
  

Abstract— In the last decade, the transition of digital 
terrestrial television (DTT) systems from multi-frequency networks 
(MFNs) to single-frequency networks (SFNs) has become a reality. 
SFN offers multiple advantages with respect to MFN, such as a 
more efficient management of the radioelectric spectrum, 
homogenizing the network parameters, and a potential SFN gain. 
However, the transition process can be cumbersome for operators 
due to the multiple measurement campaigns and required 
finetuning of the final SFN system to ensure the desired quality of 
service. To avoid time-consuming field measurements and reduce 
the costs associated with the SFN implementation, this paper aims 
to predict the performance of an SFN system from the legacy MFN 
and position data through machine learning (ML) algorithms. It is 
proposed a ML concatenated structure based on classification and 
regression to predict SFN electric-field strength, modulation error 
ratio, and gain. The model's training and test process are 
performed with a dataset from an SFN/MFN trial in Ghent, 
Belgium. Multiple algorithms have been tuned and compared to 
extract the data patterns and select the most accurate algorithms. 
The best performance to predict the SFN electric-field strength is 
obtained with a coefficient of determination (R2) of 0.93, 
modulation error ratio of 0.98, and SFN gain of 0.89 starting from 
MFN parameters and position data. The proposed method allows 
classifying the data points according to positive or negative SFN 

gain with an accuracy of 0.97. 
 Keywords— Machine learning, MFN, SFN gain, SFN 

planning. 

I. INTRODUCTION 

The last years have been marked by the significant 
proliferation of novel multimedia services, applications, and 
smart mobile broadband devices [1]. This evolution comes 
together with an unstoppable growth in data traffic, especially 
multimedia. The most recent forecast from CISCO [2] shows 
that by 2022 the video traffic will be 79 % of the total cellular 
data traffic. 

In this context, broadcast/multicast technologies like single-
frequency networks (SFNs) [3] are crucial for the existing and 
emerging mobile broadband standards, such as Long Term 

Evolution (LTE), 5G New Radio (NR), and beyond.  
 SFN has been assumed worldwide by telecommunication 

operators to save radio frequency resources and homogenize 
the network. However, the transition from a multi-frequency 
network (MFN) to an SFN might lead to multiple 
measurement campaigns and resource-consuming tuning 
processes to achieve the expected performance and quality of 
service (QoS). The above explanation justifies why, in the last 
years, several investigations have been oriented to exploit 
better and quantify the SFN capabilities beyond digital 
terrestrial television (DTT) and digital audio broadcasting [4-
8].  

Recently, multiple works have been conducted on the 
necessary broadband-broadcast convergence to enable a 
higher spectral efficiency for future mobile networks. Several 
broadcast-native concepts, such as SFN, are worthy to enable 
multicast-unicast service in 5G, or ATSC 3.0-5G 
convergence, boosting research interest in SFN planning [9-
11]. 

The appropriate prediction of SFN metrics such as 
coverage, modulation error ratio (MER), potential 
interference, and the resulting network gain over the legacy 
MFN is fundamental for operators during dimensioning and 
planning [12]. It allows offering a satisfactory QoS to end-
users and exploits the advantages of the SFN topology.  

Traditionally, broadcast operators use theoretical and/or 
empirical propagation models to estimate network parameters 
and performance during the network planning phase [13]. 
Nevertheless, in [12], the authors exposed that the propagation 
models' imperfections become even more critical for the 
current and future generations of DTT and broadband systems. 

In [14], the authors explained that the next-generation 
wireless networks evolve into more complex systems with 
multiple service requirements, heterogeneity in applications, 
devices, and networks. Additionally, the operators have access 
to large amounts of data. Therefore, they envisioned data-
driven next-generation wireless networks, where the network 
operators employ advanced data analytics, machine learning 
(ML), and artificial intelligence (AI). 

ML algorithms are inexpensive and powerful tools, widely 
used to learn data patterns by exploiting the relevant 
information from a previously collected dataset [15]. 
Recently, ML has been applied for planning and optimizing 
telecommunication networks and services [12, 13, 15, 16], 
proving its advantages over theoretical and/or empirical 
propagation models. ML allows predicting multiple key 
performance indicators of broadband and broadcast systems 
with high accuracy, avoiding the constant necessity of field 
measurements.  

The previously defined situation motivates the goal of 
predicting the performance of an SFN system from the legacy 
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MFN and position parameters through supervised ML 
algorithms. The proposal is based on regression ML 
algorithms to predict SFN electric-field strength (E), MER, 
and gain values. Moreover, it is proposed the use of a 
classification ML algorithm to predict whether the SFN gain 
is positive or negative.  

The model's training and test process is performed with a 
dataset of 389 samples from an SFN/MFN trial in Ghent, 
Belgium. The regression algorithms are evaluated through 
numerical simulations using the coefficient of determination 
(𝑅ଶ), mean absolute error (𝑀𝐴𝐸), and root mean square error 
(RMSE). Moreover, the classification algorithms are tested in 
terms of prediction accuracy. We prove different regression 
and classification ML algorithms and different ML 
concatenated structures to maximize the proposal 
performance. 

The results show the potentials of ML algorithms to predict 
the performance of an SFN only using MFN and position data. 
It could reduce the risks and costs associated with the SFN 
implementation avoiding time-consuming, expensive 
measurements and the inaccuracy of theoretical and empirical 
propagation models. To the authors’ knowledge, it is the first 
time that a concatenate structured of trained ML algorithms is 
used to predict SFN performance in terms of electric-field 
strength, modulation error ratio, and gain based on MFN and 
position data. 

The remainder of this paper is structured as follows. Section 
II discusses related works in SFN systems and the use of ML 
for network planning. Section III presents the problem and 
system formulation. In section IV, the validation, numerical 
results, and analysis of the proposal are presented. Finally, in 
section V, the document is concluded. 

II. RELATED WORKS 

This section surveys the state of the art related to SFN 
planning and ML applications on network planning.  

 
A. SFN Planning 

This subsection covers some of the most recent works 
related to SFN planning and its advantages for actual 
broadcast and broadband technologies and beyond.  

The worldwide DTT deployments have traditionally 
utilized MFN, a network structure that uses different 
frequencies in the service area [17] (i.e., with N transmitters, 
N frequency channels are used). However, the increasing 
demand of spectrum for mobile broadband services reduces 
the available spectrum for DTT systems.  

In [3], the SFN topology was presented. This technology 
optimizes the spectrum resources because it provides the 
required coverage through multiple transmitters operating at 
the same frequency and carrying the same content [18]. 
Within the SFN coverage area, many receiving locations could 
be served by more than one transmitter. It introduces a certain 
redundancy level during signal reception improving service 
availability. Moreover, a more homogeneous field strength 
distribution is settled throughout its coverage area, enabling a 
potential network gain [18]. 

In [19], the authors proposed a methodology for calculating 
SFN gain in digital broadcast systems. In this paper, the SFN 

gain is defined as a parameter describing potential gain or 
interference, and it is closely related to the geographical 
distribution of the network. SFN gain is defined as 

𝐺ௌிே ൌ 𝑀𝐸𝑅ௌிே െ 𝑀𝐸𝑅ெிே (1) 

where 𝑀𝐸𝑅ௌிே  and 𝑀𝐸𝑅ெிே  are the modulation error 
ratio at a specific location within the service area. A positive 
or negative value of 𝐺ௌிே  means a signal improvement or 
degradation at each specific geographical point.  

In [20], Caiwei et al. presented a methodology based on 
theoretical network models for planning large SFNs for 
Digital Video Broadcasting-T2 (DVB-T2). The authors 
highlighted that finding the suitable configuration is complex 
due to the large number of parameters involved in the process. 

In [21], the authors evaluated intra-system interference in 
DVB-T2 SFN systems. The authors proposed a method to 
reduce interference by optimizing the relative delay for each 
SFN transmitter. They used the Longley-Rice model for 
predicting the propagation of radio waves and coverage areas. 

In [22], the authors proposed an approach to optimize SFN 
planning for digital television/terrestrial multimedia 
broadcasting (DTMB) based on genetic algorithms (GAs). 
The proposal aimed to deal with the complexity of the design 
and deployment of SFNs.  

The advantages of the broadcast network structure and 
planning concepts have been presented in recent broadband 
technologies for broadcast and multicast applications. For 
LTE and LTE-Advanced services, SFN plays a key role. It 
was introduced in Release 9 of the 3rd Generation Partnership 
Project (3GPP) as a multimedia broadcast single frequency 
network (MBSFN), where the same content is transmitted to a 
group of users in a cell using a subset of available resources 
[23]. Likewise, SFN is determinant for the broadcast/multicast 
services over 5G networks, reducing interference and 
handover rates between physical cells and contributing to the 
users' QoS [8].  

In [5], the authors proposed a dynamic MBSFN area 
formation algorithm for multicast service delivery in 5G NR 
networks to enable the simultaneous transmission of the same 
content within multiple cells over the same radio resources, 
improving network scalability and spectral efficiency. 

In [24], He-Hsuan et al. presented a flexible partitioning 
method for SFN areas in the emerging NR multimedia 
broadcast multicast service (MBMS), enabling a more flexible 
network structure, and resources usage. The authors identified 
that the system performance could be improved by developing 
an adequate SFN area and interference handling planning. 

In [25], the authors proposed a model selection algorithm 
for multicast service delivery between MBSFN and single-cell 
point to multipoint (SC-PTM). The proposal exploited the 
trade-off between the utilization of user diversity via SC-PTM 
and the extra SFN gain from MBSFN. 

The works presented above help to understand the essential 
capabilities of SFN technology for actual and future television 
and broadband standards. Nevertheless, throughout these 
papers, we can agree on the complexity of SFN planning in 
terms of multiple network variables, QoS parameters, 
interference handling, and the requirement for extensive 
measurement campaigns. Moreover, none of these papers take 
advantage of the ML algorithms that recently have been used 
as a powerful tool for wireless network planning. In contrast, 



our proposal applies an ML concatenated structure to predict 
the performance of an SFN from legacy parameters of the 
MFN and position data. 

 
B. ML Prediction for Network Planning 

This subsection covers some of the most recent works 
related to ML prediction for network planning. The research 
shows the potential of using regression and classification ML 
algorithms to estimate broadcast/broadband network 
parameters during the planning phase. 

As described in [26], ML is a research field at the 
intersection of statistics, AI, and computer science, also 
known as predictive analytics or statistical learning. In [27], 
ML is defined as “the science (and art) of programming 
computers so they can learn from data.” 

In [12], the authors proposed a novel DTT coverage 
prediction method using several ML regression algorithms 
and field strength measurements. The best performance was 
achieved with random forest (RF) [28] compared to Adaboost 
regression [29], K-nearest neighbors (KNN) regression [30], 
and ordinary kriging [31] algorithms.  

In [32], ML algorithms were used to learn path gain based 
on terrain elevation features. The results showed an 8 dB 
improvement compared with a traditional empirical model.  

Reference [33] presented a network planning tool based on 
GA and supervised ML algorithms [34]. The presented 
analysis demonstrated that the proper exploitation of data and 
experience through data analysis could add value to the 
operators during the planning and deployment of networks. 

In [35], the authors suggested using neural network (NN) 
algorithms [36] to predict signal to interference ratio. They 
recommended the radial basis network algorithm as a method 
for coverage map prediction. 

In [15], a received signal strength prediction strategy based 
on ML was proposed for coverage evaluation in 5G networks. 
The authors evaluated the performance employing different 
ML algorithms. The results showed that support vector 
machine (SVM) [37] outperformed other classification 
algorithms regarding prediction accuracy, up to 0.87. 

In [38], the authors proposed cellular network power 
control optimization by using the unsupervised K-means 
algorithm [39]. They evaluated the proposal in a real mobile 
network with positive results regarding voice quality and 
dropped call rate. 

In [16], the authors proposed an artificial NN based on 

multilayer perceptron (MLP) [40] for path loss prediction in a 
wireless communication network. The authors’ proposal 
aimed to understand the propagation characteristics of radio 
waves and provided a theoretical basis for wireless network 
optimization and communication system design. 

The investigations mentioned above represent a good 
benchmark to address wireless network planning from an ML 
approach. These papers prove the advantages of ML 
algorithms predicting coverage, handling interference, and 
helping to reduce the complexity and uncertainty associated 
with network planning. In this framework, our proposal is 
based on supervised regression and classification ML 
algorithms to predict SFN E, MER, and gain by employing a 
dataset resulting from an SFN/MFN trial in Ghent, Belgium. 

III. PROBLEM AND SYSTEM FORMULATION 

Our proposal aims to help to reduce the complexity and 
performance uncertainty during the transition from an MFN to 
an SFN and the corresponding network planning. This 
research intends to show the possibility of having a 
performance estimation of an SFN from collected data about 
the legacy deployed MFN, position information, and ML 
algorithms.  

The proposal formulation comprises three major phases, 
shown in Fig. 1: data collection and preparation, ML 
algorithms training according to the target SFN parameters to 
predict, and proposal of concatenated structures of the trained 
ML algorithms to improve the prediction’s performance. In 
the following subsections, we detail these phases.  

A. Phase 1: Data Collection and Preparation 

In [19], Plets et al. presented the results of a measurement 
campaign realized in Ghent, Belgium (Fig. 2). The 
measurements were taken along a 50 km route around three 
base stations (Tx1, Tx2, Tx3) in a mixture of a suburban and 
an urban environment.  

The authors used four network configurations to alternate 
between MFN and SFN. In one of the configurations, all the 
transmitters were active and synchronized in SFN mode. In 
each of the remaining scenarios, only one of the transmitters 
was active, being the rest switched off. Then, at each sample 
point along the track, they collected the position data (GPS 
coordinates), E [dBµV/m], and MER [dB] relative to the four 
network configurations. Spatial synchronization among the 

 
Fig. 1. General workflow of the proposal. 
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four tracks was obtained via a map-matching procedure [41]. 
The resulting dataset stores 389 points with 27 registered 
variables related to position information, MFN, and SFN 
parameters. The details about this measurement campaign are 
described in [19].  

Table I shows the registered parameters for each sample 
point. The collected data can be divided into three main 
categories: position, MFN, and SFN data. The position’ 
variables give the specific measurement point coordinates and 
relative information concerning the transmitters’ location. The 
MFN data are the measured E, MER received from each 
transmitter and their corresponding standard deviations. These 
data at each location are what we assume as legacy deployed 
MFN. The SFN data are E, MER, gain (resulting from 
applying (1) to the measured MER values), and corresponding 
standard deviations. 

Beside the data preparation, we check for outliers across the 
collected variables E (EMFN, ESFN), MER (MERMFN, MERSFN), 
and the resulting SFN gain (GSFN). We identify that the GSFN 
variable presents several outliers, as we show in Fig. 3. At the 
same time, E and MER do not present outliers in the collected 
data. 

Fig. 3 shows the density and quantitative distribution of the 
GSFN variable. This representation facilitates the 
categorization of a variable in different levels. The upper box 
shows the quartiles of the GSFN variable, while the whiskers 
extend to show the rest of the distribution, leaving out the 
points that are determined as outliers. As we can see, the 
distributions of GSFN values are between ±12 dB with several 
outliers beyond that. Nevertheless, the first two quartiles (50 

% of data values) are between ±3 dB.  
From [19], we can conclude that SFN gain values higher 

than 5 dB are unrealistic for the transition from an MFN to an 
SFN configuration. 75 % of the dataset sample points have an 
absolute GSFN value lower than or equal to 5 dB. Therefore, to 
safeguard the data reliability of our procedure, we reduce the 
dataset to values in this range |GSFN| ≤ 5 dB (288 samples). 

Another critical step during data preparation is the 
correlation analysis among the variables. We focus on the 
main MFN and SFN performance parameters collected in the 
dataset: EMFN, ESFN, MERMFN, MERSFN, and GSFN. Fig. 4 
shows the correlation of each one of these variables with the 
others. 

There is high correlation between the measured E value and 
the corresponding MER in the sample points. For a constant 
level of noise at the receiver end, if the E increases, the signal 
to noise ratio (SNR) and the resulting MER increase.  

The MER is a modulation quality metric in digital 
communications systems [42]. It indicates the receiver’s 
ability to correctly decode the transmitted signal, comparing 
the actual location of a received symbol to its ideal reference 
signal in the modulation constellation. From a mathematical 
point of view, the MER is the ratio of the E of the signal to the 
power of the error vector, expressed in dB [42]. Therefore, as 
the E of the signal degrades, the error vector of the symbols 
increases, and consequently, the measured MER value 
decreases, as shown in Fig. 4.  

From Fig. 4, we can also appreciate the high correlation 
between EMFN, MERMFN, and the ESFN, MERSFN. This well-
defined correlation means that the reception conditions and 
the receiver’s signal quality in an MFN determine the 

TABLE I 
VARIABLES REGISTERED AT EACH LOCATION 

Type of 
data 

Variable description Number of 
variables 

Position 

GPS coordinates  2 
Distance to each Tx 3 
Distance difference of the closest and 
furthest Tx 

1 

Distance difference to the two closest Tx 1 

MFN 

E from each Tx 3 
Highest E of the three Tx (EMFN) 1 
Standard deviation of MFNE values 
(EstdMFN) 

1 

MER from each Tx (dB) 3 
Standard deviation of MER from each Tx 3 
Highest MER of the three Tx (MERMFN) 1 
Standard deviation of MFNMER values 
(MERstdMFN) 

1 

E difference of the two strongest Tx 1 
Distance difference of the two strongest 
Tx 

1 

SFN 

E value of the SFN (ESFN) 1 
Standard deviation of E value of the SFN 
(EstdSFN) 

1 

MER value of the SFN (MERSFN) 1 
Standard deviation of MER value of the 
SFN (MERstdSFN) 

1 

SFN gain (GSFN) 1 
Total 27 
Distance (m); E (dBµV/m); MER (dB); SFN gain (dB) 

 
Fig. 2. Map of Ghent with the three base stations (red circles) and the
measurement route's indication. 

Fig. 3. Density and quantitative distribution of the SFN gain (GSFN).  



reception conditions and signal quality in the resulting SFN 
topology. Nevertheless, in the case of the GSFN parameter, we 
can see that this variable is uncorrelated with the independent 
MFN and SFN parameters. It happens because the positive or 
negative SFN gain in a specific sample point depends only on 
the difference between the MERSFN and MERMFN, according 
to (1).  

The SFN gain value does not directly relate to the variation 
of the E of the signal in MFN or SFN from one sample point 
to another. Moreover, as proved in [19], an improvement in 
the E on a specific sample point due to the transition from 
MFN to SFN does not imply a positive value of SFN gain. An 
increment in SFN E does not necessarily imply an increment 
in the MER signal quality. The SFN topology could introduce 
signal quality impairments concerning the MFN topology, 
even when SFN interfering signals arrive within the guard 
interval. 

We use the well-defined correlation between the EMFN and 
MERMFN with the resulting values of ESFN and MERSFN as the 
ground base for our proposal. The ML approach takes 
advantage of these relations among the discussed dataset 
variables to train regression and classification ML algorithms 
to predict the performance of an SFN from the legacy MFN 
parameters. 

 
B. Phase 2: ML Algorithms Training 

ML algorithms could be used to solve mainly supervised or 
unsupervised problems. In the first case, the algorithms are 
trained with a dataset based on inputs (called features) and 
their corresponding outputs (called labels). The algorithms 
find and learn the patterns between the features and labels to 
predict further the outputs related to unseen samples of 
features [26, 27].  

Based on the previous analysis and the preparation of the 
dataset, we can define our ML problem as a supervised 
problem according to the proposed goal. The MFN and 
position data are the features, and the ESFN, MERSFN, and GSFN 
parameters are the specific labels. 

Supervised ML algorithms can be divided into 
classification and regression models [43]. In the first type, the 
labels are discrete (e.g., to predict if a point in an SFN 
coverage area will have a positive or negative SFN gain). In 
regression models, the prediction is for continuous outcomes 
(e.g., to estimate the ESFN value in the coverage area).  

In our proposal, we aim to solve three supervised ML 
problems: two based on regression algorithms to predict the 
ESFN and MERSFN values (i.e., EpSFN and MERpSFN, 
respectively), and the third based on classification algorithms 
to predict if the sample points are classified into positive or 
negative GSFN (i.e., GpclassSFN). Additionally, due to the linear 
dependency of the gain SFN on the MERMFN and MERSFN 
values, we calculate the GSFN value (GpSFN) by applying (1) 
with the predicted MERpSFN and the measured MERMFN 

values. 
In Table II, we summarize the considered regression and 

classification ML algorithms. The theoretical fundamentals 
and practical implementations of such regression and 
classification algorithms can be found in [26, 27, 43, 44]. The 
selection of the algorithms is based on the study of the related 
works, where the outperformance of these algorithms for 
wireless communications applications is proved. 

As shown in Fig. 1, the ML training and evaluation phase 
includes the data normalization, feature importance iterative 
analysis, data train/test split, grid-search/cross-validation, 
and, finally, the evaluation of the algorithms through specific 
error metrics. The training and evaluation are iterative 
processes throughout all these steps to optimize the results 
according to the proposed goal. 

The normalization of the input data avoiding numerical 
attributes with different scales is only necessary for the SVM 
and MLP algorithms. These algorithms are sensitive to the 
different scales of the MFN and position data. Therefore, this 
process is crucial to improve their performance. We apply the 
normalization method Min-Max scaling [27], transforming all 
features into the range [0, 1]. 

Feature importance is another critical process during the 

 
Fig. 4. Univariate distributions and pairwise relationship of EMFN, MERMFN, ESFN, MERSFN and GSFN.  



training and evaluation phase to reduce the number of 
essential variables based on the correlation between the 
features and labels. Determining the most critical features 
during network planning is a necessary task for any 
telecommunication operator. A large number of input data 
represents a more complex dataset and not necessarily better 
performance. F-test statistics [45], Mutual Information (MI) 
[46], and Principal Component Analysis (PCA) [47] are three 
methods widely utilized for dimension reduction, e.g., [13, 15, 
48]. However, revealing the most relevant monitoring features 
is more complex with the PCA. 

 Considering the previous explanation, we evaluate the 
different ML algorithms using F-test and MI. Then, through 
the iterative training process, we select the method that 
identifies the best subsets of features to maximize the result 
for the three defined ML problems. Under this iterative 
training and evaluation process, the best performance is 
obtained with MI. Therefore, in Table III, we show in 
descending order the 14 most relevant features for predicting 
ESFN, MERMFN, and GSFN.  

Table III could be analyzed as a complement of the 
previously presented dataset correlation analysis. We can see 
how, for ESFN, the two most important features are EMFN and 
MERMFN. Additionally, for MERSFN the three most important 
features are ESFN, EMFN and MERMFN. These results are in total 
accordance with the univariate distributions and pairwise 
relationships presented in Fig. 4. In the case of GSFN, the two 
most important features are MERSFN and MERMFN in 
accordance with (1). 

After the definition of the feature subset that better 
represents the labels in each ML problem, the dataset is split 
into the train (80 %) and test (20 %) data, guaranteeing to fit 
the ML algorithms and estimate their performance with 
different data. We apply Grid-search and k-fold cross-
validation to evaluate all the possible combinations of 
hyperparameters that characterize the ML algorithms and fine-
tune them. According to the reduced size of the dataset, we 
use k = 10, which offers the best tradeoff between bias and 
variance [27].  

Finally, as an iterative process, the ML trained models are 
evaluated. If their performance is worse than the desired, we 
start the process again.  

The performance evaluation process for the regression ML 
models is based on the 𝑅ଶ, 𝑀𝐴𝐸, and RMSE. The coefficient 
of determination is considered in [49] as a more intuitive 
metric to evaluate regression models. The 𝑅ଶ  metric is 
understood as a standardized version of the mean square error 
(𝑀𝑆𝐸) or as the fraction of response variance that is captured 

by the model [43], defined as 
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  (2) 

where 𝑉𝑎𝑟ሺ𝑦ሻ is the variance of the expected values in the 
dataset (the label). The 𝑦ሺ௜ሻ is an expected value, 𝑦ොሺ௜ሻ is the 
corresponding predicted value, and 𝑁  is the number of 
samples of the dataset. Whereas the expression 𝑦ሺ௜ሻ െ 𝑦ොሺ௜ሻ is 
the prediction error of the sample 𝑖 (𝑒𝑟𝑟𝑜𝑟௜). If 𝑒𝑟𝑟𝑜𝑟௜ is equal 
to zero for every i, the 𝑅ଶ value is equal to one, which means 
that the model fits the data perfectly with an 𝑀𝑆𝐸 = 0 [43]. 

 The 𝑀𝐴𝐸  represents the performance of the prediction 
model for each observation sample [16]. It measures the 
distance between two vectors: the vector of predictions and 
the vector of target values. The 𝑀𝐴𝐸 does not characterize the 
type of errors but helps to weight the error magnitude. It is 
defined as 

𝑀𝐴𝐸 ൌ
∑ |௘௥௥௢௥೔|
ಿ
೔సభ

ே
. (3) 

The 𝑅𝑀𝑆𝐸 explains how large is the error that the system 
typically makes in its predictions [27]. It is defined as 

𝑅𝑀𝑆𝐸 ൌ ඨ
∑ ሺ𝑒𝑟𝑟𝑜𝑟௜ሻଶே
௜ୀଵ

𝑁
 

(4) 

This metric punishes larger errors than smaller ones. It is 
important to highlight that the units of the 𝑅𝑀𝑆𝐸 are the same 
as the original units of the predicted value. 

On the other hand, we use the accuracy metric and the 
confusion matrix to analyze the performance of the 
classification ML algorithms. The former represents the ratio 
of correct predictions [50]. Whereas the latter counts the 
number of instances of class A classified as class B (e.g., the 
number of instances classified as ‘1’ when there really are ‘0’, 
which means false positive) [27]. 

TABLE II 
CONSIDERED REGRESSION AND CLASSIFICATION ML ALGORITHMS 

Regression algorithms 
(ESFN, MERSFN) 

Classification algorithms 
(GSFN) 

- Gradient Boosting (GB) - Support Vector Classification 
(SVC) 

- Random Forest (RF) - Gradient Boosting Classification 
(GBC) 

- Support Vector Regression 
(SVR) 

- Logistic Regression (LogR) 

- Multilayer Perceptron 
Regression (MLP-R)  

- Multilayer Perceptron 
Classification (MLP-C) 

TABLE III 
FEATURE RANKING OBTAINED BY MUTUAL INFORMATION FOR ESFN, MERSFN, 

AND GSFN 
R SFNE  SFNMER  SFNG  
1 EMFN ESFN MERSFN 
2 MERMFN MERMFN MERMFN 
3 d to Tx 2 EMFN d diff of the two 

strongest Tx 
4 Coordinate Y Coordinate Y MFNE 
5 d to Tx 3 d to Tx 2 d to Tx 3 
6 MER from Tx 3 d to Tx 3 E diff of the two 

strongest Tx 
7 E from Tx 3 d diff of the closest 

and furthest Tx 
d diff of the closest 
and furthest Tx 

8 E diff of the two 
strongest Tx 

E from Tx 2 Coordinate Y 

9 EstdMFN MER from Tx 2 d to Tx 2 
10 MER from Tx 2 E diff of the two 

strongest Tx 
EstdMFN 

11 E from Tx 2 MER from Tx 3 ESFN 
12 d diff of the closest 

and furthest Tx 
Coordinate X MERstd from Tx 2 

13 d to Tx 1 E from Tx 3 E from Tx 2 
14 Coordinate X E from Tx 1 MER from Tx 3 
Ranking (R); distance (d); difference (diff). 



C. Phase 3: ML Concatenated Structure 

Table III shows that the most important feature to predict 
MERSFN is the ESFN. However, the goal of our proposal is to 
train the ML algorithms to be capable of predicting the SFN 
parameters from just the MFN and position data. The same 
happens for the classification into positive or negative SFN 
gain (GpclassSFN), the most important feature to predict it is 
the MERSFN. This situation motivates the use of a 
concatenated structure of ML algorithms to take advantage of 
such correlations and improve the results. 

The proposed ML concatenated structure is presented in 
Fig. 5. The letter “p” in the name of the variables is introduced 
to differentiate the predicted features from measured values 
for the same metric (e.g., EpSFN is the predicted feature and 
ESFN is the measured one). The measured values are used for 
the training process, while the predicted values are used for 
the evaluation of the concatenated structure. 

EpSFN is predicted only with MFN and position data 
parameters. The resulting EpSFN, the position and MFN data, 
are used as features to predict the MERpSFN. We train the ML 
algorithms to predict the MERSFN values by using the 
measured values of ESFN, MFN and position data. In contrast, 
we use the EpSFN as input in the evaluation process.  

As we previously define, to calculate the exact GSFN value 
(GpSFN), we apply (1) with the predicted MERpSFN and the 
measured MERMFN. Then, combining the previous stage of 
prediction, EpSFN and MERpSFN with the position and MFN 
data we predict the GpclassSFN. As in the previous case, we 
train the classification algorithms with the measured values of 
ESFN, MERSFN, MFN and position data. 

IV.  RESULTS 

This section presents the results of the training phase for the 
individual algorithms and the performance analysis of the ML 
concatenated structure. The proposal is validated by 
comparing with the performance of the direct prediction of the 
SFN parameters, only using position and MFN parameters. 

A. Results of ML Algorithms Training  

 Fig. 6, 7, and 8 show the results of the ML algorithms 
predicting ESFN and MERMFN in terms of 𝑅ଶ, and GclassSFN in 
terms of accuracy. All the presented results are for the ML 
algorithms trained to use in the concatenated structure. The 
evaluated features are ordered according to the ranking 
presented in Table III.  

Fig. 6 shows the results for predicting the ESFN parameter 
applying the regression algorithms GB, RF, SVR, and MLP-
R. The best performance is obtained by RF, which requires 
only the five most important features presented in Table III to 

achieve the best result 𝑅ଶ = 0.93. A similar result is reached 
by the SVR algorithm, in this case with the six most important 
features. Fig. 6 shows that using more features does not imply 
better performance. Therefore, identifying the most important 
features has a relevant influence during the ML training 
process. 

As Table III shows, the two most important features to 
predict ESFN are the EMFN and MERMFN values of the MFN at 
each location. Nevertheless, features three, four, and five from 
Table III allow the algorithm to improve the 𝑅ଶ  value 
performance compared to when just using EMFN and MERMFN 
in the training process.  

For MERSFN (Fig. 7), the RF algorithm converges to the best 
result 𝑅ଶ = 0.983 with the four most important features. In this 
case, the most important feature to predict the MERSFN is the 
ESFN, as we can see in Table III. Additionally, the 𝑅ଶ values 
for RF, GB, SVR, and MLP range from 0.975 to 0.983, 
meaning that the contribution of the remaining features is 
significantly less critical. This result corroborates the strong 
correlation between ESFN and MERSFN presented in Fig. 4.  

Fig. 8 shows the results for GclassSFN during the training 
and evaluation phase. In this case, the GBC and MLP-C 

Fig. 5. ML concatenated structure (Phase 3). 

MFN/position
data

ML-ESFN

ML-MERSFN

ML-GclassSFN

Fig. 6. R2 vs. number of features for ESFN.  

 

Fig. 7. R2 vs. number of features for MERSFN.  

Fig. 8. Accuracy vs. number of features for GclassSFN.  



algorithms converge to a perfect accuracy equal to 1 with the 
two most important features (MERSFN and MERMFN). This 
result is logical and in total accordance with the linear relation 
of GSFN value with MERSFN and MERMFN presented in (1). 

B. Results of the ML Concatenated Structure 

This subsection presents the results of the ML concatenated 
structure. As defined in section III, this work aims to predict 
the SFN performance only with the MFN and position data. 
Avoiding time-consuming and expensive measurements, the 
proposed ML concatenated structure allows predicting the 
SFN parameters E, MER, gain, and the classification of 
positive or negative gain. The results could help provide the 
desired QoS to end-users and exploit the advantages 
associated with the deployment of SFNs. 

The prediction of the EpSFN value is only based on MFN and 
position data, as we defined in the previous section. The best 
ML algorithm to estimate the SFN E is RF with an 𝑅ଶ = 0.93, 
a 𝑀𝐴𝐸 = 1.90 dBµV/m, and an 𝑅𝑀𝑆𝐸 = 2.76 dBµV/m. 

To predict MERpSFN, we evaluate the proposal for all the 
combinations of supervised ML algorithms, presented in 
subsection III-B. GpSFN is then calculated as the difference 
between the most accurate MERpSFN prediction and the 
measured MERMFN.  

Table IV presents the four best combinations of applying 
the ML concatenated structure in terms of 𝑅ଶ , 𝑀𝐴𝐸 , and 
𝑅𝑀𝑆𝐸 . The combination of GB, GB with the subtraction 
operation has the best performance, estimating the MER with 
an 𝑅ଶ  = 0.98 and the SFN gain with an 𝑅ଶ  = 0.89. The 
concatenated structure outperforms the direct prediction of 
MERpSFN and GpSFN by 5 % and 44 %, respectively. The 
considerable difference between the concatenated ML 
structure and the direct prediction of GSFN demonstrates the 
previously presented (subsections III-A and III-B) weak 
correlation of the SFN gain with just position and MFN 
parameters.  

Table V shows the five best results predicting EpSFN, 

MERpSFN values, and GpclassSFN. In the case of the ML 
classification algorithms, the evaluation is expressed in terms 
of accuracy. The combination with the best performance is 
GB, GB, and GBC. It is possible to estimate the discretized 
gain values with an accuracy equal to 0.97. Comparing with 
the direct prediction, we highlight that our proposal improves 
the prediction of GpclassSFN by 24 %. 

Fig. 9 shows the confusion matrix resulting from the best 
ML concatenated structure to predict the discretized values of 
SFN gain (GB+GB+GBC). 47 % of the test points are true 
positives, and 48.3 % are true negatives. Moreover, only 3.1 
% of the test data points are false positives, whereas 1.6 % are 
false negatives. 

V. CONCLUSION 

This paper presents an ML concatenated structure to predict 
the performance parameters: electric-field signal strength, 
modulation error ratio, and gain of an SFN from the legacy 
deployed MFN and position data. We train, concatenate, and 
evaluate several supervised regression and classification ML 
algorithms to maximize the prediction performance. 

We apply several methods during the data preparation and 
the ML algorithms training, allowing us to drop the dataset 
outliers, and fine-tune the algorithms. We use feature 
importance and data correlation analysis to understand the 
existing pairwise relationships between the SFN and MFN 

TABLE IV 
SFN PREDICTION ERROR METRICS BY THE CONCATENATED STRUCTURE (REGRESSION ALGORITHMS) AND THE DIRECT PREDICTION 

Variable Error metrics GB+GB+subtraction GB+RF+subtraction RF+GB+subtraction RF+RF+subtraction DP 
EpSFN R² 0.92 0.92 0.93 0.93 0.93 

MAE [dBµV/m] 2.10 2.10 1.90 1.90 1.98 
RMSE [dBµV/m] 2.98 2.98 2.76 2.76 2.8 

MERpSFN R² 0.98 0.98 0.97 0.98 0.93 
MAE [dB] 0.54 0.61 0.80 0.72 1.57 
RMSE [dB] 1.03 1.03 1.11 1.02 2.13 

GpSFN R² 0.89 0.88 0.85 0.83 0.45 
MAE [dB] 0.53 0.63 0.80 0.88 1.78 
RMSE [dB] 1.00 1.01 1.16 1.23 2.29 

 
TABLE V 

SFN PREDICTION ERROR METRICS BY THE CONCATENATED STRUCTURE (REGRESSION AND CLASSIFICATION ALGORITHMS) AND THE DIRECT PREDICTION 
Variable Error metrics GB+GB+GBC RF+GB+GBC GB+RF+GBC RF+GB+LogR MLP+MLP+MLPC DP 

EpSFN R² 0.92 0.93 0.92 0.93 0.92 0.93 

MAE [dBµV/m] 2.10 1.90 2.10 1.90 1.96 1.98 

RMSE [dBµV/m] 2.98 2.76 2.98 2.76 2.7 2.8 
MERpSFN R² 0.98 0.97 0.98 0.97 0.94 0.93 

MAE [dB] 0.54 0.80 0.61 0.67 0.66 1.57 

RMSE [dB] 1.03 1.11 1.03 1.09 1.9 2.13 

GpclassSFN Accuracy 0.97 0.95 0.94 0.93 0.88 0.73 

 

 

Fig. 9. Confusion matrix for the GpclassSFN resulting from the best ML
concatenated structure. 
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parameters. These results show the main dependencies of the 
SFN labels and help to complement from a ML perspective 
the results presented in [19].  

The two most important features to predict ESFN are the 
EMFN and MERMFN parameters of the MFN at each location. 
The best ML algorithm to estimate the electric field strength 
is RF with an 𝑅ଶ  = 0.93, a 𝑀𝐴𝐸  = 1.90 dBµV/m, and an 
𝑅𝑀𝑆𝐸  = 2.76 dBµV/m. This result is obtained from only 
MFN and position data. 

For MERSFN, the most important features are the ESFN, 
MERMFN, and EMFN. The best concatenated structure for the 
MERSFN prediction is GB with GB, obtaining an 𝑅ଶ = 0.98 
dB, a 𝑀𝐴𝐸 = 0.54 dB, and an 𝑅𝑀𝑆𝐸 = 1.03 dB.  

To predict the SFN gain value, the best concatenated 
structure combines GB, GB, and the subtraction of the 
predicted MERpSFN with the measured MERMFN, achieving an 
𝑅ଶ  = 0.89, a 𝑀𝐴𝐸 = 0.53 dB, and an 𝑅𝑀𝑆𝐸  = 1.00 dB. 
Furthermore, the best performance to estimate the discretized 
values of SFN gain is obtained with the ML concatenated 
structure GB, GB, and GBC. It is possible classifying into 
positive or negative the SFN gain at each dataset point with an 
accuracy of 0.97. 

The results prove that the ML concatenated structure 
outperforms the direct prediction of the SFN parameters. In 
the case of the GSFN value, the concatenated structure improves 
the results by 44 %. In the case of the GpclassSFN, the 
concatenated structure improves the results by 24 %. 

 The proposal could help to reduce the uncertainty of 
theoretical and empirical propagation models during the 
network planning and the long time and expensive 
measurements associated with the transition from an MFN to 
an SFN. Our proposal shows the feasibility of having a 
performance estimation of an SFN from collected data about 
the legacy deployed MFN and position data by using ML 
algorithms. 
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