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Abstract

We propose a classification approach exploiting relationships between ellip-
soidal separation and Support-vector Machine (SVM) with quadratic kernel.
By adding a (Semidefinite Programming) SDP constraint to SVM model
we ensure that the chosen hyperplane in feature space represents a non-
degenerate ellipsoid in input space. This allows us to exploit SDP techniques
within Support-vector Regression (SVR) approaches, yielding better results
in case ellipsoid-shaped separators are appropriate for classification tasks.
We compare our approach with spherical separation and SVM on some clas-
sification problems.
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1. Introduction

The problems of separation of sets, traditionally a field of mathematics,
has recently garnered the interest of researchers from different areas, such
as applied mathematics, optimization, statistics and computer science. This
derives from the need to efficiently construct effective separation surfaces
(i.e., classifiers) to be used in practical applications of machine learning,
data mining and knowledge management, such as text and web classification
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(Astorino et al., 2017), object recognition in machine vision (Malamas et al.,
2003), edge detection (Astorino et al., 2014), gene expression profile analysis
(Statnikov et al., 2005), DNA and protein analysis (Liu, 2018), and many
others.

In this work, we focus on supervised binary classification (Cristianini and
Shawe-Taylor, 2000), one of the most important tasks in machine learning
and data mining. We are given a finite set of samples, each one completely
captured by a n-dimensional real vector of inputs and provided with a bi-
nary label. The aim of the problem is to devise a methodology capable of
assigning the right value of the label to any unseen sample. One of the most
natural approaches to the task is that of devising a separating surface that
partitions the space in two, with each part largely only containing samples
with the same label. Since this may not be possible once the general shape
of the surface is chosen, finding the separating surface is usually poised as
a mathematical programming problem trying to minimize the misclassifica-
tion of known inputs, while some measure of the “complexity” of the surface
itself. Indeed, it is well-known that nontrivial trade-offs exist between the
complexity of the surface, its capability of separating arbitrarily complex
sets, the cost of finding it (training) and the predictive power against unseen
samples. Roughly speaking, “too complex” separating surfaces can lead both
to hard training problems, and to overfitting, i.e., the phenomenon whereby
the separating surface works well for the given input but has little predictive
power for the unseen ones. Carefully balancing these two aspects is in fact
one of the most delicate tasks in practical classification. Effective binary
classification can then be used as the fundamental building block to develop
multi-class approaches.

One of the fundamental decisions in the process is the shape of the sep-
arating surface. The most natural shape, and not coincidentally the most
widely used, is the simplest one, i.e., an affine hyperplane. This is the basis
of the widely used Support Vector Machine (SVM) methodology (Vapnik,
1995; Cristianini and Shawe-Taylor, 2000; Schölkopf et al., 1999). However,
it is self-evident that most sets arising in practice are not affinely separable.
This can still be dealt with by the SVM approach via the kernel trick : the
input space is mapped into a (typically, larger) feature space and an affine
separating surface is sought for therein. The projection of the separating
hyperplane on the original space can be nonlinear and therefore better able
to cope with the learning of the set of inputs at hand.

Many different kernels have been developed (Fung et al., 2003; Smola
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and Kondor, 2003; Hofmann et al., 2008; Schölkopf et al., 1999) that may be
appropriate for different tasks. Like for the general case, trade-offs may exist
between the complexity of a kernel and its generalisation capabilities. In this
work we focus on the what is perhaps the “simplest” nonlinear kernel, i.e.,
the quadratic one. In this case, the projection of the separating hyperplane
in the original input space is a second-order surface.

Our approach is based on the observation that by properly restricting
the space of possible parameters of the separation surface we can force it
to represent an ellipsoid in the original input space. Pattern classification
by means ellipsoids has been found (Astorino and Gaudioso, 2005) to be
promising because (i) the ellipsoid is the simplest nonlinear convex set that
can encloses samples in a bounded region of the space, (ii) it is independent
from invertible linear transformations of the coordinate system and (iii) ellip-
soids are characterised by positive semidefinite (PSD) matrices, and therefore
optimization problems involving them can often be casted as SemiDefinite
Programs (SDP), for which there are several available off-the-shelf efficient
algorithms, chiefly (but not exclusively) interior point ones. Ellipsoidal sep-
aration seems to be particularly promising for binary classification problems
where a class is much smaller (in terms of number of inputs in the training
set) than the other one, since it may be easy to construct an ellippsoid en-
closing (most of) the samples of the smaller class and keeping outside (most
of) the samples of larger one. This is, for instance, the case of the edge
detection problems where the class of relevant pixels (edges) is way smaller
than that of non-edge pixels in an image. Although intuitive, this notion has
been proven experimentally to be correct in (Astorino et al., 2014) for a very
special class of ellipsoids, i.e., the spheres.

In this work we aim at combining the ellipsoidal separation idea with well-
established SVM-type approaches to construct binary classification models
that can be well-suited to some classes of classification problems. While
the model we propose is quite close to standard SVM with quadratic ker-
nel, the insistence on the classifier being an ellipsoid brings with it, together
with nontrivial computational issues, also new opportunities for regulariza-
tion that we show having a potentially positive impact on the generalisation
capabilities of the model.

The paper is organized as follows: in Section 2 we present the model and
we discuss its nuances in terms of regularization and hyperparameters, while
in Section 3 we experimentally compare our model with SVM with quadratic
kernel and spherical separation on some classification tasks.
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2. The model

Let X = {x1, . . . , xp} ⊂ Rn be a set of samples (or points). In the
supervised learning setting we assume that for any point xi of X a label yi
is given. The general case yi ∈ R is known as “regression”, while yi taking
values in a finite set yields a classification problem. In particular, we consider
here yi ∈ {−1 , +1 }, i.e., the binary classification setting. Alternatively, one
can define X+ = { i : yi = 1 } and X− = { i : yi = −1 }; with a small abuse
of notation we will consider sets of points equivalent to sets of their indices,
so as to be able to write, for instance, that X+ ∪ X− = X and X+ ∩ X− = ∅.
The objective of supervised learning is to predict the label of any new sample
only on the basis of the label information of the points in the training set X .

The literature in supervised machine learning is extremely rich. An im-
portant role is played by the well-known SVM technique (cf. e.g. (Cristianini
and Shawe-Taylor, 2000)), an approach exhibiting both good generalisation
capabilities and high computational efficiency due to only requiring the so-
lution of a convex problem for the training phase. The latter characteristic
allows to experiment with several different variants of the basic model in
order to adapt it to different setting, see for example the recent works (Gau-
dioso et al., 2017; Astorino et al., 2011; Astorino and Fuduli, 2016; Astorino
et al., 2019). The main idea in the SVM technique is the introduction of
the concept of “margin” in the strict separation of two sets of points by
means of a hyperplane. In fact, the output of any SVM model is a hyper-
plane equidistant from two parallel hyperplanes, each one supporting one
of the two sets. Since strict linear separability cannot be assumed for most
data sets, the approach requires choosing a trade-off between maximizing the
distance between the support hyperplanes and minimizing a measure of the
misclassification errors.

More formally, in the SVM approach a separating hyperplane charac-
terised by (w,w0) ∈ Rn+1 is constructed as the solution of the convex non-
differentiable minimization problem

min
w,w0

{
1
2
‖w‖2 + C

∑
i∈X max{ 0 , 1− yi(wTxi − w0) } (1)

The second term in the objective is the loss function measuring the misclas-
sification error. The first term instead corresponds to the maximisation of
the margin, as the distance between two parallel hyperplanes whose normal
is w can be seen to be proportional to 1/‖w‖2. This is also called the reg-
ularisation term in the objective, and corresponds to the fact that, roughly
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speaking, a smaller w is a “more parsimonious hypothesis” for the (approx-
imate) separation of the two sets which can be proven, both theoretically
and experimentally, to lead to better generalisation capabilities when the
hyperplane is used to classify previously unseen points. Since the two terms
in the objective are potentially contrasting each other, a standard scalariza-
tion technique is used with the introduction of the arbitrary hyperparameter
C ≥ 0, which is typically determined experimentally for the given X via grid
search and cross validation.

Problem (1) is typically rewritten as the convex QP

min
w,w0

1
2
‖w‖2 + C

∑
i∈X ξi

s.t. yi(w
Txi − w0) ≥ 1− ξi , ξi ≥ 0 i ∈ X

(2)

which can then be tackled by means of its dual

max
α

∑
i∈X αi −

1
2

∑
i∈X
∑

ji∈X αiαjyiyjx
>
i xj

s.t
∑

i∈X αiyi = 0

0 ≤ αi ≤ C i ∈ X
(3)

This is useful for two reasons. On one hand, (3) can be easier to solve
computationally than (2). Possibly more importantly, though, in (3) the
training data only appear in the form of scalar products xTi xj between input
vectors. This property is the basis of the “kernel trick”, which allows to
construct nonlinear separation surfaces in the original input space by finding
a linear separation in a (typically, higher-dimensional) different feature space.
The basic idea consists in choosing a mapping ϕ from Rn to some other
(possibly infinite dimensional) Euclidean space; then, (3) only depends on
the data through the scalar products ϕ(xi)

>ϕ(xj) in the new space. If there
exists a kernel function K : X ×X → R such that K(xi, xj) = ϕ(xi)

>ϕ(xj),
the training model will only need to compute K without the need of explicitly
knowing ϕ. It is well-known that for K to be a valid kernel function the Gram
matrix Q ∈ Rn×n, with entries Qij = K(xi, xj), must be symmetric and
positive definite. This allows to construct many different kernel functions,
such as

• polynomial kernels: K(xi, xj) = (x>i xj + c)p for fixed c ∈ R and integer
p > 1;

• Radial Basis Function (RBF) kernels: K(xi, xj) = e−σ‖xi−xj‖
2

for fixed
σ;
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• sigmoid kernels: K(xi, xj) = tanh(µx>i xj + ν) for fixed µ and ν.

We focus on the quadratic kernel, i.e., the polynomial one with p = 2. While
for RBF kernels the features space is infinite-dimensional, in the quadratic
case the feature map ϕ : Rn → RN , where N = (n + 1)(n + 2)/2, can be
written explicitly as

ϕ(x) = [ϕ1(x) , . . . , ϕn(x) ,
√

2cx , c ]> with ϕi(x) = [ x2i ,
√

2xix1 . . . ,
√

2xixn ]> .

The linear classifier in the feature space RN , i.e., the hyperplane w>ϕ(x) =
w0, corresponds in the original space Rn to a quadratic form x>Q(w)x +
q(w)x = w0, where the symmetric Q(w) is made of the first n(n + 1)/2
components of w (with the obvious arrangement) and q(w) to the following
n+ 1 ones, i.e. Q(w) and q(w) are the following:

Q(w) =
1

2


2w1

√
2w2 · · ·

√
2wn√

2w2 2wn+1 · · ·
√

2w2n−1

...
...

. . .
...

√
2wn

√
2w2n−1 · · · 2wn(n+1)/2

 , q(w) =


√

2cwN−n
...√

2cwN−1
wN

 .

This defines an ellipsoid only if Q(w) is positive semi-definite. Since in the
SVM framework no additional conditions are given on w, the separator in the
original space may be any quadratic surface. On the basis of our expertise
and experience, “the right classifier” for several datasets appearing in the
real world should have an ellipsoidal form, i.e., identify a compact surface
(enclosing a compact region) rather than a non-compact one. To obtain this
we add a SDP constraint on Q(w) in the primal model (2); in the input space
this corresponds to finding an ellipsoid (approximately) separating X+ from
X−, i.e., enclosing all points of X+ and no points of X−. This yields the SDP
model

min
w,w0

1
2
‖w‖22 + C1

∑
i∈X+

ξi + C2

∑
i∈X−

ξi + C3vol(Q(w))

s.t. yi(ϕ(xi, c)
>w − w0) ≥ 1− ξi , ξi ≥ 0 i ∈ X

Q(w) � 0

(4)

With respect to the original (2), the fundamental difference is the SDP con-
straint on Q(w). Moreover, since we expect the two classes to be “rather
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different”, we penalise differently in the objective function the misclassifica-
tion of points in X+ and that of points in X− by adding two specific hyper-
parameters C1 and C2 (this can, of course, be done in the original SVM model
as well). We also add a further hyper-parameter, i.e., a regularization term
for the volume of the ellipsoid; this is proportional to log det(Q(w)), which
can be handled by SDP programs with standard formulation tricks (Cris-
tianini and Shawe-Taylor, 2000). This term encourages choosing “smaller”
ellipsoids, which makes intuitive sense, and it is only possible when Q(w)
is forced to be PSD. It should also be remarked that an uncommon trade-
off exists between this and the standard regularization term. In fact, if the
points in X+ actually all belong to some lower-dimensional affine subspace
of Rn, then an almost-0-volume highly degenerate ellipsoid exists that con-
tains them all and such that some of its axes have length very close to 0.
This corresponds to the eigenvalues of Q(w) for the eigenvectors of the corre-
sponding axes, that are proportional to the square root of the inverse of the
length of the axis, having very large values. One effect of the standard reg-
ularization term is to avoid this “excessive flattening” of the ellipsoid along
the directions orthogonal to the subspace where X+ lies; besides this being
intuitively advantageous for the generalization capabilities of the approach,
in our experience it also reduces the significant numerical difficulties that a
SDP solver could incur into in the non-stabilised case. This justifies why
the volume regularization term has its own hyperparameter that need be
properly tuned.

3. Numerical Experiments

We have tested the model (4) on both binary and multi-class datasets
taken from the LIBSVM repository (Chang and Lin, 2011). For the bi-
nary datasets we have trained the model as follows: 60% of the data have
been kept aside as testing set, while the remaining 40% have been used for
training and hyper-parameters tuning, using a four by four grid with values
{10−2, 10−1, 1, 101, 102}, with a standard 5-fold cross validation (randomly
and repeatedly splitting them into 90% for training and 10% for valida-
tion). We have compared the Ellipsoidal SVM model (4) (ELL SVM) and
the one with quadratic kernel SVM (QSVM). Both approaches have been im-
plemented in Python under the Skit-learn packages (Pedregosa et al., 2011);
the semi-definite program (4) arising in our approach has been solved by
the Mosek solver (MOSEK ApS, 2019) under the Fusion API. The code has
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been ran on an Intel i5-4460 3.00 GHz 4-core with 132 GB of RAM under
a i686 GNU/Linux operating system. Table 1 shows the results in terms of
accuracy.

Dataset p n QSVM ELL SVM

Australian 690 14 0.86 0.86

Breast Cancer 683 10 0.97 0.97

Diabetes 768 8 0.76 0.75

Ionosphere 351 34 0.81 0.86

Liver Disorders 145 5 0.66 0.71

Table 1: Numerical results on binary datasets

For the multi-class datasets we have performed a standard one-vs-all ap-
proach, training the model (4) k times, in order to obtain a separating ellip-
soid Ek for each one of the k class of the dataset. We have trained the model
in two different ways. The first (and perhaps most natural) one, denoted
with ELL I, constructs an ellipsoid Ek which contains the points in the class
k and leaves all the other points outside; in other words, class k has label
−1. The second one, denoted with ELL O, rather provides an ellipsoid Ek
which contains all the points in the classes h 6= k and leaves the points of
the class k outside (i.e., class k has label +1). We observe that the quadratic
expression defining the ellipsoid Ek, for each class k, can be interpreted as
a signed distance function Dk : Rn → R, which assumes negative values in
the interior of Ek, vanishes in the border and assumes positive values in the
exterior of Ek. Therefore, for the approach ELL I, since the ellipsoid Ek
contain the points of the class k, we assign to a point z ∈ Rn the label k if
Dk(z) = minh{Dh(z)}, that is,

class(z) = arg minh{Dh}.

Analogously, for the approach ELL O, since the ellipsoid Ek does not contain
the points in the class k, we assign to a point z ∈ Rn the label k if Dk(z) =
maxh{Dh(z)}, that is,

class(z) = arg maxh{Dh}.

Table 3 shows the comparison, in terms of accuracy, between ELL I, ELL O
and QSVM, trained using a standard one-vs-all approach, for the multi-class
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datasets we have tested. Both tables show, as expected, that none of the
approaches strictly dominates the others (save for ELL I being, as expected,
generally better than ELL O): while being generally comparable, for some
tasks forcing the separating surface to be a compact set seems to work indeed
better, while for some other it does not. Notably, QSVM could produce an
ellipsoid even without being forced to: the results, however, indicated that
this does not “naturally” happen unless the explicit constraint is added.

Dataset p n k QSVM ELL I Ell O
Glass 214 9 6 0.67 0.67 0.71
Iris 150 4 3 0.81 0.96 0.89
Svmguide2 391 20 3 0.83 0.82 0.80
Svmguide4 300 10 6 0.44 0.54 0.52
Vehicle 846 18 4 0.81 0.80 0.80
Vowel 528 10 11 0.84 0.85 0.81
Wine 178 13 3 0.94 0.96 0.95

Table 2: Numerical results on multi-class datasets

Moreover, as in (Astorino et al., 2014), we have applied the model (4) to
the edge detection problem, which consists in deciding whether any pixel in
an image belongs to an edge or not. In our approach the pixels belonging to
an edge are the pixels in the border between dark and bright zones in the
image.

We have considered 27 gray-scale images taken from the repository (Mar-
tin et al., 2001), together with the binary images coming from the real world.
We have considered each image I as a m× n matrix where each entry corre-
sponds to a pixel whose value is its luminosity in the range [0, 255]. For the
images in the training set, for each pixel we also know its edge/non-edge, i.e.,
the label {−1, 1}. Each entry Ii,j in the interior of I (i.e., excluding the first
and last rows and columns) is associated with a vector zi,j ∈ R8 whose entries
are the absolute values of the differences between Ii,j and its neighborhood
pixels:

zi,j =
[
|Ii,j − Ii−1,j| , |Ii,j − Ii−1,j+1| , |Ii,j − Ii,j+1| , |Ii,j − Ii+1,j+1| ,
|Ii,j − Ii+1,j| , |Ii,j − Ii+1,j−1| , |Ii,j − Ii,j−1| , |Ii,j − Ii−1,j−1|

] .

(5)
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The label for the element zi,j corresponds to that of the pixel i, j. The pixels
corresponding to the label −1 are considered as edge (white) pixels and the
pixels corresponding to the label +1 are considered as background (black)
pixels in the binary edges image. The corresponding about 106 labelled vec-
tors in R8 have been randomly splitted: 80% have been kept aside as testing
set, while the remaining 20% have been used for training and hyperparame-
ter tuning with a standard 10-fold cross validation (randomly and repeatedly
splitting them into 90% for training and 10% for validation). Hence, during
training we considered points coming from images having rather different
contrast than others, where the contrast of a gray-scale image I is defined as
C(I) = maxi,j Ii,j −mini,j Ii,j (Pratt, 2013). To address this we have prepro-
cessed each image so that they all have the same contrast by scaling their
luminosity range in [0, 255], i.e., re-scaling each of its pixel values Ii,j as

255(Ii,j −mini,j Ii,j)/C(I) .

We have compared the classification results obtained from ELL SVM, QSVM,
and the Spherical classification model (SpherSep) of (Astorino et al., 2014).
We have implemented the ELL SVM, QSVM, SpherSep in Python under the
Skit-learn packages (Pedregosa et al., 2011); the semi-definite program (4)
arising in our approach has been solved by the Mosek solver (MOSEK ApS,
2019) under the Fusion API. The code has been ran on an Intel i5-4460 3.00
GHz 4-core with 132 GB of RAM under a i686 GNU/Linux operating system.
By means of a standard grid search and the 10-fold cross validation we have
identified the best hyper-parameters for all the models independently. For the
hyper-parameter c we have tested a grid of values in the interval [0.1, 5] and
we have observed that the results are approximately the same, thus we have
set c = 1. For the hyper-parameters C1 and C2 we have tested all pairs in
the grid of values 10k for k = −3, . . . , 2, obtaining the best performances for
C1 = 10 and C2 = 1. Moreover, also the parameter C3 does not significantly
impact on the results of the edge detection problem, and therefore we have set
C3 = 0: this actually simplifies the SDP model eliminating the extra variables
and constraints required to represent the volume term in the objective of
(4). We expect that C3 6= 0 could improve the generalization capabilities
of ELL SVM in other real applications, although possibly at the cost of
making the SDP problem, that is already more difficult to be solved than
the quadratic model for SVM, even more computationally expensive. The
running time for the training phase of ELL SVM is around 76647 seconds,
the one of QSVM is around 2939 seconds and the one of SpherSep is around
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4 seconds. However, we have used off-the-shelf, general-purpose SDP solvers
to run ELL SVM. It is likely that approaches exploiting the structure of the
underlying problems, or even non-IP SDP approaches (e.g., using augmented
Lagrangian and/or alternating direction methods (Wen et al., 2010; Yang
et al., 2015)) could significantly reduce the ELL SVM training cost.
For quadratic SVM model we have performed the grid search, as in ELL SVM,
on the two different hyper-parameters C1 and C2 to weight the classification
errors of the classes X+ and X−; however, in this case the best result is
obtained for C1 = C2 = 1. This seems to confirm that insisting that the sep-
arator is an ellipsoid (in the feature space) helps in properly differentiating
the two classes of instances, thereby possibly performing a better classifi-
cation. We should remark that the SVM model may in fact spontaneously
select a SDP Q(w), but the results show that this is not happening naturally
and that adding the constraint is required.
The SpherSep model from (Astorino et al., 2014) depends only on one hyper-
parameters C determining the penalization of the misclassification error; by
testing values in the set 10k for k = −3, . . . , 3 we have obtained the best
results for C = 1.
We start by providing the in-sample and out-of-sample results, in the clas-
sical terms of precision and recall, in Table 3. The high value for the recall
score of the edge-pixels indicates that ELL SVM and QSVM are able to very
accurately detect them. Moreover, the fact that the models behave the same
in-sample and out-of-sample confirms that they generalize well, despite the
training set only being the 20%. Yet, according to these metrics ELL SVM
is not better, and sometimes worse, than QSVM.

in-sample out-of-sample
Edge Non-Edge Edge Non-Edge

ELL SVM
precision 0.55 0.69 0.55 0.69

recall 0.88 0.28 0.88 0.27

SVM
precision 0.55 0.75 0.55 0.74

recall 0.92 0.24 0.92 0.23

SpherSep
precision 0.57 0.56 0.57 0.56

recall 0.57 0.56 0.56 0.57

Table 3: Precision and recall values for the pixels in the training and in the validation set.

We have them complemented the standard per-pixel metrics with a more
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comprehensive per-picture metric, i.e., Pratt’s figure of merit (PFM) (Pratt,
2013). The PFM is a quantitative assessment for the edge detection problem
defined as

PFM =
1

max{NA, ND}

ND∑
k=1

1

1 + αdk
, (6)

where NA and ND are, respectively, the number of actual edge pixels and
the number of the detected edge pixels. For every detected edge k, dk is the
distance, evaluated on the actual edges image E, between such a pixel and
the closest edge one, while α is a scaling parameter usually taken equal to
1/9. The PFM was introduced to analyse and balance the associated errors in
edge detection process. As the value get closer to 1, it shows better detected
edge values. The accuracy and PFM for every image we have considered are
reported in Table 4. Note that the metric also considers the pixels in the
training set, but the previous results show that this should not significantly
change the figures (and, anyway, the training set is only 20% of the total).
The table shows that, while resulting is similar accuracies, ELL SVM and
QSVM are quite different when measured by the PFM; more often than
not ELL SVM outperforms QSVM, sometimes by a significant margin (e.g.,
picture 21). Both approaches significantly outperform SpherSep. To further
verify that the results do not depend on the images chosen for the training
we have also considered 14 other images not included in the training set, we
predicted their edge pixels and computed the accuracy and PFM. The results
of these experiments are shown in table 5 and fully confirm the previous ones.
Finally, Figure 1, 2, 3 provide some visual results that we have obtained
among the testing images. We observe that the SpherSep model classifies
too many pixels as edge obtaining a high number of false positive elements.
On the other hand, QSVM seems to not be able to detect enough edge pixels,
leaving some gaps in the contours lines. From this point of view, ELL SVM
obtains results in between the other two, being able to detect enough edge
pixels so that the contours line are almost everywhere complete, but not too
many so that the binary image is not clean.
All in all, our experiments show that the newly proposed ELL SVM clas-
sification approach, based on the ellipsoidal separation, is comparable to
QSVM—and better than SpherSep—in terms of accuracy, but it is gener-
ally better in terms of the PFM score. In general, our results indicate that
the insertion of the SDP constraint ensuring the compactness of the sepa-
ration surface can indeed help for certain classification tasks, in particular
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Accuracy PFM

Img ELL SVM QSVM SpherSep ELL SVM QSVM SpherSep

1 0.90 0.91 0.72 0.44 0.29 0.21

2 0.89 0.90 0.74 0.62 0.58 0.24

3 0.87 0.87 0.66 0.27 0.27 0.11

4 0.87 0.88 0.70 0.50 0.56 0.22

5 0.83 0.84 0.72 0.53 0.60 0.31

6 0.94 0.95 0.90 0.59 0.50 0.46

7 0.87 0.88 0.69 0.61 0.71 0.23

8 0.87 0.89 0.70 0.60 0.42 0.23

9 0.84 0.87 0.60 0.18 0.20 0.08

10 0.97 0.97 0.97 0.71 0.72 0.64

11 0.90 0.89 0.74 0.24 0.21 0.10

12 0.84 0.85 0.60 0.50 0.53 0.18

13 0.95 0.96 0.85 0.52 0.40 0.22

14 0.84 0.86 0.58 0.30 0.35 0.12

15 0.87 0.88 0.74 0.61 0.49 0.28

16 0.99 0.99 0.99 0.83 0.89 0.63

17 0.90 0.91 0.84 0.58 0.46 0.34

18 0.87 0.88 0.79 0.43 0.46 0.27

19 0.83 0.86 0.68 0.27 0.34 0.15

20 0.92 0.92 0.90 0.69 0.71 0.45

21 0.92 0.92 0.93 0.34 0.05 0.79

22 0.79 0.81 0.66 0.33 0.37 0.20

23 0.94 0.94 0.93 0.55 0.48 0.68

24 0.85 0.87 0.64 0.58 0.49 0.24

25 0.92 0.92 0.81 0.59 0.60 0.26

26 0.86 0.87 0.77 0.59 0.50 0.40

27 0.93 0.93 0.88 0.68 0.62 0.38

Table 4: Accuracy and PFM comparison on the training images.
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Accuracy PFM

Img ELL SVM QSVM SpherSep ELL SVM QSVM SpherSep

1 0.95 0.95 0.91 0.80 0.78 0.44

2 0.89 0.90 0.78 0.33 0.37 0.16

3 0.83 0.84 0.65 0.38 0.41 0.18

4 0.97 0.97 0.93 0.62 0.48 0.32

5 0.89 0.91 0.73 0.39 0.37 0.15

6 0.86 0.87 0.62 0.28 0.33 0.11

7 0.95 0.95 0.89 0.42 0.38 0.29

8 0.99 0.99 0.98 0.71 0.72 0.51

9 0.92 0.93 0.90 0.30 0.16 0.69

10 0.81 0.83 0.65 0.34 0.38 0.19

11 0.90 0.92 0.80 0.22 0.27 0.12

12 0.91 0.92 0.85 0.56 0.54 0.29

13 0.91 0.92 0.80 0.69 0.64 0.27

14 0.95 0.96 0.84 0.62 0.59 0.20

Table 5: Accuracy and PFM comparison on the testing images

those where one class is much less numerous as the other such as the edge
detection problem.

Original Image Actual edges

ELL SVM QSVM SpherSep

Figure 1: Testing Image1
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Original Image Actual edges

ELL SVM QSVM SpherSep

Figure 2: Testing Image4
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