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Abstract: We formulate a series of strong ellipticity inequalities for equilibrium equations of the
gradient elasticity up to the Nth order. Within this model of a continuum, there exists a deformation
energy introduced as an objective function of deformation gradients up to the Nth order. As a
result, the equilibrium equations constitute a system of 2N-order nonlinear partial differential
equations (PDEs). Using these inequalities for a boundary-value problem with the Dirichlet boundary
conditions, we prove the positive definiteness of the second variation of the functional of the total
energy. In other words, we establish sufficient conditions for infinitesimal instability. Here, we restrict
ourselves to a particular class of deformations which includes affine deformations.

Keywords: strong ellipticity; strain gradient elasticity; infinitesimal stability; gradient elasticity of
the Nth order; Dirichlet boundary conditions
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1. Introduction

Among various generalized models of continua, the strain gradient elasticity can be
treated as a straightforward extension of the classic elasticity. Although invented together
with the classic elasticity, see [1-3] for historical developments in the field, the model did
not find essential applications. Nowadays, the situation has completely changed. Indeed, a
significant extension of the application of continuum and structural mechanics to various
scales including micro- and nanometre scales and to the modelling of new materials has
resulted in the extensive use of the strain gradient elasticity for the description of material
behaviour at small scales [4-7] as well as in the mechanics of composite materials with
a high contrast in the properties of their components [8-11]; see also [12,13] and the
references therein. The key idea of the strain gradient elasticity approach is based on the
consideration of higher-order deformation gradients as arguments of a deformation energy
density. Therefore, one can classify these models according to a maximal order of the
considered deformation gradient. As a result, the classic elasticity [14-16] could be treated
as a model of the first order, where the models by Toupin [17,18] and by Mindlin [19,20]
can be considered as a strain gradient elasticity of the second order. In addition to these
models, in the literature, a third-order strain gradient elasticity was used [13,21-23]. A
general Nth-order gradient elasticity was discussed in [24]; see also [12,13]. From the
physical point of view, the increase of the maximal order of deformation gradient serves as
a better description of so-called long-range interactions between material particles in solids
and fluids. From the mathematical point of view, the Nth-order gradient elasticity results
in a system of linear or nonlinear partial differential equations (PDEs) of the 2Nth order.
Their properties such as the existence and regularity of solutions could be studied using
the general theory of PDEs [25-28].
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Considering systems of PDEs, one can distinguish elliptic, parabolic, hyperbolic or
more general types of equations. Here, we consider strongly elliptic systems of PDEs using
the definition given by Vishik [29]; see also [30]. Note that ellipticity could be considered
as a natural property of statics. The strong ellipticity (SE) condition is closely related to
the infinitesimal stability of solutions. For example, in nonlinear elasticity, it was shown
that the SE condition implies the infinitesimal stability of an affine deformation for the
Dirichlet boundary conditions, whereas infinitesimal stability results in a weak form of the
SE conditions, called the Hadamard inequality [14-16]. In the case of higher-order models,
the relations between the SE and infinitesimal instability is less straightforward, see [31-33]
for the case of second- and third-order models.

The aim of this paper was to discuss the relations between the SE conditions and the
infinitesimal stability for the general case, i.e., for the strain gradient elasticity of the Nth
order. Here, we restricted ourselves to the first boundary-value problem, i.e., a problem
with the Dirichlet boundary conditions assumed on the whole boundary. From the physical
point of view, the infinitesimal instability for the first boundary-value problem could be
treated as a certain material instability; see [14—16] for the classic elasticity. Indeed, in this
case, an infinitesimal instability relates only to the material response as no external loadings
are presumed.

The paper is organized as follows. First, in Section 2, we introduce the governing
equations of the Nth-order gradient elasticity including the SE conditions. In Section 3, we
discuss a hierarchical series of constitutive equations of mth-order strain gradient materials,
m =1,...,N, and formulate the corresponding SE conditions called the SE;, conditions.
Finally, in the following sections, we establish the relations between the SE conditions and
the stability. In Section 4, we introduce the second variation of the total energy. In Section 5,
we discuss affine deformations, i.e., deformations with a constant deformation gradient.
Finally, in Section 6, we show that the SE;;, conditions are sufficient for the infinitesimal
stability of an affine deformation. On the other hand, similar to the classic elasticity, stability
implies only a weak form of the SEy condition, which plays the role of the Hadamard
inequality for the Nth-order strain gradient elasticity.

2. Governing Equations

Let B be an elastic solid body occupying in a reference placement » a volume V C R3
with a smooth enough boundary S = dV. A deformation of B is introduced as a smooth
invertible mapping from reference placement ¢ into a current placement x as follows:

x = x(X), @

where x and X are position vectors in )y and sz, respectively.
Within the Nth-order strain gradient elasticity there exists a deformation energy W
introduced as a function of deformation gradients up to the Nth order [24]

W =W(F,F,,...,Fy), 2)

where F; = F = Vx is the deformation gradient and F;;; = VF; = Vitlx, Vi=VV... v,
——
i =1,...,N —1 are deformation gradients of a higher order, and V is the Sbtlggi)la
operator [14,34]. In what follows, we assume that W is a twice continuously differentiable
function.
Applying to (2) the principle of the material frame indifference [16], we get the follow-
ing form of W
W=W(CKy,...,Ky_1), (3)

where C = F - FT is the Cauchy—-Green strain measure, K; = VF; - FT,i=1,...,N—1are
other Lagrangian strain measures, and - stands for the dot product [34].
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In what follows, we restrict ourselves to the first boundary-value problem, i.e., we
assume on S the Dirichlet boundary conditions

9%x

oNx
X1, 2
S on

oax
= Xo, =Xz, ... N

X JR—
S on

= XN, (4)

S S

where x;,i =1,...,N are given on S functions and d/9n is the normal derivative.
The total energy takes the form

E:///WdV—//pf~udS, ®)
1% S

where £ is a mass force vector, p is a mass density in sz, and u = x — X is the displacement
vector. Note that hereinafter, we assume a dead loading, so f does not depend on u and
its gradients.

Using the Lagrange variational principle, from the variational equation

SE=0, (6)

we get the equilibrium equation
V- -T+pf=0, @)

where T is the total stress tensor of the first Piola-Kirchhoff type given by the formulae

T=P, -V -Py+V-(V-P3)—...+(-DNIV(V-...(V-Py))

N .
=P+ ) (-1)7TH(V (VP ), ®)
=2 i times
W
PI—TE, l—l,,N (9)

Here, P; is the first Piola—Kirchhoff type hyperstress tensors of the (i + 1)th order.
Obviously, Equation (7) constitutes a system of PDEs of the 2Nth order, in general.
The strong ellipticity condition of (7) takes the form

°W
(k@k@...@l;@a).W.(k@@k@...@k@a) > Clk|®Nal?, (10)

N

N times N times

where k and a are arbitrary constant vectors, C is a positive constant independent on k
and a, |k|> = k -k, |a]?> = a-a,and ® and e are dyadic and full products, respectively. For
polyadics, the full product is defined as follows:

(a1 ®a®...0a,)e(bj@by®...Qby)

n
Z(ai-bl-)bn+1®...®bm, n<m
i=1
m
= ‘El(an_m_;'_i . bi)al K...Q0ap—m, n>m , (11)
1=
n
421(31' . bi), m=n
1=

where a; and b; are arbitrary vectors. By linearity, this definition of the full product could
be extended for tensors of any order; see [34] for more details.
Using the objective representation (3) of W, we can reformulate (10) as follows

2

kok®...9k®F-a)e —
(kok®.. 0k a)°aK§H

N times

e (kok®...2k®F-a) > Clk[*Na>. (12)
N—

N times
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Here, we have used the formula

W _ 87W_FT
oFy oKy

see [34] for more details on the calculation of derivatives of scalar- and tensor-valued
functions of tensorial arguments. Note that (12) coincides with (10) up to some notations
and the replacement a <— F - a.

Inequality (10) can also be written as a certain convexity-type condition with respect
to the highest-order deformation gradient

d2

TaW | EF . Fy oy Fy+ek@k® . @koa > C|k|*N|al|?. (13)
N times e=0

One can see that any form of the SE conditions affects only the dependence of W on the
highest-order deformation gradient.

3. Series of Gradient Models and Their Ellipticity

In addition to (2), let us consider a series of constitutive equations for strain gradient
materials of order m, 1 < m < N. For each material, we introduce a deformation energy
density as a reduction of (2)

Wy, =Wy, (F,F,...,Fy) = W(F,Fy, ..., Fy) (14)
Fpu41=0,...FN=0
Hereinafter, 0 means a zero tensor of any order.
Moreover, we normalize W, as follows
W1 :Wl(F) = W(F,Fz,...,FN) ’ (15)
F>=0,... FN=0
Wz = Wz(F, Fz) = W(F, Fz, . ,FN) — Wl(F), (16)
F3=0,....Fy=0
Wiy =Wu(F,Fy, ..., Fy) = W(E,Fy, ..., Fy)
Fy+1=0,...FN=0
m-1(F,Fo, ..., Fy_1), m=2,...,N. (17)
As a result, we get
Wy (F,Fa, ..., Fy) =0, m=2,...,N, (18)
meo
oW,
Wm_ZWl, P, = ZaFm =1...,N. (19)
In addition, let us assume that
P, =0, m=2,...,N. (20)
Fru=0

Thus, we assume that hyperstress tensor P, vanishes simultaneously with the mth defor-
mation gradient. Let us note that this assumption seems to be natural as P, is energetically
dual to F,. For example, (20) is fulfilled if s is a natural reference placement, i.e., without
initial stresses and hyperstresses.
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The strong ellipticity conditions related to these constitutive equations are given by

W,
(kok®...0k®a) 'TJH' (kok®...@k®a) > Culk[*al?, (21)
~—_——— ~—_————

m times " m times
where C,;, is a positive constant independent on k and a. In what follows, for brevity, we
call Equation (21) the SE condition of the mth order or simply the SE;, condition.

4. Infinitesimal Stability

Let X be a known solution of (4) and (7). Following [14,15], we call it stable if the
second variation of E is positive, 82E > 0, for any small nonzero kinematically admissible
deformations. If for a certain perturbation, 52E = 0, we say that X relates to a neutral
equilibrium. For the derivation of $°E, we use the following standard procedure. Let

X=X+ev (22)

be a perturbed deformation, where ¢ is a small positive number and v is a vector of addi-
tional displacement (perturbation). As x satisfies (4) we have the homogeneous Dirichlet
boundary conditions for v

2 N
Substituting (22) into (5), we get
E[x] = E[X] + €8E[X, V] + €262E[%, v] + 0(?), (24)
where
SE[X, V] ZEE[)?—FSV] , O%E[x,v] = d—zE[i—i-sv] (25)
de 0 de? e

are the first and second Gateaux differentials, respectively.
Since X is a stationary point of E, the first variation of E vanishes. Therefore, we come
to the formula
E[x +ev] — E[X] = e26%E[x, V] + o(¢?), (26)

where §°E[, v] takes the form

2
S2E[%, V] :% ///%W(Pﬂsz,Fz+sVVv,...,FN+eVNv) av
v e=0

_ly v/ l EF Fy) e VivdV 27
_Zi,jz_ll/v// VanjaFi(, 2., Fn)eVivdV, (27)
where F; = Vix.

For a neutral equilibrium, we have that 52E [X,v] > 0 and there exists v* such that
02E[%,v*] = 0. As in [14], we can show that v* satisfies the linearized equilibrium equation

%(—wv (V <a2w.va> )—0 (28)
ot — JF OF;
mes

and boundary conditions (23).
Let us show that the infinitesimal stability, i.e., the inequality

S’E[x,v] >0, Vv#0, (29)
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W
Hk,a;X)= (keok®...0k®a)e W[X] e (kk®...@k®a) >0, (30)
N———— ~ ~—_—
N times N N times

for any vectors k and a and for any point X € V. Hereinafter, for brevity, we use the

notation ) )
W oW~ ~ ~
ﬁ[ | = m(F(X),FZ(X),...,FN(X)).

Relation (30) is similar to the Hadamard inequality in nonlinear elasticity [14-16]. In order
to prove (30), we use the partition of unity technique [25]. Let us consider a vector-function
ve with finite support, suppve = V; = {X : [X = P| < ¢}, where ¢ is a small positive
number and P is a position vector of a pointin V, P € V, P ¢ S. We introduce v, as follows

= Ff)f (), y=(X-P), @)

where a is a constant vector and f is an even function such that f € C{°[—1,1] and

1

/f(y)dyzl, F(E1) =0, f(£1)=0, ..., fN(x1)=0.

2

As an example, the bump function could be used as f which is defined by

o= { sole) s

0, |yl>1

Substituting v, into (29) and changing the variables X — y, so V, = ¢V, dV,, = €4V,
we get

A e

z—l

771;1 /// —]V]yvo 9F OF, [ey+P] oc ’Vlvs avy, (32)

where v = Vg‘£:1, V= Ve| dVy, = dy1dyadys. Thus, we get that

e=1’

2r7s 32N = 1 [ one . W i
PE[R, ve] = N[y + 0(e)], ]N—ZQ/L//VyvoaFjaFi[P]oVyvdVy. (33)
%4

Therefore, we can conclude that the term with higher-order gradients in (27) should be at
least non-negative, otherwise (29) is violated. As a result, we get the inequality

]N[v}zl// Vv e W [Ple VNv dV >0 (34)
2 7 JFNOF N -

for all v and for any point in V.
Finally, let us demonstrate that (34) implies (30). Let us assume the opposite, i.e., that

there exist a point P* and a vector k* such that H(k*, a; P*) < 0. As % [X] is continuous,
there is a neighbourhood V;* = {X : | X — P*| < ¢} for a small enough number ¢ > 0,
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In[v

such that for all X € V', we have H(k*, a;X) < 0. Now, let us consider v as an oscillating
function with finite support such that

v = cos[Ak™ - (X = P¥)]p(X)a, (35)

where ¢ € C° is a function with finite support, suppp C V', ais a constant vector, and A
is a positive number. For v, we have the formulae

Vv = — Asin[Ak* - (X — P*)]o(X)k* @ a+ O(1),
V2v = — A2 cos[Ak* - (X — PH)]p(X)k* @ k* @ a+ O(A),
Viv =A3sin[Ak* - (X — PH)]o(X)k* @ k* @ k* ® a+ O(A?),

so Jn[v] takes the form

2W
AN (k¥ Kk* * * IN—1
T2 /// K@  okoa)epor [Plel . oki®a)dV+0A™)
N times N times
=A2NH(1<* a;P*)B" + 0N, 36)

///COS [AK* - (X = P")]¢*(X)dV, N =2k,
///Sm AK*- (X - P)gA(X)dV, N =2k-1.

Considering a la rge enough A, we can conclude that [y < 0, which contradicts (34). Thus,
the assumption was wrong and we came to (30).

5. Affine Deformations and Linearized Equations

For the first boundary-value problem in nonlinear elasticity of simple materials, it
was established that the SE condition implied the infinitesimal stability of affine deforma-
tions [14,15]. By an affine deformation, we mean such a deformation that C or F is constant.
For the Toupin-Mindlin strain gradient elasticity, it was shown in [31,32] that it was not the
case, in general. The sufficient conditions for the strain gradient elasticity of the third order
were established in [33].

Let us consider the infinitesimal stability of an affine deformation within the Nth-order
gradient elasticity. As F is a constant tensor, we have that all higher-order deformation
gradients vanish,

F,=0,...,Fy=0.

Using (20) we also get that the hyperstresses vanish too,
P, =0,...,Py =0.

With (18) and (20), we can prove that the second variation and the equilibrium equations
take the simpler form

N . .
—é@///VIVODiOVlvdV, (37)
=y

N . .
izzl(q)lv-...(v- (Di.vv)...):o (38)
i times
PW
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Note that the tangent moduli tensors D; are constant, so (38) is a system of PDEs with
constant coefficients. The SE,;, conditions take the form

(kok®...9k®a)eD, e (kok®...2k®a) > Cylk|*|a>, m=1,...,N. (39)
—_— —
m times m times

6. Stability of Affine Deformation

Let us show that (39) are the sufficient conditions for infinitesimal stability. In what
follows, we use the proof of the Garding inequality; see e.g., [25]. As v satisfies (23), we can
extend it to the whole space as follows

[ v(X), XeV;
wiX) = { 0, XeR\V. (40)
Let w(k) be the Fourier transform of w(X); therefore, we have formulae
w(k ! / / / KXy (X) dX; dXa d X,
27[)3

1 .
e

where i is the imaginary unit, i> = —1, and dV = dX; dX, dX;.
Using the Plancherel theorem [35], we can transform 02E as follows

SPE= L ///k K D; e (k k W) dk; dko dk 41
Z ®...0kew)eD;e (k®... @ k@W)dk dk,dk;. (41)
i times i times

Here, the overbar denotes the complex conjugate. Let us recall that the Plancherel theorem
states that B

[ £eon0 ax = [ foh(k) dk

R R

for any two functions f(X), h(X) € Lp(R) N Li;(R), where L; and L, are Lebesgue
spaces [36].
Using the SE,; conditions, we get that

SE >= 2///(: (k... 0kow)e (k®...®kow) dk dk; dks
—_—— —_——

i times i times

:5 2 /// CViw o ViwdX; dX,dXs
i=1
R3

1Y , ,
:2;///civ1v.v1vdv>o, Vv £0. 42)
=y

Thus, the SE,;; conditions are sufficient for infinitesimal stability. Obviously, they are not
necessary, in general; see [31,32]. In particular, for the linear Toupin—Mindlin strain gradient
elasticity it was shown that for uniqueness, one could assume SE; whereas SE; could be
relaxed [32].

Summarizing the previous results, we can formulate the following theorem.

Theorem 1. Let W be a twice continuously differentiable functions of deformation gradients up to
the Nth order. Then, infinitesimal stability, i.e., the positive definiteness of the second variation of
the total enerqy functional, implies the weak form of the strong ellipticity condition given by (30).
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All SEy;, inequalities, m = 1,..., N, result in the stability of the affine deformations for the first
boundary-value problem.

7. Conclusions

Following the general definition of strong ellipticity [29], we introduced the strong
ellipticity (SE) condition within the Nth-order strain gradient elasticity and discussed its
relation to the infinitesimal stability of an affine deformation for the first boundary-value
problem. Let us note that affine deformations play an important role in the mechanics of
materials as they can be used for experimental studies of materials. Among them there
are tension/compression tests, pure shear, etc. Unlike the nonlinear elasticity of simple
materials [14,15], we demonstrated that the SE condition alone was insufficient for stability.
Thus, we formulated a series of SE conditions for the models with a reduced order of
deformation gradient starting from the SE condition for a simple material. The latter
material was introduced as a reduction of the Nth-order gradient material. In a similar
way, we introduced a series of hierarchical models of the mth order, m = 1,..., N. One
can treat the mth-order model as a gradient regularization of the (m — 1)th model. Such a
regularization keeps the ellipticity even if the previous material loses it; see [37] for more
details. These SEm conditions are sufficient for infinitesimal stability but not necessary, in
general.

Let us note that in nonlinear elasticity, the Hadamard inequality plays the role of a
so-called constitutive inequality [14-16], i.e., an additional condition applied to the form
of constitutive equations and to deformations of an elastic material. Thus, in the strain
gradient elasticity of the Nth order, a similar inequality as (30) could also be treated as a
constitutive inequality.
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