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 72 
Abstract 73 
Invasive alien plants are a major threat to biodiversity and they contribute to the unfavourable 74 
conservation status of habitats of interest to the European Community. In order to favour 75 
implementation of European Union Regulation no. 1143/2014 on invasive alien species, the Italian 76 
Society of Vegetation Science carried out a large survey led by a task force of 49 contributors with 77 
expertise in vegetation across all the Italian administrative regions. The survey summed up the 78 
knowledge on impact mechanisms of invasive alien plants in Italy and their outcomes on plant 79 
communities and the EU habitats of Community Interest, in accordance with Directive no. 80 
92/43/EEC. The survey covered 241 alien plant species reported as having deleterious ecological 81 
impacts. The data collected illustrate the current state of the art, highlight the main gaps in 82 
knowledge, and suggest topics to be further investigated. In particular, the survey underlined 83 
competition as being the main mechanism of ecological impact on plant communities and Natura 84 
2000 habitats. Of the 241 species, only Ailanthus altissima was found to exert an ecological impact 85 
on plant communities and Natura 2000 habitats in all Italian regions; while a further 20 species 86 
impact up to ten out of the 20 Italian administrative regions. Our data indicate that 84 out of 132 87 
Natura 2000 Habitats (64 %) are subjected to some degree of impact by invasive alien plants. 88 
Freshwater habitats and natural and semi-natural grassland formations were impacted by the 89 
highest number of alien species, followed by coastal sand dunes and inland dunes, and forests. 90 
Although not exhaustive, this research is the first example of nationwide evaluation of the 91 
ecological impacts of invasive alien plants on plant communities and Natura 2000 Habitats. 92 
 93 
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 98 
1. Introduction 99 
Biological invasions are one of the most important drivers of biodiversity loss and ecosystem 100 
degradation worldwide (Seebens et al., 2017). The establishment and spread of invasive alien 101 
species (IAS) have affected multiple ecosystem processes, including community composition, 102 
biotic interactions, and functions and services (Vilà and Hulme, 2017). Furthermore, IAS can also 103 
impact important socio-economic assets, reducing the efficiency of natural resource exploitation, 104 
affecting infrastructure effectiveness, and imposing costly management efforts (Bacher et al., 105 
2017). IAS are indeed one of the major drivers of changes in European habitats, and increase the 106 
probability of unfavourable conservation status of natural habitats (Maes, 2013), causing a general 107 
deterioration of biodiversity and the alteration of habitat structure and functions in plant 108 
communities (Pyšek et al., 2012; Gigante et al., 2018). Therefore, it is an urgent and complex goal 109 
in invasion biology to understand the mechanisms underlying biological invasions, one crucial to 110 
predicting habitat invasibility (i.e. susceptibility to invasions) and recognising community response 111 
to invasion in order to implement actions for the restoration and long-term management of 112 
invaded habitats. 113 
Despite there being a general awareness of the effects of invasive alien plants (IAPs), in Europe 114 
there is still a lack of exhaustive works investigating the effects of IAPs on native plant 115 
communities and on the habitats of Community Interest listed in the Habitats Directive (Council 116 
Directive no. 92/43/EEC, hereafter N2000 Habitats) (Guerra et al., 2018). The N2000 network 117 
proved to be crucial for preserving the EU’s biodiversity, although there are increasing calls for 118 
improvements and adjustments (Trochet and Schmeller, 2013; Friedrichs et al., 2018). The 119 
importance of the N2000 network in tackling the risks posed by biological invasions was 120 
underlined by the European Commission in the EU 2020 Biodiversity Strategy, and further 121 
emphasised in the recent EU 2030 Biodiversity Strategy. However, there is still no common 122 
approach for protecting the N2000 network, and its efficacy in decreasing the vulnerability to 123 
invasive alien species is in large part still unknown (Guerra et al., 2018; Mazaris and Katsanevakis, 124 
2018). Data on the presence and impact of IAS on the N2000 network is crucial to counter their 125 
detrimental impacts, and of pivotal importance when considering the effects of climate change, 126 
which are likely to increase the uncertainty associated with IAS performance (Guerra et al., 2018). 127 
Indeed, protected areas and the N2000 network could become valuable tools to tackle the spread 128 
of invasive species, especially in the light of future climate change (Gallardo et al. 2017). 129 
In Italy, research on IAPs has gained momentum in the last 20 years (Lazzaro et al., 2019). Celesti-130 
Grapow et al. (2009) published the first comprehensive checklist, recently updated by Galasso et 131 
al. (2018a). Several national projects and studies have been carried out in the last ten years (e.g. 132 
Malavasi et al., 2018; Celesti-Grapow et al., 2016; Lazzaro et al., 2019). Nevertheless, scientific 133 
literature concerning the impacts of IAPs in Italy is still patchy and there are no data for some taxa 134 
and N2000 habitats. 135 
In this context, the Italian Institute for Environmental Protection and Research (ISPRA) 136 
commissioned a project to collect information on the impacts of IAPs on biodiversity and on the 137 
N2000 network in Italy. The aim was to support national implementation of Regulation (EU) 138 
1143/2014 on IAS. The study, designed and conducted by the Italian Society of Vegetation Science 139 
(SISV), had two main aims: develop of a check-list of alien-dominated plant communities in Italy 140 
(Viciani et al., 2020); and assess of the ecological impacts of IAPs on N2000 Habitats in Italy. To 141 
achieve this second goal, we carried out a survey of the literature and of expert opinion that 142 
involved a large number of botanist members of SISV. Specifically, this survey aimed at i) verifying 143 
and listing IAPs known to affect native plant communities and N2000 Habitats on a regional and a 144 
national scale, and ii) assessing the mechanism by which species make an impact and the possible 145 



impacts exerted (i.e. impact mechanisms and impact outcomes, respectively, according to 146 
Blackburn et al., 2014) and iii) determining whether impact outcomes are exerted on specific 147 
N2000 Habitats. A supplementary aim was iv) to verify the presence of specific patterns of 148 
invasion in N2000 Habitats, hypothesising that the life form and the time since its first 149 
introduction may play a pivotal role in the threat posed by IAPs to Italian N2000 Habitats. 150 
2. Methods 151 
2.1 Definitions and context 152 
We adopted the Regulation (EU) no. 1143/2014 definition of IAS as those “whose introduction or 153 
spread has been found to threaten or adversely impact upon biodiversity and related ecosystem 154 
services”. We focused on Ecological impacts, defined as “a measurable change to the properties of 155 
an ecosystem by an alien species”, considering only deleterious impacts, meant as “any impact 156 
that changes the environment in such a way as to reduce native biodiversity or alter ecosystem 157 
function to the detriment of the incumbent native species” (Blackburn et al., 2014). We included 158 
both natural and semi-natural ecosystems, considering only impacts affecting the native biota 159 
and/or ecosystem processes. Conversely, we did not consider either impacts on native species at 160 
the individual or population level, or any effect on human society (thus excluding any 161 
economic/social and health effects of IAPs).  162 
We adopted the impact scheme of the Global Invasive Species Database (GISD 2020), as described 163 
in Blackburn et al. (2014), taking into account all possible impact mechanisms identified by the 164 
scheme, and all the ecological impact outcomes at the ecosystem/habitat level (see Table 1).  165 
Table 1. Impact mechanisms and outcomes adopted in the survey of Italian IAPs. Each mechanism 166 
listed in the left column may result in one or more of the outcomes listed in the right column 167 
(Blackburn et al., 2014). 168 
 169 

Impact mechanism Impact outcomes exerted at the ecosystem/habitat level 

Competition 
Modification of hydrology/water regulation, purification and 
quality /soil moisture 

Predation Primary production alteration 
Hybridization Modification of nutrient pool and fluxes 
Disease transmission Modification of natural benthic communities 
Parasitism Modification of food web 
Poisoning/Toxicity Reduction in native biodiversity 
Bio-fouling Unspecified ecosystem modification 
Grazing/Herbivory/Browsin
g 

Habitat degradation 

Rooting/Digging Habitat or refugia replacement/loss 
Trampling Physical disturbance 
Flammability Modification of fire regime 
Interaction with other 
invasive species 

Modification of successional patterns 

Others Soil or sediment modification: erosion 
 Soil or sediment modification: bioaccumulation 
 Soil or sediment modification: modification of structure 

 
Soil or sediment modification: modification of pH, salinity or 
organic substances 

 Other 

 170 



The nomenclature of IAPs follows Galasso et al. (2018a). As the assessment of the effects of IAPs 171 
on habitats of community interest made up a pivotal part of our data collection, to define the 172 
habitats we followed the “Italian Interpretation Manual of the 92/43/EEC Habitats Directive” 173 
(Biondi et al., 2009) and the Interpretation manual of European Union EU28 (European 174 
Commission, 2013). 175 
 176 
2.2 Survey strategy 177 
Our evaluation of the current impact outcomes of IAPs in Italy was based on a survey of the 178 
literature and expert opinion. The working group was composed of 49 members of the SISV (the 179 
co-authors of the present work – mainly technicians or academic botanists, with expertise in 180 
vegetation science, N2000 Habitats and IAPs), who provided data and their knowledge of the 181 
situation at the local (regional) level or regarding specific IAPs.  182 
We provided each expert with a spreadsheet template that included specific guidelines on the 183 
type of data required and how to fill in the spreadsheet (see Appendix 1). The template included 184 
an initial list of 184 IAPs established in Italy, taken from the National Alien Plant Species Data Base 185 
(Lazzaro et al., 2019). The contributors were asked to provide data on impact mechanisms and 186 
outcomes in their region in accordance with Blackburn et al. (2014), see Table 1. Particularly, for 187 
each species of the list, experts were asked to provide the following information: a) impact 188 
mechanism, b) impact outcomes, c) impact outcomes with specific reference to N2000 Habitats, d) 189 
data source, specifying whether it originated from i) scientific literature, ii) technical reports or 190 
grey literature or iii) expert assessment, and e) the level of uncertainty of the data provided. In 191 
addition, contributors were encouraged to add to the list any further IAPs found to have an 192 
impact. 193 
The survey strategy adopted in the study followed the framework of the consensus-building 194 
approach (see Vanderhoeven et al., 2017), in which several rounds of structured questionnaires, 195 
with subsequent aggregation of responses followed by feedback to the experts, are used to 196 
reduce inconsistencies among assessors. In our case, in a first round of evaluation, the 197 
contributors were asked to fill in the template individually, after reading the guidelines and the 198 
referenced documentation. Data from this preliminary collection (which ended on 2017 July 31) 199 
were aggregated and presented to all contributors during a two-day workshop (2017 October 16-200 
17), to discuss possible shortcomings and identify knowledge gaps and dissimilarities in the data 201 
collection. After the workshop, we opened a second call (conclusion in 2017 December) to allow 202 
all the contributors to homogenize the data provided and overcome the shortcomings that 203 
emerged during the workshop. 204 
2.3 Data analyses 205 
2.3.1 Breakdown of results on IAPs and impacts outcomes and mechanisms 206 
The data obtained on the impacts (mechanisms and outcomes) of IAPs on plant communities and 207 
N2000 Habitats were merged into a single table. The data were cleaned and standardized, spelling 208 
mistakes were corrected and duplicate records were deleted. Data were organized to depict the 209 
overall patterns of IAP distribution across Italian regions, and to outline patterns of impact 210 
mechanisms and outcomes on native plant communities and N2000 Habitats at species and 211 
administrative regions levels.  212 
2.3.2 Patterns of invasion on N2000 Habitats 213 
With the aim of detecting specific trends of invasion, for all IAPs assessed as having an impact on 214 
N2000 Habitats at a national level, we collected further data regarding a) the life form, b) the 215 
number of administrative regions colonized (according to Galasso et al., 2018a and subsequent 216 
updates, Galasso et al., 2018b; 2018c) and c) the date of the first introduction in Italy (information 217 
retrieved from literature and technical sources, see Appendix 2). However, although of paramount 218 



importance, data on the time of introduction is not entirely reliable, since it may correspond 219 
either to the date of the first introduction in botanical gardens or to the first detection in nature. 220 
Accordingly, we chose to reclassify neophytes into three main groups: 1) introduced between 221 
1492 and 1800, 2) introduced between 1800 and 1950 and 3) introduced from 1950 to date 222 
(2020). This grouping (hereafter named introduction period) reflects the main changes in global 223 
human flows, passing from the age of geographical discoveries to the XIX century (1492–1799), 224 
from colonialism to the industrial revolution and the two world wars (1800–1950), and finally from 225 
the time of the economic boom to globalisation (1951–2020).  226 
We excluded from the analysis all the species introduced before 1492 (archaeophytes) (only eight 227 
species among those exerting impacts on N2000 habitats: Abutilon theophrasti, Arundo donax, 228 
Cuscuta cesatiana, Cyperus esculentus, Cyperus serotinus, Isatis tinctoria subsp. tinctoria, Ricinus 229 
communis, Sorghum halepense), and Salvinia molesta, whose presence in Italy is doubtful.  230 
We analysed impacts on single N2000 habitats (as indicated by the entire N2000 code, e.g. 1210) 231 
and then on macro-categories, as indicated by the first number of the N2000 code (e.g. 1: coastal 232 
habitats, 2: dune habitats and so on; see European Commission, 2013). To avoid possible biases 233 
due to the uneven number of habitats across administrative regions, the analyses were conducted 234 
at the national level (i.e. we used number of habitats and habitat macro-categories invaded by the 235 
species in Italy). 236 
To investigate the correlation between the number of habitats, the number of macro-categories of 237 
habitats and the number of colonized administrative regions, we ran a correlation analysis for 238 
each introduction period, we calculated the pairwise Spearman’s rank correlation coefficient 239 
(Spearman’s ρ) and evaluated its significance by means of the asymptotic t approximation. 240 
Finally, we ran a series of generalized linear models (GLM) to study the effect of the introduction 241 
period and of the life form categories on the number of invaded N2000 habitats, the number of 242 
invaded N2000 habitat macro-categories, and the number of invaded administrative regions. 243 
Given the overdispersion of our data, we adopted a quasi-Poisson distribution and evaluated the 244 
significance of the terms with an ANOVA table. All the analyses were conducted in R environment 245 
vers. 3.6.1 (R Core Team 2019). 246 
3. Results 247 
3.1 Breakdown of results on IAPs and impacts outcomes and mechanisms 248 
We collected data on 241 IAPs, 57 more than the 184 originally indicated in the template (see 249 
Appendix 2). Only a few species were reported in a high number of administrative regions and by 250 
several contributors. In general, degree of knowledge varied substantially between regions, as 251 
shown by the variation in numbers of regional records on impact mechanisms and outcomes (Figs. 252 
1A and 1B). The number of IAPs assessed as having an ecological impact (Fig. 1C) and the 253 
distribution of impacts on N2000 habitats (Fig. 1D), varied widely between administrative regions. 254 
Similarly, compared to the total number of habitats harboured in a given region, the percentage of 255 
those exposed to some degree of ecological impact was very variable, with Lombardy and Friuli-256 
Venezia Giulia having more than half of the habitats impacted by IAPs, followed by Molise and 257 
Sardinia (Fig. 1E). Variability also characterized the relationship between species and their impact 258 
mechanisms and outcomes. Indeed, most IAPs had very few reports of mechanisms of impact–220 259 
out of 241 species had less than five reports of impacts–while only a handful of species had a high 260 
number of records. A similar situation was found as far as impact outcomes are concerned: most 261 
of the species had very few reports and very few species had a high number of records (see Fig. 2). 262 
Of the impact mechanisms, “Competition” was the most frequent, being common to around 83% 263 
of reports, followed by “Unknown” mechanism (4%), “Interaction with other invasive species” (4%) 264 
and “Poisoning/toxicity” (3%). 265 



Ailanthus altissima, listed in all Italian administrative regions, was the species with the highest 266 
number of records of impact mechanisms. Competition was the main impact mechanism assigned 267 
to the species, followed by “Rooting/digging”. Further species with a very high number of records, 268 
such as Senecio inaequidens, Robinia pseudoacacia, Helianthus tuberosus and Sorghum halepense, 269 
were all assessed as invaders with a high degree of impact in many administrative regions (see Fig 270 
3A for main mechanisms of the first 23 species). Nevertheless, despite a high number of impact 271 
reports, most data–62%–came from expert assessments that were not experimentally verified 272 
(Fig. 4 A). Only 25% of the reports were retrieved from the scientific literature and 13% from 273 
technical reports and grey literature.  274 
Species most frequently recorded for impact outcomes differed from those most frequently 275 
recorded for impact mechanisms: Robinia pseudoacacia was the species with the highest number 276 
of impact outcome records, followed by Acacia saligna, Amorpha fruticosa, Arundo donax, 277 
Ailanthus altissima, Carpobrotus edulis, C. acinaciformis, Helianthus tuberosus, Senecio 278 
inaequidens, and Solidago gigantea (Fig 3B). As with impact mechanisms, most of the records 279 
(78%) were from expert assessments, while 13% were retrieved from technical reports and grey 280 
literature, and only 9% from the scientific literature (Fig. 4B). 281 
Reduction in native biodiversity was by far the most reported outcome, followed by general 282 
habitat degradation, loss of habitat and refugia, and modification of successional patterns (Fig. 283 
5A). The ranking of threats posed to N2000 Habitats showed the same order. Indeed, a reduction 284 
in native biodiversity was cited for nearly all N2000 habitats present in Italy (81 out of 84), 285 
followed by the same outcomes named above (Fig. 5B). 286 
Nonetheless, impacts were unevenly distributed, especially in terms of the number of IAPs 287 
impacting specific habitats, and less in terms of the number of administrative regions in which the 288 
target N2000 habitat is impacted (Fig. 6A-B). N2000 Habitat 3270 was by far the one impacted by 289 
the highest number of invasive species (79 species), followed by N2000 Habitat 6430. At the 290 
macro-category level, freshwater habitats (N2000 Habitats 3xxx) and natural and semi-natural 291 
grassland formations (N2000 Habitats 6xxx) were impacted by the highest number of alien species, 292 
followed by coastal sand dunes and inland dunes (N2000 Habitats 2xxx), and forests (N2000 293 
Habitats 9xxx). In terms of the regional distribution of impacted habitats, freshwater habitats were 294 
generally affected in many regions, with coastal sand dunes, coastal and halophytic habitats 295 
(N2000 Habitats 1xxx) and forests also being frequently affected (Fig 6 B). 296 
3.2 Patterns of invasion on N2000 Habitats 297 
The 241 IAPs recorded in our survey included 167 neophytes invading the N2000 habitats; 29 298 
species were introduced before 1800, 84 between 1800 and 1950, and 54 after 1950 (Appendix 2). 299 
Therophytes (56 species) and phanerophytes (45) were the most frequent life forms, followed by 300 
hemicryptophytes (19), geophytes (17), chamaephytes (16), and hydrophytes (14). Ailanthus 301 
altissima, Robinia pseudoacacia, Senecio inaequidens, Amorpha fruticosa, and Carpobrotus edulis 302 
were the most frequent invaders both in N2000 habitats (28, 25, 23, 17, 16 each respectively) and 303 
in habitat macro-categories (7, 7, 8, 6, 5 respectively), although with slightly different rankings 304 
(see Appendix 2). The number of habitats and that of habitat macro-categories invaded correlated 305 
strongly for all three periods (p value < 0.001, see Table 2), although the correlation decreased 306 
slightly from the first introduction period (before 1800; ρ = 0.930) to the last (from 1950 to date; ρ 307 
= 0.845). Showing a more strongly decreasing trend, the number of regions colonised was 308 
significantly correlated with the number of habitats (ρ = 0.523, p value = 0.003) and macro-309 
habitats invaded (ρ = 0.489, p value = 0.007) only for the first introduction period (before 1800); 310 
while no significant correlation was found for the other two introduction periods (Table 2). 311 
Life form categories significantly affected the distribution of species in terms of number of invaded 312 
N2000 habitats and macro-habitats, as well as in terms of number of colonised administrative 313 



regions (Table 3). Overall, chamaephytes were the most widespread invaders, invading the highest 314 
number of habitats (and habitat macro-categories), followed by geophytes, phanerophytes and 315 
therophytes; hydrophytes were specific to a small number of habitats (Figs. 7A, C). On the other 316 
hand, therophytes had spread into the highest number of regions, together with geophytes (Fig. 317 
7E). Introduction period strongly affected the number of habitats, of habitat macro-categories, 318 
and of administrative regions invaded (Table 3). Indeed, the longer a species had been introduced, 319 
the higher the number of invaded habitats, macro-habitats and administrative regions (7 B, D, F). 320 
Table 2 Matrices of correlation between the number of N2000 habitats (Habitats), number of 321 
macro-categories of N2000 habitats (Macro-habitats) and number of invaded administrative 322 
regions (Regions), for each introduction period. In each correlation matrix, the upper triangle 323 
(numbers in plain text) displays Spearman's rank correlation coefficient (Spearman's rho), while 324 
the lower triangle (numbers in italic) displays its significance. 325 

Introduction 
Period 

 
Habita
ts 

Macro
-
habita
ts 

Region
s 

1492 – 1799 

Habitats - 0.930 0.523 

Macro-
habitats 

<0.001 - 0.489 

Regions 0.003 0.007 - 

1800 – 1950 

Habitats - 0.860 0.129 

Macro-
habitats 

<0.001 - 0.187 

Regions 0.129 0.187 - 

1951 – present 

Habitats - 0.845 0.077 

Macro-
habitats 

<0.001 - 0.096 

Regions 0.579 0.488 - 

 326 
Table 3 Analysis of the deviance table for the generalized linear models analysing the effect of life 327 
form categories and introduction period on the number of invaded N2000 Habitats (Habitats), 328 
number of macro-categories of N2000 Habitat (Macro-habitats) and number of invaded 329 
administrative regions (Regions). χ2 = Likelihood ratio Chi-square; Df = Degree of freedom; 330 
Significance codes: P value < 0.001 ‘***’; P value < 0.05 ‘*’. 331 

Response Term χ2 Df P value  

Habitats 

life form 24.576 5 <0.001 *** 

introduction 
period 

28.551 2 <0.001 *** 

life 
form×introduc
tion period 

12.005 10 0.285  

Macro-
habitats 

life form 23.720 5 <0.001 *** 

introduction 
period 

28.723 2 <0.001 *** 

life 
form×introduc
tion period 

15.669 10 0.109  

Regions life form 13.725 5 0.017 * 



introduction 
period 

52.092 2 <0.001 *** 

life 
form×introduc
tion period 

15.691 10 0.109  

4. Discussion 332 
Our data showed that the general impact of IAPs on native plant communities and N2000 Habitats 333 
has still only been partially unravelled at the national level. Specifically, our study brought to light 334 
two main problems. One is that that very few data are available on the mechanisms by which IAPs 335 
exert their impact. This lack greatly reduces our ability to implement effective adaptive strategies 336 
to counteract the spread and the effects of IAPs. In addition to this, the data that are available are 337 
very unevenly distributed between regions, further reducing our capacity to understand the 338 
nation-wide effects of IAPs. Filling these gaps calls for an urgent nation-wide collaborative 339 
initiative with coordinated action programs and standard methodologies. The initiative would 340 
ideally be conducted under the auspices of ISPRA or of the Italian Ministry of the Environment and 341 
Preservation of Land and Sea, which provided funding and motivation for the present study. Also, 342 
the establishment of a national collaboration between numerous Italian research groups to 343 
participate in joint projects at the EU level (i.e. within EU LIFE programme or Horizon Europe 2021-344 
2027), or within national scientific societies like SISV or the Italian Botanical Society (SBI), is 345 
essential to complete the picture of alien species invasion in Italy. 346 
The differences between the impacts recorded for different Italian regions are consistent with the 347 
findings of the main catalogues of alien plants in Italy (Galasso et al., 2018a; Celesti-Grapow et al., 348 
2009). The highest number of records was observed in the largest and most densely populated 349 
regions (i.e. Lombardy, Piedmont, and Tuscany), where human-driven land cover changes like 350 
urbanization, industrialisation, road infrastructures, and agriculture, cause higher rates of 351 
introduction (McLean et al., 2017), thereby facilitating biological invasion. The intensification of 352 
agricultural use of land has been proven to play a crucial role in the introduction, establishment 353 
and spread of IAPs due to a decline in biodiversity caused by oversimplified landscape matrices 354 
(Walker et al., 2009; Buffa et al., 2018). This is especially true for lowland riverscapes which suffer 355 
from the deterioration of water, of sediments and of hydrological regimes (Bolpagni and Piotti, 356 
2015; Bolpagni et al., 2013), situations that have been identified as common key factors driving 357 
the establishment and spread of IAPs in newly invaded areas (Aronson et al., 2017). 358 
However, comparatively large and densely populated regions (e.g. Lazio, Emilia-Romagna) did not 359 
show the same degree of invasion. This difference could be the result of contrasting levels of 360 
awareness between the different administrative regions in Italy. A minority of regions have 361 
already adopted specific regulatory frameworks to address the issue of biological invasions 362 
(Brundu et al., 2020), while the other regions still pay little attention to this matter. Only 363 
Lombardy, Piedmont, Aosta Valley have a list of restricted IAPs, approved by regional laws, and 364 
working groups dedicated to IAPs. In Friuli-Venezia Giulia and Tuscany only few IAPs are 365 
considered in regional laws. Finally, Liguria has established a surveillance network and a 366 
permanent working group on IAS within the Italian-French ALIEM Project. To our knowledge, all 367 
the other Italian administrative regions lack a local regulatory framework on IAPs, even if the 368 
recent promulgation of legislative decree no. 230/2017 calls for a comprehensive framework to 369 
tackle this issue. We are convinced that a decisive contribution to this matter would come from 370 
the establishment of a national list of invasive alien species of Member State (Italy) concern (see 371 
Art. 12 of Regulation (EU) no. 1143/2014), under the guidance of the Italian Ministry of the 372 
Environment and Preservation of Land and Sea. To this end, an important action aimed at the 373 



individuation of candidate species for the implementation of such a list (see Lazzaro et al., 2019) is 374 
currently being carried out by ISPRA, within the Life ASAP project (LIFE15 GIE/IT/001039).  375 
The high number of expert-based assessments in our survey underscores the major difficulty in 376 
retrieving suitable and reliable literature on the impacts of IAPs in Italy. Indeed, direct evidence is 377 
frequently also lacking for very well-studied species, generally considered a priori to be a serious 378 
threat to biodiversity. The gaps in knowledge of the different taxa hinder the study (and 379 
management) of the impacts associated with biological invasions, with most papers focusing on a 380 
narrow set of already studied species (Hulme et al., 2013; Latombe et al., 2017). This is especially 381 
serious because data on impacts are necessary to lay the basis for any generalisation about 382 
biological invasions and are mandatory for risk assessment and management (Bolpagni et al., 383 
2014a; Lazzaro et al., 2015). 384 
For example, information concerning A. altissima mainly comes from regional reports and 385 
checklists which often lack direct measurements of the cited impacts (see Badalamenti et al., 386 
2016; Maiorca et al., 2007). Although the impacts caused by this species are relatively well-studied 387 
(Castro-Díez et al., 2019), impacts in Italy are only documented for Sardinia (Traveset et al., 2008; 388 
Vilà et al., 2006) and the Karst area in northeastern Italy (Uboni et al., 2019) and there is very little 389 
literature on impacts outcomes on plant communities or on N2000 Habitats. Among the most 390 
studied species, Robinia pseudoacacia stands out as a major invasive tree in Europe (Vítková et al., 391 
2017). Many studies in Italy have focused on the impacts of this species (Nascimbene et al., 2012, 392 
2015; Benesperi et al., 2012; Lazzaro et al., 2018; Sitzia et al., 2018; Campagnaro et al., 2018; 393 
Gentili et al., 2019). Most authors have found evidence that the rapid expansion of this species in 394 
Italy is causing the progressive decline of native forests, with loss of species richness and diversity 395 
and a shift in species composition towards nitrophilous assemblages (Benesperi et al., 2012; 396 
Lazzaro et al., 2018; Allegrezza et al., 2019). In contrast, other authors have shown that secondary 397 
Robinia forests, growing on abandoned lands, may host compositionally heterogeneous plant 398 
communities and may contribute to some degree to regional biodiversity (Campagnaro et al., 399 
2018). Nevertheless, as pointed out also by Lazzaro et al. (2018), it is worth mentioning that in 400 
many cases Robinia forests replace habitats considered of community interest in Europe (i.e. 401 
N2000 Habitats 9260, 91B0, 91M0, 91AA*; Montecchiari et al., 2020, and 92A0 among others). 402 
Robinia pseudoacacia is also an important forest species, so that one option would be to apply 403 
forestry best practice to avoid its escape from areas set aside for cultivation. 404 
Robinia pseudoacacia is also predicted to be one of the most competitive species in a climate 405 
change scenario (Kleinbauer et al., 2010), and recently Nascimbene et al. (2020) showed the 406 
effects of the interaction between climate change and invasion by R. pseudoacacia on the 407 
endangered lichen species Lobaria pulmonaria. Biological invasions and climate change (often 408 
referred to as “double trouble”) are considered two of the key drivers of biodiversity loss, whose 409 
interaction will lead to a magnification of the threats to biodiversity worldwide (Mainka and 410 
Howard, 2010). 411 
Among the highly invasive tree species, in Northern Italy Prunus serotina and Quercus rubra have 412 
also been reported to greatly impact native communities and ecosystem components at the soil 413 
level (Gentili et al., 2019; Vegini et al., 2020). Acacia is another genus well-studied in Italy and 414 
worldwide. The negative impacts on plant communities of these nitrogen-fixing trees are well 415 
documented for several species (e.g., A. dealbata: Lazzaro et al., 2014; Minuto et al., 2020; A. 416 
pycnantha: Lazzaro et al., 2015). Likewise, the impacts of A. saligna on coastal dune N2000 417 
habitats (Del Vecchio et al., 2013; Bonari et al., 2017; Calabrese et al., 2017).  418 
Carpobrotus acinaciformis, C. edulis and their hybrids (Campoy et al., 2018), is another group of 419 
invasive species widely investigated in Italy, whose impacts on both biodiversity (Santoro et al., 420 
2012; Jucker et al., 2013) and soil conditions (Zedda et al., 2010; Santoro et al., 2011; Badalamenti 421 



et al., 2016) are well depicted. Their pattern of occurrence at the community level (Carboni et al., 422 
2010; Sperandii et al., 2017) as well as their habitat preference, including N2000 Habitats 2120, 423 
2210 and 2250*, have also been studied (Sarmati et al., 2019). 424 
Some specific studies have focused on the impact of different IAPs (e.g. Ambrosia psilostachya, 425 
Cenchrus longispinus, Erigeron canadensis, Oenothera stucchii, Senecio inaequidens) on sand dune 426 
ecosystems in northeastern Italy, showing significant negative effects on species richness, species 427 
diversity and evenness, and plant community composition, with effects increasing from N2000 428 
drift line habitats (1210) to fixed-dune habitats (2130) (Del Vecchio et al., 2015). 429 
Unfortunately, once these few well-studied IAPs are excluded, most of the records of impact on 430 
plant communities and N2000 habitats collected in the present general assessment derive from 431 
expert evaluations. This applies in particular to the species listed among the Invasive Alien plant 432 
Species of Union Concern (sensu Regulation (EU) no. 1143/2014), both because their spatial 433 
distribution in Italy is still scattered or localized (e.g. Alternanthera philoxeroides, Pontederia 434 
crassipes) and especially because data on their impacts is still missing (with only a few exceptions; 435 
see e.g. Lastrucci et al. (2017) for Myriophyllum aquaticum). The lack of information may also be 436 
due to the difficulty in obtaining reliable data for plants and vegetation in aquatic ecosystems, 437 
normally extremely time- and money-consuming to sample (Azzella et al., 2017). Indeed, half of 438 
the IAPs of Union concern are aquatic or wetland plants (19 out of 36). Despite their high number 439 
in the EU list confirming the general poor state of conservation of inland waters (Brundu, 2014; 440 
Lastrucci et al., 2017), aquatic IAPs have been so far neglected or little investigated in Italy. 441 
However, several studies confirmed their pivotal role in reducing local biodiversity. Bolpagni 442 
(2013a; 2013b) and Bolpagni et al. (2017) found that Lagarosiphon major and Elodea nuttallii 443 
create extensive submerged meadows that almost completely replace native macrophyte 444 
communities belonging to N2000 habitats 3140 and 3150. Nelumbo nucifera and Ludwigia 445 
hexapetala seem to actively compete with native species (Bolpagni et al., 2014b; Villa et al., 2017; 446 
2018; Tóth et al., 2019) due to their enhanced competitive ability for limiting resources and their 447 
tolerance to edaphic conditions variability (Tóth et al., 2019). Some specific studies focused on the 448 
impact of Lemna minuta on freshwater ecosystems. The results highlighted substantial negative 449 
effects on water quality and on aquatic plant and animal communities (Ceschin et al., 2019; 2020), 450 
showing that L. minuta causes drastic alterations to the local vegetation, often replacing native 451 
species. Similar results have been found for the most common duckweed, L. minor, which 452 
assimilates available nutrients faster than native species and shows a higher relative growth rate 453 
(Ceschin et al., 2016a, 2016b), characteristics that make this species highly competitive. However, 454 
the scarcity of knowledge on the majority of aquatic IAPs hinders both a correct assessment of the 455 
environmental impacts and the planning of actions to be carried out for effective recovery of 456 
impacted ecosystems. 457 
Our survey also evidenced a group of well-known and widespread invasive herbs (i.e., Amaranthus 458 
retroflexus, Ambrosia artemisiifolia, Artemisia verlotiorum, Bidens frondosa, Erigeron canadensis), 459 
that are very competitive in disturbed habitats (agricultural areas, roadsides, ruderal areas) also 460 
thanks to their high propagule pressure. Ruderal species are highly opportunistic and it is worth 461 
mentioning the presence of Phytolacca americana and Solanum chenopodioides in an old-growth 462 
Quercus ilex urban forest disturbed by a severe windstorm in Southern Italy (Bonanomi et al., 463 
2018). Opportunistic alien species, which invest in rapid growth and in sexual reproduction, are a 464 
challenging issue in invasion biology since their invasiveness may change during different 465 
successional stages (Domènech and Vilà, 2006). For instance, the annual A. artemisiifolia is 466 
completely suppressed by late colonists and perennial species after a three-year succession 467 
(Gentili et al., 2017). Conversely, the invasion of Solidago canadensis has been reported to modify 468 



the trajectory of vegetation succession and to exert a higher negative effect on native diversity in 469 
older successional communities (Fenesi et al., 2015a; 2015b).  470 
Finally, this survey showed that that the time elapsed since introduction has a highly significant 471 
effect on the number of habitats invaded. This highlights the importance of better investigating 472 
species of relatively recent introduction, which are not yet truly invasive, but which have 473 
considerable potential to invade given the size of the introduced populations. These include some 474 
species of Eucalyptus, especially E. camaldulensis, which in recent years has begun to spread in 475 
river habitats in Sicily (Badalamenti et al., 2018). In this, as in other cases, biological evolution acts 476 
on the introduced species and may enable some alien plants to occupy a broad range of novel 477 
habitats until they become invasive (Oduor et al., 2016). Tree species should be carefully 478 
monitored because although they take time to become invasive, when they do, the impact is high 479 
because of their large biomass. 480 
5. Conclusions 481 
Our survey is the first attempt to assess the impact of the most harmful IAPs on plant communities 482 
and on N2000 habitats throughout Italy. The study highlighted numerous knowledge gaps which, 483 
however, replicate the gaps in plant invasion science ascertained at a global level. The differences 484 
in levels of knowledge between the Italian administrative regions is likely linked to dissimilarities 485 
in awareness, as shown by regional differences in policies and legislation. Thus, a primary aim of 486 
the scientific community should be to even up disparities in knowledge at the regional level. Most 487 
importantly, we highlighted a glaring lack of evidences, even for well-known invasive species. We 488 
also exposed a lack of data on the impacts of IAPs on N2000 habitats, which ought to be a primary 489 
focus of conservation efforts. Thus, filling the knowledge gap is a mission of primary importance, 490 
to provide data both for risk analysis and to support decision makers. Our results show that Italy 491 
needs a coordinated nation-wide strategy to evaluate and manage the risk of invasion in the 492 
N2000 network. This need is even more urgent in the light of the compounded effects of biological 493 
invasion and climate change, which biodiversity management planning and policy should take into 494 
careful consideration. 495 
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 848 
FIGURES  849 
Figure 1. Distribution of records on the impact of IAPs in Italy per administrative region. A) 850 
Distribution of records on impact mechanisms. B) Number of IAPs exerting any type of impact 851 
mechanism. C) Distribution of records on impact outcomes on plant communities. D) Number of 852 
N2000 Habitat types exposed to some degree of ecological impact by IAPs. E) Percentage of N2000 853 
Habitats exposed to some degree of ecological impact by IAPs on the total number of Habitat 854 
harboured in the region. 855 

856 



 857 
Figure 2. Number of data collected regarding the presence of impact mechanism (empty green 858 
circles, dashed line) and impact outcomes (full blue circles, solid line) exerted by IAPs in Italy. 859 
 860 

 861 
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 863 
Figure 3 A) Number of regional records with specific impact mechanisms for the first 23 IAPs. B) 864 
Number of total records of impact outcomes for the first 23 IAPs. 865 
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 868 
Figure 4. Source of the reports (in percentage) concerning A) impact mechanisms and B) impact 869 
outcomes for all the species and for the first ten IAPs (in descending order by number of records). 870 
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 873 
 874 
Figure 5. Impact outcomes. A) Total records (i.e. species × N2000 habitat × administrative region). 875 
B) Total number of N2000 Habitats suffering from a specific impact outcome (irrespective of 876 
species and administrative regions).  877 
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 880 
Figure 6. Data on the impact outcomes recorded per N2000 Habitat (sensu Habitat directive 881 
92/43/EEC). A) Number of species exerting some degree of ecological impact for each target 882 
N2000 habitat and B) number of administrative regions in which the target N2000 habitat is 883 
impacted. 884 

885 



 886 
Figure 7. Effect of the life form categories (A, C, E) and introduction period (B, D, F) on the number 887 
of N2000 Habitats (Habitats), number of macro-categories of N2000 Habitats (Macro-habitats) and 888 
the number of invaded administrative regions (regions), respectively. C = chamaephytes; G = 889 
geophytes; H = hemicryptophytes; I = hydrophytes; P = phanerophytes; T = terophytes. 890 
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