

∫
<3

∫ +∞

0

∫ +∞

0

f ξC 2 IV d Ĩ d ~ξ ,

and d Ĩ is an abbreviation for φ(IR)ψ(IV ) d IR d IV . They are also the equations of the 14
moments model [2].
We proceed now to calculate the non relativistic limit of the new component of eq. (1)3

which is now present because we don’ t take its traceless part. For the sake of simplicity, let
us maintain the notation of [1] reserving to reconvert the results at the end by distinguishing
the contribution of the two energies. To this end, let us recall that in pages 420, 421 of [1]
we take into account that x0 = c t, p0 = mΓ c, pi = mΓ ξi,

Γ =
(
1− ξ2

c2

)− 1
2
, limc→+∞ f = 1

m3 f
C , d ~P = m2Γ4

c
d ~ξ.

Ater that we took the 3-dimensional components of V α, Tαβ, Aαβγ except for A000 which we
now evaluate here and is

A000 =
c

m

∫
<3

∫ +∞

0

∫ +∞

0

f m5 Γ7 c2
(

1 +
2 I
mc2

)
d~ξ d Ĩ . (4)
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In page 420 of [1] we noted also that

1

c2
(
T 00 − c V 0

)
=

∫
<3

∫ +∞

0

∫ +∞

0

f m4

[(
1 +

I
mc2

)
Γ6 − Γ5

]
d~ξ d Ĩ

whose non relativistic limit is zero. So we multiplied it times 2c2 before taking the limit and

find lim
c→+∞

2
(
T 00 − c V 0

)
=

∫
<3

∫ +∞

0

∫ +∞

0

f m4

(
ξ2 +

2 I
m

)
d~ξ d Ĩ . (5)

Now we note that also 1
c3

(A000 − c2 V 0) has limit zero. So we multiply it times c2 before

taking the limit and find lim
c→+∞

1

c

(
A000 − c2 V 0

)
=

∫
<3

∫ +∞

0

∫ +∞

0

f m4

(
ξ2 +

2 I
m

)
d~ξ d Ĩ ,

which is the same limit of (5). So we take now the difference of their left hand sides and
multiply the result times c2 obtaining

cA000 + c3 V 0 − 2 c2 T 00 =

=

∫
<3

∫ +∞

0

∫ +∞

0

f m4 Γ5

[(
1 +

2I
mc2

)
Γ2 c4 + c4 − 2c4 Γ

(
1 +

I
mc2

)]
d~ξ d Ĩ

(6)

To take the limit of this expression we use the well known Taylor’s serie

1√
1 + x

= 1 +
+∞∑
n=1

(−1)n (2n− 1)!!

(2n)!!
xn ,

which is convergent for −1 < x < 1. By applying it to the Lorentz’s factor, we obtain

Γ = 1 +
+∞∑
n=1

(2n− 1)!!

(2n)!!

ξ2n

c2n
= 1 +

1

2

ξ2

c2
+

3

8

ξ4

c4
+

1

c6
(· · · ) .

So we have cA000 + c3 V 0 − 2 c2 T 00 =

=

∫
<3

∫ +∞

0

∫ +∞

0

f m4 Γ5

[(
1 +

2I
mc2

) (
1 +

1

4

ξ4

c4
+
ξ2

c2
+

3

4

ξ4

c4
+

1

c6
(· · · )

)
c4 + c4−

2c4
(

1 +
1

2

ξ2

c2
+

3

8

ξ4

c4
+

1

c6
(· · · )

) (
1 +

I
mc2

)]
d~ξ d Ĩ =

=

∫
<3

∫ +∞

0

∫ +∞

0

f m4 Γ5

[
1

4
ξ4 +

1

c2
(· · · )+

+
I
m

(
1

2

ξ4

c2
+ 2 ξ2 +

3

2

ξ4

c2
+

1

c4
(· · · )− ξ2 − 3

4

ξ4

c2

) ]
d~ξ d Ĩ

(7)

whose non relativistic limit is 1
4
(2Gpppp − F pppp) with

Gpppp =

∫
<3

∫ +∞

0

∫ +∞

0

f m

(
ξ2 +

2 I
m

)
ξ2 d~ξ d Ĩ , F pppp =

∫
<3

∫ +∞

0

∫ +∞

0

f m ξ4 d~ξ d Ĩ .
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Similarly, we have c
(
cAi00 + c3 V i − 2 c2 T i0

)
=

=

∫
<3

∫ +∞

0

∫ +∞

0

f m4 Γ5

[(
1 +

2I
mc2

)
Γ2 c4 + c4 − 2c4 Γ

(
1 +

I
mc2

)]
ξi d~ξ d Ĩ

(8)

whose limit for c going to ∞ is 1
4

(2Gppppi − F ppppi) with

Gppppi =

∫
<3

∫ +∞

0

∫ +∞

0

f m

(
ξ2 +

2 I
m

)
ξ2 ξi d~ξ d Ĩ , F ppppi =

∫
<3

∫ +∞

0

∫ +∞

0

f m ξ4 ξi d~ξ d Ĩ.

Consequently, the 15th equation is (3)7 which is an hybrid between the mass block and the
energy block in the balance laws. (Note that F pppp and F ppppi are enclosed in the definition
(3)8 with A = pppp and A = ppppi respectively; similarly, Gpppp and Gppppi are enclosed in
the definition (3)9 with B = pppp and B = ppppi respectively).
There remains only to do the non relativistic limit of the equation in the third block, i.e., eq.
(3)10. With similar passages, we obtain

c2H0
V − c V 0 = m4 Γ5

∫
<3

∫ +∞

0

∫ +∞

0

f 2 IV d Ĩ d~ξ ,

c3Hk
V − c2 V k = m4 Γ5

∫
<3

∫ +∞

0

∫ +∞

0

f ξk 2 IV d Ĩ d~ξ ,

and the non relativistic limits of the right hand sides are H ll
V and Hkll

V , respectively. In other
words, eq. (1)4 multiplied by c3 minus (1)1 multiplied by c2 give an equation whose non
relativistic limit is (3)5.
We see now that eqs. (3)1−6 are those of [8] (To be true, instead of (3)4 they have ∂tH

ll
R +

∂k H
kll
R = P ij

R with H ll
R = Gll − F ll −H ll

V , Hkll
R = Gkll − F kll −Hkll

V , P ll
R = −P ll

F − P ll
V .

In our result we have obtained the sum of this equation, of eq. (3)5 and of the trace of (3)3)
and this is an equivalent system.
It is obvious that the system (3) satisfies the Galilean Relativity Principle because it was
obtained from a relativistic version which satisfies the Einsteinian Relativity Principle thanks
to its covariant form [10]. We have also found a direct proof of this property.
We note that, in the limiting case of monoatomic gases, (3)5 disappears, while (3)4 becomes
equal to the trace of (3)3, the system (3)1−3,6 gives the 13 moments model [6], while the
system (3)1−3,6,7 gives the 14 moments model by Kremer [11]. So, eq. (3)7 isn’t completely
new and we need it to catch the previous article as a limiting case.
Obviously, this methodology can be extended to enclose an arbitrary but fixed number of
moments in the relativistic version; this idea has been considered in [7] finding an interesting
hyerarchy of moments also for the classical case; the present article is an intermediate easier
step but, in any case, it is more complete because it encloses the closure of the balance
equations, which is the result of the next section.

3 The closure of the balance equations

We note that many considerations in [1] don’ t take into account that the authors will take
subsequently only the traceless part of (1)3. So those results hold also in the present case.
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For example, they impose the Maximum Entropy Principle and find a distribution function,
in eq. (31) of that article, which we can adapt also for the present more general case. It
reads

f = e
−1− χ

kB , with (9)

χ = mλ+

(
1 +

I
mc2

)
λβ p

β +
1

m

(
1 +

2 I
mc2

)
λα1α2p

α1pα2 +
m

c

(
1 +

2 IV

mc2

)
ν ,

where kB is the Boltzmann constant and the last term has been enclosed for taking into
account eq. (1)4. Moreover, λ, λβ, λα1α2 and ν are the Lagrange multipliers.
From this distribution function we can desume the 4-potential defined as

h′α = − kB c

∫
<3

∫ +∞

0

∫ +∞

0

e
−1− χ

kB pαd Ĩ d~P , (10)

from which it follows that the fields in eqs. (1) can be written simply as

V α =
∂ h′α

∂ λ
, Tαβ =

∂ h′α

∂ λβ

, Aαβγ =
∂ h′α

∂ λβγ

, Hα
V =

∂ h′α

∂ ν
. (11)

Moreover, equilibrium is defined as the state where λαβ = 0, ν = 0 and eqs. (11) calculated
at equilibrium become

mnUα =
∂ h′αE
∂ λ

, p hαβ +
e

c2
UαUβ =

∂ h′αE
∂ λβ

, Aαβγ
E =

(
∂ h′α

∂ λβγ

)
E

, Hα
V E =

(
∂ h′α

∂ ν

)
E

.

(12)
The first three of these equations have ben exploited in [1] and those considerations still hold
also in the present case, so that we can report here simply the modified results, where an over-
lined term denotes that this term is multiplied by φ(IR)ψ(IV ) and, after that integrated in
d IR d IV for IR ∈ [0 , +∞[, IV ∈ [0 , +∞[. We will use this notation also in the subsequent
part of the article. The results are:

e
1+ m

kB
λE =

4πm3 c3

n
J2,1(γ∗) (which givesλE) with γ∗ =

(
1 +

I
mc2

)
γ ,

λEβ =
kB γ

m c2
Uβ , p =

nmc2

γ
, e = nmc2 γ

J2,2(γ∗)
(
1 + I

m c2

)
J2,1(γ∗)

,

Aαβγ
E = A0

1 U
αUβUγ + 3A0

11 h
(αβUγ) ,

A0
1 = nmγ

J2,3(γ∗)
(
1 + 2 I

m c2

)
J2,1(γ∗)

, A0
11 =

nmc2γ

3

J4,1(γ∗)
(
1 + 2 I

m c2

)
J2,1(γ∗)

,

while (12)4 gives Hα
V E = HV U

α withHV =
mn

c3

J2,1(γ∗)
(
1 + 2 IV

c2

)
J2,1(γ∗)

.

(13)
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3.1 The first order deviation from equilibrium

The first order deviation of eqs. (11) from their equilibrium values is

V α
E (λ− λE) + Tαµ

E (λµ − λEµ) + Aαµν
E λµν +Hα

V E ν = 0 , (14)

Tαβ
E (λ− λE) +mAαβµ

11 (λµ − λEµ) +mAαβµν
12 λµν + Tαβ

V ν =

= −kB

m

(
t<αβ>3 + πhαβ +

2

c2
U (αqβ)

)
,

Aαβγ
E (λ− λE) +mAαβγν

12 (λµ − λEµ) +mAαβγµν
22 λµν + Aαβγ

V ν = −kB

m
(Aαβγ − Aαβγ

E ) ,

Hα
V E(λ− λE) + Tαµ

V (λµ − λEµ) + Aαµν
V λµν + V α

V V ν = −kB

m
(Hα

V −Hα
V E) ,

where the new tensors appear

Aαβµ
11 =

c

m4

∫
<3

∫ +∞

0

∫ +∞

0

fEp
αpβpµ

(
1 +

I
mc2

)2

d Ĩ d~P , (15)

Aαβµν
12 =

c

m5

∫
<3

∫ +∞

0

∫ +∞

0

fEp
αpβpµpν

(
1 +

I
mc2

) (
1 +

2I
mc2

)
d Ĩ d~P ,

Aαβγµν
22 =

c

m6

∫
<3

∫ +∞

0

∫ +∞

0

fEp
αpβpγpµpν

(
1 +

2I
mc2

)2

d Ĩ d~P .

Tαβ
V =

∫
<3

∫ +∞

0

∫ +∞

0

fEp
αpβ

(
1 +

I
mc2

) (
1 +

2IV

c2

)
d Ĩ d~P ,

Aαβγ
V =

1

m

∫
<3

∫ +∞

0

∫ +∞

0

fEp
αpβpγ

(
1 +

2I
mc2

) (
1 +

2IV

c2

)
d Ĩ d~P ,

V α
V V =

m

c

∫
<3

∫ +∞

0

∫ +∞

0

fEp
α

(
1 +

2IV

c2

)2

d Ĩ d~P .

The expressions of the first three of these tensor have been calculated in [1], while the others
can be calculated in a similar manner and they are

Aαβµ
11 = B4h

(αβUµ) +B5U
αUβUµ ,

Aαβµν
12 =

1

5
B1h

(αβhµν) + 2B2h
(αβUµU ν) +B3U

αUβUµU ν ,

Aαβγµν
22 = B6h

(αβhγµU ν) +
10

3
B7h

(αβUγUµU ν) +B8U
αUβUγUµU ν .

(16)

Tαβ
V = B9

UαUβ

c2
+B10h

αβ , Aαβγ
V = A0

1VU
αUβUγ + 3A0

11V h
(αβUγ) , V α

V V = B11U
α .
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with

B1 = nγc4
J6,0(γ∗)

(
1 + I

mc2

) (
1 + 2I

mc2

)
J2,1(γ∗)

, B2 = nγc2
J4,2(γ∗)

(
1 + I

mc2

) (
1 + 2I

mc2

)
J2,1(γ∗)

,

B3 = nγ
J2,4(γ∗)

(
1 + I

mc2

) (
1 + 2I

mc2

)
J2,1(γ∗)

, B4 = nγc2
J4,1(γ∗)

(
1 + I

mc2

)2

J2,1(γ∗)
,

B5 = nγ
J2,3(γ∗)

(
1 + I

mc2

)2

J2,1(γ∗)
, B6 = nγc4

J6,1(γ∗)
(
1 + 2I

mc2

)2

J2,1(γ∗)
,

(17)

B7 = nγc2
J4,3(γ∗)

(
1 + 2I

mc2

)2

J2,1(γ∗)
, B8 = nγ

J2,5(γ∗)
(
1 + 2I

mc2

)2

J2,1(γ∗)
, B10 =

c4

γ
HV ,

B9 = nmc γ
J2,2(γ∗)

(
1 + I

m c2

) (
1 + 2IV

c2

)
J2,1(γ∗)

, A0
1V =

nmγ

c

J2,3(γ∗)
(
1 + 2 I

m c2

) (
1 + 2 IV

c2

)
J2,1(γ∗)

,

A0
11V =

nmcγ

3

J4,1(γ∗)
(
1 + 2 I

m c2

) (
1 + 2 IV

c2

)
J2,1(γ∗)

, B11 =
nm

c2

J2,1(γ∗)
(
1 + 2 IV

c2

)2

J2,1(γ∗)
,

We have now to obtain (λ − λE),
(
λµ − Uµ

T

)
, Σµν from eqs. (14)1,2 and substitute them in

(14)3,4 to obtain the requested closure, that is the expression of Aαβγ−Aαβγ
E and of Hα

V −Hα
V E.

To this end, we define Σµν = λ<µν> and µ = 1
4
λµνg

µν so that λµν = Σµν + µ gµν and we have
that Σµν is traceless.
After that, we consider firstly eq. (14)1 contracted by Uα and eq. (14)2 contracted a first
time by Uα Uβ and a second time by hαβ, so obtaining the system

nc2(λ− λE) +
e

m
Uµ

(
λµ −

Uµ

T

)
+

1

m
(A0

1c
2 + A0

11)U
µU νΣµν =

= − c2

m
(A0

1c
2 − 3A0

11)µ −
c2

m
HV E ν ,

e

m
c2(λ− λE) + c4B5 U

µ

(
λµ −

Uµ

T

)
+

(
1

3
B2c

2 +B3c
4

)
UµU νΣµν =

=
(
B2 −B3c

2
)
c4µ − c2

m
B9 ν ,

(18)
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p

m
(λ− λE) +

1

3
B4U

µ

(
λµ −

Uµ

T

)
+

(
1

3
B2 +

1

9

B1

c2

)
UµU νΣµν =

= − kB

m2
π +

1

3
(B1 −B2c

2)µ − 1

m
B10 ν .

If we calculate this system in µ = 0, ν = 0, we obtain exactly the system (A.10)1−3 of [1].
Obviously, the matrix of coefficients is the same of that reported in (A.11)1 of [1], i.e.,

D̃π
1 =

∣∣∣∣∣∣∣∣∣∣
nc2 e

m
1
m

(A0
1c

2 + A0
11)

e
m
c2 c4B5

1
3
B2c

2 +B3c
4

p
m

1
3
B4

1
3
B2 + 1

9
B1

c2

∣∣∣∣∣∣∣∣∣∣
. (19)

So, by using the Kramer’ s theorem, we find

λ− λE = − kB π

m2 D̃π
1

∣∣∣∣∣∣
e
m

1
m

(A0
1c

2 + A0
11)

c4B5
1
3
B2c

2 +B3c
4

∣∣∣∣∣∣ + µ∆1 + ν∆2 , (20)

Uµ (λµ − λEµ) =
kB π

m2 D̃π
1

∣∣∣∣∣∣
nc2 1

m
(A0

1c
2 + A0

11)

e
m
c2 1

3
B2c

2 +B3c
4

∣∣∣∣∣∣ + (µX1 + ν Y1) c
2 ,

UµU νΣµν = − kB π

m2 D̃π
1

∣∣∣∣∣∣
nc2 e

m

e
m
c2 c4B5

∣∣∣∣∣∣ + (µX2 + ν Y2) c
2 with

∆1 =
1

D̃π
1

∣∣∣∣∣∣∣∣∣∣
− c2

m
(A0

1c
2 − 3A0

11)
e
m

1
m

(A0
1c

2 + A0
11)

(B2 −B3c
2) c4 c4B5

1
3
B2c

2 +B3c
4

1
3
(B1 −B2c

2) 1
3
B4

1
3
B2 + 1

9
B1

c2

∣∣∣∣∣∣∣∣∣∣
,

∆2 =
1

D̃π
1

∣∣∣∣∣∣∣∣∣∣
− c2

m
HV

e
m

1
m

(A0
1c

2 + A0
11)

− c2

m
B9 c4B5

1
3
B2c

2 +B3c
4

− 1
m
B10

1
3
B4

1
3
B2 + 1

9
B1

c2

∣∣∣∣∣∣∣∣∣∣
,
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X1 =
1

c2 D̃π
1

∣∣∣∣∣∣∣∣∣∣
nc2 − c2

m
(A0

1c
2 − 3A0

11)
1
m

(A0
1c

2 + A0
11)

e
m
c2 (B2 −B3c

2) c4 1
3
B2c

2 +B3c
4

p
m

1
3
(B1 −B2c

2) 1
3
B2 + 1

9
B1

c2

∣∣∣∣∣∣∣∣∣∣
,

Y1 =
1

c2 D̃π
1

∣∣∣∣∣∣∣∣∣∣
nc2 − c2

m
HV

1
m

(A0
1c

2 + A0
11)

e
m
c2 − c2

m
B9

1
3
B2c

2 +B3c
4

p
m

− 1
m
B10

1
3
B2 + 1

9
B1

c2

∣∣∣∣∣∣∣∣∣∣
,

X2 =
1

c2 D̃π
1

∣∣∣∣∣∣∣∣∣∣
nc2 e

m
− c2

m
(A0

1c
2 − 3A0

11)

e
m
c2 c4B5 (B2 −B3c

2) c4

p
m

1
3
B4

1
3
(B1 −B2c

2)

∣∣∣∣∣∣∣∣∣∣
, Y2 =

1

c2 D̃π
1

+ ν

∣∣∣∣∣∣∣∣∣∣
nc2 e

m
− c2

m
HV

e
m
c2 c4B5 − c2

m
B9

p
m

1
3
B4 − 1

m
B10

∣∣∣∣∣∣∣∣∣∣
.

If we calculate these expressions in µ = 0, ν = 0, we obtain exactly those reported in the
equations subsequent to (61) of [1].
We consider now eq. (14)1 contracted by hδ

α and eq. (14)2 contracted hδ
α Uβ. So we obtain

the system (A.14)1,2 of [1], i.e., p
m

2
A0

11

m

1
3
B4c

2 2
3
B2 c

2


hδµ

(
λµ − Uµ

T

)
hδµU νΣµν

 =

 0

− kB

m2 q
δ


By calling D̃3 the determinant of the coefficients, we see that the solution is

hδµ

(
λµ −

Uµ

T

)
=

2

D̃3

kB

m3
A0

11 q
δ , hδµU νΣµν = − 1

D̃3

kB

m3
p qδ . .

Finally, eq. (14)2 contracted h<δ
α hθ>3

β gives (A.15)1 of [1], i.e.,

2

15
B1 h

<δ
µ hθ>3

ν Σµν = − kB

m2
t<δθ>3 from which h<δ

µ hθ>3
ν Σµν = − 15

2B1

kB

m2
t<δθ>3 ,

as in the beginning of page 431 of [1].
Now we have to substitute all these results in (14)3,4. To this end let us first note that the
following identity holds:

Σβγ = Σµν h
µ
<β h

ν
γ>3

− 2

c2
Σµν U

ν hµ
(β Uγ) +

1

c4
(Σµν U

µU ν) Uβ Uγ +
1

3
hβγ (Σµν h

µν) .

Since Σµν is traceless, it follows

Σβγ = Σµν h
µ
<β h

ν
γ>3

− 2

c2
Σµν U

ν hµ
(β Uγ) +

1

c2
(Σµν U

µU ν)

(
1

c2
Uβ Uγ +

1

3
hβγ

)
,

10



and it is easy to verify that this Σβγ is traceless.
After that, we can compact the above results in the form

λ− λE = (λ− λE)(14) + µ∆1 + ν∆2 , λβ − λEβ = (λβ − λEβ)(14) + (µX1 + ν Y1)Uβ ,

Σβγ = (Σβγ)
(14) + (µX2 + ν Y2)

(
1

c2
Uβ Uγ +

1

3
hβγ

)
,

where the notation (· · · )(14) denotes the expression of (· · · ) in the 14 moments model. By
inserting these expressions in (14)3,4, we obtain

Aαβγ − Aαβγ
E =

(
Aαβγ − Aαβγ

E

)(14)

− m

kB

[
Aαβγ

E (µ∆1 + ν∆2) +mAαβγν
12 Uµ (µX1 + ν Y1) +

+mAαβγµν
22

(
1

c2
Uµ Uν +

1

3
hµν

)
(µX2 + ν Y2) + µ mAαβγµν

22 gµν + ν Aαβγ
V

]
,

Hα
V −Hα

EV = (Hα
V −Hα

EV )(14) − m

kB

[Hα
EV (µ∆1 + ν∆2) + Tαµ

V Uµ (µX1 + ν Y1) +

+Aαµν
V

(
1

c2
Uµ Uν +

1

3
hµν

)
(µX2 + ν Y2) + µ Aαµν

V gµν + ν V α
V V

]
, (21)

where(
Aαβγ − Aαβγ

E

)(14)

= −m

kB

[
Aαβγ

E (λ− λE)(14) +mAαβγµ
12 (λµ − λEµ)(14) +mAαβγµν

22 Σ(14)
µν

]
,

(Hα
V −Hα

V E)(14) = −m

kB

[
Hα

V E (λ− λE)(14) + Tαν
V (λµ − λEµ)(14) + Aαµν

V Σ(14)
µν

]
, (22)

and we have that this
(
Aαβγ − Aαβγ

E

)(14)

is exactly the expression for
(
Aαβγ − Aαβγ

E

)
reported

in [1], even if it is not traceless.

Since (Hα
V −Hα

V E)(14) is missing in [1], we evaluate it now and find

(Hα
V −Hα

V E)(14) =
Ñπ

111

D̃π
1

π

m
Uα +

N33

D3

qα , (23)

where D̃π
1 and D3 are the determinants in eq. (A.11)1 and in page 444 of [1], with the

pertinent adjustments in this article indicated, while

Ñ111 =

∣∣∣∣∣∣∣∣∣∣
n c2 e

m

A0
1 c2+A0

11

m

e
m

B5 c
2 B3 c

2 + 1
3
B2

HV c
2 B0 A0

1V c
2 + A0

11V

∣∣∣∣∣∣∣∣∣∣
, N33 =

9

2

1

mn2 c6

(
J2,1(γ∗)

)2

∣∣∣∣∣∣∣
p
m

2
A0

1

m

B10 2
A0

11V

m

∣∣∣∣∣∣∣ .

So the complete closure is given by (21), where
(
Aαβγ − Aαβγ

E

)(14)

can be taken from [1] with

the pertinent adjustments in the integrals above indicated and (Hα
V −Hα

V E)(14) from (23).
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4 Principal Subsystems

• We note that the subsystem, in the sense of [9], of eqs. (1) with Σµν = 0, ν = 0,

i.e. the eqs. ∂α V
α = 0 , ∂α T

αβ = 0 , ∂αA
αβ
β = Iβ

β is the relativistic counter-
part of the model called ET6 in [8]. In fact, the non relativistic limit of the first
two of these equations is (2)1−2,4, as before. Moreover, in sect. 2 we have seen that
∂α (cAα00 + c3 V α − 2 c2 Tα0) has a finite limit; it follows that
limc→+∞

[
1
c
∂α (cAα00 + c3 V α − 2 c2 Tα0) = 0

]
. Since Aαβ

β = Aαβγgβγ = Aα00 − Aαll,

we have limc→+∞

[
1
c
∂α

(
cAαβ

β + c3 V α − 2 c2 Tα0
)]

= − limc→+∞ ∂αA
αll. Thanks to

this fact and to eqs. (17)3,4 of [1], we see that the non relativistic limit of ∂αA
αβ
β = Iβ

β

is the trace of (2)3, i.e., the third eq. reported in the middle of page 7 of [8]. We
note that, in the full 14 moments model, this equation already exists as trace of the
eq. ∂αA

αij = I ij, so that it is necessary to multyply their difference by c2 and, after
that, calculate the limit so obtaining (3)7; but now we don’t need this further passage
because we have only the trace of ∂αA

αβγ = Iβγ. This fact shows the importance to
consider also this trace, to which it corresponds the Lagrange multiplier µ, otherwise
this subsystem ET6 couldn’t be obtained.

• We note that the subsystem of eqs. (1) with Σµν = 0, i.e. the eqs.

∂α V
α = 0 , ∂α T

αβ = 0 , ∂αA
αβ
β = Iβ

β , ∂αH
α
V = P is the relativistic counterpart

of the model called ET7 in [8]. In fact, for the first three of these equation we can
proceed as in the previous case and the last one gives (3)5. In this way we obtain the
eqs. reported in the middle of page 7 of [8]. Also in this case we see the necessity to
maintain the Lagrange multiplier µ.

5 The non equilibrium temperatures

We note that in the equation before (24) of [8] the authors have defined the non equilibrium
temperatures as

ϑK =
3

2λG
Ill

, ϑR =
1

2µG
IR

, ϑV =
1

2µG
IV

, (24)

where λG
Ill, µ

G
IR µG

IV are the Lagrange multipliers of their balance equations calculated for
zero velocity. To see their correspondent for the present equations we have firstly to consider
the non relativistic limits of our Lagrange multipliers, as we have already done for the fields.
To this end, we see that from (11) it follows d h′α = V αd λ + Tαβd λβ + Aαβγd λβγ +Hα

V d ν,
from which we desume

d

(
h′0

c

)
=
V 0

c
d

(
λ+ c2 λ00 +

ν

c
+ c λ0

)
+
T 0i

c
d (λi + 2 c λ0i) +

A0ij

c
d (λij) +

+
(
2T 00 − 2 c V 0

)
d

(
λ00 +

1

2 c
λ0

)
+

(
c2H0

V − c V 0
)
d
ν

c3
+

(
2A00i − 2 c T 0i

)
d
λ0i

c
+

+4
(
cA000 + c3 V 0 − 2 c2 T 00

)
d
λ00

4 c2
.

12



Now
(

h′0

c

)
in the non relativistic limit behaves like

(
V 0

c

)
so that it tends to h′classic; morever,

the coefficients of the differentials in the right hand side tend respectively to F , F i, F ij, Gll,
H ll

V , Gill, A2 (as seen above). So we deduce that the Lagrange multipliers of eqs. (3) are λcl,
λcl

i , λcl
ij, µ

cl, µcl
V , µcl

i , ηcl which are respectively the non relativistic limits of(
λ+ c2 λ00 +

ν

c
+ c λ0

)
, (λi + 2 c λ0i) , (λij) ,

(
λ00 +

1

2 c
λ0

)
,
ν

c3
,
λ0i

c
,
λ00

4 c2
. (25)

But in [8] the authors have not considered the present eq. (3)7 and, instead of the (3)4 they
have considered
∂t

(
Gll − F ll − H ll

V

)
+ ∂i

(
Gill − F ill − H ill

V

)
= −P ll

F − P ll
V .

So, instead of

d h′ = F dλcl + F i d λcl
i + F ij d λcl

ij + Gll d µcl + H ll
V d µ

cl
V + Gill d µcl

i + A2 d η
cl ,

with A2 = 2Gpppp − F pppp they have

d h′ = F dλG + F i d λG
i + F ij d λG

ij +
(
Gll − F ll − H ll

V

)
d µG

R + H ll
V d µ

G
V +Gill d µG

i +

+ A2 d η
G = F dλG + F i d λG

i + F ij d
(
λG

ij − µG
R δij

)
+

+Gll d µG
R +H ll

V d
(
µG

V − µG
R

)
+ Gill d µG

ill + A2 d η
G .

By comparing the two expressions we obtain the relation

λcl = λG , λcl
i = λG

i , λ
cl
ij = λG

ij − µG
R δij , µ

cl = µG
R , µ

cl
V = µG

V − µG
R , µ

cl
i = µG

ill , η
cl = ηG .

From this result we desume µG
R = µcl , λG

ij = µcl δij + λcl
ij , µ

G
V = µcl + µcl

V .

We substitute now these expressions in (24) and, after that, the scalars in (25) of which they
are the non relativistic limits; so we find

ϑK =
1

2λ00 + 1
c
λ0 + 2

3
λll

, ϑR =
1

2λ00 + 1
c
λ0

, ϑV =
1

2λ00 + 1
c
λ0 + 2 ν

c3

,

which can be written in covariant form as

ϑK =
1

2
c2

ΣαβUαUβ + 1
c2
λαUα + 2

3
Σαβhαβ

=
1

8
3 c2

ΣαβUαUβ + 1
c2
λαUα

, (26)

ϑR =
1

2
c2

ΣαβUαUβ + 1
c2
λαUα

, ϑV =
1

2
c2

ΣαβUαUβ + 1
c2
λαUα + 2 ν

c3

,

and we assume these expressions as definitions of the relativistic non equilibrium tempera-
tures. (We have substituted λαβ with Σαβ because [8] is obtained in the non relativistic limit
only if λαβ is traceless and we aim to find a definition corresponding to that of [8]).
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After that, we see that at equilibrium these temperatures have the same value ϑK = T ,
ϑR = T , ϑV = T , while at first order with respect to equilibrium they are

ϑK − T = −T 2

[
8

3 c2
ΣαβU

αUβ +
1

c2
(λα − λEα)Uα

]
,

ϑR − T = −T 2

[
2

c2
ΣαβU

αUβ +
1

c2
(λα − λEα)Uα

]
,

ϑV − T = −T 2

[
2

c2
ΣαβU

αUβ +
1

c2
(λα − λEα)Uα + 2

ν

c3

]
,

(27)

from which

ν =
c3

2T 2

(
ϑR − ϑV

)
, ΣαβU

αUβ =
3 c2

2T 2

(
ϑR − ϑk

)
,

(λα − λEα)Uα =
3 c2

T 2

[
ϑK − T − 4

3

(
ϑR − T

)]
.

(28)

As consequence of this result, if we think that the non equilibrium temperatures have phys-
ical meaning, then also the Lagrange multipliers ν, ΣαβU

αUβ and (λα − λEα)Uα assume a
corrsponding physical meaning and it is not necessary to desume them from (18).
At this point there are different possible choices:
1) The first one consists in continuing as above by taking n, Uα, T , π, qα, t<αβ>3 , Uα (Hα

V −Hα
EV ),

UαUβUγ

(
Aαβγ − Aαβγ

E

)
as independent variables desuming ν and µ from these last two

scalars; in this case eqs. (27) are simply definitions of non equilibrium temperatures and
are not used.
2) The second one considers n, Uα, T , π, qα, t<αβ>3 , ϑR−ϑV , UαUβUγ

(
Aαβγ − Aαβγ

E

)
as in-

dependent variables desuming µ from this last scalar; in this case the expression of Hα
V −Hα

EV

is explicitly obtained and eqs. (28)2,3 are not used.

3) In the third one we take n, Uα, T , qα, t<αβ>3 , ϑR − ϑV , ϑR − ϑK , UαUβUγ

(
Aαβγ − Aαβγ

E

)
as independent variables desuming µ from this last scalar; in this case (18)1,2 are used to
desume λ− λE and (λα − λEα)Uα, while (18)3 gives π. Moreover, (28)3 is not used.
4) In the last one the independent variables are n, Uα, T , qα, t<αβ>3 , ϑR − ϑV , ϑR − ϑK ,
ϑK−T . In this case (18)1,2 are used to desume λ−λE and µ. By using the above expressions
to calculate e, A0

1c
2 − 3A0

11, B2 −B3c
2, we see that the determinant of coefficients of the

unknowns is n2γ c8
(
J2,1(γ∗)

)−2

multiplied by

∣∣∣∣∣∣∣
J2,1(γ∗) J2,1(γ∗)

(
1 + 2 I

mc2

)
J2,2(γ∗)

(
1 + I

mc2

)
J2,2(γ∗)

(
1 + I

mc2

) (
1 + 2 I

mc2

)
∣∣∣∣∣∣∣ .
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By adding the first coulumn to the second one, it becomes

2

∣∣∣∣∣∣∣
J2,1(γ∗) J2,1(γ∗)

(
1 + I

mc2

)
J2,2(γ∗)

(
1 + I

mc2

)
J2,2(γ∗)

(
1 + I

mc2

)2

∣∣∣∣∣∣∣ .
So this last choice can be adopted only if this determinant is different from zero. (In any
case, the other 3 possible choices are surely mathematically correct).
Ater that, (18)3 gives π and all the other dependent functions are determined.

Conclusions: We have completed the closure of our balance equations (1). It still remains
the problem of the hyperbolicity requirement. If no approximation is introduced it surely
holds for every value of the independent variables; but in this case the closure is expressed
in terms of the integral (10) whose integrability doesn’t hold for every value of the fields.
If we introduce the Taylor’s expansion of this integral up to whatever order with respect to
equilibrium, then other integrals appear whose integrability has been proved in [12]. But if we
stop this Taylor’s expansion at a given order M with respect to equilibrium, then the zone of
hyperbolicity holds within a zone called ”hyperbolicity region” whose radius is an increasing
function of M , as it can be seen in [13] (In the abstract it is here written that, in the case
of one-dimensional space, with a second-order approximation the radius of the hyperbolicity
region is larger than the corresponding radius of the first-order approximation). This result
was also recently confirmed in [14]. Unfortunately, a Taylor’s expansion around equilibrium
is necessary when we want to express the closure in terms of physical variables instead of the
Lagrange multipliers due to human calculation problems. So the question remains on how
to perform this Taylor’s expansion without restricting the hyperbolicity zone. This can be
object of future investigations.
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