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Abstract

Neural interfaces are rapidly gaining momentum in the current landscape of neuroscience and

bioengineering. This is due to a) unprecedented technology capable of sensing biological neu-

ral network electrical activity b) increasingly accurate analytical models usable to represent

and understand dynamics and behavior in neural networks c) novel and improved artificial

intelligence methods usable to extract information from recorded neural activity. Neverthe-

less, all these instruments pose significant requirements in terms of processing capabilities,

especially when focusing on embedded implementations, respecting real-time constraints and

exploiting resource-constrained computing platforms. Acquisition frequencies, as well as the

complexity of neuron models and artificial intelligence methods based on neural networks,

pose the need for high throughput processing of very high data rates and expose a significant

level of intrinsic parallelism. Thus, a promising technology serving as a substrate for imple-

menting efficient embedded neural interfaces is represented by APSoCs, that enable the use

of configurable logic, organizable memory blocks and parallel DSP slices. In this thesis we

assess the usability of APSoC in this domain by focusing on a) real-time processing and anal-

ysis of MEA-acquired signals featuring spike detection and spike sorting on 5,500 recording

electrodes b) real-time emulation of a biologically-relevant spiking neural network counting

3,098 Izhikevich neurons and 9.6e6 synaptic interconnections c) real-time execution of spiking

neural networks for neural activity decoding during a delayed reach-to-grasp task addressing

low-power embedded applications.
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Chapter 1

Introduction

Neural sensor development has been gaining pace during the last few years thanks to the

combined effort of engineers and neuroscientists in both private companies and research cen-

ters. New generation CMOS multielectrode arrays (MEAs) and CMOS high-density multielec-

trode arrays (HDMEA) guarantee higher spatio-temporal resolution than previously adopted

recording arrays of sensors. Companies in the field, such as 3Brain, commercialize several

planar HDMEAs [1] featuring 4,096 recording sites sampled at 18 kHz, placed on a 64x64 grid

with an electrode-to-electrode distance of 60 µm. Neuralink [2] presented a MEA embedding

3,072 recording sites sampled at 18.6 kHz, distributed across 96 threads of 32 electrodes with

electrode-to-electrode distance in the range 50-75 µm and thread-to-thread spacing above 300

µm to foster wide area coverage over multiple brain regions. Conversely, Neuropixel 2.0 [3] is

a high-density probe that allows sensing the activity on a reduced brain region compared to

[2], but with a more densely populated array of sensors and in multiple cortical layers. Neu-

ropixel 2.0 counts 5,120 electrodes sampled at 30 kHz, distributed over four shanks of 1,280

electrodes each. The shanks are 250 µm apart and 10 mm long; on each shank, the sensors are

distributed on two columns spaced 32 µm, whereas the electrodes on the same column present

a center-to-center distance of 15 µm.

The emerging CMOS neural sensor technologies count tens of times more recording sites,

placed tens of times more densely than previously adopted arrays of sensors [4], thus, requir-

ing new neural interfaces capable of keeping up the downstream processing on an augmented

flow of data, providing low-latency responses to effectively exploit real-time interactions with

9



the biological tissue, permitting the realization of novel neuroprosthetic implants, or deepen-

ing the understanding of neural networks functioning principles. At the same time, increas-

ingly accurate analytical neural models, when supported by enough computational power,

permit the emulation of large portions of the brain neural dynamics with single-cell resolu-

tion, fostering neural networks’ dynamic comprehension as well, and potentially bridging the

gap between simple localized neural circuit behavior and complex cognitive processes dis-

tributed on wider brain regions. Furthermore, artificial intelligence models based on artificial

neural networks are promising tools for decoding patients’ intentions, positioning as a funda-

mental element in the control of neuroprosthetic implants. Emerging CMOS neural sensors

provide a more accurate and dense sampling of the neural activity, presumably enabling more

precise patient intentions decoding, but requiring the artificial intelligence model to process

orders of magnitude more data while being subjected to stringent latency constraints.

A promising technology for addressing highly parallel and computational-intense real-time

processing of neural data, real-time low-latency emulation of large-scale brain models, and

real-time low latency execution of artificial neural network models is represented by All Pro-

grammable System on Chips (APSoCs). These devices embed: 1) hardwired Digital Signal

Processor (DSP) slices, particularly well suited for the most computationally intense portion

of the processing, constituted of multiplications and multiply-and-accumulate operations: 2)

a fabric of programmable logic, flexible enough for accelerating even the more specific details

of neural DSP algorithms and artificial neural networks inference; 3) configurable dual-port

blocks of memory with selectable port widths, ideal to foster hardware adaptability over a dif-

ferent number of recording sites and emulated neurons; 4) an ARM-based Processing System

(PS) [5], useful for taking care of housekeeping tasks, such as memory management and user

interaction, and at the same time embedding enough computing power to execute refinement

algorithms to increase the accuracy of the system as a whole.

APSoCs features are ideal to host accelerators to permit: a) real-time processing of MEAs and

HDMEAs neural signals such as spike detection and spike sorting on thousands of recording

channels; b) real-time emulation of large-scale analytical neuron models useful for represent-

ing and understanding dynamics and behavior of biological neural networks ; c) real-time

execution of artificial intelligence methods based on artificial neural networks aiming to de-
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code the neural signal, inferring the patient intentions, and providing a first step in the control

of new neuroprosthetic implants operating in the central nervous system.

The main contributions and publications of the thesis can be summarized as follows:

- We demonstrated APSoCs are valid computing platforms for real-time neural signal

analysis at the edge, especially when thousands of recording sites are considered. In

“ZyON: Enabling Spike Sorting on APSoC-Based Signal Processors for High-

Density Microelectrode Arrays” [6], we presented a spike detection and sorting sys-

tem implemented on APSoC addressing up to 5,500 recording sites in closed-loop low-

latency (2.3 ms) experiments. We exploited the parallel computational capabilities of the

programmable logic to take care of the more demanding portion of the neural algorithm

while the ARM-based processing system refined the programmable logic parameters in

real-time to improve the quality and the yield of the sorting results. Our implementation

allows real-time detection and sorting of the spikes on the highest number of recording

channels at the state of the art;

- We demonstrated the physiological spike propagation delay of biological neural net-

works can be exploited in the real-time emulation of artificial neural networks, in partic-

ular, in “A Bandwidth-Efficient Emulator of Biologically-Relevant Spiking Neu-

ral Networks on FPGA” [7], we demonstrated APSoCs provide an adequate off-chip

ram bandwidth for emulating in real-time arbitrarily connected spiking neural networks

counting up to 3,098 neurons and 9.6e6 synaptic interconnections, considering a time

resolution of 0.1 ms and a spike propagation delay of 3 ms, i.e. a system latency of 3 ms.

Furthermore, we presented a study of the Izhikevich neuron model execution with fixed-

point arithmetic on Xilinx DSP slices, providing a scheme for saving 39% of the memory

necessary for storing the neurons’ parameters and achieving a negligible difference in

the spiking pattern when compared with a floating-point model;

- We demonstrated spiking neural networks are an adequate candidate for real-time low-

power spike decoding by presenting a spike decoder implementation hosted by an AP-

SoC composed of a multiplier-less spike detection processing chain cascaded with a

spiking neural network based decoder. The system achieved results comparable with
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other neural decoders at the state of the art when tested on the same delayed reach-to-

grasp dataset, publicly available in [8]. The spiking neural network model required 7.36

times fewer parameters than the smallest neural decoder validated on the same dataset,

and when tested on real recorded data 90% of the computations are saved due to spike

sparsity.

The following chapters are organized as follows: Chapter 2 contains an exploration of several

spike detection methods, focusing on accuracy, computational complexity, and real-time via-

bility; Chapter 3 presents a spike detection and sorting system addressing up to 5,500 record-

ing sites for closed-loop experiments published in [6]; Chapter 4 describes a real-time bio-

realistic spiking neural network emulator of Izhikevich neurons counting 3,098 neurons and

9.6e6 synaptic interconnections published in [7]; Chapter 5 presents a neural decoder imple-

mentation exploiting a multiplier-less spike detection method and a spiking neural network

for online spike decoding during a delayed reach-to-grasp task; Chapter 6 is left to conclusions

and future works speculations.

12



Chapter 2

A study of real-time spike detection

methods

Intracortical multielectrode arrays measure the occasional extracellular depolarization of neu-

rons surrounding the electrode surface [9]. These events are called action potentials, or spikes,

and have been widely used for studying several phenomena on an extended range of appli-

cations including spike sorting [10], prosthetic device control [11] and speech decoding [12].

Spike detection is the first step of several neural signal processing studies, addressing both on-

line and offline analysis. In fact, embedding real-time spike detection in the recording system

limits consistently the output data rate, permitting the acquisition of data from more recording

sites also for offline analysis [13]. New generation multielectrode arrays count thousands of

recording sites, thus, require appropriate spike detection algorithms that could scale and keep

up with such an amount of data without exceeding the strict power limitations of implantable

devices [14].

The first chapter of the Thesis is used to present accuracy and computational complexity com-

parisons between different spike detection methods. The results serve as a solid basis to guide

the choices taken in the next chapters, where spike detection will be the prime component to

enable more complex real-time neural signal analysis. The following sections are organized as

follows: Section 2.1 presents in detail the typical processing steps composing spike detection

algorithms, such as filtering, spike emphasis, and spike threshold evaluation; Section 2.2 and

2.3 contain comparisons between the methodologies studied in the previous section, respec-
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tively by the point of view of the accuracy and the computational complexity; the results are

discussed in Section 2.4, Section 2.5 is left to conclusions and indication of future directions

for real-time spike detection algorithms.

2.1 Spike Detection Processing Steps

Spike Detection methods and algorithms aim to spot the spikes along the neural activity

recorded by electrodes. Figure 2.1 introduces the typical steps that constitute the Spike Detec-

tion processing chain:

Figure 2.1: Spike detection processing chain can be divided into 4 sub-tasks: The input broad-

band recording (1) is filtered (2) to remove low-frequency components; the signal is empha-

sized to improve the signal-to-noise ratio (3); a measure of the noise is used to compute a

threshold (4) used to detect the spikes when exceeded (5).

• Filtering: the frequencies outside the band of interest are filtered. The main focus lies in

removing the frequency in the band [0, 300] Hz [15].

• Spike emphasis: relying on the pointed shape of the spikes, the signal is processed to

amplify fast variations (the spikes) to increase the signal-to-noise ratio;

14



• Threshold computation: a measure of the noise, such as standard deviation, root mean

square, or the mean of the signal is usually multiplied by a constant factor;

• Threshold crossing detection: the threshold is used as a point of comparison, when the

signal exceeds the threshold value a spike is detected. A refractory period during which

the neuron is not capable of responding to the stimuli and fires an additional spike is

usually considered to avoid detecting multiple times the same spike.

2.1.1 Filtering

Digital filters are widely studied processing elements used for removing the signal frequency

components out of the band of interest. In the spike detection domain, filters are mostly used

to remove the lower frequency components in the range [0, 300] Hz. Digital filters can have

an Infinite Impulse Response (IIR), characterized by Eq.2.1, or a Finite Impulse Response (FIR)

characterized by Eq.2.2.

y(n) =
∑

aiy(n− i− 1) +
∑

bix(n− i) (2.1)

y(n) =
∑

bix(n) (2.2)

Where x is the digital input signal, y is the filter output, a and b are the filter coefficients,

respectively poles, and zeros. Infinite Impulse Response filters, such as Elliptic and Butter-

worth filters, present good filtering performance at a lower order than FIR filters, because of

the presence of the poles, thus, they have a retained computational complexity. Fig.2.2 and 2.3

show the frequency response of four digital filters, a 4th-order Elliptic IIR filter and a 4th-order

Butterworth IIR filter in Fig.2.2, a 4th- and 60th-order FIR filter in Fig.2.3. All the filters are

high-pass filters with a cut-off frequency of 300 Hz. It is visible how the roll-off
1

is steeper for

IIR filters and it is required to increase the FIR filter order up to about 60 to obtain a similar

behavior, as shown in Fig.2.3 (B).

However, in spite of their lower computational complexity, one of the drawbacks of using IIR

filters is that they can become unstable. The stability condition for causal IIR filters entails

1
Roll-off: filter transfer function steepness.
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(a) 4th-order Elliptic IIR filter
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(b) 4th-order Butterworth IIR filter

Figure 2.2: IIR filters frequency response.
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(a) 4th-order FIR filter
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(b) 60th-order FIR filter

Figure 2.3: FIR filters frequency response.

16



all the poles a to be smaller than 1 as stated by Eq.2.3. Even though IIR filters coefficients are

properly chosen during the design phase and respect Eq. 2.3, this condition could no longer

apply once the filter is implemented in hardware, and the coefficients are approximated to the

chosen fixed point representation.

|ai| < 1 ∀i (2.3)

Usually, to circumvent this problem, it is preferred to use cascaded biquadratic filters.

Despite the higher computational complexity required by FIR filters to obtain a roll-off similar

to IIR filters, they are sometimes preferred because of their intrinsic stability and their linear

phase response, which guarantees no output phase distortion. In fact, in some spike detection

follow-up signal analysis, such as spike sorting, it is crucial maintaining the spike shape intact,

since depending on the spike shape it is possible to recognize when the spikes are fired by the

same neuron. Therefore, FIR filters are still widely used.

Non-canonical FIR filters can be found in literature, such as the Moving Average (MA) filter, i.e.

a FIR filter where all the coefficients are equal to the inverse of the filter order N as in Eq.2.4, or

the case of the Moving Average Difference (MAD) filter [16], that implements a high-pass filter

by subtracting to each sample the moving mean of the signal, computed thanks to a moving

average filter as in Eq.2.5.

MA(n) =
1

N

∑
x(n− i) (2.4)

MAD(n) = x(n)−MA(n− 1) (2.5)

The moving average difference filter frequency response is shown in Fig.2.4 (A) and (B), where

respectively a 2nd and an 8th-order Moving Average filters were used to compute the signal

mean. The so obtained high-pass filters present a steeper roll-off than FIR filters of a similar

order. Unfortunately, the linear phase response is lost because the filter coefficients are no

more symmetric. Anyway, not having any poles, they are still intrinsically stable.

Another non-canonical but still effective filter is the difference filter [17]. In this case, the

high-pass behavior is obtained by simply subtracting adjacent samples. Eq.2.6 and 2.7 model
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(a) 2nd-order MAD filter
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(b) 8th-order MAD filter

Figure 2.4: Moving average difference filters frequency response.
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(a) 1st-order difference filter
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(b) 2nd-order difference filter

Figure 2.5: Difference filters frequency response.

the behavior of first- and second-order difference filters.

y(n) = x(n)− x(n− 1) (2.6)

y(n) = x(n)− x(n− 2) (2.7)

The frequency responses of the difference filters are shown in Fig.2.5 (A) and (B). The 1st-order

difference filter roll-off is lower than the 2nd-order moving average difference filter, however,

the 2nd-order difference filter magnitude response is similar. As regards the phase response,

the difference filter exhibit a linear phase response within the band of interest.
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Moving Average Difference, and Difference filters reduce the filtering computational complex-

ity, in fact, no multiplications take place, and as regards the division of moving average filters,

it can be substituted by a right-shift if the order of the filter is conveniently chosen equal to a

power of two.

Table 2.1 summarizes the main features of the filters analyzed in this subsection. It can be

seen that IIR-type filters present a moderate computational complexity, introduce phase dis-

tortion, and are subject to numerical instability. Although FIR-type filters are always stable

and do not introduce any phase distortion, it is required increasing the filter order to about

60 to obtain a magnitude response comparable to the one of 4th-order IIR filters, making FIR

filters computationally intensive solutions. On the other hand, Moving Average Difference

and Difference filters present a satisfying magnitude response at a limited order, i.e. between

2 and 8 for the Moving Average Difference filter and 1 and 2 for the Difference filter. Moreover,

they are always stable, and their phase response is linear within the band of interest (except

for the 8th-order MAD filter). Finally, MAD and Difference filters are the least computation-

ally expensive models, since it is not required any multiplication, they are therefore the best

candidates for implementing neural interfaces counting thousands of recording channels.

Filter type Stability Order Phase-distortion Computational complexity

IIR Can become unstable 4th Yes Moderate

FIR Always stable 60th No High

MAD Always stable 2nd-8th Low Low

Diff Always stable 1st-2nd Low Low

Table 2.1: Filters’ features summary

2.1.2 Spike Emphasis

Spike emphasis algorithms are widely used ways to increase the signal-to-noise ratio of the

signal and increase the spike detection accuracy at a low computational cost.

The simplest spike emphasis method consists of computing the absolute value of the neural

signal [18]. The absolute value is not actually a real spike emphasis method, since it does not

improve the SNR of the signal, it is indeed equivalent to applying both positive and negative

thresholds [19].
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Another popular spike emphasis method is the Non-linear Energy Operator (NEO) [20], de-

scribed by Eq.2.8.

y(n) = x2(n− 1)− x(n)x(n− 2) (2.8)

The strategy behind NEO transformation is inherent to the typical pointed shape of the spikes.

In fact, by considering the sample x(n-1) to be the spike crest, it is obvious how the previous

and next samples, x(n-2) and x(n) would be much smaller, and therefore the pointed spike

shapes would be amplified. However, this can either be or not be the case, depending on

the spike steepness compared to the sampling frequency. To work around this problem, it is

usually preferred to use a more general formula for NEO, that allows considering also further

samples as shown in Eq.2.9

y(n) = x2(n− k)− x(n)x(n− 2k) (2.9)

Along the lines of NEO, the Amplitude Slope Operator (ASO) was introduced in [16]. ASO

multiplies the current value of the signal by its derivative, obtained by sample subtraction, as

shown in Eq.2.10. In presence of a spike, both the amplitude and the first derivative of the

neural signal are in fact larger than usual.

y(n) = x(n)(x(n)− x(n− k)) (2.10)

Spike emphasis methods aim to increase the yield of spike detection. However, they inevitably

introduce additional computations, that are carried out on each channel, and therefore, it

should be verified if their insertion effectively improves the spike detection accuracy, i.e. are

the added computations worth their cost? In the case of the absolute-value method, the com-

putations are negligible, i.e. the technique consists in computing the 2’s complement of the

sample, whereas, in the case of NEO and ASO are introduced multiplications and additions, as

well as memory elements, and the number of processing and memory elements grow linearly

with the number of electrodes of the recording array. Table 2.2 summarises the complexity of

the spike emphasis method from the point of view of the computational and memory require-
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ments. In order to process the data sampled from thousands of recording channels it should

be selected the least-expensive method that still guarantees an adequate solution to the tar-

get problem of the experiment. Therefore, it should be better to use in order: 1) the Absolute

Value, 2) the Amplitude Slope Operator, 3) the Non-Linear Energy Operator, 4) or other more

complex methodologies if needed. The accuracy improvements and the computational cost of

the above-mentioned spike emphasis methods are described more in detail in Sections 2.2 and

2.3.

Method Computational complexity Memory requirements

Absolute Value Low None

NEO High High

ASO Moderate Moderate

Table 2.2: Computational and memory requirements of spike emphasis methods

2.1.3 Spike Threshold

The choice of the spike threshold has a key role in the accuracy of spike detection. The thresh-

old is usually set by multiplying a constant factor, determined offline, by a measure of the

noise.

Offline spike detection algorithms can rely on the noise measure on the whole neural signal

recording, as well as more complex ways to evaluate the noise value. This is the case of [18],

where the noise of the signal is computed by evaluating the median of the signal as shown in

Eq.2.11.

THRmedian = α×median

(
|x|

0.6754

)
(2.11)

Where α is a constant factor and x is the input signal. This strategy is indeed unfeasible

for real-time application, because the whole neural recording is used, and also because the

median computation requires ordering the neural signal samples, which is a memory- and

computational-intense task.

Real-time spike detection systems either rely on noise estimation based on fixed time windows

or based on sliding time windows. Fixed time window-based noise estimators update the noise

estimation every time the time window expires. Sliding time window-based noise estimators
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update their value at every incoming sample, fitting the noise value more closely. However, it

is required to store the samples of the whole window. In either case, the window size choice

is of prime importance, since a too-short window could suffer too much because of the spikes

within the window. To overcome the noise estimation error due to the spike presence, it is

possible to remove the spikes samples from the noise estimation once detected, as in [21].

A widely used noise estimation method is the Mean Square (MS) value of the signal Eq.2.12,

usually preferred to the Root Mean Square (RMS) value Eq.2.13 to avoid the square root com-

putation. Note that W is the number of samples within the time window.

THRMS =
α

W

M∑
i=0

x2(i) (2.12)

THRRMS =

√√√√ α

W

W∑
i=0

x2(i) (2.13)

In place of the RMS or MS value, the standard deviation of the signal, or its square, the variance,

can either be used Eq.2.14 and 2.15.

THRSTD =

√√√√ α

W

W∑
i=0

[x(i)−mean(x(i))]2 (2.14)

THRV AR =
α

W

W∑
i=0

[x(i)−mean(x(i))]2 (2.15)

(2.16)

In addition, also the mean of the signal can be used to set the threshold, as in [17].

THRMEAN =
α

W

W∑
i=0

x(i) (2.17)

More sophisticated algorithms, such as [21], also consider the spike amplitudes during the

threshold computation, implementing a hybrid mechanism that accounts for both the neural
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signal noise µnoise and the mean spike crest amplitudes µspike as shown in Eq.2.18.

THRDOUBLE = αµnoise + βµspike (2.18)

Where α and β are two constants to be determined. In general, the approach in [21] can be

used in combination with all the signal noise estimation methods described above, by substi-

tuting the term µnoise with the signal mean, the mean square, or the variance.

As regards the constant gain used to multiply the noise estimation α, it is worth noting that

is application specific. Higher thresholds permit detecting the activity of the neurons closer

to the electrode tip, whereas lower thresholds permit detecting the activity of further neurons

[22].

Table 2.3 summarises the computational complexity and memory requirements of the three

methods used to establish the signal noise: Mean Square (MS), Variance (VAR), and Mean. The

mean value of the signal is the easiest way to evaluate the signal noise since it entails accu-

mulating the raw samples, whereas the Mean Square uses the accumulation of the square of

the samples. The variance computation is the most complex noise estimation method since

it implies accumulating the squares of the difference between the incoming samples and the

signal mean. As for the spike emphasis method choice, it is advisable to use the least expen-

sive method that still allows achieving an acceptable accurate problem solution, therefore, in

order: 1) Mean value, 2) Mean Square, 3) Variance. The accuracy and a detailed analysis of the

memory and computational cost are available in Sections 2.2 and 2.3.

Method Computational complexity Memory requirements

MS Moderate Moderate

VAR High High

Mean Low Low

Table 2.3: Computational and memory requirements of spike threshold methods
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2.2 Spike detection methods accuracy

Spike detection methods have several degrees of freedom: the choice of the filter, the spike

emphasis algorithm, the type of threshold, its window size and type (fixed or sliding), and

the choice of the refractory period. In this section, using as a benchmark the synthetic dataset

[18], the accuracy of the three spike emphasis methods presented in Section 2.1.2 are analyzed:

Absolute Value, Non-linear Energy Operator, and Amplitude Slope Operator; moreover, it is

assessed the yield of the three different measures of the signal noise presented in Section 2.1.3:

Mean Square, Variance, and Mean of the signal. Table 2.4 contains the list of the spike detection

algorithms tested in this section.

The time window is kept fixed at 0.78 seconds, however, ten different time windows are tested

with NEO and RMS methods only, to verify the effect of time window variations on accuracy.

The sliding window is not considered because its implementation requires elevated memory

resources, and scales poorly with the number of electrodes.

Finally, unfortunately, the dataset [18] does not comprise any low-frequency components, i.e.

the local field potential is not simulated, therefore the filters cannot be tested effectively on

this dataset.

Threshold Emphasis

Mean square Absolute value

Mean square Non-linear Energy Operator

Mean square Amplitude Slope Operator

Variance Absolute value

Variance Non-linear Energy Operator

Variance Amplitude Slope Operator

Mean Absolute value

Mean Non-linear Energy Operator

Mean Amplitude Slope Operator

Table 2.4: Spike detection configurations

2.2.1 Reference benchmark dataset

To test the accuracy of different detection methods is used [18] as a benchmark. The dataset

contains 18 synthetic single-channel neural signal simulations, each simulation contains the
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neural activity of three neurons. The simulations have different levels of noise: 0.05, 0.01,

0.15, 0.2, 0.25, and 0.35. The noise of each simulation indicates the standard deviation of the

synthetic dataset. The simulations were created starting from real spike waveforms recorded

in the neocortex
2

and basal ganglia
3
, whereas the background noise is obtained by adding

together random spikes.

2.2.2 Spike emphasis and spike threshold accuracy

Three spike emphasis methods: absolute value, Non-linear Energy Operator, and Amplitude

Slope Operator have been tested on the 18 neural simulations of [18] using three different

ways to estimate the threshold: the mean square, the variance, and the mean of the signal.

The accuracy of the methods is assessed by using the Fscore operator, described by Eq.2.19.

Fscore =
TP

TP + 0.5(FP + FN)
(2.19)

Where TP are the true positives, i.e. the correctly detected spikes, FP are the false positives,

i.e. spikes detected by mistake, and FN are the false negatives, i.e. non-detected spikes.

The average accuracy results when the mean square threshold is used are shown in Table 2.5.

The Fscore is above 91% for the three methods, NEO and ASO perform slightly better than the

absolute value method achieving respectively 93.86% and 94.48%. The absolute value method

detects fewer true positives and has more false positives and false negatives than the other

methods. ASO and NEO perform similarly, however, the number of false positives in the case

of ASO is significantly lower, only 0.85% compared to the 3.64% of NEO. This feature should be

considered in applications where the presence of false positives can significantly impact the

system’s behavior.

Table 2.6 contains the accuracy obtained by using the variance of the signal as a basis to set

the thresholds. The same considerations still hold also in this case, however, the Fscore of ABS,

NEO, and ASO are in general lower than using the MS-based thresholds. Furthermore, the

2
Neocortex: the brain area appointed to high-order functions, such as cognition, sensory perception, and

motor control [23].

3
Basal ganglia: a group of sub-cortical neural structures involved in functions as action selection and rein-

forcement learning [24].
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Emphasis Fscore TP FP FN

ABS 91.76% 89.40% 5.22% 10.60%

NEO 93.86% 91.19% 3.64% 8.81%

ASO 94.48% 90.30% 0.85% 9.70%

Table 2.5: Mean square-based threshold accuracy

number of false positives of NEO is significantly increased, reaching 14.03%.

Table 2.7 shows the accuracy of the spike detection when a mean-based threshold is used.

Emphasis Fscore TP FP FN

ABS 86.66% 82.53% 2.33% 17.47%

NEO 90.51% 90.27% 14.03% 9.73%

ASO 93.29% 88.54% 0.96% 11.46%

Table 2.6: Variance-based threshold accuracy

ASO, which was the best candidate so far, does not work when coupled with the mean thresh-

old. The reason lies in the fact that the signal average after the ASO operator has been applied

is not a good metric to evaluate its noise. On the flip side, NEO, when associated with a

mean-based threshold, achieves the best performances, reaching an Fscore of 94.68% and true

positives, false positives, and false negatives are all better than in the two previous cases. The

absolute value method performs similarly to the case where it is paired with the Mean Square

based threshold.

Emphasis Fscore TP FP FN

ABS 91.64% 87.93% 2.82% 12.07%

NEO 94.68% 91.30% 1.60% 8.70%

ASO 19.98% 92.14% 730.18% 7.86%

Table 2.7: Mean-based threshold accuracy

2.2.3 Threshold time window size

In this section, the time window is let vary, while NEO and RMS threshold are used to detect

the spikes, and their hyperparameters are left untouched (the constant to which the noise

estimation is multiplied alpha). During the previous experiments, the window size was fixed

at about 0.78 s. Table 2.8 shows the Fscore, true positives, false positives, and false negatives for
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9 different timing windows, varying from 0.043 seconds to 10.92 seconds. The 0.78 s window

W [s] Fscore TP FP FN

10.92 81.19% 69.82% 2.49% 30.18%

5.46 89.20% 82.60% 3.01% 17.40%

2.73 92.35% 88.18% 3.24% 11.82%

1.37 93.50% 90.33% 3.35% 9.67%

0.78 93.86% 91.19% 3.64% 8.81%

0.34 93.72% 91.20% 4.01% 8.80%

0.17 92.82% 90.47% 5.28% 9.53%

0.085 89.54% 88.46% 10.33% 11.54%

0.043 75.77% 84.14% 39.34% 15.86%

Table 2.8: NEO and RMS accuracy at various window sizes

used in the previous experiment is the case with the highest Fscore. Moving either to longer

or shorter time windows causes a decrement in accuracy.

Decreasing the time window size the mean square value of the signal is computed with a

higher timing resolution, leading to windows with a different number of spikes. The spike

samples introduce errors in the noise evaluation, during windows with a high number of spikes

the noise is estimated higher than it is, entailing a higher threshold that increases the false

negatives, up to 15.86%, obtained for a window of 43 ms. In addition, during time windows

with few spikes, where the noise estimation is more accurate, the hyperparameter chosen to

multiply the noise estimation is too low. The low threshold causes an increased number of

false positives of 39.34%, obtained for the 43 ms window.

Longer time windows have a more even spike distribution among them, consequently, the

distribution of the thresholds is more compact, as clearly visible in Figure 2.6. However, once

exceeded the value of 0.78 seconds, the improvements stop: the true positives start decreasing

and the false negatives increase, causing in general a lower F-score.
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Figure 2.6: Threshold values distribution at the varying size of the threshold time window for

RMS + NEO spike detection method
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2.3 Spike detection methods complexity

In this section is presented the computational complexity and the memory requirements of

the filtering, spike emphasis, and spike threshold methods.

Filtering

The operations (per sample and per channel) required by the filters are shown in Table 2.9.

The 4th-order FIR filter is moderately expensive and could be used when it is not required a

steep roll-off. The 60th-order FIR filter is the most expensive filter among the ones consid-

ered, requiring an order of magnitude more multiplications, additions, and registers to obtain

a transfer function as steep as the IIR filter ones. However, differently from the IIR filters, the

FIR filter is intrinsically stable and does not introduce any phase distortion.

The moving average difference filters complexity drop-down, in fact, no multiplications are

required. The transfer function of the 8th-order MAD filter is similar to the one of the But-

terworth filter. Moreover, not having any pole in their transfer function, the MAD filters are

intrinsically stable. The only drawback constituted by using the 8th-order MAD filter is its

phase response, which not being linear, introduces phase distortion.

The difference filters are the ones with the lowest requirements in terms of both computa-

tional complexity and memory. They are intrinsically stable as well and their phase response

is linear within the band of interest. Difference filters and Moving Average filters are the best

candidates to be embedded in neural interfaces addressing thousands of recording sites.

Filter Order Mul Sum Reg

FIR 4 5 4 4

FIR 60 61 60 60

IIR 4 10 9 8

MAD 2 0 2 2

MAD 8 0 8 8

DIFF 1 0 1 1

DIFF 2 0 1 2

Table 2.9: Filters computational cost and memory usage
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Emphasis Mul Sum Reg

ABS 0 1 0

NEO 2 1 ≥2

ASO 1 1 ≥1

Table 2.10: Spike emphasis methods’ com-

putational cost and memory usage

Threshold Mul Sum

MS 1 1

Var 1 3

Mean 0 1

Table 2.11: Spike threshold methods’ com-

putational cost

Spike emphasis

The operations (per sample and per channel) required by the spike emphasis methods are

shown in Table 2.10. The absolute value is the simpler method, it only requires an addition

to substitute the sample with its 2’s complement when its value is negative. The operations

of NEO and ASO are directly extracted by Equations 2.8 and 2.10. The NEO operator requires

two multiplications and one subtraction. The ASO operator requires one multiplication and

one addition. Furthermore, NEO and ASO operators also require to memorize the previous

samples of the neural signal. When the parameter k of Equations 2.8 and 2.10 is 1, two regis-

ters are needed for NEO and one for ASO. The number of registers increases linearly with 2k

and k respectively. Moreover, note that when the recording has multiple channels, registers

are required on each channel.

Because of its simplicity, the absolute value method should be preferred to ASO and NEO algo-

rithms for scaling on high-channel-count neural interfaces, even though the accuracy obtained

with ASO and NEO algorithms is slightly higher, as seen in Section 2.2.

Spike threshold

The operations (per sample and per channel) required by the spike threshold evaluation are

shown in Table 2.11. These values are directly obtained by analyzing Equations 2.12, 2.15, and

2.17. The multiplications by the constant factor α present in all the equations is not considered,

since it only happens once per time window, and not at every incoming sample. According

to the hypothesis of using a timing window with a number of samples equal to a power of

two, the division by the window dimension W reduces to a right shift, and it is ignored as

well. The mean computation requires a single addition per sample. The evaluation of the

variance requires computing the mean of the signal, subtracting it from the current sample
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value, computing the square of the difference, and adding it to the previous accumulated terms.

It is then necessary one multiplication and three additions. The mean square of the signal is

computed by evaluating the square of the incoming sample and adding it to the previously

computed terms, thus, one multiplication and one addition are therefore required.

The Mean based threshold is the least computationally expensive noise estimation method, and

unless the ASO operator is chosen, it is also the method that guarantees the highest accuracy,

as shown in Section 2.2. The Variance of the signal is the most computationally intense noise

estimation method, moreover, it achieves the poorest accuracy when used in combination

with both NEO and the absolute value of the signal. The Mean Square evaluation is a trade-off

between the Mean and the Variance from the computational cost point of view, it requires

an addition and a multiplication: two additions less than the variance, but one multiplication

more than the mean value computation, that is multiplication free. Unless significant accuracy

improvements are found, the mean value is the best-suited method for implementing high-

channel-count neural interfaces.
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2.4 Discussion

The results obtained in the previous sections can be used to guide the choice of the most

appropriate spike detection processing chain using as metrics the computational complexity,

expressed as numbers of additions and multiplications, the memory requirements, expressed

as number of registers, and the accuracy, expressed as F-score, number of true positives, false

positives, and false negatives. In this Thesis, the main focus lies on providing suitable solutions

for neural interfaces processing in real-time the data sampled by MEA and HDMEA counting

thousands of recording channels. For this reason, computational- and memory-efficient meth-

ods are preferred to computationally expensive and memory-draining methods when they

provide only small accuracy improvements.

The configuration we identified as the best suited for being used with new generation multi-

electrode arrays is composed of 2-nd order Moving Average Filter, absolute value based spike

emphasis method, and mean value based noise threshold estimation, computed on a fixed (non-

sliding) time window of 0.78 seconds. This configuration is multiplication-free and reaches an

F-score of 91.64%, only 3 points below the most accurate configuration, i.e. NEO and Mean

value threshold, while it guarantees a minimum computational complexity of 2 additions per

sample per channel (without considering the filtering stage), whereas NEO and Mean value

threshold together requires 2 multiplications and 2 additions per sample per channel (with-

out considering the filtering stage). In addition, the absolute value spike emphasis method

does not require any additional memory element, NEO necessitates two memory elements

per channel.
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2.5 Conclusion

The study highlighted the characteristic of several algorithms used for filtering, spike empha-

sis, and spike threshold evaluation. In particular, the filter behavior of several filter topologies

was analyzed and compared starting from their transfer function, considering both the magni-

tude and the phase response. Then, the accuracy of the permutations of three spike emphasis

techniques and three spike threshold methods were measured using a benchmark dataset [18].

An additional exploration of the size of the time window used during the spike threshold com-

putation was also carried out on the same dataset. Furthermore, the computational complex-

ity and the memory requirements of filtering, spike emphasis, and spike threshold algorithms

were extracted from their mathematical formulation.

All in all, it does not seem complex spike emphasis algorithms could improve the spike de-

tection accuracy that much, conversely, they introduce additional computations and buffers

to store the previous samples. The requirements are not that elevated per channel, but with

the emerging technologies, they get multiplied by numbers in the order of 3k channels [2].

In a similar fashion, also filters and spike threshold complexity should be reduced as much as

possible, by preferring lower computational- and memory-intense architectures when practi-

cable, such as moving average difference or difference filters and mean value based estimation

method for the threshold evaluation.

The configuration we selected as the best suited to be used in the design of new generation

neural interfaces exploiting emerging CMOS-based MEAs and HDMEAs is a multiplication-

free neural signal processing algorithm based on 2nd-order Moving Average Difference filter,

absolute value spike emphasis method, and mean value based noise estimation. This configu-

ration, without sacrificing the accuracy, having an F-score of 91.76%, only 3 points lower than

the best performing solution found, i.e. NEO spike emphasis algorithm and mean value based

threshold, allows to accurately detect the spikes with a minimum computational and memory

requirements of four additions, zero multiplications, and three registers per channel.

Although in the next two chapters the Thesis focuses on spike sorting
4

and spiking neural

network emulation, neglecting spike detection, a hardware implementation of the above-

4
Spike sorting: recognizing and grouping the spikes generated by the same neuron.
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mentioned neural signal algorithm is provided in Chapter 5, as long as its accuracy when

used for detecting the spikes inside a more complex neural signal processing chain, aiming to

decode the position of a handle by reading the neural activity generated in the motor cortex.
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Chapter 3

Real-time spike sorting over thousands

of channels

Abstract
Multi-Electrode Arrays and High-Density Multi-Electrode Arrays of sensors are key instru-

ments in neuroscience research. Such devices are evolving to provide ever-increasing temporal

and spatial resolution, paving the way to unprecedented results when it comes to understand-

ing the behavior of neuronal networks and interacting with them. However, in some experi-

mental cases, in-place low-latency processing of the sensor data acquired by the arrays is re-

quired. This poses the need for high-performance embedded computing platforms capable of

processing in real-time the stream of samples produced by the acquisition front-end to extract

higher-level information. Previous work has demonstrated that FPGA and All-Programmable

System-On-Chip (APSoC) devices are suitable target technology for the implementation of

real-time processors of Multi-Electrode Arrays data. In this chapter, we propose an APSoC-

based implementation capable of sorting neural spikes acquired by the sensors. Our system,

implemented on a Xilinx Z7020 APSoC is capable of executing online spike sorting on up to

5,500 acquisition channels, 43x more than state-of-the-art alternatives, supporting 18KHz ac-

quisition frequency. We present an experimental study on a commonly used reference dataset,

using an online refinement of the sorting clusters to improve accuracy up to 82%, with only

4% degradation with respect to offline analysis.
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3.1 Introduction

During the past decades, understanding neural signals and interaction between neural units

have been a topic of interest in the medical and biomedical scientific community. Lots of

research efforts have been dedicated to advancing the knowledge in the field, mainly aimed

at long-term important objectives, such as the comprehension of neural networks functional

principles [25] and the implementation of neural prosthetic systems [26].

To foster studies on the behavior of neural units, researchers have developed a wide range of

hardware and software instruments. Among these solutions, in the hardware domain, multi-

electrode arrays (MEAs) [2] have been largely used for long-term multi-units recording. Mul-

tielectrode probes have been also proposed, well suited to monitor neurons in both superficial

and deep brain structures [27]. Finally, High-Density MEAs (HDMEAs) permit retrieving in-

formation at the single cell level [3]. The increasing number of channels, growing from tens to

thousands, drastically improves spatio-temporal resolution and the yields of the analysis and

processing of the sampled activity. To be effectively exploitable, such evolution of the sensing

hardware must be supported by the design of adequate processing platforms executing the

analysis of the sensed signals. The large amount of collected data requires high throughput

to comply with real-time constraints and to avoid data loss, especially when analysis must

include Spike Sorting [28], i.e. extraction of high-level features, aimed at distinguishing the

activity of different firing neurons recorded on the same track. Moreover, latency must be

controlled, to support interaction with neural tissues in a closed-loop fashion.

To comply with such tight requirements, mainstream general-purpose processing systems

(PCs and workstations), in this case, are hardly good target platforms, due to the low latency

response required by the system dynamics, typically in the order of some milliseconds. Instead,

ASIC- and FPGA-based embedded systems implementations are usually preferred. However,

at the state-of-the-art, such devices only support a limited number of electrodes [29][30][31] or

are designed to execute only the first steps of the neural signal processing chain [17][32][33],

thus, do not match the requirements of the emerging technologies.

FPGAs are prospectively very well suited for parallel and highly DSP-intensive signal process-

ing. New generation MEAs signal analysis requires operating in parallel on signals acquired
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by a high number of channels, each one requiring a high number of multiply-and-accumulate

operations, especially needed for removing noise, and other multiplications and arithmetic

operations implementing the analysis of the main waveform features. Thus, this processing

well matches the high number of DSP slices and BRAM tiles of modern programmable devices.

Moreover, the flexibility provided by FPGA technology, permitting the hardware architecture

to be reconfigured, is a key advantage in this kind of domain, where research efforts are often

in an exploratory phase, requiring algorithms and methods to be refined easily during exper-

iments.

To bring flexibility one step forward, we use All-Programmable SoCs (APSoCs), which allow

(part of) the system functionality to be defined and refined in software, enabling tuning by

researchers and users without hardware design and implementation expertise. A brief de-

scription of APSoC platforms is available in Appendix A.

In this chapter, we extended an existing neural signal processing system [32] named Zyon

(Zynq-based On-line Neural processor), implemented on an All-Programmable System-On-

Chip, that hosts on the same chip a dual-core ARM-based Processing Systems (PS) and a

fabric of FPGA-based reconfigurable logic. In Zyon, the PS was used to close the loop and

apply stimuli to the tissue, whereas the circuitry implemented on the FPGA executed the most

computationally demanding portions of the processing operating in parallel on the streams

of samples acquired by the different channels, implementing spike detection. In this chapter,

we extend Zyon implementing support for spike sorting, i.e. recognize the spikes fired by the

same neurons. We implement additional digital modules on the programmable logic, to speed

up the most compute-intensive processing tasks within a typical spike sorting pipeline, such

as extraction of signal features and feature-to-template comparison for classification. The re-

sults of such processing are made available to the PS, allowing the exploitation of common

techniques used in machine learning, such as, for example, K-Means [34] and Self Organiz-

ing Map (SOM) [35]. In this way, the high-level intelligence implementing the sorting can be

programmed in software and easily replaced or repeated over the same or different experi-

ments, further improving the system’s flexibility and adaptability to multiple analysis cases.

Whereas in the previous chapter, we focused on spike detection algorithms addressing MEA

and HDMEA counting thousands of electrodes, in this chapter, the analysis regards FPGA-
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based solutions for spike sorting algorithms, and in particular, we focus on studying feature

extraction and feature classification method, since the spike detection processing chain was

already implemented and validated [32].

The main findings of the implementation of Zyon extension carried out in this chapter can be

summarized as follows:

• we demonstrate the feasibility of an FPGA-based implementation of compute-intensive

tasks within spike sorting, operating in real-time for high channel counts;

• we demonstrate the feasibility of a hybrid hardware-software approach that concur-

rently exploits Programmable Logic (PL) and Processing System (PS) inside the APSoC;

• We propose an example of cooperative use of PS and PL which periodically refines the

identification of reference spike templates using different spike subsets, to reduce the

impact of an unfavorable subset selection on the overall spike sorting accuracy;

• we validate our system architecture capabilities on a set of widely used reference bench-

marks [18] and explore its parameters to validate and justify our design choices.

The remainder of this chapter is organized as follows: Section 3.2 contains an overview of

existing online spike sorters and online spike sorting algorithms; Section 3.3 presents the target

processing tasks and the overall structure of the sorting pipeline; Section 3.4 describes the

processing system architecture and the involved functional blocks; Section 3.5 discusses the

achieved results, presenting experiments to assess accuracy and performance; Section 3.6 is

dedicated to a comparison with alternatives available in the literature; conclusions are reported

in Section 3.7.

3.2 Related work

The landscape of different implementations and algorithms proposed in the last years to in-

teract with the neural tissue and to sort neural data is multifaceted. Approaches available in

the literature have a wide scope of objectives: the purpose may be to interact with the tissue

[33], or to partially process the data to limit memory [36] and bandwidth requirements [37].

38



Some instruments are designed to operate offline, such as [38], which reaches outstanding

performance on variable numbers of neurons, provides a graphic user interface, and could use

a variable number of CPUs and GPUs to speed up the analysis. Other works, more related to

the presented work, are focused on online analysis [39].

Moreover, spike sorting systems and algorithms have been implemented using a wide variety

of target technology: researchers have developed software implementations executed on PC/-

workstations [18], as well as custom hardware devices implemented on FPGA [32] or ASIC

[40]. Custom implementations typically present lower latency than PC/workstation solutions

and are preferred for real-time applications. However, software tools for real-time analysis

exist, such as the case of pyNeurode [41], a Python-based platform capable of sorting 128 elec-

trodes with a latency of around 160 ms, or 256 electrodes with a latency of around 255 ms.

Other works target different sorting strategies and focus on different steps of the sorting pro-

cedure. For instance, some works only implement online spike detection. The objective could

be reducing memory requirements [17], or bandwidth requirements [37]. In some case spike

detection is simply enough to enable real-time interaction with the neural tissue, without the

need of adding additional latency introducing a spike sorting analysis [33].

Some work implements complete real-time spike sorters, integrating steps such as filtering,

spike detection, extraction of features relevant for identifying the firing neuron among the

ones surrounding the electrode tip, and classification or clustering. For instance, implementa-

tions such as [42] and [43] face the problem of online spike sorting, using significantly different

sorting strategies. In [42], authors rely on feature extraction using the Zero Crossing Feature

(ZCF) method [44], consisting in taking two different areas extracted from the spike waveform

as features for classification. Subsequently, ZCF features are processed using a Moving Cen-

troid K-Means (MCKM), an online clustering algorithm based on the K-Means (KM) algorithm.

On the other hand, in [43] was directly used the raw spike waveforms for clustering. A similar

approach was also used in [39], where authors directly clustered raw spike data employing a

set of carefully chosen thresholds, to create and update clusters.

Selfsort [45] in contrast, despite keeping a structure similar to [42], firstly used a Self Orga-

nizing Map offline to get the cluster centers, then, took advantage of the approximated cluster

centers, computed on the first set of incoming spikes, to simplify the system by implementing
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in hardware a classifier instead of a clustering algorithm.

The Hierarchical Adaptive Means (HAM) algorithm [46] is another example of an online clus-

tering approach, where the clusters are dynamically added, updated, or merged. In [46] a

different feature extractor method called First and Second Derivative Extrema (FSDE) [47] has

been exploited. FSDE estimates the derivative extrema and uses them as features for classifi-

cation.

Multiple research efforts have also proposed in detail the hardware implementation of spike

sorting systems. An example of ASIC based spike sorter is [40]: a 128-channel spike sorting

chip designed for low-power applications. Initially, the spikes are emphasized using a linear

algorithm that requires only sums and shifts, then, after detection, another linear transfor-

mation is applied to the isolated spike waveforms to extract valuable features for sorting the

spikes, using an improved K-Means algorithm.

In [29] an Altera Cyclone III FPGA is used to prototype a spike sorting system. Post-synthesis

results are also given. The neural signal processor embeds a binary decision tree (BDT) clas-

sifier based on a collection of two bits discrete wavelet transform (DWT) features, and it op-

erates on 32 independent channels. The method provides a 50% memory reduction compared

to distance-based methods.

Deep learning based spike sorters exist, such as [31], where a Convolutional Neural Network

(CNN) was implemented on FPGA and used to sort the spike incoming from a 49-channel

non-synthetic dataset. In [31] was also demonstrated how considering the geometrical prop-

erties of the multi-electrode array could boost the sorting accuracy. They added this feature to

the Osort algorithm, in a similar fashion of [48], and incremented the sorting accuracy from

44% to 86% using a quantized 3.5 KB CNN. Most of the spike sorting systems and algorithms

consider a maximum number of neurons present around the electrode and then a maximum

number of clusters or templates to be matched. [40] considers six as the maximum number

of clusters. HAM [46] and Selfsort [45] set a limit on the maximum number of clusters per

channel referring to [49], where it was demonstrated that with the current technologies and

algorithms it is possible to correctly identify up to eight to ten neurons per electrode.

Table 3.1 is a collection of real-time spike sorters and spike detectors we found in the litera-

ture related to this work. All the works address a small number of electrodes compared to the
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proposed system. This entails a very local monitoring of the neural tissue, or conversely a low

resolution. Summarizing, our system:

• is the first closed-loop system that exploits the heterogeneous processing architecture

of modern All-Programmable SoCs, fully embedding a spike sorting chain;

• increases by more than one order of magnitude the number of parallel recording chan-

nels processed in real-time while guaranteeing a closed-loop latency lower than 2.5 ms;

• takes advantage of APSoCs to guarantee a higher level of flexibility in the neural pro-

cessing domain. We partition the spike sorting chain deployment between the PS and

the PL. Hardware reconfigurability can be used at design time to change the parameters

of the spike sorting sub-tasks operating on input samples. We combine it with soft-

ware programmability, usable more easily during an experiment, to change higher-level

sub-tasks operating on spike clusters and spike templates.

3.3 Target spike sorting pipeline

Spike sorting (SS) is a key step for the analysis of neural signals. It consists on the separation

of the superimposed activities of neuronal cells sensed from the same electrode. At the end

of the process, spikes generated from the same neuron are grouped together. The majority of

spike sorting algorithms are constituted of a four steps processing chain [28] shown in Figure

3.1:

• Filtering - First, the acquired raw signal is filtered to remove noise as much as possible.

• Spike Detection - Spikes are usually detected by means of amplitude thresholding meth-

ods: the samples are compared with a threshold one after the other.

• Feature extraction - Once a spike is identified, its shape is considered for further analysis.

Some of the main factors that determine the spike waveform are the position relative to

the electrode and the neuron geometry [50]. Therefore, spikes coming from the same

neuron will be morphologically similar. At this stage, valuable features are measured on

the waveform, as an indication of the pertinence to a specific active neuron.
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Figure 3.1: Spike sorting processing chain, the raw signal (1) is filtered (2), then, spikes are

emphasized and detected (3). Valuable features are extracted from the spikes waveforms (4)

and classified/clustered (5).

• Clustering - Feature values in detected spikes are considered to partition the feature

space in clusters, that correspond to different spike shapes and, consequently, to differ-

ent firing neurons. Clustering associates to each spike an ID, producing a sorted activity

track in output for further analysis. When facing online spike sorting, the cluster defi-

nition cannot rely on the whole set of spikes involved in the experiment. Two main dif-

ferent kinds of approaches can be used. The first method runs a data-stream clustering

algorithm, as in [46] and in [30]. The second possibility is, otherwise, to approximate the

cluster centers considering a reduced recording time during the experiment, and conse-

quently a limited number of spikes, and then use such centers to classify the incoming

spikes during the remaining experiment duration, as in [45]. Thus, in this case, the final

processing stage in Figure 3.1 can be considered as composed of two phases:

– a proper clustering, which may take place on a training subset of spikes, e.g. at the

startup, and identifies the clusters/templates to be considered during the rest of the

experiment;
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– a classification procedure, which evaluates online the similarity of incoming spikes

to the templates identified by the clustering, completing the spike sorting process.

3.4 System architecture

The proposed processing system architecture is shown in Figure 3.2. The architecture is de-

signed to exploit the characteristics shared by APSoC devices that are part of the Xilinx Zynq-

7000 family. The architectural template can be configured at design time and parameterized to

fit different devices of the family. However, the system configuration presented in this chapter

is implemented on a Z-7020 device.

The system presented in this chapter is based on a previously presented platform, named Zyon

Filters

ClassifierFeature
extractor

Serializer

Spike 
detector

AXI port
from 
CPU

axi master
port

to ddr

Biocam X

Templates

Detection
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Figure 3.2: Schematic block diagram of the experimental setup. Biocam X provides Zyon

with digital data of 4096 electrodes mounted on the HDMEA. Zyon processes the data in real-

time, sorting the neural signals coming from 4096 channels, and generates the output stimuli

through the Stimulus Generator.

[32]. Zyon, in its previous implementation, shares the principles of the architecture presented

in this chapter. Both the PL and PS were used in cooperation. The PL was populated with

modules, described in HDL, that implemented the front-end tasks of the neural signal pro-

cessing chain, until the spike detection phase. The PS was programmed in C and, analyzing

the detection results, evaluates higher-level metrics such as firing rate and spike locations, to

take array-level decisions in real-time. As an example, in [51] the spike redundancy among the
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channels of a High-Density Multi-Electrode Array (HD-MEA) was used to reduce the number

of active electrodes and lower the computational burden of the signal analysis, in the case

of retinal circuits. In this chapter are added further steps in the chain, implementing feature

extraction and clustering.

As presented in [32], the system is instrumented to be interfaced with a BioCam X platform

by 3Brain AG. The platform embeds an active CMOS-MEA device, capable of acquiring 4096

neural signals, sampled at a maximum frequency of 18KHz, digitalized, and transmitted to the

external environment through a Camera Link interface. The interfacing logic implemented on

the FPGA is modular and easily replaceable to interface with other HDMEA platforms, never-

theless, the BioCam X has been used as a reference to design the performance of our system,

in terms of sampling frequency and channel count.

Zyon already embedded a filtering stage that we kept untouched, where the digital neural sig-

nals were multiplexed in time to be processed by a bank of 32 digital FIR filters of order 63, with

cut-off frequency of 300 and 3400 Hz, implemented by the use of Vivado FIR Compiler. Since

every filter completes the computation after 40 clock cycles, the overall filter bank throughput

is equal to 0.8 (32/40) samples/cycles. The filtered signals were then serialized and processed

by the downstream modules, which, exploiting an efficient hardware-level pipelining, imple-

mented in the RTL description of each module, reached a throughput of 1 sample/cycle.

In this implementation, the Spike Detector reads the filtered samples from the Serializer and

triggers the Feature Extractor when a spike is detected.

The Feature Extractor reads the samples from a BRAM-based FIFO, whose main functionality

is buffering an adequate number of samples, serving as a short pre-threshold history of the

sample stream.

Once the features are computed, the Classifier evaluates the distance between the feature vec-

tor and a set of pre-stored templates. It classifies the spikes by identifying the template pro-

ducing the minimum distance.

All the mentioned modules, which take care of the data-crunching tasks in the pipeline, are

implemented on the programmable logic. Furthermore, two dedicated AXI High-Performance

ports were used to allow communication between such modules and the processing system.

In this way, the processing system is available to access the results of the different processing
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stages. When focusing on spike sorting, its main function is related to clustering: the PS can

be used to receive feature vectors from the programmable logic, identify the cluster centers,

and update the Classifier templates.

In addition, the PS takes care of:

• Implementing closed-loop interaction tasks;

• Refining the templates, if needed, considering the classification results;

• Housekeeping tasks, such as memory management, network communication, input/out-

put, and interaction with the user;

Exploiting the peculiar characteristics of APSoCs for such purpose, in our approach, allows

drastically increased flexibility, allowing for easier tuning/refinement of the clustering algo-

rithm, Classifier templates, and stimulus patterns provided, based only on software tuning.

Hardware changes are required only when lower-level algorithm parameters, such as detec-

tion method and classification metrics, have to be replaced.

In Figure 3.3 we use Wavedrom, an open-source digital timing diagram rendering engine, to

show a waveform timeline representing the flow of data through the modules implementing

the sorting pipeline.
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Spike Sorting System Waveform Example
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Figure 3.3: The channels are time-multiplexed and processed 32 at a time by the FIR filter

bank. The filter bank has a latency of 40 clock cycles. When the firsts 32 samples are ready,

they are further serialized and analyzed one by one in a time-multiplexed fashion by the Spike
Detector module, that looks for samples above a certain threshold. As soon as the following 32

samples are computed by the filter bank, they are processed as well, up to the last set. When

a spike is identified, i.e. when a sample is above the threshold, that in the example happens

at the first sampling cycle for channel zero, the Spike Detector triggers the Feature Extractor,
which collects the spike samples during the following 23 sampling cycles and computes the

feature vector. When the feature vector is ready, the Classifier is enabled and the spike vector

is classified.
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3.4.1 Filter

The FIR filter bank, inherited from [32], is composed of 32 independent FIR filters of order

63, with cut-off frequency of 300 Hz and 3400 Hz. Every filter computes 32 MAC operations

and serves 128 different channels in a time-multiplexing fashion. Every filter is implemented

using a single DSP. A single DSP is sufficient to satisfy the requirement of 32 MAC operations

per 128 channels as long as the system frequency is at least 32 × 128 = 4096 times bigger

than the sampling frequency, being the sampling frequency set at 18 kHz, the minimum clock

frequency for this system is about 74 MHz. The filter latency is determined from the FIR order

N , and the sampling frequency fs, through the formula: N/(2 · fs). Being N equal to 63, and

fs equal to 18 kHz, the latency introduced by the filter bank is then 1.75 ms. The filter bank

receives the neural data from an AXI interface, its output is connected to the Serializer.

3.4.2 Serializer

The Serializer, inherited from [32], employing a set of multiplexers, writes the incoming filtered

samples in a BRAMs buffer, interfacing the filter bank with the spike detector.

3.4.3 Spike Detector

The Spike Detector, inherited from [32], reads the filtered samples from the Serializer and com-

pares them with a threshold, evaluated according to Equation 3.1.

Thr2 =
α2

M

[M−1∑
k=0

x2
i−k −

1

M

(M−1∑
k=0

xi−k

)2]
(3.1)

Where x are the samples, α is a parameter and M is the size of the sliding window, which

is limited to powers of two, to be easily managed in hardware. The spikes are detected when

the following condition is satisfied:

Spike = x2
i > Thr2 (3.2)
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3.4.4 Feature Extractor

The Feature Extractor implements the First and Second Derivative Extrema (FSDE) feature ex-

traction algorithm [47]. FSDE based spike sorters use the minimum and maximum extrema of

both first and second derivatives as features. However, usually not all the extrema are consid-

ered. By relying on the evidence proved in [47], the maximum of the first derivative and both

the maximum and the minimum of the second derivative used together permit achieving the

best results.

The first and second derivatives of the spike waveform are evaluated as the difference of ad-

jacent samples and as the difference of adjacent first derivative values:

FD(i) = x(i)− x(i− 1) (3.3)

SD(i) = FD(i)− FD(i− 1) (3.4)

Where FD and SD are respectively, the first and second derivatives, and x(i) is the ith

sample of the spike window. The features are computed within a window placed before the

detection event. In order to retrieve the previous samples, a FIFO is placed between the Seri-

alizer and the Feature Extractor. The FIFO size is defined by Equation 3.5.

FIFOsize = D × C × S (3.5)

Where D is the required number of samples, prior to the threshold trespassing, to be con-

sidered as the head of the spike waveform. D also determines a certain delay between a sample

entering the Feature Extractor and its actual contribution to the feature evaluation. Whereas,

C is the number of channels, and S is the dimension in bits of the recorded samples. The FIFO

size grows linearly with the required delay D, and, its size has an impact on the accuracy.

Limiting D removes too much information contained in the early sample of a spike, affecting

the spike characterization and the overall clustering results. Therefore, this parameter needs

to be carefully evaluated.

As soon as the Spike Detector triggers the Feature Extractor, it starts computing the features
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on the delayed stream of samples coming from the FIFO. Figure 3.4 shows the Feature Extrac-

tor architecture. The internal buffers required to store the samples and the derivatives are

implemented in BRAM, in fact, in our case study, acquiring from thousands of channels si-

multaneously, BRAM tiles are best suited than distributed LUT-ram memories. The Feature

Extractor is composed of two main blocks: Delta and Extrema. Delta computes the derivatives,

whereas Extrema computes the derivative extrema. Delta computes the First Derivative (FD)

employing a subtractor and a BRAM buffer in which the samples of the previous sampling

cycle are stored. The Second Derivative (SD) is computed in the same way. The FDs are stored

inside a buffer and the SDs are evaluated using a second subtractor.

After initialization, starting from the second sampling cycle, the new FD and SD are compared

with the contents of the buffers, as shown in Figure 3.4. When a new extrema is found, its old

value is updated in the buffer. Since the algorithm runs for W sampling cycles and is executed

independently on every channel, one counter per channel is also needed. The counters are

stored in BRAM as well.

The data sampled by BioCam X are quantized using 12 bits. FSDE features can also be expressed

using 12 bits since the subtraction of adjacent samples should not cause overflow conditions

due to the limited distance between successive samples. This hypothesis was validated on the

test dataset [18].

The Feature Extractor notifies the Classifier when a new feature vector is ready.

3.4.5 Classifier

Real-time sorting algorithms rely on an online classification process, that, based on a simi-

larity metric, associates the incoming spike to a class. A wide variety of approaches, e.g. the

strategy proposed by Selfsort [45], which identifies candidate clusters evaluating spikes in the

firsts seconds of recording or other alternatives based on data stream clustering, such as Hier-

archical Adaptive Means [46], share a common computational core: a classifier. Therefore, we

decided to implement a classifier inside the programmable logic, in charge of computing the

euclidean distance between points in the feature space, to compare each spike with a set of

templates, representing the centers of the clusters. Centers may be updated and stored in the

system by the PS, through one of the two AXI interfaces in use. Several metric distances are
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Figure 3.4: The Feature Extractor evaluates the derivative extrema of the spike waveform, the

maximum of the first derivative FDmax and both the extrema of the second derivative SDmax

and SDmin. The Delta block computes the derivatives. The Extrema block evaluates the deriva-

tive extrema.

possible, however, euclidean distance is a common choice that may serve different alternative

clustering algorithms, such as, for example, K-Means [34], whose results are evaluated in more

detail in the following, and SOM [35], which is also tested as an alternative to highlight the

flexibility of the software programmability offered by the PS. Nevertheless, given the system

modularity and the FPGA reconfigurability, replacing the Classifier with a different module

computing a different metric is a straightforward process that does not require any modifica-

tion to the system architecture.

The square of the euclidean distance is used in place of the euclidean distance to avoid com-

puting a square root, and it is evaluated according to Eq.3.6. Where Di is the square of the

euclidean distance with the i-th template, Ti is the i-th template, and i ∈ [1, K]. With K the

number of templates per channel.

Di = (FDmax − Ti1)
2+

+ (SDmax − Ti2)
2+

+ (SDmin − Ti3)
2

(3.6)
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The distances Di are then compared to select the closest class:

neuron id = argmin(Di) (3.7)

The Classifier is triggered by the Feature Extractor at every incoming spike and provided with

a new feature vector. As regards the templates, they are stored in a BRAM-based buffer by

the PS, through one of the two AXI interfaces. The number of templates sets a limit to the

maximum number of distinguishable neurons around the electrode and it is set to 8, according

to the evidence given in [49].

Every classification entails three differences, three multiplications, and a final sum of the

three products, implemented by the module Distance, whose architecture is shown in Fig-

ure 3.5. Subtractions and multiplications are embedded into DSP blocks, taking advantage of
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Figure 3.5: The Classifier schematic block, shown with 4 templates instead of 8 for display

purposes. Each Distance block computes the Euclidean distance between the feature vector

and a template. The Comparator Tree finds the smallest Euclidean distance identifying the

firing neuron.

the DSP48E1 pre-adder and multiplier, whereas the three addends are added by means of a

LUT-based carry-save adder. In fact, even though the final adder of a DSP block is a three

terms adder, unfortunately, two addends are required to carry out the multiplication, so the
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LUT-based adders are required.

The eight euclidean distances are computed concurrently by eight Distance blocks. Therefore,

a total of 24 DSPs and 8 carry-save adders are in use. Figure 3.5 shows theClassifier architecture

for four templates. Subtractions and multiplications take advantage of the registers present

inside the DSPs to pipeline the computation, whereas, other registers are added to guarantee

low latency three-terms additions. Finally, the distances are compared to select the winning

class. The comparison is implemented through a pipelined tree of comparators. The size of

the three is directly related to the number of templates, that being eight, entails instantiating

seven comparators.

To avoid numerical errors, during the whole classification process the number of bits was let

grow. In particular, feature-to-template differences require an extra bit to avoid overflow, i.e.

13-bits, the square computation requires doubling the register size to 26-bits, and the three-

addends final sum needs two extra bits, the euclidean distances are therefore represented in

28-bits. Although using wider data representation has an impact in terms of area, in both the

Distance block and in the Comparator-Tree, the method guarantees the same accuracy of the

floating-point representation, as shown in Section 3.5.4. Once classified, the Communication

block is triggered to transmit the results.

3.4.6 PS-PL Communication

Communication between the PS and the PL takes place through two independent AXI ports.

One is used to send bursts of processed data from the PL to the DDR memory, reachable

through the PS interconnect. We have reserved for this stream a region in the DDR customiz-

ing the operating system configuration. The second AXI interface is used to set up the system

by storing initialization data and to update the Classifier templates.

The system can be set in different communication-related operating modes, which may hap-

pen alternatively depending on the needs of the experiment. The first AXI interface can be

set to transmit alternatively feature vectors and sorting results, sorting results only, or spike

detection results. Furthermore, the second AXI interface can update the Classifier templates

and the sorting parameters, by programming memory-mapped registers. In more detail:
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• Transmission of feature vectors and sorted spikes: The programmable logic transmits

the features of the detected spikes as two burst AXI transactions, the former contains

the feature vectors, the latter the channel IDs to which the spikes belong. In the worst-

case scenario, where a spike is present in every channel, the burst transmits a packet of

40KB (4096 channels x 64-bits + 4096 channels x 16-bits). Since this packet should be sent

within the sampling cycle, and the maximum sampling frequency allowed by Bio CAM

X is 18 kHz, the highest DDR bandwidth required for this stream is about 700 MB/s (40

KB x 18 kHz), which is below the maximum writing rate allowed between the PL and the

PS [52]. A region of 40KB of the DDR should be reserved for this kind of transmission.

Despite the high punctual transmission rate required, the physiology of the neurons is

characterized by a refractory period corresponding to around 24 sampling cycles after

each spike. The spike detection mechanism is designed consequently: when a spike is

detected, the coming 24 sampling cycles are used to collect the samples composing the

tail of the spike waveform. During this period, the detection module is paused and will

not request new transmissions to DDR memory. Therefore, the bandwidth requirement

cannot reach the worst-case peak of 700 MB/s in physiologically realistic experiments.

This transmission mode is used during Clustering, where the PS scans the DDR region

reserved for the previously described packets and fills a data structure collecting training

spike feature vectors. Subsequently, it runs the clustering algorithm and updates the

templates if needed. The PS data scan time takes less than 900 µs.

• Transmission of sorting results: The information related to each channel is encoded in 4

bits. The first bit declares the presence or absence of a spike in the channel, whereas the

remaining three bits indicate the spike’s class. A 2 KB packet (4 bits x 4096 channels) is

written from the PL at each sampling cycle, once every 55.6 µs (18KHz). The worst-case

to-DDR bandwidth required for this stream is 35 MB/s (18 KB x 4096 channels). A region

of 4 KB is reserved in the DDR for this purpose, which is used as a double buffer. Buffer

locations are used alternately to avoid overwriting. The PS reads the packets during the

following sampling cycle, in about 20 µs, copying it outside the PL-dedicated memory

region.
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• Transmission of detected spikes: The programmable logic sends a stream of one bit per

channel, to give information about the presence or absence of spikes. The bandwidth

required for the transmission is about 8.8 MB/s (4096 channels x 1 bit x 18 kHz). This

kind of transmission requires reserving a DDR region of 1 KB served as a double buffer

(2 buffers x 4096 channels x 1 bit).

• Transmission of new templates: at the start-up, or when an update of the templates is

required, the PS can run the clustering algorithm on a collection of features stored in the

DDR to generate new templates and update the Classifier’s ones. The amount of data

necessary to update a Classifier is 36 Bytes, which can be sent in 384 ns. It is possible

to update the full battery of Classifiers by sending 144 KB of data through the dedicated

AXI-port in 1.6 ms.

• Transmission of control signals and sorting parameters: The PS can set the transmission

mode to DDR, enable/disable the sorting chain, threshold levels, and the DDR baseline

address.

3.5 Experimental Results

In this section, we present our experimental results. First, we present a hardware-related

evaluation of our implementation. Second, we present our experimental setup, the reference

benchmark dataset used and the reference software implementation developed to choose the

sorting algorithm and to validate our hardware implementation. Third, we assess the possibil-

ity of applying online classification after a template characterization performed on different

numbers of training spikes, to assess the usability in real-life experiments. Furthermore, on-

line template re-characterization is analyzed and the obtained accuracy is reported. Fourth,

we assess our implementation by testing the selected feature set, comparing it with a ZCF [44]

scheme, evaluating the impact of the used fixed-point data format, and exploring the trade-off

between accuracy and memory requirements in the spike window centering problem.
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3.5.1 Hardware report

The target device is the ZedBoard, a low-cost development board for the Xilinx Zynq 7020 All-

Programmable SoC. The chip embeds 106400 Flip-Flops (FFs), 53200 Look-Up Tables (LUTs),

140 36Kb BRAMs tiles (RAMB36), and 220 DSP48E1 slices. Each DSP48E1 contains a 25-bits

pre-adder, a 25x18 bits multiplier, and a 48-bits accumulator.

The FIR filter block is constituted of 32 FIR filters and every filter is implemented using one

DSP48E1 only.

The Feature Extractor requires two LUT-based subtractors and three comparators to imple-

ment the FSDE algorithm. Furthermore, previous samples and previous derivatives need to

be stored along the sampling cycles to carry on the FSDE algorithm. Thus, five BRAM-based

buffers are instanced, with an entry of 12 bits per channel, requiring one RAMB36 and one

RAMB18 block each. The FSDE algorithm also needs a counter per channel. The counters are

stored in BRAM and need log2W bits each, where W is the dimension in samples of the spike

window.

The Classifier requirements, in terms of FPGA resources, are highly related to process param-

eters like the number of templates per channel K and the number of features F . Depending

on the number of features and templates, the number of operations changes as well as the

memory required to store the templates, as shown in Table 3.2. The DSPs, the adders, and

CLASSIFIER RESOURCE REQUIREMENTS

(K, F) DSP Adders Comparators BRAMs (36, 18) Kb

(3, 2) 6 3 2 (8, 2)

(3, 3) 9 3 2 (12, 3)

(6, 2) 12 6 5 (14, 6)

(6, 3) 18 6 5 (21, 9)

(8, 2) 16 8 7 (22, 0)

(8, 3) 24 8 7 (33, 0)

Table 3.2: Classifier resource requirements for several pair of templates K and features F

the comparators are used to compute the euclidean distances between the feature vector and

the templates; the BRAMs are used to store the templates. We select eight as the maximum

number of neurons per electrode, however, the architecture is parametric and can be easily

extended to support a different number. The limiting factor is the BRAMs, which poses the
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limit to the number of neurons per channel to 16. By looking at Table 3.2, 33 BRAM tiles are

required for K = 8. For K = 16, the number of BRAMs would increase by 2x, almost saturating

(137 out of 140) the availability in the device.

The post-implementation results, obtained using Vivado v2017.4, are shown in Table 3.3.

Thanks to the hardware-friendly algorithms selected for this implementation, it is possible to

POST-IMPLEMENTATION RESOURCE REQUIREMENTS

Resource Utilization Available %

LUT 28984 53200 54.48

LUTRAM 3753 17400 21.57

FF 26444 106400 24.85

BRAM 104 140 74.29

DSP 61 220 27.73

Table 3.3: Post-implementation resource requirements on Xilinx Zynq-7020 device

satisfy real-time constraints with low utilization of available DSP slices. However, due to the

nature of the FSDE algorithm, the samples of the previous sampling cycle and the derivative

extrema found up to that moment need to be stored, thus the BRAM utilization is relatively

high. In addition, the FIFO storing pre-threshold samples of the spikes inside the Feature

Extractor module, contributes to increase the BRAMs utilization. Overall, considering the re-

source requirements of the different modules and the throughput performance of the system,

the Xilinx Zynq Z-7020 would be able of hosting up to 5500 channels while still satisfying the

real-time constraints.
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3.5.2 Experimental setup

Reference Benchmark Dataset

To assess the functionality of the system was used the dataset presented in [18] as a reference

benchmark. The dataset is composed of four simulations: Easy 1, Easy 2, Difficult 1 andDifficult

2, each including the activity of three neurons. Every track is available with different levels of

noise: 0.05, 0.01, 0.15, and 0.2. The noise levels are intended to be the standard deviations σ of

the neural tracks. The simulations were created starting from real spike waveforms recorded in

the neocortex and basal ganglia, whereas the background noise is obtained by adding together

random spikes. As explicated by the simulation names, the sorting is more challenging for

the Difficult simulations and easier for the Easy simulations. Figure 3.6 shows the waveform

models of the three neurons in the four datasets. The models are built by computing a sample-

by-sample average between the spike belonging to the same neuron.

Easy 1 Easy 2

Difficult 1 Difficult 2

Figure 3.6: Spike waveform models of the four datasets presented in [18].

58



Experimental Setup

To test the device on the dataset [18] a PC is used to send the data samples through a UART in-

terface operating at 115.200 baud/s. For this purpose, we have implemented a slightly modified

design, integrating a Microblaze processor implemented on the PL, managing the streaming

of the datasets. Short dataset segments corresponding to a track of 18k samples, converted to

12 bits, are sent to the FPGA, encoding each 12-bit sample in two UART packets. A simple pro-

gram executed by the Microblaze receives UART packets, recomposes the samples, and stores

them into a 64k local BRAM memory. Once the complete segment is received, the processor

sends the same stream of samples to all the channels, through two AXI-Stream Broadcaster

modules. The resource occupation overhead due to such testing infrastructure is shown in

Table 3.4.

EXPERIMENTAL SETUP RESOURCE REQUIREMENTS

Resource Utilization Available %

LUT 2774 53200 0.05

LUTRAM 140 17400 0.01

FF 5122 106400 0.05

BRAM 18 140 0.13

DSP 0 220 0.00

Table 3.4: Resource utilization overhead related with the additional logic used for testing, on

the Xilinx Zynq Z-7020 obtained by using Vivado v2017.4.

Reference Software Implementation

To enable preliminary selection of the spike sorting strategy and comparison with available

alternatives, before hardware development, we realized a software pipeline embedding the

typical spike sorting processing steps [28] in Python, available for download and contribu-

tion as open source
1
. Thanks to such software implementation, it was possible to try different

strategies of filtering, spike detection, feature extraction, and clustering, on both single and

multi-channels data.

The platform embeds Finite Impulse Response (FIR) filters and the offlineAbsolute ValueThresh-

1https://github.com/gianlucaleone/SpikeSorting

59

https://github.com/gianlucaleone/Spike_Sorting


old method proposed in [18]:

Thr = α×median

(
|x|

0.6754

)
(3.8)

Where x is the neural signal and α is a parameter set to 4.0 as suggested in [18].

Furthermore, different feature extraction algorithms might be compared, such as Integral

Transform, Zero Crossing Feature, and First and Second Derivative Extrema.

The coherence between software and hardware results was thoroughly verified. A compari-

son between processing results based on floating-point data format and the fixed point imple-

mented on the hardware is presented in the following.

3.5.3 Accuracy evaluation

Several accuracy tests were carried out, comparing the spike-to-cluster association decided by

the Classifier to the ground truth provided with the datasets. As mentioned, the spikes were

detected using Equation 3.8, the features were extracted using the FSDE algorithm, and the

online classification was carried out using euclidean based metric.

Figure 3.7 shows the cluster distribution in the feature space, after an offline analysis based on

the K-means algorithm and FSDE features. The plots show only two out of the three features,

the first derivative maximum on the x-axis and the second derivative minimum on the y-axis,

to improve readability. It may be observed, looking at the clusters of the same dataset at

different noise levels, that spikes in the same cluster spread out and the gap between the

clusters decreases. It is also possible to observe that the spikes of the dataset Easy 1 are much

more distinguishable with respect to others at every noise level. On the contrary, at higher

noise levels, in the other datasets, the clusters overlap.

In Figure 3.7, cluster centers are computed offline using the K-Means algorithm on all the

spikes in the datasets. This kind of approach is not usable to implement online sorting, thus, is

not suitable for any kind of closed-loop application. Conversely, we have evaluated the overall

accuracy for each dataset, using a limited number of training spikes in Fig.3.8. The dashed lines

represent the accuracy of the offline method. The average offline accuracy obtained is about

86%, ranging from 62% got in Difficult 2 with a level of noise 0.2 to 95% got in Easy 1 with a level
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Figure 3.7: Cluster shapes obtained running K-Means on the FSDE features over 16 neural

simulations [18]. The noise increases from left to right, the radius of the clusters increases

with the noise, and the clusters get closer. The Difficult simulations exhibit closer clusters

compared to the Easy simulations.
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of noise 0.05. Every box-and-whisker plot, except the rightmost one, contains the results of

200 experiments where the training spikes were taken randomly from the dataset tracks. We

varied the number of spikes used to run the K-Means algorithm along the x-axis, ranging from

100 up to 400. In most datasets, 100 training spikes are often sufficient to reach an accuracy

similar to offline analysis, as may be noticed by the median value, which converges to the

dashed line. However, in some datasets, e.g. Easy 2 with a very low or very high level of noise,

at least 300 spikes are required to converge to offline accuracy levels, set respectively to 0.94

and 0.73. In general, it is possible to notice a significant accuracy deviation from the median

value, corresponding to larger boxes, i.e. depending on the set of feature vectors considered

for the template creation, accuracy may change significantly. The Easy 1 dataset does not

show noticeable variability. Difficult 2 shows limited variability, since, even if some corner

cases determine significant degradation (up to 0.3 points), three quartiles of the experiments

overlap with the offline accuracy level. Difficult 1 and Easy 2 accuracy changes significantly,

i.e. results are less predictable for 100 and 200 training spikes. In these cases using 300 spikes

appears to be the value minimizing, at the same time, variability and training set size.

Iterative clustering on the PS

Considering that, in general, most of the considered training sets result in an accuracy level

close to the off-line analysis, we have tested a template definition methodology that repeats

the K-means clustering along the duration of an experiment, limiting the effect of poorly-

performing training sets of spikes, using each template set for a shorter time. The C-language

K-Means implementation is taken from [53]. The cluster centers are initialized using K-Means++

[54]. The maximum number of iterations for refining the center was set to 10. To assess the

possibility of repeating the clustering, we have measured the algorithm execution time on the

PS. Table 3.5 shows the average execution time over 1000 runs. As may be noticed, the exe-

cution time changes for different datasets, since the algorithm requires a different number of

iterations to converge. The execution is in general reasonably fast. The average time in table

3.5 is about 106 µs, corresponding to less than 4 sample times, confirming the possibility of

executing the algorithm multiple times to refine the templates during an experiment.

The rightmost box-and-whisker of each plot in Figure 3.8 shows the accuracy obtained by run-
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Figure 3.8: Sorting accuracy distribution over 200 randomly chosen sets of training spikes of

variable dimension: 100, 200, 300, and 400. The box-and-whisker plots show the accuracy vari-

ability. The K-Means algorithm was run to determine the cluster-centers/classifier-templates,

afterwards the spikes are classified. The noise increases along the columns, the datasets swipe

along the rows. The dashed line represents the offline accuracy of the method, where the K-

Means was run on the whole dataset; the last box-and-whisker plot of every figure shows the

accuracy we achieved with the proposed real-time method.

[µs] 0.05σ 0.01σ 0.15σ 0.20σ
Easy 1 85 98 116 120

Difficult 1 102 143 190 203

Easy 2 73 80 71 75

Difficult 2 71 78 90 108

Table 3.5: K-Means run time on the PS, each run considers 300 spikes, every time measure is

averaged over 1000 runs.
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ning the K-Means clustering over 300 spikes once every three seconds (an execution rate that

can be comfortably supported for thousands of channels considering the measures in Table

3.5). We run the experiment 10 times per each dataset selecting a different starting point in

the neural signal, to obtain more reliable results. As may be noticed, variability is significantly

reduced. Unfavorable corner cases are avoided and the worst-case accuracy is significantly

improved. The obtained overall mean accuracy is about 82.4% and variability is much more

contained, with values ranging from 79.8% to 84.9%.

To demonstrate the flexibility derived by software programmability, we have implemented on

the PS a second clustering algorithm, based on Self-Organizing Map (SOM). A thorough accu-

racy evaluation for the SOM method in this case would require a more complex exploration of

the algorithm hyperparameters, which is beyond the scope of this chapter. However, we have

tested the execution with some basic settings to estimate the execution time. We have used

the publicly available C-language implementation released as open-source under MIT license

at [55]. The SOM algorithm is more complex than K-means, its run-time is the same for all the

datasets since it stops when the maximum number of iterations is reached. By setting a 4x2

neural network and considering 200 training spikes, the average training time is about 2.67

seconds.

3.5.4 Implementation evaluation

Multiple tests were conducted prior to our design choice, evaluating the impact of architectural

details on the overall accuracy.

Feature extraction and detection methods

To assess the impact of the chosen First and Second Derivative Extrema [47] algorithm on

the accuracy, we have compared it with the Zero Crossing method [44], implementing it on

our reference software pipeline. We also estimated the impact of the spike detection accuracy

on the overall results. The K-Means clustering algorithm is used to measure the final sorting

accuracy and to compare the methods.

Figure 3.9 shows four plots, one for each dataset track. The plots report the sorting accuracy at
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four different noise levels. The dashed lines represent the sorting accuracy over the detected

spikes only, as stated by Eq.3.9, where C are the spikes sorted correctly, and Tp are the true

positives, i.e. the properly detected spikes. The solid lines represent the overall accuracy,

where missed detections are accounted as well as misclassifications as stated by 3.10, where

Fp are the false positives, and Fn are the false negatives.

Sorting Accuracy =
C

Tp

(3.9)

Overall Accuracy =
C

Tp + Fp + Fn

(3.10)

In simulation Easy 1, the FSDE accuracy is over 0.9 for the first three noise levels, and it is
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Figure 3.9: First and Second Derivative Extrema and Zero Crossing Feature extraction methods

comparison.

only slightly better than the ZCF one. Nevertheless, the ZCF accuracy falls when the noise

level is increased at 0.20σ, whereas the FSDE accuracy still is at 0.83. In simulations Easy 2

and Difficult 1, the methods exhibit the same accuracy for 0.05σ. However, ZCF is not able to
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maintain the same accuracy of FSDE for higher noise levels, dropping down to less than 0.5

in both simulations. In simulation Difficult 2, the accuracy performance of ZCF is constantly

lower than FSDE.

FSDE appears to be dominant in every track, showing a better capability of extracting valuable

features, at least when combined with the use of the K-Means algorithm. Furthermore, FSDE

also appears more resilient to higher noise levels than ZCF.

Fixed-point implementation

The architecture embeds fixed-point processing elements rather than floating-point ones. The

incoming samples data provided by BioCam X are 12-bits wide. We chose to allow data size

to grow inside the datapath along the processing steps. This does not affect the transmission

rate to DDR, since the information which needs to be sent in output are the FSDE features,

encoded in 12-bits, and the classification results, encoded in 3-bits (to represent eight neurons

per channel). This architectural choice, even though requires slightly more resources, permits

the hardware implementation to be as accurate as the software floating-point simulation.

Spike’s window centering exploration

We found a correct centering of the spike window around the spike detection event before

extracting the features to be key for the overall accuracy. As previously mentioned, such

centering is implemented by continuously keeping track of the recent samples using a FIFO.

The number of preceding samples stored in the FIFO, as well as, obviously, the number of

channels, has a direct impact on the utilization of BRAMs. Table 3.6 shows the average offline

accuracy of the system at the varying of the spike window alignment with the spike event.

The alignment is expressed as the number of samples stored in the FIFO. The BRAM deriving

from each alignment choice is as well reported in Table 3.6. The configuration with 8 samples

leads to the highest accuracy. Decreasing the length of the spike head memorized in the buffer,

important information about the characteristics at the beginning of the spike waveforms are

lost and the accuracy is negatively affected. Nevertheless, increasing the number of samples

to 16 loses too much information from the tails of the spikes, leading to lower accuracy and

an over-utilization of the BRAM resources.
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Alignment Accuracy BRAM

2 74% 3

4 82% 5

8 86% 11

16 79% 22

Table 3.6: Offline sorting accuracy by varying the FIFO buffer size.

3.6 Comparison with State of the Art

Table 3.7 shows the main characteristics of the works we target to be compared to our imple-

mentation. To the best of our knowledge, literature does not present any implementation able

to process 4096 electrodes simultaneously in real-time, including support for spike sorting.

In [39] Park et al. present a multichannel neural interface capable of sorting 128 channels

simultaneously and stimulating the neural tissue from 8 electrodes. The neural interface pre-

sented is based on template matching and it is hosted by a Xilinx Kintex-7 XC7K160T. The

device embeds 600 DSP slices and 325 36Kb BRAM tiles. No precise resource utilization is

given, nevertheless, they require 6 kb of memory per channel, whereas we only need 0.92 kb

per channel by adding together both the BRAMs and the registers utilization and dividing the

sum by the number of channels (4096). Even considering 16 bits of resolution like in [39],

instead of 12 bits, our memory would increase to 1.23 Kb per channel only.

The Parallel OSort algorithm (POSort), presented in [30], is prototyped on both a Xilinx Spartan-

6 and a Xilinx Virtex-6 devices. Table 3.7 reports the Virtex-6 single channel implementation

features, since it is the best version, in terms of accuracy and latency, between the fully doc-

umented ones shown in [30]. However, the POSort can handle up to 64 and 128 channels if

hosted by high-end FPGAs like those in the Virtex and Kintex families. The memory required

to operate on 64 and 128 channels is respectively 960 and 1920 BRAMs while this work is ca-

pable of sorting 4096 independent channels with 104 BRAMs only. Even though the POSort

algorithm requires about half of our LUTs and a third of our registers, it needs more than

double of our DSPs and about 590 more BRAMs per channel. Its accuracy is 87%, higher than

our result, however, it could not scale up to 4096 channels unless an unreasonable amount of

memory were available. The total POSort system latency is not provided, however, it is avail-

able the clustering latency which is about 0.25 µs. Although the total latency of this work is 2.3
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ms, the main contribution is given by the FIR filter bank and the FIFO, and our classification

latency is 0.08 µs, three times less than the POSort.

In [56] Dragas et al. present a 90-electrodes real-time spike sorting processor hosted by a Xil-

inx Virtex-6 FPGA. The presented system can process in real-time up to 650 neurons, which is

50 times less than our maximum number of neurons (we can consider 8 neurons per channel,

per 4096 channels). Their work guarantees a latency of 2.65 ms, which is comparable to our

result of 2.3 ms. The implementation requires 865 Kb of BRAM memory, 190,000 LUTs, and

29,000 REGs. No information about the DSP utilization is provided. Considering the signif-

icantly higher LUT utilization, it seems that the processing blocks have been implemented

using arithmetic that does not map efficiently on DSP slices, using LUTs instead. Sorting ac-

curacy is slightly less than 85%, which is 3 points above our result, and has been tested on a

dataset with SNR above 5 dB.

In [57] is presented a single-channel real-time spike sorter hosted by a Xilinx Artix-7. The

system can be instantiated multiple times (68 times), in order to handle an array of electrodes

and sort up to 204 neurons, almost fully saturating the Xilinx Artix-7 LUT resources (98%).

The reported system accuracy, of about 90%, was tested using a dataset with SNR in the range

of 10-13 dB. To the best of our knowledge, it is the highest accuracy between the real-time

spike sorters presented in the scientific literature. Unfortunately, by supporting 204 neurons

only, this work is not compliant with the needs of more recent MEAs.

In [29] Yang et al. implement a 32 channels neural signal processor hosted by an Altera Cy-

clone III FPGA. The performance of the system in terms of accuracy is between 60-80% for

signal-to-noise ratio in the range of 5-7 dB. Neither resource utilization nor system latency

are provided; the reported number of channels and sorting accuracy are both lower than in

the presented architecture.

In [58] Sungjin Oh et al. present a single-channel real-time spike sorter hosted by a Xilinx

Spartan-6 FPGA and a PC. The neural signal is filtered, the spikes are detected, then, from

the resulting spike waveforms, a technique similar to the ZCF is used to extract the features.

The features are sent to a PC through an RS232 interface and clustered in real-time using the

K-Means algorithm in MATLAB. The system was tested in-vivo, however, no accuracy data is

provided to compare it to our work. In addition, no utilization data are even provided in terms
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of LUTs, DSPs, BRAMs, and REGs.

In [48] Schäffer et al. present a real-time 128-channels spike sorter implemented on a Xilinx

Zinq Ultrascale+ (ZCU106). For each spike detected a group of 3x3 channels is considered,

centered in the channel sensing the highest absolute signal amplitude. The waveforms ac-

quired by all 9 channels are processed by means of the Osort clustering algorithm. This allows

for improved accuracy, 86% on average, tested on a dataset with SNR in the range of 3-10 dB,

which outperforms the accuracy obtained in our work. However, due to the increased com-

plexity, the number of processed channels in real-time is still 32 times lower compared to the

capabilities of our architecture.

The work in [31] was also hosted by a Xilinx Zinq Ultrascale+ (ZCU-102) and implements a

CNN-based classifier, without filtering and spike detection. The classifier reaches excellent

accuracy performance (86%) and supports 49 channels with a latency of 78 µs. The classifi-

cation latency is higher compared to the other works of Table 3.7, and this aspect should be

considered in the case of closed-loop experiments. The hardware resource requirements are

about a quarter of the hardware resources required by our implementation and a tenth in the

case of the DSPs. This result is partially due to the fact that filters and spike detectors are

not implemented. Moreover, scaling the number of channels of the architecture on more than

49 channels, 4096 for instance, such as the case of our implementation, to maintain the same

latency, the hardware resources should increase of about 83.6 times (4096/49 channels).
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3.7 Conclusion

We have defined a processing architecture supporting real-time spike sorting for MEA with

thousands of channels. Such architecture, implemented on a Z7020 APSoC, can process in

real-time up to 5,500 sample streams acquired at 18KHz. This outlines the possibility to use

hardware implemented on FPGA-based reconfigurable logic to implement highly-parallel and

low-latency neural signal processors. The selected set of hardware-friendly feature extraction

and classification techniques effectively exploits DSP slices and BRAM storage resources avail-

able in the device, and effective pipelining can be applied to obtain reasonably high clock fre-

quency. Moreover, we have demonstrated that the interaction with the integrated ARM-based

processing system can be exploited online, to adapt to different experimental conditions. We

have proved that the DDR memory available on the development board, reachable through

the chip circuitry, provides sufficient storage capabilities and IO bandwidth to support data

exchange between the data-crunching functional blocks implemented in the programmable

logic and processing kernels executed by the hard cores. As an example, we have proposed an

approach that repeats the clustering procedure during spike sorting, to limit the effects of un-

favorable spike selection during the clustering definition process, improving accuracy to 82%,

which corresponds to only 4% degradation with respect to off-line analysis. The proposed sys-

tem increases by 43 times the supported number of channels compared to alternatives in the

literature. The approach is suitable for closed-loop experiments since provides sorting results

with a latency of 2.3 ms.

A prospective longer-term path of exploitation for our work derives from its complementar-

ity with recent neuromorphic FPGA-based architectures, emulating different kinds of neurons

[59][60][7]. Our spike sorter can be used to build an interface between such devices and MEAs,

thus, the integration of these two approaches will pave the way to experiments involving the

cooperation of biological and on-silicon neural networks.
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Chapter 4

Enabling real-time SNN emulation with

millions of synapses

Abstract
Closed-loop experiments involving biological and artificial neural networks would improve

the understanding of neural cells functioning principles and lead to the development of new-

generation neuroprosthesis. Several technological challenges require to be faced, such as the

development of real-time spiking neural network emulators which could bear the increasing

amount of data provided by new generation multielectrode arrays.

This chapter focuses on the development of a real-time spiking neural network emulator ad-

dressing fully-connected neural networks. It is presented a new way to increase the number

of synapses supported by real-time neural network accelerators. The proposed solution has

been implemented on the Xilinx Zynq 7020 All-Programmable SoC and can emulate fully con-

nected spiking neural networks counting up to 3,098 Izhikevich neurons and 9.6e6 synapses

in real-time, with a resolution of 0.1 ms.
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4.1 Introduction

During the past decades, the comprehension of biological neural network phenomena has

been at the center of researchers’ interest in the medical and biomedical communities. Count-

less software and hardware instruments have been developed to enhance the understanding

of neural cells’ working principles. Whereas in the previous chapters the Thesis focused on

providing a way to exploit real-time processing of neural data, it is worth mentioning other

tools present in the scientific literature can simulate biological neural networks by relying on

a wide range of mathematical models having a different level of detail [61], these kinds of

tools can as well help the investigation of how neurons interact with each other, even though

more and more often they are also exploited to address completely different problems, such as

neuromorphic computing [62].

New generation multielectrode array, scaled from hundreds to thousands of recording sites [3],

pushing for the development of signal processing systems capable of sorting order of magni-

tude more neural data in real-time than in the past [6], and artificial neural networks capable

to keep up and process the incoming data. This translates into an imminent demand for big-

ger and more-connected neural networks. As a result, during the last years, the development

of neural networks accelerator has increased consistently [63]. Moreover, networks of neural

units are innately parallel, which means, standard Von Neumann architectures are not the best

fit to simulate such networks. Therefore, also in this case, programmable accelerators, such

as Field Programmable Gate Array (FPGA) based accelerators are best suited to the parallel

and ever-changing demands nature of the experiments. Such hardware tools not only permit

scaling down simulation time but also make possible real-time interactions between artificial

and biological neural networks in a closed-loop fashion.

In this chapter is proposed a new method to increase the maximum number of synapses that

can be emulated in real-time, without sacrificing the physiological dynamics and latency of

biological neural networks. The method takes advantage of a physiological delay that affects

the spike propagation along the cell’s axon. This phenomenon, called axonal delay [64], makes

possible to exploit the off-chip memory to store the synaptic weights. Furthermore, we applied

the proposed method during the design of an FPGA-based hardware accelerator targeting fully
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connected neural networks of Izhikevich spiking neurons [65]. Indeed, if on one hand, spik-

ing neural networks encode information in the temporal domain, as biological neural cells do,

emulating de facto more accurately the dynamics of biological cells, however, on the other

hand, their implementation is more memory-demanding than non-spiking neural networks

ones. Therefore, in the case of low-end FPGA implementing spiking neural networks, as for

the Xilinx Z-7020 hosting the implementation presented in this chapter, where is not possible

to store more than 5 Mb of data relying on the on-chip memory only, the sizes of the network

cannot grow above a certain limit. The off-chip DDR memory has been used in other works

that utilize spiking neural networks [66][67][68], however, the focus of these works was on

image classification, rather than in the study of biological phenomena, therefore their archi-

tecture is not meant to be interfaced with a biological system which can require continuous

interaction with a 0.1 ms resolution.

The main findings of this chapter can be summarized as follows:

- We demonstrate the physiological spike propagation delay present in biological neural

networks can be exploited in the real-time emulation of spiking neural networks, guar-

anteeing a higher number of synaptic connections than by only using on-chip memory;

- We demonstrate Xilinx’s APSoCs are eligible to apply the presented method, as their

off-chip DDR memory has an adequate bandwidth to transfer the synaptic weights, and

their use allows to increase the number of synapses that can be emulated in real-time;

- We demonstrate the Izhikevich neuron model equations [65] can be integrated into

fixed-point arithmetic by relying on a few FPGA resources, such as DSPs and LUTs,

without consistent behavioral variations.

The remainder of this chapter is organized as follows: Section 4.2 is an overview of existing

FPGA-based neural network accelerators; Section 4.3 describes the utilized neuron model and

studies its fixed-point accuracy. Section 4.4 is an overview of the hardware architecture; Sec-

tion 4.5 presents the results in terms of accuracy and performances; Section 4.6 is a comparison

with the state of the art; Section 4.7 is left to conclusions and future works.
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4.2 Related work

A wide scope of software and hardware tools addressing spiking neural network emulation

have been developed in the last few years. Software tools such as Nest [61], Neuron [69],

and Brian [70] are well suited for biologically realistic simulation of spiking neural networks.

They are flexible, and widely used by the scientific community for a wide range of experiments.

However, they require larger and larger computer clusters for simulating high-count neural

networks [71] and therefore are not the best fit for embedded applications.

Alternatively, parallel computing systems, implemented on a wide range of different platforms,

such as CPU, GPU, and FPGA clusters, can achieve high throughput either. SpiNNaker [72]

is a multiprocessor chip organized in a mesh of 48 neural computational cores, each made by

18 ARM968 processors. A board equipped with 4 SpiNNaker chips is capable of emulating in

real-time a range of synapses going from 8e5 to 1.6e7 and a number of neurons ranging from

1,600 to 16,000, depending on the complexity of the neuron model used. NeuroFlow [73] is an

FPGA-based spiking neural network simulation platform capable of emulating both Integrate-

and-Fire (IF) and Izhikevich (IZ) neurons. When hosted by a cluster of 6 FPGAs it can simulate

about 600,000 neurons, and from 1,000 to 10,000 synapses per neuron. The total amount of

neurons decreases to 400,000 when the emulation is in real-time.

Moreover, at the state of the art, exists a broad collection of real-time FPGA-based spiking

neural network accelerators more suited for embedded applications, having different scales,

architectures, and use cases. Some work aims to implement low-power solutions, such as [74],

where a neural network of 800 neurons and 12,544 synapses is implemented on a Xilinx Virtex-

6 FPGA. The system implements a simplified Leaky Integrate-and-Fire (LIF) model [75] with a

time resolution of 1 ms, and embeds real-time learning capabilities by integrating a simplified

version of the Spike-Time Dependent Plasticity (STDP) algorithm [76]. Other works make use

of the reprogrammable feature of FPGA and present configurable designs which could be ex-

ploited for a wider range of experiments, such as the work Snava [77]. Snava is a real-time

programmable multi-model spiking neural network emulation system, capable of hosting up

to 12,800 neurons and 20,000 synapses. The system, implemented on a Xilinx Kintex-7 FPGA,

guarantees a resolution of 1 ms. The Snava system, employing a Graphical User Interface
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(GUI), permits to monitor the spiking activity, to configure the neuron, the synapse model,

and the interconnections.

The hardware implementation presented in [78] focuses on studying fully-connected neural

networks; their real-time emulator targets closed-loop experiments, and it is hosted by a Xil-

inx Virtex-6 FPGA. The system implements 1,440 Izhikevich neurons with a resolution of 0.1

ms and a spike latency of 1 ms.

Other studies focus on more specific problems, such as minimizing the neurons’ emulation

latency down to 8 ns to increase the maximum number of neurons that can be emulated in a

single FPGA chip, at the expense of the biological meaning [79]. This result has been achieved

by designing a systolic array to integrate a simplified version of the Izhikevich neural model.

By following the considerations found in [80], it is possible to decrease the computational load

without renouncing the main emulating features of the Izhikevich model.

Conversely, Luo et. al [81] presented a bio-realistic cerebellum model, and propose it as the

first step for the realization of neuroprosthesis systems with the purpose of substituting dam-

aged motor control units in the brain. Luo et. al [81] propose a Network on Chip (NoC)

hardware architecture, implemented on a Xilinx Virtex-7 FPGA, capable of emulating 101,000

LIF neurons [77] and 100,000 synapses in closed-loop experiments.

In Khodamoradi et. Al [82] is proposed an architectural solution to support several axonal

delays without using extra FIFOs, schedulers, and separate routing networks for spiking feed-

forward neural networks.

In Ambroise et. al [83], a folded low-resources architecture capable of emulating 117 Izhikevich

neurons in real-time with a time resolution of 1 ms is presented. The system is implemented

on a Xilinx Virtex-4 chip, and the interconnections of the neuron are configurable, ranging

from zero to a fully connected network.

Finally, in Han et. Al [66] and Panchapakesan et. Al [67][68] Leak Integrate and Fire and Inte-

grate and Fire based spiking neural networks are used to address image classification tasks on

the MNIST and CIFAR-10 datasets on Xilinx Zynq devices, chip provided with both FPGAs and

ARM processors. Their approaches take advantage of the off-chip DDR memory to store the

weights of the network, however, not being designed as a biologically relevant neural network

emulator, it is not applied any method to guarantee the physiological dynamics of biological
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neural networks are respected.

Table 4.1 summarizes the main features of the above-mentioned FPGA works.

Table 4.1: Real-time FPGA-based neural network emulators comparison

Work Year Target FPGA Neurons Synapses

this work 2021 Xilinx Virtex-6 3,098 9.6e6

[74] 2020 Xilinx Virtex-6 800 1.25e4

[77] 2018 Xilinx Kintex-7 12,800 2.00e4

[78] 2017 Xilinx Virtex-6 1,440 2.07e6

[79] 2017 Altera Stratix IV 364 3.64e2

[81] 2016 Xilinx Virtex-7 101,000 1.00e5

[83] 2013 Xilinx Virtex-4 117 1.37e4

[66] 2020 Xilinx Kintex-7 2,842 1.86e6

[67] 2020 Xilinx ZCU102 2,410 -

4.3 Izhikevich neuron model

The Izhikevich model [65] permits the emulation of a large set of biological behaviors at a

low computational cost. The model is composed of a two-dimensional system of ordinary

differential equations 4.1, 4.2, plus a reset condition 4.3.

dv

dt
= 0.04v2 + 5v + 140− u+ I (4.1)

du

dt
= a(bv − u) (4.2)

v > vth →

v = c

u = u+ d

(4.3)

Where v is the membrane potential of the neuron, and u is the membrane recovery variable,

both measured in mV . The term vth is the threshold above which the modeled neuron fires a

spike. When it happens, both the membrane potential and the membrane recovery variable

are reset. The dimensionless parameters a, b, c, and d permit tuning the model in order to

emulate properly the behaviors of neocortical and thalamic neurons. I is the synaptic current,

it permits taking into account the synaptic connection among neurons. Indeed, each synapse

78



can be described as an oriented and weighted connection between two neurons. When a

neuron fires, its post-synaptic neurons counts the spike by adding to I the weight associated

with their interconnection.

4.3.1 The quantization problem

The simplest and most common way to evaluate the Izhikevich model, nevertheless the way

used in [65], is the one-step forward Euler scheme, described by 4.4, 4.5, and 4.6.

vk+1 = vk + h(0.04v2k + 5vk + 140− uk + I + Ie) (4.4)

uk+1 = uk + ha(bvk − uk) (4.5)

vk+1 > vth →

vk+1 = c

uk+1 = uk + d

(4.6)

Where h is the time step, equal to 0.1 ms, and Ie is a parametric DC offset.

The above equations are solved by using fixed-point arithmetic so that a considerable amount

of FPGA’s resources could be saved. However, we found out that the accuracy and the conver-

gence of the model, when operating in fixed-point, are not to be taken for granted. In order to

investigate the behavior of the fixed-point implementation of the model, two MATLAB scripts

have been developed. The former is used to provide a trustworthy ground truth for the exper-

iments, which has been obtained by making use of floating-point arithmetic. The latter script

is used to test the accuracy of the fixed-point solution at different levels of quantization.
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4.4 Hardware spiking neural network

The spiking neural network emulator architecture is shown in Figure 4.1. The Potential modules

integrate the Izhikevich equations, updating both the membrane potentials of the neurons and

the spike conditions. The neural potentials and the spikes conditions are stored in two BRAM-

based memories called Potential mem and Spike mem. The Izhikevich equations’ parameters

are stored in the BRAM-based memory Param mem.

The synaptic current is stored in an additional BRAM-based memory called Current mem,

Figure 4.1: The block diagram of the neural network emulator. The synaptic weights are stream

from the off-chip memory through four AXI High Performance ports to the programmable

logic. Four clusters of current modules process the synaptic weights to evaluate the synaptic

currents. The computed currents are stored through the Current Memory Writer, that permit

sharing the single port of the current memory among four clusters of Current blocks. On a

similar fashion, the module Spike Memory Reader allows four clusters of Current modules

reading the spike conditions from a single port, avoiding data collisions. A set of Potential

modules integrate the Izhikevich units, updating the neurons’ internal state variable and the

spike conditions.

updated by the Current modules. In order to update the Current memory, the Current modules

read the stream of synaptic weights coming from the off-chip DDR through four axi-stream

interfaces and the spike conditions from the Spike mem. The system is designed to exploit the
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shared characteristics of the Xilinx Zynq-7000 family APSoC devices. The architecture is para-

metric, so the netlist can be generated to fit in different devices of the family and to emulate

neural networks of different sizes. The system setup presented in this chapter is implemented

on a Z-7020 chip.

The number of synaptic weights grows quadratically with the number of neurons in fully con-

nected neural networks, and the Block-RAM (BRAM), which are the internal memories em-

bedded in Xilinx’s FPGA, are usually the bottleneck that prevents to increase the number of

synapses over a certain limit. In the fully-connected neural network implemented in [78], the

synaptic weights are stored on-chip, in the BRAMs, and the largest possible network which

fits in is of about 1,440 neurons, obtained using 392 36 kb BRAM tiles in a Xilinx Virtex-6

XC6VLX240T chip. Indeed, if on one hand, the Programmable Logic (PL) is capable of per-

forming heavy parallel computations, on the other hand, the available memory space is not

enough to host larger fully-connected neural networks. Willing to overcome this result, we

tried to exploit the off-chip DDR memory, that is the largest memory available in the Zed-

board development board used for the implementation presented in this chapter. The DDR is

512 MB large, and it can be accessed concurrently from 4 High-Performance AXI ports (HP

AXI ports), by using 4 AXI DMA operating at their maximum speed of 150 MHz [84], with an

overall theoretical bandwidth of 4.8e9 B/s[84]. Keeping the same sampling frequency of [78],

which is 10 kHz, it would be possible to move about 4.8e5 B in 0.1 ms, that by using synaptic

weights of 8 bits each, would correspond to a fully-connected neural network of about 692

neurons. However, taking into consideration the biological delay that exists between the gen-

eration of a spike in the soma, and the propagation of the spike through the axon, towards

the post-synaptic neurons, called Axonal Delay (AD), it is possible to relax the 0.1 ms deadline

in favor of a looser one. Axonal delays’ typical values can range significantly, from 0.3 ms

for fast-conducting axons, such as cat visual thalamocortical axons, up to 130 ms, required

to reach axon terminals in monkeys’ visual cortex [64]. By using an axonal delay of 1 ms, as

in [78], it would be possible to transfer the whole set of weights every millisecond instead of

every tenth of a millisecond and reuse them 10 times to solve the Izhikevich equations. In

this way, it would be possible to transfer 10x weights, which correspond to a fully connected

neural network of 4.8e6 synapses, and therefore 2.191 neurons. The computational load would
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Figure 4.2: (a) The execution flow of a spiking neural network that takes into account axonal

delay: the synaptic weights are stream from the external memory to the programmable logic at

every sampling cycle; as the weights are available the neurons are integrated. (b) The execution

flow of a spiking neural network that takes advantage of axonal delay: the synaptic weights

are stream in during a set of sampling cycles, 10 in the example, allowing processing 10 times

more synaptic weights; consequently, as the weights are available, it is computed in parallel

the synaptic current of 10 sampling cycles.

increase consistently, however, this is obvious if more neurons and synapses are emulated in

the same amount of time.

Figure 4.2 (a) shows the execution flow without taking advantage of the axonal delay: every

neuron is updated at every integration step, and the spikes once ready, are forwarded 1 ms

after to the other neurons because of the axonal delay. In Figure 4.2 (b) the synaptic weights

are transferred during a longer period of time of 10 integration steps, the neuron integration

is spread along this period, the spikes are still forwarded in output respecting the timing of

configuration in Figure 4.2 (a).

4.4.1 Architectural overview

The main blocks of the biological neural network emulator and their interconnections are

shown in Figure 4.1. The main actors are the Potential modules, that integrate the Izhikevich

Equations 4.4, 4.5, and 4.6, and the Current modules that compute the synaptic current. More-

over, the spikes, the synaptic currents, the parameters of the Izhikevich model a, b, c, d, the

membrane potentials, and the membrane recovery variables are stored inside BRAM-based

memories, called after their contents, as shown in the schematic depicted in Figure 4.1.

82



The Potential modules are fully pipelined computational modules and have a throughput of one

integrated neuron per clock cycle. By taking advantage of the parametric port size of Xilinx’s

BRAMs, it is possible to instantiate more potential modules in parallel when higher throughput

is required. Moreover, the Current modules are fully pipelined computational modules as well,

this allows to achieve a throughput of 8 summed synaptic weights per clock cycle. The synap-

tic weights are stored in the off-chip DDR and streamed through four AXI High-Performance

Ports to the programmable logic. The stream is handled by four AXI DMAs. A different Cur-

rent module is instantiated to handle each of the four streams of synaptic weights. With this

setup, there is no need to store the synaptic weights on-chip, since they are processed as they

arrive, and the BRAMs can be saved to store the neurons’ model parameters.

If the axonal delay is higher than the integration frequency, more current modules can be

deployed in parallel, and the currents of multiple time steps can be computed at once, as the

weights are streamed in. Moreover, if that is the case, multiple instances of the Current mem

and the Spike mem are required too, to store the currents and the spikes of all the time steps

that fit in the axonal delay. The modules Spike Memory Reader and Current Memory Writer are

used to write the synaptic currents in the Current memory and read the spike conditions from

the Spike memory. These interface modules permit sharing a single memory port between the

four sets of current modules in a time-multiplexed fashion, without creating any bottleneck,

as explained in Section 4.4.2

Data transfer

The synaptic weights are moved from the DDR to the Programmable Logic (PL). The trans-

action is entrusted to 4 Xilinx AXI DMA IPs, each one connected to a different AXI High-

Performance port. The response channels of the AXI buses are used to write back the spikes

of the network in the DDR.

Potential module

The Potential module implements the Izhikevich Equations 4.4, 4.5, and 4.6. Additions and

multiplications in Equation 4.4, 4.5, and 4.6 are mapped one-to-one on dedicated hardware

resources. The architecture is shared among the neurons in a time-multiplexed fashion, guar-
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anteeing a throughput of one integrated neuron per clock cycle. Multiple Potential modules

can be instanced in the design.

The membrane potential pipeline makes use of three DSPs and a LUT-based multi-input adder,

its architecture is shown in Figure 4.3. The first DSP is used to multiply the membrane po-

Figure 4.3: Block diagram of the membrane potential pipeline vk+1 from the Izhikevich model

[18]

tential vk to the constant 0.04. The product feeds the input of the second DSP block which

multiplies 0.04vk again by the membrane potential, obtaining 0.04v2k. Concurrently, the addi-

tion sumv = 5v + 140 + uk + I + Ie takes place by means of a LUT-based multi-input adder.

The sum is the input of the post-multiplication adder embedded in the second DSP, so that the

second DSP’s output could be δv = 0.04v2k + sumv. Finally, the third DSP implements the

operation vnew = hδv + vk.

The membrane recovery variable pipeline is mapped into two additional DSPs. The block di-

agram, implementing Equation 4.5 is shown in Figure 4.4. The former DSP implements the

Figure 4.4: Block diagram of the membrane recovery variable pipeline uk+1 from the Izhikevich

model [18]

operation sumu = bvk + uk, and feeds the latter DSP, which multiplies sumu by the pre-

computed parameter ha, and adds uk to it, obtaining unew = uk + ha(bvk + uk).

The reset/spike condition stated by Equation 4.6 is verified by a comparator, that in turn con-
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trols two multiplexers as shown in Figure 4.5. When vnew > vthr the reset condition is ac-

tivated, the second inputs of the multiplexers are chosen, therefore vk+1 = c and uk+1 =

unew + d. Otherwise vk+1 = vnew and uk+1 = unew.

Once evaluated, the membrane potential vk+1, the recovery variable uk+1, and the spike con-

Figure 4.5: Block diagram of the reset condition architecture from the Izhikevich model [18]

dition, are stored in the Potential memory and in the Spike memory.

Current module

The Current module evaluates the synaptic current of every neuron of the network, so that

Equation 4.4 could be integrated. The Current module architecture is shown in Figure 4.6. The

synaptic weights are transmitted from the DDR through the AXI High-Performance ports, and

processed on the fly, without the need to buffer them. Every synaptic weight is counted in the

evaluation of the synaptic current if the pre-synaptic neuron is active. The spike conditions

are read from the Spike memory as the weights come, in order not to count the weights of

the inactive neurons. The weights of the inactive neurons are excluded from the addition by

means of a logical-and operation involving each synaptic weight and its corresponding spike

condition.

Every AXI High-Performance port transmits 64 bits per clock cycle, since the synaptic weights

are 8 bits wide, the Current module processes 8 synaptic weights per clock cycle. Four clusters

of Current modules are instanced in the design, one for each AXI High-Performance port, and

every cluster is made by R Current modules, where R is the ratio between the selected axonal

delay (AD) and the integration step, so that R synaptic currents could be evaluated in parallel,

without retransmitting or storing the synaptic weights. The weights are added by means of a
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Figure 4.6: Block diagram of the Current module: the synaptic weights of the active synaptic

connections are accumulated in the I register. The synaptic weights are read eight at a time,

each weight is reset to zero if its corresponding spike condition is not active by means of

a logic-and between the weights and the spike condition, then, the outcomes of the logical

operations are added together and accumulated in the I register.

LUT-based adder, whose result drives a DSP-based accumulator, which permits computing the

synaptic current during multiple clock cycles. Once evaluated, the synaptic current is stored

in the Current memory.

4.4.2 Execution flow

The system execution flow repeats every time the selected axonal delay period expires. Each

cycle can be described as follow:

- The Processing System (PS) enables four AXI DMA, which handle the transmission of

the synaptic weights from the DDR to the PL, through 4 High-Performance AXI-Stream

buses.

- Four clusters of R Current modules process the synaptic weights transmitted by the four

DMAs through the four AXI High-Performance ports, concurrently, the Spike memories

are accessed to identify active and inactive synaptic connections. A module called Spike

Memory Reader arbitrates the accesses to the Spike memory through a single read port,

by allowing only a cluster of Current modules per clock cycle to access, whereas the
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others wait. The AXI-Stream transactions of the waiting clusters of Current modules are

paused. Every time the Spike Memory Reader gets access to the spike memory on behalf

of a cluster of Current modules, it reads in advance the spikes needed by that cluster for

the next 4 clock cycles at once, taking advantage of the configurable width of the BRAM

ports. Therefore, since 8 weights are transmitted per clock cycle, 32 spikes are read each

time. By doing so, during steady-state processing, access conflicts do not take place and

the Current modules clusters access one after the other without any conflict.

- Once a stream of weights starts, each Current module in the same cluster computes the

synaptic current of the same neuron, just at a different point in time. This is possible

because the computation of the synaptic currents requires the synaptic weights and the

spike conditions previously evaluated and stored in the Spike memory. Once evaluated,

the synaptic currents are stored in theCurrentmemory. TheCurrentmemory is organized

as a multi-banked memory of R banks, where R is the ratio between the axonal delay

and the integration step. Each bank has an entry per neuron, whereas different banks

host currents of different integration steps.

- As soon as the synaptic currents are available the neurons are integrated. To keep the

potential fetching logic simple, four Potential modules integrate the Izhikevich equations

of four different neurons concurrently. Once finished, the membrane potentials of the

same neurons in the next integration steps are evaluated. When all the integration steps

of those neurons are evaluated, the Potential modules start integrating 4 new neurons.

The results are stored in the Potential and in the Spike memories.

- The evaluated spikes are written into the RAM. The spikes are moved by using the re-

sponse channels of the AXI High-Performance ports.

4.5 Results

In this section, the performance, the hardware resource utilization, and the accuracy of the

presented work are analyzed.
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4.5.1 System performance

The design presented in this chapter is implemented on a ZedBoard, a low-cost development

board for the Xilinx Zynq Z-7020 All-Programmable SoC. The architecture is parametric along

multiple axes, as the number of neurons, synapses, and the axonal delay. The system setup

chosen is the one that permits the emulation of the maximum number of fully connected neu-

rons, which is 3,098, with 9.6e6 synapses and an axonal delay of 3 ms. To achieve this result,

instead of storing the synaptic weights in the chip’s internal BRAMs, which are not enough

to memorize 9.6e6 bytes, the synaptic weights are stored in the off-chip DDR and transferred

through the 4 AXI High-Performance ports present in every Zynq device. Four DMAs take

care of the transmission of the weights, clocked at their maximum speed of 150 MHz [84].

Taking into account that the chosen emulation step is 0.1 ms, which is a common value in

neuro-engineering applications, the system should process the whole set of synaptic weights

every 0.1 ms. However, taking advantage of the axonal delay, a physiological latency that ex-

ists between the generation of a spike in the soma
1
, and its propagation through the axon

2
,

towards the post-synaptic neurons [64], it is possible to generate the outputs with a certain

latency without diverging from the physiological behavior. Taking advantage of this, it be-

comes possible to spread the transmission of the synaptic weights into more than a tenth of

a millisecond, having more transmitted weights without violating the physiological dynamics

of the neural cells as a result.

Increasing the axonal delay, from the performance point of view, permits to increase the op-

erational intensity, i.e. the number of operations per byte, and therefore to enhance the FPGA

throughput, at the expense of instantiating multiple current modules. The Roofline model,

shown in figure 4.7, helps understanding how the operational intensity and the performances

of the architecture change depending on the Axonal Delay (AD) value. The x-axis is the op-

erational intensity measured in operations per byte (ops/byte), and the y-axis represents the

overall performance in terms of the number of operations per second (Gops). The operational

intensity rises up to 30 ops/byte as the axonal delay increases. It is not possible to go beyond

this limit, reached for an axonal delay of 3 ms, because the BRAM tiles saturate, mostly for the

1
Soma: the portion of the neuron containing the nucleus.

2
Axon: the portion of the neurons through which the spikes are propagated before reaching other neurons.
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Figure 4.7: The Roofline model at the varying of the Axonal Delay (AD).

increment of the Izhikevich parameters and the synaptic currents memory requirements.

The computational bound of 240 Gops, represented by the upper horizontal dotted line in

Figure 4.7, would be reached with an axonal delay equal to 5 ms, which would permit an op-

erational intensity of 50 ops/byte. To achieve such performances, it is necessary to instantiate

50 current modules per axi port, for an overall number of 200 current modules, any of which

would compute 8 additions per clock cycle at 150 MHz.

In the case of a 3 ms axonal delay: the theoretical number of weights that can be transmitted

in real-time in 3 ms is 1.4e7, if the digital system is clocked at 150 MHz[84]. However, we ex-

perimented that is not possible to transmit more than 9.6e6 weights. To process the incoming

weights, thirty Current modules are instantiated per AXI HP port, for an overall number of 120

Current modules. Moreover, four Potential modules read the synaptic currents once computed,

integrate the Izhikevich equations, and evaluate the spike conditions. With this setup, the

presented system is capable to emulate in real-time a fully connected neural network of 3,098

neurons and 9.6e6 synapses, with a resolution of 0.1 ms and an axonal delay of 3 ms.

4.5.2 Hardware report

The Zynq 7020 hosts 106,400 Flip-Flops (FFs), 53,200 LookUp Tables (LUTs), 140 36Kb BRAMs

tiles, and 220 DSP48E1 slices.
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The Current module is implemented using an array of and-gates, a LUT-based eight-inputs

adder, and a DSP-based accumulator. To meet the timing constraints of 150 MHz, two pipeline

stages were introduced inside the cascade of and-gates and multi-addend adder. The retiming

option in the settings panel of the Vivado synthesizer was enabled during the synthesis step,

allowing a more fine-grain retiming of the pipelining registers along the combinational paths.

Table 4.2 shows the post-implementation resource requirement of a single Current module,

obtained utilizing Vivado 2019.2. Note that 120 Current module instances are necessary to

properly work in real-time since the selected axonal delay is 3 ms.

The Potential module exploits the computational capability of 5 DSPs, in addition, a LUT-

based multi-input adder and a LUT-based comparator are also used. One DSP is used as a

multiplier, whereas the remaining four DSPs are configured to use both the multiplier and

the post-multiplier adder. To meet the timing constraints of 150 MHz, the Potential module

was pipelined taking advantage of the pipeline stages embedded in each DSP. Three pipeline

stages were exploited for multiplication and multiply-and-accumulate operations. Lut-based

computations were pipelined as well: one pipeline stage was inserted on each addition and

comparison. The architecture embeds a total of 10 pipeline stages. Table 4.2 shows the post-

implementation resource requirement of a single Potential module, four of which are instanced

in the design.

The Current memory has an entry of 15 bits per neuron and two 60 bits ports; 30 instances of

the Current memory are present, since the currents of 30 consecutive integration cycles are

computed at the same time, for a total amount of 60 BRAMs, as shown in Table 4.2.

The Potential Memory has an entry of 42 bits per neuron; one instance of the Potential memory

requires 5 BRAMs, as shown in Table 4.2. A single instance of the Potential memory is suffi-

cient in the design, since the old potential values, once used, can be overwritten. Moreover,

13.5 BRAMs are required to store the neuron parameters (a, b, c, d, Ie, h).

The Spike memory contains a bit per neuron, and 60 instances are required, two per integration

step. it is not possible to overwrite the entries of the Spike memory while computing the new

spike conditions, since the synaptic currents of the following neurons should be computed by

relying on the same spike conditions. Every Spike memory requires a single 18Kb BRAM, for

a total of 30 36 KB BRAM tiles, as shown in Table 4.2.
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Table 4.2: Hardware resources distribution among the main modules

Processing Elements Memories
Resource Current Potential Current Potential Param Spike

INSTANCE 120 4 30 1 1 60

LUT 45 173 0 0 0 0

LUTRAM 0 0 0 0 0 0

FF 78 452 0 0 0 0

BRAM 0 0 2 5 13.5 0.5

DSP 1 5 0 0 0 0

The post-implementation resource utilization report of the whole system is shown in Table

4.3. The Zynq 7020 chip is only partially used. As expected the BRAM tiles are almost fully oc-

cupied, as 93.21% is utilized. Since most of the data-crunchy computational logic was mapped

into DSPs, 63.64% of the DSPs are used. The 66.96% of the FFs are available, as well as more

than half of the LUTs (53.98%), and only 4.5% of the LUTRAMs are used.

Table 4.3: Resource utilization table

Resource Utilization Available Utilization %

LUT 24,480 53,200 46.02

LUTRAM 802 17,400 4.61

FF 35,158 106,400 33.04

BRAM 130.5 140 93.21

DSP 140 220 63.64

4.5.3 Accuracy evaluation

Equations 4.1, 4.2, and 4.3 are solved by using fixed-point arithmetic, so that a considerable

amount of FPGA’s resources could be saved. However, we found out that the accuracy and

the convergence of the Izhikevich model, when operating in fixed-point, are not to be taken

for granted. To investigate the behavior of the fixed-point implementation of the model, two

MATLAB scripts were implemented. The former is used to provide trustworthy ground truth

for the experiments, generated from a floating-point implementation of the Izhikevich model.

The latter script is used to analyze the fixed-point accuracy and understand how many bits are

needed to smoothly move towards a fixed-point representation. To assess the behavior of the
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fixed-point neural network a set of 1024 fully-connected Izhikevich neurons were simulated,

of which 768 are of the excitatory type, and the remaining 256 are of the inhibitory type. Even

if it is possible making use of regular spiking and fast-spiking cells to model the whole set

of excitatory and inhibitory neurons respectively, to simulate a more heterogeneous network,

the directives proposed in [65] were followed. The excitatory neurons are modeled by setting

ai = 0.02, bi = 0.2, ci = −65.0+15r2i and di = 8.0+6r2i , with ri a random variable uniformly

distributed on the interval [0,1], and i the neuron index. On the value of ri depends the kind

of neuron dynamic obtained. With ri = 0 the cell dynamic is the one of a regular spiking cell,

with ri = 1 is obtained the dynamic of a chattering cell, and with ri around the value 0.8, is

emulated the dynamic of an intrinsically bursting neuron. In a similar way, all the inhibitory

cells parameters are randomly assigned by using the following rules ai = 0.02 + 0.08r2i ,

bi = 0.25 − 0.05r2i , ci = −65 and di = 2; so that for ri = 1 is obtained the dynamic of a fast

spiking cell, and for ri = 0 is simulated the dynamic of a low-threshold spiking cell. For all

the excitatory cells the DC offset Ie is set at 4 pA, whereas for all the inhibitory cells the DC

offset is set at 2 pA.

The functionality of the fixed-point network is assessed at both the single-cell and the network

levels. The spike jitter, or spike lag, was verified neuron by neuron between the floating and

fixed point networks and used as a comparison metric such in [85], as long as the mean firing

rate, and the interspike interval. Moreover, the networks’ bursts were analyzed: the mean

bursting rate, the burst duration, and the interburst interval of the networks were compared.

The bursts are identified as a sequence of more than 4 spikes, with an interspike interval of

less than 100 ms.

Custom Data Width Selection

The data width of every input, output and internal signal was chosen to optimize at the

same time the emulation accuracy and the resource utilization. We analyzed the dynamics

of the membrane potential, the recovery variable, and the synaptic current by relying on the

floating-point Matlab simulation of the Izhikevich model. We found out the membrane poten-

tial reaches maximum values which fit into 8 integer bits, the recovery variable into 6 integer

bits, and as regards the synaptic current, it fits into 8 bits. In order to optimize the data map-
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ping into Xilinx’s DSP48E1, the DSP’s input data width has not to be exceeded. Conversely, to

obtain the best possible accuracy with such processing elements, once determined the size of

the integer part of the data, the remaining bits of the DSP’s inputs can be filled with fractional

bits. The DSP48E1 contains a multiplier with two input ports of 25 and 18 bits, and an adder

with three 48-bit input ports, two of which are used to carry out the multiplication. Therefore,

in the case of the membrane potential, which goes in input to the DSP multiplier, it is possible

to choose 18 bits or 25 bits data widths, corresponding to the formats < 8.10 > or < 8.17 >

bits. We did not find any significant difference in accuracy between the two formats, there-

fore, we chose < 8.10 > to save BRAM tiles. As regards the recovery variable, it does not go

directly inside a multiplier, therefore its data width can go up to 48 bits, being 48 bits the input

data width of the adder embedded in the DSP. However, we saw empirically that 24 bits, with

the data format < 6.18 >, is a good trade-off between accuracy and BRAM utilization. When

it comes to the synaptic current, since its integer part fits into 8 bits, and the synaptic weights

have the format < 1.7 > bits, the format < 8.7 > bits was chosen. The membrane potential is

computed as follows:

• The constant 0.04 is represented with the format < 1.24 >. The first multiplication

0.04vk requires fewer integer bits than the sum of the two integer parts of the factors

involved in the multiplication. In fact, 0.04 is smaller than one. Since 1/16 is bigger

than 0.04, and it is equivalent to a 4 digits shift to the right, multiplying a number by

0.04 reduces its integer part of 4 bits. Therefore, the format for 0.04vk is < 4.21 >. The

fractional part size is selected to fill the next multiplier input width, and maximize the

emulation precision.

• The addition sumv = 4vk + vk + 140 − uk + I + Ie is implemented by means of a

multi-addend LUT-based adder. The addends’ sizes are listed in Table 4.4. The fractional

bits of the term sumv are the same of the membrane recovery variable uk, whereas its

integer part is ten bits wide.

• The product 0.04vk is multiplied by vk and added to sumv employing a DSP. The integer

part of the product fits in eleven bits, whereas the fractional part size is truncated to

fourteen bits before being multiplied by the integration step h in the next DSP.
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• The integration step is equal to 0.1, therefore the output of the multiplication h(0.04v2k+

sumv) requires fewer integer bits than the input factors. The power of two 2−3
corre-

sponds to a three digits right shift, and it is bigger than 0.1. Then, the integer part of the

product surely fits into 8 bits.

• The term h(0.04v2k + sumv) is added to vk by means of the post-multiplication adder of

the same DSP. Since the dynamic of vk does not exceed 8 integer bits, as observed in the

floating-point simulation, this sum still fits into 8 integer bits.

The membrane recovery variable pipeline is composed of two DSPs that implement the oper-

ations bvk − uk and ha(bvk − uk) + uk:

• The 25 bits input port of the first DSP is used for the parameter b, with the format <

1.24 >. This term’s maximum value is 0.25, which corresponds to a two-digits right

shift, therefore bvk will require 6 integer bits at most.

• The multiplier output is subtracted by uk using the adder embedded in the same DSP.

The output, in the format < 6.19 >, fits into the 25 bits input of the second DSP imple-

menting the operation ha(bvk − uk) + uk.

• The term ha, directly stored pre-computed instead of a (to save a multiplier), can reach

the maximum value of 0.01. Therefore it reduces by at least 6 bits the dynamic of (bvk −

uk). In any case, being ha(bvk − uk) + uk the new value of the membrane recovery

variable, it cannot have a dynamic that goes above 6 integer bits, as observed during the

floating-point simulation.

Single neuron behavior

This section presents a behavioral analysis of the single-cell Izhikevich model. In particular,

it is shown the behavioral difference when the model is evaluated using floating-point arith-

metic, our custom fixed-point arithmetic, and standard fixed-point arithmetic, at the varying

of the data width. For fixed-point arithmetic, ten bits are kept fixed for the integer part, the

remaining bits are used for the fractional part. In fact, using less than 10 bits causes data over-

flows, as pointed out in [83]. On the other hand, using more than 10 bits for the integer part
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Table 4.4: Fixed-point data format of the Potential module signals

Data Format Data Format

vk 8.10 0.04 01.24

0.04vk 4.21 4vk 10.10

I 8.7 Ie 5.7

140 09.00 uk 6.18

sumv 10.18 0.04v2k + sumv 11.14

h 01.17 vnew 8.10

vthr 08.10 c 08.10

b 01.24 bvk − uk 6.19

ha 01.17 unew 6.18

d 06.18 weight 1.7

does not provide any accuracy benefits.

Figure 4.8 shows the superimposition of the fixed- and the floating-point simulation of the

membrane potential for several fractional bits widths, within a time window of 200 ms. From

left to write regular spiking, chattering, intrinsically bursting, fast-spiking, and low-threshold

spiking cells. The parameters used to simulate each neuron are listed in Table 4.5. In the first

row are used 10 fractional bits. The membrane potential superimposition shows evident dif-

ferences with the floating-point model. Both the number and the timing of the spikes differ.

In the second row, the number of fractional bits is increased to 16. Starting from this data

format the spikes count between the floating- and the fixed-point cells is the same, for all the

cell types. However, it is still possible to observe a significant timing lag among the spikes.

In the third row, 22 fractional bits are used, for a total data size of 32 bits. This format per-

mits obtaining two perfectly superimposed simulations. The last row shows the case where

the custom format described in 4.5.3 is used. There are no significant behavioral differences

between using 32 bits fixed-point arithmetic and the custom data width proposed in this chap-

ter. However, the custom data width permits to map efficiently the computations into Xilinx’s

DSPs and LUTs. Moreover, the overall memory required per neuron is 371 bits, about the 61%

required if 32 bits data width is used.
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Table 4.5: Single Cell Simulation Parameters Values

Type a b c d Ie

Regular Spiking 0.02 0.2 7 -65 8 4

Chattering 0.02 0.2 -55 4 4

Intrinsically Bursting 0.02 0.2 -50 2 4

Fast Spiking 0.1 0.2 -65 2 4

Low-Threshold Spiking 0.02 0.25 -65 2 4

Neural network behavior

The firing patterns of the hardware fully-connected neural network of 1024 Izhikevich neu-

rons were compared to the floating-point Matlab model. The networks were compared along

two seconds of activity.

The spike timing for each neuron of the network is shown in Figure 4.9 (a). The x-axis rep-

resents the time in samples (the integration step is 0.1 ms, so 20k samples correspond to 2

seconds), whereas the y-axis has an entry for each neuron of the network; neuron identifiers

from 1 to 768 are of excitatory neurons, neuron identifiers from 769 to 1024 are of inhibitory

neurons. The firing activity superimposition of Figure 4.9 (a) shows a match between the hard-

ware and the Matlab reference models. Within 2 seconds of activity, a total amount of 20,874

spikes were fired from the Matlab reference model, whereas 20,886 were fired from the pre-

sented hardware implementation. The total number of spikes fired by the networks differs by

about 0.06%. The mean firing rate of the two networks is shown in Figure 4.9 (b); in the case of

the hardware network, the MFR is 10.1924 spikes per second, whereas it is 10.1982 spikes per

second in the case of the Matlab reference model. Among the spikes fired from the Matlab

reference model, 20,620 were correctly replicated from the hardware network, with a maxi-

mum timing jitter of 2 ms, which corresponds to the 98.78% of the spikes fired. The 1.27% of

the fired spikes are instead false positives, and the 1.22% are false negatives. The spike jitter

distribution is shown in Figure 4.10 (a), the 98.78% of the spikes are correctly reproduced with

a maximum jitter of 2 ms, of which the 89.68% have a time jitter less or equal to 1 ms. The

Inter-Spike interval (ISI) values are shown in Figure 4.10 (b). The first and the second columns

depict respectively the excitatory and inhibitory neurons of the networks, whereas the first
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Figure 4.8: Fixed- and floating-point Izhikevich single-cell membrane potential superimposi-

tion at the varying of the fixed-point data width. The waveforms were captured within a time

window of 200 ms. On the left is indicated the fixed-point data format. Each column depicts

a different kind of neuron, from left to right regular spiking, chattering, intrinsically bursting,

fast-spiking, and low-threshold spiking cells.

and the second rows show the Inter-Spike interval of the Matlab and the Hardware networks.

There are no significant differences in the interspike time distributions of the hardware and

Matlab networks, for both the inhibitory and the excitatory neurons.

The analysis of the bursting activity shows how the hardware network behavior still retraces

the firing pattern of the Matlab reference model. Figure 4.11 shows the Mean Bursting Rate

(MBR) of the two networks, the Burst Duration (BD), and the Inter-Burst Interval (IBI). The

mean bursting rates are identical, in fact, the numbers of bursts of the two networks are the

same. The average burst duration of the hardware network is 149.95 ms, whereas it is 150.55

ms for the reference network. The mean interburst interval of the hardware network is 123.49

ms, and the one of the software network is 123.03 ms.
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Figure 4.9: (a) Floating-point vs Hardware neural networks firing activity: the firing patterns

are that similar to be indistinguishable in the image (b) Mean firing rate: the two networks

present almost identical mean firing rate.
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Figure 4.10: (a) Spike time jitter: 98.78% of the fired spikes are correctly reproduced within a

window of 2 ms, of which 89.68% within a 1 ms window. (b) Inter-Spike Interval: the first and

the second rows show the Inter-Spike interval of the two networks, the first and the second

columns depict the excitatory and inhibitory neurons of the networks. There are no significant

differences in the interspike time distributions.
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4.6 Comparison with the State of the Art

The main characteristics of the FPGA accelerator we target for comparison with our work are

shown in Table 4.6. The low-power embedded system implementation presented in [74] em-

ulates 800 Leakage Integrate-and-Fire (LIF) neurons and 1.25e4 synapses. Our requirements

in terms of DSP and registers are higher, 2.2x more DSPs and 1.5x more registers respectively.

However, the work [74] uses 2.3x more LUTs than the presented system, and emulates only

25.82% of the neurons, and about 0.13% of the synapses of the proposed implementation. In

addition, the neuron integration frequency is 10 times lower.

The digital system presented in [77] is capable of hosting 12,800 neurons and 20,000 synapses

with a time resolution of 1.5 us. The network topology and the resolution used in [77] do

not permit a fair comparison with the implementation presented in this chapter. In fact, this

implementation emulates fully-connected neural networks with a time resolution of 0.1 ms, it

counts 4.1 times fewer neurons, however, hosting 480 times more synaptic connections than

in [77] can emulate arbitrarily connected neural networks.

The system presented in [78] is a fully connected neural network accelerator prototyped into

a high-end Virtex-6 FPGA. The time resolution and the neuron model are the same as the pre-

sented work. Their digital system can emulate 1,440 neurons and 2.07e6 synapses, which are

46.48% and 21.56% of the proposed solution’s result. Moreover, our work requires only the

43.80% of the LUTs, the 72.49% of the FFs, the 33.29% of the BRAMs, and the 34.31% of the

DSPs compared to the implementation in [78].

The low-latency neural network accelerator presented in [79] is implemented on a Stratix-IV

device, and can sustain a maximum clock frequency of 250 MHz. This allows to integrate the

Izhikevich model in 8 ns and reuse many times the same neuron computational core within

their 0.78 ms integrating step, as it happens in the presented work. However, the throughput

of our Potential module guarantees an integrated neuron every 6 ns, which is higher than 8 ns,

even though our maximum clock frequency is lower. In addition, the neuron interconnections

scheme of the presented implementation has more biological meaning than in [79], where the

neurons can have a single synaptic interconnection. The maximum number of neuron com-

putational cores which fit in the Stratix-IV device is 364, but it is not explicitly declared the

100



T
a
b
l
e

4
.6

:
R

e
a
l
-
t
i
m

e
F
P

G
A

-
b
a
s
e
d

n
e
u

r
a
l

n
e
t
w

o
r
k

e
m

u
l
a
t
o

r
s

c
o

m
p

a
r
i
s
o

n

W
o

r
k

Y
e
a
r

F
a
m

i
l
y

P
a
r
t

N
e
u

S
y

n
F
C

m
e
m

M
o

d
e
l

R
e
s

D
a
t
a

[
b
i
t
]

L
U

T
F
F

B
R

A
M

D
S
P

t
h

i
s

w
o

r
k

2
0
2
1

V
i
r
t
e
x
-
6

X
C

7
Z

0
2
0

3
,0

9
8

9
.6

e
6

✓
o

ff
-
c
h

i
p

I
z
h

i
k

e
v
i
c
h

0
.1

m
s

c
u

s
t
o

m
2
4
,4

8
0

3
5
,1

5
8

1
3
0
.5

1
4
0

G
u

p
t
a

[
7
4
]

2
0
2
0

V
i
r
t
e
x
-
6

X
C

6
V

L
X

2
4
0
T

8
0
0

1
.2

5
e
4

✗
o

n
-
c
h

i
p

S
i
m

p
.

L
I
F

1
.0

m
s

2
4

5
6
,2

3
0

2
3
,2

3
8

1
6

6
4

S
r
i
p

a
d

[
7
7
]

2
0
1
8

K
i
n

t
e
x
-
7

X
C

7
K

3
2
5
T

1
2
,8

0
0

2
.0

0
e
4

✗
o

n
-
c
h

i
p

I
z
h

i
k

e
v
i
c
h

1
.5
µ
s

1
6

1
4
8
,7

7
4

9
7
,8

2
4

2
1
3

1
0
0

P
a
n

i
[
7
8
]

2
0
1
7

V
i
r
t
e
x
-
6

X
C

6
V

L
X

2
4
0
T

1
,4

4
0

2
.0

7
e
6

✓
o

n
-
c
h

i
p

I
z
h

i
k

e
v
i
c
h

0
.1

m
s

3
2

5
5
,8

8
4

4
8
,5

0
2

3
9
2

4
0
8

B
a
n

d
e
i
r
a

[
7
9
]

2
0
1
7

S
t
r
a
t
i
x

I
V

E
P

4
S
G

X
2
3
0

-
-

✗
o

n
-
c
h

i
p

I
z
h

i
k

e
v
i
c
h

0
.7

8
m

s
1
8

8
4
,8

1
6
*

8
4
,8

1
6
*

-
-

L
u

o
[
8
1
]

2
0
1
6

V
i
r
t
e
x
-
7

X
C

7
V

X
4
8
5
T

1
0
1
,0

0
0

1
.0

0
e
5

✗
o

n
-
c
h

i
p

L
I
F

-
4
0

2
6
8
,4

5
5

1
7
6
,4

2
4

9
6
0

2
.3

0
4

A
m

b
r
o

i
s
e

[
8
3
]

2
0
1
3

V
i
r
t
e
x
-
4

S
X

5
5

1
1
7

1
.3

7
e
4

✓
o

n
-
c
h

i
p

I
z
h

i
k

e
v
i
c
h

1
.0

m
s

1
8

1
,5

9
8

9
7
0

4
1

H
a
n

[
6
6
]

2
0
2
0

K
i
n

t
e
x
-
7

X
C

7
Z

0
4
5

2
,8

4
2

1
.8

6
e
6

✗
o

ff
-
c
h

i
p

L
I
F

-
1
6

5
,3

8
1

7
,3

0
9

4
0
.5

-

*
Th

e
q

u
a
n

t
i
t
y

r
e
f
e
r
s

t
o

t
h

e
n

u
m

b
e
r

o
f

A
d

a
p

t
i
v
e

L
o

g
i
c

M
o

d
u

l
e

o
f

A
l
t
e
r
a
’
s

F
P

G
A

s

101



maximum number of neurons their architecture can handle in real-time. Moreover, having a

single synaptic connection per neuron, the comparison with the other architectures of Table

4.6 would not be fair.

The bio-realistic cerebellum model presented by Luo et. al [81] emulates 101,000 LIF neurons

[77]. So as the presented work, the digital system can be coupled with biological neural net-

works in closed-loop experiments. Even though the number of neural units is consistently

higher compared to the proposed implementation, it is to be taken into account that the pre-

sented system emulates Izhikevich neurons, which are far more computationally expensive

than LIF neurons. Moreover, the number of synapses the presented architecture supports is 96

times higher than in [81] and this result is obtained by using the 9.11% of the LUTs, the 19.93%

of the FFs, the 13.59% of the BRAMs, and the 6.07% of the DSPs of the implementation in [81].

The folded architecture presented in [83] permits saving resources by reusing the same pro-

cessing elements along multiple clock cycles to evaluate the Izhikevich model. They instanced

a single neural computational core that can be compared to our Potential module. Their core

uses a single DSP, whereas ours makes use of 5 DSPs. However, due to this, their architecture

requires about x9 more LUTs than our Potential module. Moreover, even though in a folded

architecture is possible to save registers, by sharing them in time among multiple variables,

the folded architecture in [83] still requires x3.5 more registers, probably because most of the

registers used by the presented work are the ones embedded into the DSPs. The folded archi-

tecture needs 11 clock cycles to integrate the Izhikevich model, whereas our Potential module

can integrate a neuron per clock cycle. In addition, the maximum clock frequency of the pre-

sented work is higher: 150 MHz against the 85 Mhz of the folded architecture in [83], and

summing up, this leads to a throughput 19.4 times higher in favor of our Potential module.

The image classifier presented in [66] accelerates the execution of spiking neural networks of

LIF neurons. Their approach takes advantage of the off-chip DDR memory to store the synap-

tic weights of the network, as in the proposed solution. As a matter of fact, their utilization

in terms of BRAMs is lower than most of the other works in Table 4.6. Moreover, being the

LIF model simpler than the Izhikevich model, and counting fewer parameters, their LUTs and

FFs utilization is about a fifth of the presented implementation, and their BRAMs utilization

is 31.03% of the presented work. However, even though the number of neurons is almost the

102



same (they emulate about 9% fewer neurons than the presented design), the synapses of our

design are 5.16 times more. Finally, not being conceived as a biological-meaningful neural

network emulator, [66] is not suited to be interfaced with biological neural networks.

4.7 Conclusion

We have presented a new method for increasing the synapses count of real-time neural net-

work accelerators. We demonstrated the feasibility of the method by implementing a real-time

neural network accelerator counting up to 3,098 neurons and 9.6e6 synapses into a Xilinx

Zynq 7020 All-Programmable SoC, with a resolution of 0.1 ms. We showed that the off-chip

DDR memory provides enough storage capability and I/O bandwidth to transfer the synap-

tic weights in real-time, and that by relying on the DDR memory, it is possible to overcome

the number of synapses that a real-time spiking neural network emulator can store inside its

BRAMs. In this chapter, it is demonstrated that it is possible to emulate highly-connected

neural networks in real-time, paving the way to closed-loop experiments addressing biologi-

cal and artificial neural network interaction, aiming to increase the actual comprehension of

biological neural network functioning principles and neuroprosthesis development.

Moreover, we studied how to map the Izhikevich neuron model in fixed-point arithmetic so

as to simultaneously find a good map into Xilinx’s DSPs and LUTs, and degrade the accuracy

of the network as little as possible. We found a difference of 0.06% in the total amount of fired

spikes by the proposed fixed-point neural network and the floating-point reference model,

with 98.78% of the spikes having a time jitter less than 2 ms.

A long-term purpose for our work is interfacing biological and artificial neural networks in

real time. By relying on the support of a multielectrode array and a neural processing inter-

face, it could be possible to provide input and output data exchange between the networks,

making bio and artificial neural network cooperation possible.
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Chapter 5

Exploiting SNN for efficient real-time

neural decoding

Abstract
In the last decades deep learning neural decoding algorithms have been gaining pace in the

broad landscape of neural interfaces and neural processing systems, however, these models

must withstand strict computational and power limitations to be deployed on low-budget

portable devices while operating in real-time. This Chapter presents a spike decoding system

implemented on a low-end Zynq-7010 FPGA embedding a real-time low-power multiplier-

less spike detection pipeline cascaded with a spiking neural network decoder mapped in the

programmable logic. The system has been tested on two publicly available datasets achieving

comparable results with State of the Art neural decoders based on more complex deep learning

models, requiring 7.36 times fewer parameters than the smallest neural decoder tested on the

same dataset. Moreover, by exploiting the spike sparsity property of the neural signal, the to-

tal amount of computations is reduced by about 90% during a test carried out on real recorded

data. The low computational complexity of the chosen spike detection setup, combined with

the power efficiency of spiking neural networks make this prototype a well-suited choice for

low-power real-time neural decoding at the edge.
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5.1 Introduction

Neural interfaces proved to be key components for improving the quality of life of disabled

patients. Their range of applications stretches from hand movement decoding in patients af-

fected by tetraplegia [86], seizure detection in pediatric subjects with intractable seizures [87],

hand prosthesis control with sensory flow restoration in transradial amputees [88], speech

decoding in patience with motor speech disorders [89], etc. Neural interfaces acquire neural

signals, infer the patient’s intention, and use this information to accommodate the patient’s

request. Among several recording solutions, intracortical sensors have shown to be valuable

instruments in decoding multiple motor functions [90]. The neural data sampled with intracor-

tical arrays of sensors can be seen as the contribution of two signals: the local field potentials

(LFPs) and the action potentials, i.e. the spikes. The LFP is usually considered in the band

[0.5, 300] Hz and can be obtained by filtering the recorded samples; the spikes are in the band

above 300 Hz and necessitate being identified along the neural track after filtering, a neural

signal processing task referred as spike detection [19] and that could be extended by recog-

nizing the firing neurons, taking the name of spike sorting [28]. The output of spike detection

and sorting are respectively called multi-unit activity (MUA) and single-unit activity (SUA).

LFP, MUA, and SUA signals proved to be effective in several decoding tasks when supported

by reliable decoding algorithms, such as Long-Short Term Memory (LSTM) used to decode

LFPs [91], Recurrent Neural Network (RNN) used to decode MUA [92], Quasi-Recurrent Neu-

ral Network (QRNN) used to decode MUA, SUA, and Entire Spiking Activity (ESA) [93], i.e. a

signal obtained by processing the spikes band without identifying the spikes.

Besides the application, neural interfaces are characterized by strict power and energy limi-

tations, either because implantable chips must respect tight restrictions not to endanger the

patient, limiting any temperature increase of the tissue to below 0.5
◦
C [14], or because even-

tually, any neural interface should become portable, constraining its energy requirements in

favor of extended battery life. In this sense, Spiking Neural Networks (SNN) are promising

tools for low-power neural processing at the edge. SNNs differ from other neural network

models as their fundamental units are spiking neurons, more similar to biological neurons,

from which artificial neural networks derive. As biological neurons, spiking neurons have a
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memory and are able to communicate exclusively receiving and transmitting action potentials,

i.e. ones and zeros in the digital domain. The appeal of spiking neural networks lies in their

computational efficiency, being able only to fire or not fire a spike, the synaptic connections

among the units are not always active. The phenomenon is called spike sparsity and causes

the number of computations to drop down, fostering reduced power consumption and latency.

Even though the non-differentiability of the spike function held back from extensively using

these models in the past, the effort of the scientific community during the last decades paved

the way for new algorithms suitable for spiking neural network supervised learning [94], en-

abling wider use of these networks.

Furthermore, intracortical spikes and spiking neural network models are already intrinsically

compatible, no further processing is required to transform a continuous signal into a spiking

one, as happens when other forms of neural activity are used in place of action potentials.

This Chapter presents a spike-based neural decoding system implemented on FPGA that ex-

ploits the computational efficiency of spiking neural networks to decode the displacement of

a handle moved during a delayed reach-to-grasp task [8], and recorded by means of a 96-

channel multi-electrode Utah array [4]. The neural signal is processed in real-time to extract

the multi-unit activity by using a multiplier-less spike detector, mapped in the Programmable

Logic (PL), presented in Chapter 2.

The key contributions of this Chapter are resumed as follows:

- A new computationally efficient real-time spike detection method is presented, along

with its hardware implementation;

- An hardware spiking neural network is used for solving a continuous decoding task in

real-time for the first time in the neural signal decoding domain (as far as we know);

- The accuracy of the system as a whole is assessed on a benchmark dataset, achieving

accuracy comparable with the state-of-the-art and 7.36 times fewer parameters than the

smallest neural decoder tested on the same dataset;

- Moreover, it is given proof of the computational efficiency of the spiking-neural-network-

based decoder on real data, saving an average of 90% operations.
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The following Sections are organized as follows: a description of the studies related to this

work is presented in Section 5.2, the methods are described in Section 5.3, Section 5.4 reviews

the hardware implementation, Section 5.5 contains the results, Section 5.6 comprises a com-

parison with the State of the Art, and Section 5.7 is left to the conclusions.

5.2 Related works

The Related works section is divided into two subsections. The former is used to describe the

current State of the Art of neural activity decoders, the latter to provide an overview of the

instruments available in the literature for the supervised training of spiking neural networks.

5.2.1 Neural activity decoders

Neural activity decoders, depending on the nature of the task, can be categorized into two fam-

ilies: gesture or motion classification and continuous motion or force decoding. The former

constrains the output to a predefined set of classes and infers to which class the performed ac-

tion belongs. The latter continuously tracks a target variable, either position, speed, or force,

inferring the value by regression. In this section are analyzed several deep-learning neural

decoders belonging to both categories, in addition, the models exploit several different arrays

of sensors. The main features of the works analyzed in this section are summarized in Table

5.1.

Work Year Signal Task Decoder Channels Parameters Platform

[95] 2022 sECoG Regression CNN+RNN 14 - PC

[86] 2022 ECoG Regression 2DCNN+LSTM 64 238,772 PC

[96] 2022 sEMG Regression FFNN 10 1,600 PC

[96] 2022 sEMG Regression CCFNN 10 1,928 PC

[96] 2022 sEMG Regression RBFNN 10 4,272 PC

[93] 2021 Intracortical Regression QRNN 96 - PC

[97] 2022 sEMG Regression SNN 8 16,448† PC

[98] 2022 sEMG Classification SNN 3 - PC

[99] 2010 Intracortical Classification SNN 100 1,212† PC

[100] 2019 EEG Classification CNN 10 - FPGA

[101] 2016 ECoG Classification PCA+MLP 62 - FPGA

[102] 2017 EEG Classification Bayesian Classifier 4 - uC

deduced†

Table 5.1: State of the art neural activity decoders
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In [95] the stereo-electroencephalography (SECoG) signal is used for continuous force decod-

ing during a hand-grasping task. The five participants had a total of 745 electrodes implanted,

of which 9, 11, 14, 13, and 10 were used. The frequency components of each channel, over 5

different frequency bands, were extracted by exploiting five 6th-order Butterworth filters. The

outputs of the filters were further processed to extract the power on each band by computing

the square value of the Hilbert transform. Next, the obtained features were processed by a con-

volutional neural network followed by a recurrent neural network (CNN + RNN) composed of

a temporal convolution block, a spatial convolution block, and a recurrent convolution block.

In [86] the signal recorded by two ECoG implants of 8x8 grids is decoded during a 3D virtual

hand translation task by means of a 2D CNN followed by a Long-Short Term Memory (LSTM)

network. The patient, affected by tetraplegia caused by c4-c5 spinal cord injury, could con-

trol an avatar’s right-hand movement by imagining moving his own right hand. The work

focused on decoding the right/left-hand translations and use only half of the electrodes be-

cause of the bandwidth limit of the implant transmission rate. The signal was processed to

extract frequency-domain features: from each of the 64 used channels, 15 continuous complex

wavelets were extracted with central frequency regularly distributed between 10 and 150 Hz.

The wavelets were computed over one-second windows with 90% overlap. Then, the absolute

values of the wavelets were averaged over 0.1-second windows and used in groups of ten to

feed the neural decoder after being z-scored, i.e. subtracted by the signal mean and divided by

the signal’s standard deviation. The features are given in input to the 2D CNN that performs

a spatial convolution. The first layer of the LSTM, with its 50 units, analyzes the flattened

output of the 2D CNN; the second layer of the LSTM, with its three units, provides the xyz

coordinates of the hand trajectory.

Comparisons of different decoder types over the same dataset are hard to find. However, in

[96] were compared the decoding accuracy of four artificial neural networks on a 15 joint an-

gles continuous estimation task during nine wrist motions and nine grasp types. The neural

activity was recorded using a 10-channel surface EMG (sEMG). The dataset is publicly avail-

able [103]. The surface EMG and the behavioral signals were zero-phase filtered by using two

distinct 4th-order Butterworth filters with cutoff frequencies [10, 400] Hz and 10 Hz (low-pass)

respectively, then, the signals were z-scored. The sEMG signals were normalized prior to com-
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puting their RMS values. The RMS means over sliding windows of 150 ms, with 50% overlap,

were used to feed five deep learning models, of which three are reported in Table 5.1: a Feed-

forward Neural network (FFNN), a Cascade-Forward Neural Network (CCFFN) and a Radial

Basis Function Neural Network (RBFNN) that outperformed the other models.

Whereas the previous works rely on surface electrodes, in [93] the intracortical recording sam-

pled by means of a 96-electrode Utah array is used for assessing the performance on several

decoders using different neural signal features. The datasets used as a benchmark contain the

tracking of a handle moved during a reach-to-grasp task [8] and the tracking of the finger-tip

movement during a reaching task [104]. Both linear decoders such as Wiener and Kalman

filters were used, as well as deep learning decoders such as a Recurrent Neural Network, Long

Short-Term Memory, and a Quasi-Recurrent Neural Network. Several neural signal features

were tested in combination with the decoders, such as single and multi-unit activity, local field

potential, and entire spiking activity. The decoding accuracy of the methods has been tested

also over long-term neural recorded signals [104] to verify the signal degradation over time.

Third-generation neural networks are becoming part of the wide landscape of deep learning

models used for neural signal decoding. Their computational efficiency is appealing, especially

when the long-term goal is to deploy the deep learning model on an implantable SoC, or at

least on a portable device, to really impact positively the patients’ quality of life. However,

in order to process the neural data with spiking neural networks it is necessary to convert

continuous signals into spiking ones, adding an additional step in the neural signal process-

ing chain. In [97] the Python implementation of a spiking neural network decoder trained to

continuously track the elbow angle of four subjects moving their arm with 1.5 kg, 1 kg, and

without any load is compared to the results obtained by a LSTM based decoder. The neural

recording was acquired with an 8-channel surface EMG armband. Being the surface EMG sig-

nals continuous in time, to feed the spiking neural network the neural signal required further

processing. Firstly, it is computed a time-domain feature called waveform length, defined as

the aggregated length of the EMG waveform over the segment [105], computed over 100 sam-

ples in [97]. Then, this feature is input to a spiking layer of 64 units that convert the feature

into spikes. The spike trains are then processed by two hidden layers of 128 and 64 units. The

output of the last hidden layer, in form of spike trains, is converted into a continuous value by
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introducing a final layer, composed of one spiking neuron only, where the membrane potential

of the neuron was used as continuous output, rather than its spikes.

Another example of a spiking neural network decoder is reported in [98], where a 3-channel

surface EMG signal was used to carry out a hand gesture recognition task counting five ges-

tures. The continuous sEMG signal is processed to obtain frequency-domain features, then

converted into spike trains to be decoded by the SNN. The signal is filtered three times with

three distinct filters to obtain three separated signals called A1, A2 and B, respectively in the

band [15, 100], [100, 550] and [15, 550] Hz. The three signals are then smoothed by computing

their root mean square value over a sliding window of 225 samples, corresponding to 150 ms.

The signals are then normalized and an algorithm is run to convert the signals into spikes: the

signal is accumulated sample by sample, when the accumulation value grows above a certain

threshold it is reset and a spike is generated. Finally, the nine spike trains, three per electrode

(A1, A2, and B), are processed by the decoder. The spiking neural network is a three-layer

network with 9 inputs, 20 hidden units, and 5 output units. The neurons are of type LIF, and

in particular, the units of the last layer have their threshold set to infinite. The classification

result is determined by applying a winner take all strategy where the neuron with the higher

potential is chosen.

We found only one work in literature that directly uses a spiking neural network for decoding

spiking signals [99]. Their network analyzes single unit activity, recorded during a 3D reach-

to-grasp task by five independent electrodes used multiple times over different trials, during

which it was collected the activity of 979 units [106]. The single neuron activity was processed

offline and only the more correlated units were kept. The system was trained to decode the

object direction and orientation, using respectively the one hundred and ninety-seven more

correlated neurons. The decoding tasks consisted of classifying whether the movement was

toward the left or the right and classifying one of the three possible orientations of the target.

The former task was carried out by using a hidden layer of 12 units and by training one output

neuron to fire a spike at 51 ms for left prediction, or later, at 61 ms for right prediction. The

latter was implemented by a 12-unit hidden layer and by applying a winner-take-all strategy

to three output neurons where each neuron represents one of the three orientations, and it

is trained to spike at 51 ms for the orientation that represents or later, at 61 ms otherwise.
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Although the approach used in [99] is similar to the method proposed in this chapter, it is

difficult to make a comparison with this study because the dataset was not acquired using a

multi-electrode array, instead, the same experiment was repeated multiple times to sample the

neural activity of different brain areas, furthermore, their model was used for classification,

not for continuous regression.

Even though portability and low latency are key properties speaking of neural interfaces, we

found prospectively few implementations addressing portable computing platforms such as

FPGAs or microcontrollers (uCs) rather than PCs, that we reported in Table 5.1. In [100] a

CNN deployed on a Field Programmable Gate Array is used for decoding in real-time the

electroencephalographic signal acquired from 10 channels during a two-class motion imagery

classification task. In [101] an FPGA is used to accelerate a two steps process aiming at de-

coding a 62-channel ECoG signal during an online finger movement classification task. The

first step of the data processing pipeline consists into a dimensionality reduction performed

through Principal Component Analysis (PCA) from 62 to 3 dimensions, then, a multilayer

perceptron (MLP) is trained offline and used online to classify the finger movements. A mi-

crocontroller (uC) is used in [102] for implementing a low-cost neural interface solution for

EEG-based neural decoding during an hand open/close/idle state classification task. The sys-

tem is able of processing 4 EEG signals by means of a Bayesian classifier providing a results

in about 2 seconds.

Although several hardware solutions have been proposed for intracortical neural signal pro-

cessing, most of them stop at the spike detection phase [107][32] or at the spike sorting

phase [6][39]. In the same way, several spiking neural network accelerators exist, some are

oriented to understanding the brain functionalities, either FPGA-based prototypes such as

[7][108], or higher-end emulators such as SpiNNaker [109]; whereas other hardware acceler-

ators mostly focus on using spiking neural networks for their low-power properties, rather

than exploit them for bio-realistic simulations. Among these implementations could be found

both FPGA-based solutions [66][110] and custom ASIC designs, such as Loihi [111] from Intel,

and TrueNorth [112] from IBM. However, it was never proposed, as far as we know, a custom

neural interface prototyped on FPGA comprehensive of both neural signal analysis in the form

of spike detection and neural decoding by means of a spiking neural network, as provided in
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this chapter, ideal for low-cost neural signal processing and decoding at the edge.

5.2.2 Supervised learning for spiking neural network

Supervised learning is the most widely used way to compute neural network parameters. The

process requires two input objects:

• A neural network model: the number of layers, the layers type, the number of neurons

per layer, and the neurons type;

• A dataset: a list of input-output pairs that describes the neural network’s desired behav-

ior, where both inputs and outputs dimensions are arbitrary.

Supervised learning consists of letting the neural network model infer an output given a

certain input, computing the error between the actual output and the target one, and using that

error to adjust the parameters of the output layer. Furthermore, the error is back-propagated

across the entire network, up to the input layer, allowing the refinement of the parameter

values of all the network’s layers. The process is usually performed for multiple input-output

pairs of the dataset. This method is known as gradient descent back-propagating learning al-

gorithm [113] and nowadays is the cornerstone of supervised learning algorithms.

Spiking neural networks, commonly referred to as III-Generation Artificial Neural Networks,

differs from their predecessors for two main reasons: their neurons have memory, then, their

outputs depend on the value of their internal state as well as from the value of their inputs, and

their output is a spike, that is not differentiable. Especially this last aspect makes the gradient

descent back-propagating learning algorithm not adequate for these kinds of networks, or at

least not directly adequate.

Modified versions of the back-propagation algorithm suited for spiking neural networks exist

in literature. The SpikeProp algorithm [114] overcomes the non-differentiability of the spike

function by approximating it. Its main limitation is that the neurons can fire only once. Follow-

up works introduced the possibility to learn other parameters aside from the weights, such as

synaptic delays, and firing more than one spike [115].

Other strategies are possible, for instance, it is possible to first utilize the standard back-

propagation method on a non-spiking neural network model, then, once the network is trained,
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convert the model into a spiking one. In [116] this idea is applied to LIF neurons and demon-

strated on CIFAR-10 and MNIST datasets, in [117] Integrate-and-Fire (IF) neurons are used and

tested on the MNIST dataset.

Even though the algorithms differ, the common goal of spiking neural network learning algo-

rithms is finding a set of synaptic weights that could reduce the difference between a computed

spike train and a target one. The dataset, in the case of spiking neural networks, is in fact made

of input spike trains and output spike trains. How the difference among spike trains is defined

changes depending on the application case. It can either be defined as the difference between

the spikes’ time per neuron or as the sum of spikes fired during a certain interval of time by

each neuron, which is usually the most suitable loss measure for classification tasks [118].

In a most recent work, SLAYER (Spike LAYer Error Reassignment) [118], was introduced the

concept of back-propagation in time. In a spiking neural network, the error is indeed due to

the present input, but also to the neuron’s states. SLAYER during the learning process takes

into account also the past inputs of the neurons, as well as the current ones.

5.3 Methods

In this chapter the intracortical recordings of a 96-channel MEA are used for decoding the

displacement of a handle during a delayed reach-to-grasp task in real-time. The system is

implemented on a low-end Zynq XC7Z010-1CLG400C and it is composed of two main modules:

1) a spike detector, that processes the raw samples provided by the array of sensors, detecting

the spikes, and 2) a spiking neural network that directly processes the detected spikes, inferring

the handle displacement first derivative, i.e. the handle velocity.

This Section is organized as follows: a description of the dataset used to validate the system

is provided in Section 5.3.1, in Section 5.3.2 is presented the spike detection pipeline, Sections

5.3.3 and 5.3.4 describe the neuron model and the spiking neural network, Section 5.3.5 explain

the spike sparsity phenomenon and how to take advantage of it for reducing at the same time

the power consumption and the system latency.
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5.3.1 Dataset

The system is validated on two macaque monkeys’ electrophysiological recordings [8]. The

two monkeys were instructed to perform a delayed reach-to-grasp task. Each trial starts by

informing the monkey on which type of action is required, two different types of grips and

two levels of force were used, then, the monkey is required to pull a cuboid handle in that

way. The two datasets, one for each macaque monkey, comprise a neural recording collected

by means of a chronically implanted 10x10 multielectrode Utah array in the motor cortex sam-

pled at 30 kHz, and behavioral data. We downsampled the neural recordings by a factor of 3

in this study. The behavioral data consists of the force applied to the cuboid handle, recorded

by means of four force-sensitive sensors, and the handle displacement. The behavioral data is

sampled at 1 kHz.

Monkey L was born on March 15, 2004. She started training in 2008, the Utah array was surgi-

cally implanted on September 15, 2010. The dataset was recorded on December 10, 2010. The

Utah array bundle was cut on June 23, 2011. Monkey L was still alive in 2017. The recording

is 11 minutes and 49 seconds long, the session took one hour and twenty-eight minutes. It

contains 204 trials, of which 135 were successfully completed.

Monkey N was born on May 15, 2008. She started training in 2012, the Utah array was surgi-

cally implanted on May 22, 2014. The dataset was recorded on March 3, 2014. The Utah array

bundle was damaged at the end of February 2015, then removed. Monkey L was also still alive

in 2017. The recording is 16 minutes and 43 seconds long, the session took 51 minutes. It

contains 160 trials, of which 141 were successfully completed.

Figures 5.1 (a) (b) (c) and (d) show how the handle position was processed before being used

as the decoding variable during the training phase. The handle position, shown in Fig.5.1 (a),

was smoothed with a moving average filter of order 64 Fig.5.1 (b), then its first derivative was

computed to obtain the handle velocity Fig.5.1 (c). The first derivative was evaluated by sub-

tracting adjacent samples. The handle velocity was then smoothed by using a mean average

filter of order 16 Fig.5.1 (d) and used as a target variable for decoding. We chose the handle

velocity as a variable for decoding to compare our neural decoding system accuracy with the

extended analysis carried out in [93], where eight neural decoders and four neural signals were
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tested on the same public neural dataset [8] using the handle velocity.

Figure 5.1: Target variable processing steps before training. (a) Raw handle position measure-

ment. (b) Smoothed handle position, 60th-order moving average filter. (c) Handle velocity. (d)

Smoothed handle velocity, 16th-order moving average filter. (e) Integer handle velocity in the

range [-64,+63]. (f) Target spike train, downsampled by a factor of 10 for display purposes.

5.3.2 Spike detection

Spike detection is a key component of every neural interface based on spiking signals. Depend-

ing on the spike detection outcomes are based all the following steps of the signal processing

chain. Therefore, poor accuracy during the spike detection phase would weaken the reliability

of the whole chain. Differently from the neural decoder presented in this chapter, which op-

erates with 1 kHz signals, the spike detector manages signals of an order of magnitude higher

frequency, i.e. 10 kHz. Moreover, scaling towards an elevated number of channels, a com-

pulsory point that will enable wider coverage and fine-grain resolution of the neural tissue,

increases linearly the computational and memory requirements of the spike detection.

For all these reasons we chose to keep as limited as possible the computational and memory

usage per channel, aiming to contribute with a design well suited for scaling both in frequency

and in the number of channels. Relying on the extensive analysis carried out in Chapter 2, we

chose the following deployment for the spike detection processing chain:
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• Filter: 2nd order moving average difference filter;

• Spike emphasis: absolute value;

• Threshold: mean value;

• Time window: 0.82 ms;

• Refractory period: 1 ms;

Among the analyzed filters the 2nd-order moving average difference filter and both the 1st

and 2nd-order difference filters were the more appealing because of the low computational

and memory requirements. The choice went on the moving average difference filter because

presented a steeper roll-off than the 1st-order difference filter and a flatter in-band response

than the 2nd-order difference filter.

We did not observe any consistent accuracy improvement in using more sophisticated spike

emphasis methods than the absolute value of the signal. Moreover, it only requires computing

the 2’s complement of the samples and enables using a single threshold (instead of two). In

addition, it permits exploiting the mean value threshold, that we chose for this implementa-

tion, which is the least computationally expensive adaptive threshold estimation method.

We selected a time window of 0.82 ms for updating the threshold, since it appeared to be the

best window considering the analysis summarized by Table 2.6 (a).

Finally, to match the frequency of the target variable, which is 1 kHz, we used spike bins

computed over 1-ms windows as input of the spiking neural network, i.e. the spike count per

channel within 1 ms. In addition, by setting the refractory period of each channel to 1 ms, we

obtained the bins could exclusively be equal to zero or one.

5.3.3 Loihi Cuba neuron model

The basic processing element of the spiking neural network is the Loihi CUrrent BAsed Leaky

Integrate and Fire (CUBA) Neuron, presented in [119]. The Loihi CUBA neuron extends the

standard CUBA neuron [120] by introducing an additional internal state variable. The Python

implementation of the neuron model is derived by the PyTorch package SLAYER (Spike LAYer

Error Reassignment) [118], then extended and embedded as SLAYER 2.0 in the LAVA software
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framework [121] used in this work. The Loihi Cuba Neuron requires two integrations, such as

the Izhikevich neuron, however, its structure is simpler. The state variables update equations

are identical, the spiking activity, convolved with the synaptic weights, feeds the first integra-

tor, whose output feeds the second one. The second state variable is used as a metric for the

output spike generation. The model equations follow:

S(t) =
∑

ws(t− 1)

i(t) = αi(t− 1) + S(t)

v(t) = βv(t− 1) + i(t)

s(t) = v(t) > θ

v(t) = v(t)(1− s(t))

(5.1)

Where w is the set of synaptic weights of the neuron, s is the input spike vector, and S(t)

is the convolution between spikes and weights. S(t) is the Loihi CUBA neuron input. i(t)

is the current state variable, which is computed by multiplying its previous value by a decay

factor α and adding the convolved spiking activity to it. v(t) is the voltage state variable, its

equation maintains the same structure seen for i(t). Its previous value is multiplied by a decay

factor β and added to the current i(t). The neuron fires a spike when the value of v(t) exceeds

the threshold θ. When it happens, the value of v(t) is reset to zero.

5.3.4 Spiking neural network

Spiking neural networks in LAVA [121] can use convolutional, dense (or fully-connected),

recurrent layers, etc. Moreover, many types of neurons are supported as well. Aside from the

Loihi Cuba neuron discussed previously, Resonate & Fire Izhikevich model, Adaptive Leaky

Integrate and Fire model, and others, are available.

The spiking neural network used in this work is made of two dense layers of 256 and 128 Loihi

Cuba neurons whose parameters are shown in Table 5.2.

We tried to find the simplest model that could compete by the accuracy performance point

of view with the other works in literature when tested on the selected dataset. We trained
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Threshold Current Decay Voltage Decay

0.1 1.0 0.1

Table 5.2: Loihi Cuba neuron parameters

our model using 70% of the trials, then we tested its accuracy on the remaining 30%. The

parameters used for training are shown in Table 5.3.

Units L1 Units L2 Learning rate Weight decay Epochs

256 128 0.001 1e-5 200

Table 5.3: Spiking neural network training parameters, from left to right: units in the first

layer L1, units in the second layer L2, learning rate, weight decay factor, number of epochs.

The memory required by the model, which uses weights of 15 bits, is reported per layer, and

in total, in Table5.4.

L1 L2 Total

45 kB 60 kB 105 kB

Table 5.4: Spiking neural network memory requirements, from left to right: first layer L1

memory, second layer L2 memory, total memory.

Supervised learning algorithms, when the object is a III-Generation neural network, provide

a parameter set that maps input spike trains to target output spike trains. In this case, the

input of the spiking neural network is the binned spiking activity over a window of 1 ms.

Being the refractory period per channel set at 1 ms, the binned activity can either be zero or

one, therefore it is directly used as the input of the spiking neural network without further

processing.

On the other hand, the desired output is a number, i.e. the target velocity. It is thus needed

a way to easily transform the output spikes into a number during the online neural activity

decoding, and on the contrary, a way to generate a target spike pattern, starting from the

target number, to train the network.

Our proposed solution is to attribute to every neuron of the output layer a weight that could

be either +1 or -1. Since in this case the positive and the negative maximum values of the

target velocity are similar, half of the output neurons contribute positively, whereas the other

half negatively. The target velocity is obtained by adding the fired spikes together at every
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new inference of the spiking neural network, taking into account if the spikes come from the

positive or the negative groups. For this purpose, the handle velocity was cast to integer, and

its dynamic has been constrained in the range [-64,+63] as shown in Fig.5.1 (e), i.e. the output

is represented with a resolution of 7 bits. The firing pattern is established so that, depending

on the value of the target variable at each time step, the same number of units fire a spike.

Fig.5.1 (f) shows the target raster plot used to train the SNN, downsampled by a x10 factor for

display purposes.

5.3.5 Spike sparsity

Spiking signals are characterized by being either active or inactive. This characteristic makes

spiking neural networks event-driven systems. Figure 5.2 shows the timing raster plot of a

random entry of the dataset, where on the x-axis is represented the time, and on the y-axis

the detected spikes per channel. The red line is the sum of spikes across all the channels. It is

observable how the number of concurrent spikes is limited, and how the spikes are concen-

trated before the handle velocity variation, shown in blue in Figure 5.2. The sparse activation

condition is valid for both the output of the spike detection pipeline (which is the input of the

spiking neural network), as well as for the connections among the layers of the spiking neural

network, and its outputs. Taking advantage of the nature of these networks allows avoiding

pointless waste of power, such as reading the entire weight memory when there is not any

spiking activity on the input of the layers, or hardly any.

The layers of the spiking neural network considered in this chapter are fully-connected. There-

fore, all the neurons of the same layer share the same set of inputs. That being the case, during

the computation of the synaptic current, the spike memory is read again and again, once per

each neuron of the layer. To avoid reading the spikes (and the weights) of the inactive inputs

of the neural network layer, and to avoid computing the sums as well, is introduced a stack

that stores the pointers to the active set of inputs (spikes and weights are stored in groups of

four). The stack depth is equal to a quarter of the number of inputs of the layer (thus, 32 in

the first layer and 64 in the second layer), whereas its word width is the base two logarithm

of its depth (5 bits in the first layer and 6 bits in the second layer). At each synaptic current

computation are read only the entries pointed by the stack, instead of reading the entire set of
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Figure 5.2: Measured spiking activity at the input of the spiking neural network

spikes and synaptic weights. This simple architectural expedient permits avoiding thousands

of memory reads and sums per second as shown later in Section 5.5.2, as well as reducing the

synaptic currents computations time by as many clock cycles.

5.4 System architecture

The hardware architecture, depicted in Fig.5.3, comprises the ARM-based Processing System

(PS) embedded in the Zynq-family devices, two main hardware modules mapped in the pro-

grammable logic: a) a spike detector and b) a spiking neural network, and three AXI interfaces,

used to 1) stream the broadband recording samples in the PL; 2) output the decoder inference;

3) import the synaptic weights in the PL. The spike detector is composed of three modules,

used to filter the raw samples, detect the spikes, and compute the binned spiking activity, i.e.

the number of spikes detected per millisecond on each channel. As regards as the spiking neu-

ral network, it consists of two dense layers cascaded with a spike-to-number converter, which

translates the output spike train of the last layer into a number, i.e. the decoded target variable.
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Moreover, a multi-electrode array of 128 channels is considered as input of the system, even

though the datasets used to assess the accuracy use 96 channels.

Figure 5.3: Neural interface architecture: the core of the neural decoder is composed of two

cascaded modules: a spike detector and a spiking neural network. The former extracts the

binned spiking activity directly from the raw neural signal by means of a Moving Average

Difference (MAD) filter, a spike detector, and a binning module. The spiking neural network is

composed of two dense layers, a weight memory, and a spike-to-number converter, that trans-

lates the output spike train generated by the second layer into the target decoding variable.

The spike detector and the spiking neural network are connected to the Processing System

(PS) through three AXI interfaces: 1) an AXI-stream interface is used to stream the neural

samples in the programmable logic; 2) an AXI-lite interface is controlled from the PS to set up

the neural decoder; 3) an AXI-lite interface is used to output the decoding results.

5.4.1 Spike detection and spike binning

The spike detection and the spike binning tasks are demanded to five pipelined modules that

process the input channels in a time-multiplexed fashion. The broadband neural signal is first

filtered and emphasized. Then, the threshold is compared with the signal to verify the spike

condition and updated. Finally, the spike binning module counts the detected spikes. A valid

spike bin is forwarded to output every millisecond. The whole signal processing pipeline is

shown in Fig.5.4.
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Figure 5.4: The input broadband recording (1) is processed by five pipelined modules. The

Moving Average Difference (MAD) filter (2) removes the low-frequency components; the sig-

nal is rectified by the spike emphasis module (3); the mean of the rectified signal is used as

a basis to compute the threshold (4) to detect the spikes (5); one-millisecond spike bins are

forwarded in output (6).
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Mean removing filter

The low-frequency components of the neural signals are removed by subtracting from every

incoming sample its moving mean value. The mean value is obtained by right shifting by one

position the sum of 2 previous samples. The spike detector processes 128 channels in a time-

multiplexed fashion, therefore, it internally contains 256 registers (to store two samples per

channel). At every incoming sample, the registers shift by one position, the incoming sample

is stored, and the oldest sample is lost. The output of the registers in positions 128 and 256

are added and right-shifted by one position to compute the signal mean. The mean value is

subtracted from the incoming sample to obtain a high-pass behavior. The architecture of the

2nd-order MAD filter is shown on the left of Fig.5.5.

Figure 5.5: Second-order Moving Average Difference (MAD) filter

Spike emphasis

The filtered signal is rectified by means of a 2-ways multiplexer that selects either the sample

or its 2’s complement depending on the value of its sign bit. The architecture of the spike

emphasis module is shown on the right of Fig.5.6.

Figure 5.6: Absolute-value-based spike emphasis module
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Spike threshold

The spike detection threshold is equal to four times the mean value of the rectified signal

computed during the past 0.82 ms (8,192 samples). The thresholds are stored in a BRAM-based

memory with one entry of 10 bits per channel, i.e. 128 entries. The BRAM memory is read

when a new sample needs to be compared with the channel’s threshold. Concurrently, when

a new sample incomes, the future threshold of the respective channel from which the sample

arrives is updated. The future thresholds are stored in an additional BRAM-based memory of

128 entries of 23 bits (10 bits is the sample size + 13 bits due to the accumulation over 8,192

samples). The future threshold is read, added to the new incoming sample, and stored back

in the same memory location. The samples are accumulated during the 0.82 ms time window,

then they are right-shifted by thirteen positions to update the value stored in the threshold

memory, that will not change for the next 0.82 ms. After updating the threshold memory, the

corresponding new threshold memory location is reset. A thirteen bits counter is used to keep

track of time. The architecture of the threshold module is shown in Fig.5.7.

Figure 5.7: Mean-value-based spike threshold module

125



Spike detector

The spike detector compares the emphasized sample value with the respective channel thresh-

old. In case the sample value exceeds the threshold and the last spike on the same channel

happened more than 1 ms before, the spike is propagated to the output of the module. The

spike detector module implements a refractory period rule that limits the spike rate to one

spike per ms per channel.

A BRAM memory is used to keep track of the refractory period of each channel:

• When a new sample arrives, the refractory period memory is read, if the value is zero

and the sample exceeds the threshold value the spike is forwarded to the output and the

refractory memory entry is updated to one;

• When a new sample arrives, if the refractory period associated is greater than zero,

its refractory period counter is incremented by one, and the spike (if present) is not

propagated. The refractory period is incremented until it reset itself by overflow, after

8,192 sampling cycles.

The architecture of the detection module is shown in Fig.5.8.

Figure 5.8: Spike detection module
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Spike binning

The spike binning module accumulates the spikes of every channel along a time window of 1

ms. However, because of the refractory period rules implemented by the spike detector, which

limits the number of spikes per channel to one per millisecond, the output of the spike binning

module can either be one or zero. Therefore, the bin memory is a single-bit memory with 128

entries, implemented using a 128-bit register.

When a spike is fired, the spike binning module updates the flip-flop associated with the firing

channel. The module embeds a counter that keeps track of the time steps elapsed, incremented

every time the whole set of channels is processed. At the tenth iteration, the accumulated

spikes can be forwarded to the output, and the bin values reset. To stream out the bins is used

a counter.

Since the spiking neural network processes four inputs at a time, a 4-bit shift register operates

the serial to parallel conversion on the output stream of the spike binning module. Once four

bins are collected, the bin set is stored in the spike memory of the first neural network’s layer.

Moreover, an additional flip flop and an OR gate are used to implement an orator, a structure

that evaluates if any of the four bins is active, a sequential structure useful in the case the

parallelism of the neural network is increased from 4 to 8, 16 or more. The or-reduced value

of the bins is called active set in the design and it is used for low-power purposes during

the spiking neural network inferences. The architecture of the spike binning module and the

architecture of the serial to parallel converter are shown in Fig.5.9.

Figure 5.9: Spike binning module and serial to parallel (S2P) converter
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5.4.2 Spiking neural network decoder

The spike decoder is composed of a spiking neural network and a spike-to-number converter.

The spiking neural network contains two layers of 128 and 256 Loihi Cuba neurons. Each

layer processes its neurons one by one. Every neuron state update requires computing the

synaptic current, i.e. accumulating the weights of its active synapses, then the neuron can be

integrated twice and its spike propagated to the output. Fig.5.10 shows the architecture of the

layer module. Each layer module contains a weight and a spike memory, where respectively

the spikes and the synaptic weights are stored in groups of four. Moreover, the spike memory is

implemented as a double buffer to avoid stalling the pipeline. The synaptic current is computed

by convolving spikes and weights; a stack is used to store the addresses of the active sets of

synapses to avoid reading a row of four weights where no one is contributing to the synaptic

current value. Once the synaptic current is ready, the corresponding Loihi neuron is integrated

by using two integrator modules. The neurons’ state variables are stored in two FIFOs with an

entry per neuron that feedback their values to the inputs of the two integrators. The second

integrator generates the output spike. The spikes are forwarded in output in groups of four

to respect the spike memory structure of the next layer. The serial to parallel conversion is

implemented by using four serial-cascaded flip-flops as in the spike binning module, the active

set signal is computed as well and it is used to initialize the stack of the following layer.

Synaptic current

The synaptic current is the convolution between the input spike array of a neuron and its set

of synaptic weights. Its computation entails adding the synaptic weights of the active synaptic

interconnections.

The synaptic weights are stored in a BRAM-based memory, each entry of the weight memory

is composed of four weights. The spike memory has the same structure as the weight memory,

therefore, with only one read operation four spikes and four weights are read. Weights and

spikes are read sequentially, and the logic-and between each weight and its corresponding

spike is computed, so that if the spike is at logic-1 the weight value is preserved, otherwise is

set to zero.
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Figure 5.10: Spiking neural network’s layer architecture: the layer computes the synaptic cur-

rent neuron-by-neuron, the input spikes and the synaptic weights are read from the spike

memory and the weight memory. The spike memory is written from the previous layer (if

present) or by the spike detector, the weight memory is initialized at system start-up by the

processing system, whereas the synaptic current computation is demanded to the synaptic

current module. The spike and weight memories indexing are performed through a stack that

stores the indexes of the active inputs only, by doing so, all the inactive set of inputs are skipped

during the synaptic current computation phase. The stack is initialized by relying on the active

set signal generated at the previous processing stage, i.e. either in the previous neural network

layer or during the spike detection step. Once the current is ready, the Loihi Cuba Neuron is

integrated by means of two identical cascaded integrator modules. The neuron internal state

variables are stored in two FIFO memories connected in feedback between the integrators’

input and output. The serial output spikes are converted in a 4-bit parallel signal, in addition,

it is generated an or-reduced signal called active set which states if any of the spikes of the

4-bit group is active.
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A single DSP used in Single-Instruction Multiple-Data (SIMD) mode can be used to compute

two additions, the resulting partial sums are then accumulated by means of two additional

DSPs. The accumulation iterates until the synaptic current is computed adding four weights

at every cycle. The hardware architecture of the module is shown in Figure 5.11

Figure 5.11: Synaptic current computation module

Loihi Cuba neuron implementation

The Loihi Cuba Neuron is constituted by two almost identical cascaded integrators that update

the state variables by multiplying their previous values by a decaying factor and adding an

external input, as described by equations 5.1. The only difference is that the second integrator

verifies if its output exceeds the spike threshold, resets the state variable if it is the case, and

outputs the spike. All considered, a single hardware module was implemented, with an enable

to activate or deactivate the spike evaluation.

The two integrators are cascade-connected, the external input of the Current integrator is

the convolved spiking activity, and its output feeds the Voltage integrator. A FIFO is used

to feedback the old integrated values. The FIFO is BRAM-based and its depth is equal to the

number of neurons of the spiking neural network layer.

The Loihi Cuba model of the Lava library [121] represents the numbers in fixed-point; the

state variables, as well as the synaptic weights, utilize 12 fractional bits, whereas the integer

bits vary depending on the number of inputs of the neuron. This hardware implementation

respects the data width used in the library [121], therefore no accuracy degradation is expected.

The multiplication between the state variable and the decay factor is mapped on a DSP. The
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state variable is the current when the integrator module is used to solve the first integration,

or the voltage during the second integration. The multiplication output, having 24 fractional

bits, is right-shifted by 12 bits to be aligned with the external input before being added. The

external input can either be the synaptic current, in the case of the first integration, or the

current in the case of the second integration. When the spike evaluation is enabled, the output

of the adder is compared with the spike threshold, depending on the outcome a multiplexer

forwards either zero or the sum to the output. The output of the comparison is also the spike,

indeed. The hardware architecture of the module is shown in Figure 5.12.

Figure 5.12: Loihi cuba neuron model integrator module

Spike sparsity stack

The spike sparsity stack allows taking advantage of the spike sparsity property of neural signal.

The stack stores the addresses of the active spike sets by relying on the active set signal, which

is used as a write enable. When the synaptic current computation starts, the stack streams

out the addresses of the active spike sets. The address stream permits to retrieve spikes and

weights of the active sets of inputs, whereas the inactive ones are skipped. The address stream

is directly connected to the read address port of the spike memory. Meanwhile, to read the

weight memory, the address stream is concatenated to the neuron identifier.

The stack is a flip-flop-based memory, its depth is equal to a quarter of the number of inputs

of the layer where it is instantiated, whereas its word width is the base two logarithm of its

depth:

- Layer 1: 32 entries of 5 bits;
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- Layer 2: 64 entries of 6 bits.

To stream out the stack content are used two counters. The former counts the stack entries

during the writing phase; the latter is activated when the address stream starts, i.e. the sec-

ond counter is initialized with the number of valid entries stored in the former counter and

decremented until it reaches zero. The counter value drives the addresses to the output port

through a multiplexer. The hardware architecture of the stack is shown in Figure 5.13.

Figure 5.13: Spike sparsity stack architecture

Spike2Number converter

The output of the last SNN’s layer requires being converted from a spike vector of 128 elements

to a number. The number obtained is the regression output.

The conversion is performed by counting the spikes fired from the last layer. The spike to

number conversion problem is thus a population counting problem. Since the layer outputs

the spikes four at a time, the spike-to-number converter can be implemented as a variable-step

counter, that at every new set of spikes increments its value depending on their sum.

Finally, since half of the neurons contribute positively, and the second half negatively, the

counter increments its value when it receives the spikes of the first group and decrements it

when it receives the spikes of the second group. The hardware architecture of the spike-to-

number converter is shown in Figure 5.14.
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Figure 5.14: Spike to number converter architecture

5.5 Results

The result section comprises two subsections; the former presents the decoding accuracy

reached by the model on the benchmark dataset, and the latter shows the resource require-

ments of the hardware implementation.

5.5.1 Accuracy

Two spiking neural network models were trained on the benchmark dataset. The first model

was a single SNN dense layer of 128 units and 96 inputs. As tempting as this model was,

because of its low computational and memory requirements, it performed poorly compared

to the State of the Art, therefore we tried training a more complex model constituted by two

dense layers. The former layer is made of 256 units and the latter of 128 units. Table 5.5 shows

the parameter of the two spiking neural networks: number of layers, number of units, number

of parameters, memory requirements and the achieved decoding accuracy measured with the

Pearson correlation coefficient described by Eq.5.2 for the Dataset N and L [8].

CC(A,B) =
1

N − 1

N∑
i=1

Ai − µA

σA

Bi − µB

σB

(5.2)
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Where CC is the Pearson correlation coefficient of two random variables A and B, µA and σA

are the mean and standard deviation of A, µB and σB are the mean and standard deviation of

B. The two-layer model outperformed the single-layer model on both the used datasets, how-

Layers Units Parameters Memory CC N [8] CC L [8]

1 128 12,288 22.5 kB 0.79 0.66

2 384 57,344 105 kB 0.83 0.78

Table 5.5: SNN models decoding accuracy

ever, it requires instantiating three times more units, 4.7 times more parameters, and thus, 4.7

times more memory.

The velocity inferred by the 2-layer spiking neural network model and the target handle ve-

locity are plotted in Figure 5.15 for a random entry of the test set and shows graphically how

the spike decoder is capable of tracking the target variable inferring its value from the neural

recording. On the background of Figure 5.15 is shown a temporal raster plot, where on the x-

axis is represented the time in milliseconds, and on the y-axis the spiking neural network’ last

layer neurons. The raster plot’s points represent the output spike trains of the neural network.

The output velocity corresponds to the sum of the spikes at each point in time.

Figure 5.15: Spike decoder output behavior in the test set
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5.5.2 Hardware report

This subsection analyzes the resource requirements of the presented neural interface and

shows the benefit of designing a spike sparsity-aware architecture, expressing the savings

as the number of saved additions.

Utilization

The neural decoder implementation can handle up to 128 input channels. The choice went on

128 since it is the closest power of two bigger than 96, that is the channels of the Utah array

used for recording the benchmark dataset. The architecture can be synthesized also for a lower

or a higher number of channels. The design is hosted on a Zybo, a low-cost development board

for Xilinx Zynq All-Programmable SoCs and is clocked at 2 MHz. The resource requirements

of the digital system are shown in Table 5.6. The first row indicates the overall resource usage

by the system in terms of spike detector, spiking neural network, axi interfaces, and DMA.

The second and third rows refer to the individual requirements of the spike detector and the

spiking neural network.

The overall required LUTs are about 2.5 k, of which 160 are instanced in the spike detector,

and 756 in the SNN. The registers and the LUTRAMs are about 3.4 k and 209 respectively, of

which 251 and 80 serve the spike detector, and about 1 k and 30 the decoder. Most of the spike

detector LUTRAMs (72) are employed for storing the previous samples inside the filter, being

each SRLC32E LUTRAM primitive a 32-bit shift register: 32 bits x 80 primitives = 2,560 bits.

Note that 10 bits sample x 128 channels x 2 taps = 2,560 bits as well. By using more demanding

filters, such as a 4th-order IIR filter, the number of LUTRAM primitives necessary to imple-

ment the shift register would rise to about 10 bits sample x 128 channels x 8 taps / 32 bits per

SRLC32E primitive = 320. The chosen filter permits saving 75% of the LUTRAMs compared to

widely used 4th-order IIR filters.

The 14 DSPs instantiated are entirely used to speed up the SNN module. Being the SNN com-

posed of 2 layers, each layer takes advantage of the computational power of 7 DSPs. Three

DSPs are used to accumulate the synaptic weights during the synaptic current computation,

the remaining 4 are used for the double integration of the Loihi neuron, 2 per each integrator.

135



As regards the filter, it does not require any DSP, since the samples are not multiplied by any

parameter. In a 4th-order IIR filter, to maintain the same throughput of one output sample per

clock cycle, 9 multiplications should be computed in parallel, requiring 9 DSPs.

The BRAM requirement is 34.5 tiles. Considering the weights memories are 128 inputs x 256

units x 15 bits for the first layer and 256 inputs x 128 units x 15 bits for the second layer, the net

memory required by the neural network is 960 kb. Being the BRAMs 36 kb each, ceil(960/36)

= 27 BRAMs should be instanced. However, because of the suboptimal word size of 60 bits (4

weights), the number rises to 32 BRAMs. The spike detector requires a single BRAM, half of

which it is used by the detector module to store the 128 refractory periods, whereas the other

half is used by the threshold module to store the 128 thresholds. The last 1.5 BRAM is used by

the AXI DMA, instanced to provide the broadband recording stream during the test phase.

Entity LUT REG LUTRAM DSP BRAM

System 2,458 3,365 209 14 34.5

Detection 160 251 80 0 1

SNN 756 1,013 30 14 32

Table 5.6: Hardware utilization: the first row shows the overall resource utilization of the

system; the second and third rows show respectively the resource usage of the spike detection

module and the spiking neural network.

Spike sparsity savings

Spike sparsity has been exploited by instancing on each layer of the spiking neural network a

stack to store the addresses pointing to the active input spike sets. The effect of this architec-

tural choice has been assessed by counting the number of saved additions during the synaptic

current computation using real test data [8]. The savings are reported in Tables 5.7 and 5.8,

respectively for dataset N (16 minutes and 43 seconds long) and L (11 minutes and 49 seconds

long) [8]. The saving is reported for each layer and for both.

On dataset N the spike sparsity aware architecture saves 95% of the sums in the first layer,

and 86% in the second, for a total saving of 88%. The additions saved on dataset L are 93% in

the first layer, and 91% in the second, for a total saving of 91%, even more than for dataset N.

Must be considered that the saved sums not only reduce the switching power of the digital

system, but also the time necessary for evaluating the decoder output. Considering the clock

136



L1 L2 Total

Done 6.14e6 (5 %) 4.54e7 (14 %) 5.15e7 (12 %)

Saved 1.14e8 (95 %) 2.76e8 (86 %) 3.90e8 (88 %)

Total 1.20e8 3.21e8 4.41e8

Table 5.7: Operations savings for dataset N [8]

L1 L2 Total

Done 5.94e6 (7 %) 2.11e7 (9 %) 2.70e7 (9 %)

Saved 7.92e7 (93 %) 2.06e8 (91 %) 2.85e8 (91 %)

Total 8.51e7 2.27e8 3.12e8

Table 5.8: Operations savings for dataset L [8]

period of the system is set for the worst case scenario, where all the synapses are active, but on

average less than the 12% are, the spiking neural network on average terminates in the 12% of

the time, and could be put in sleep mode for the remaining 88% of the time, saving also static

power, or on the contrary it could be used to process larger sensor arrays or more complex

neural networks. The computational and power savings are well balanced considering the

resource requirements of the stacks reported in Table 5.9. Note that, the stacks are the only

elements that permit the design to be aware of spike sparsity.

LUT REG LUTRAM

L1 75 171 0

L2 139 397 0

TOT 214 568 0

Table 5.9: Stacks’ resources requirements

5.6 Comparison with the State of the Art

As far as we know, the presented neural interface is the first work that directly uses intracor-

tical recorded spikes jointly to a spiking neural network for decoding the neural signal, either

implemented on FPGA or ASIC. Table 5.10 reports software decoders tested on the same bench-

mark dataset used in this work [8]. Table 5.10 shows the type of decoder used in each study,

the number of layers and units, the number of parameters, and the total required memory

when available. Since the dataset comprises two different recordings, the accuracy, measured
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in terms of correlation (CC), found on the monkey N test set is shown in the last but one col-

umn, whereas the accuracy measured on the test set of monkey L is shown in the last column.

On lines 2, 3, and 4 is shown the accuracy of three deep learning decoders [93], a Quasi-

Work Type Layers Units Parameters Memory CC N [8] CC L [8]

This work SNN 2 384 0.057M 105 kB 0.83 0.78

Ahmadi [93] QRNN 1 400 - 0.84 0.73

Ahmadi [93] GRU 1 200 - - 0.78

Ahmadi [93] LSTM 1 150 - 0.87 -

Yang [122] RNN 2 128 0.42M 1.6 MB* 0.91 -

Yang [122] GRU 2 128 1.19M 4.5 MB* 0.89 -

Yang [122] LSTM 2 256 1.56M 5.9 MB* 0.91 -

* Deduced considering 32-bit parameters

Table 5.10: State of the art neural decoders comparison

Recurrent Neural Network (QRNN), a Gated Recurrent Unit (GRU), and a Long Short-Term

Memory (LSTM). The best decoder found in [93] was a QRNN of 400 units, that performed

similarly to the proposed model. On dataset N their decoder achieved 0.84 CC, whereas our

spiking neural network got 0.83. On dataset L, the SNN outperformed the QRNN with a CC

of 0.78 compared to the correlation of 0.73 found by the QRNN. The best correlation found for

dataset L in [93] is the one of the GRU model, which tied to the SNN; in the case of dataset N,

the highest correlation was obtained using an LSTM model, which achieved 0.87. As regards

the correlation obtained on dataset N for the GRU model, and on dataset L for the LSTM model,

they were not available, but it can be assumed they were lower than the result of the QRNN,

since the QRNN is the best decoder found in their study overall.

Lines 5, 6, and 7 of Table 5.10 show the results obtained from other three deep learning de-

coders on dataset N only. In [122] an RNN, a GRU and an LSTM were implemented using the

PyTorch library. The decoders achieved outstanding correlation results of 0.91, 0.89, and 0.91

respectively. In [122] was shown the number of parameters utilized for each model, making

possible a memory requirements comparison with the SNN. The RNN, which is the smallest

model of the three, makes use of 0.42 million parameters, about 7.4 times more than the SNN

model used in this chapter. The GRU model requires using 20.9 more parameters than the SNN,

the LSTM necessitates 27.4 more parameters than the SNN. Moreover, it is possible to assume

each parameter is a 32-bit floating point number, as commonly is in the PyTorch library, to
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infer the memory usage of the models in [122]. They respectively require 1.6, 4.5, and 5.9 MB,

whereas the SNN occupies only 105 kB. Therefore, the memory requirements for using the

SNN are respectively 6.4%, 2.3 %, and 1.7% of the ones required by the models in [122].

5.7 Conclusion

We have presented a resource-power efficient intracortical neural interface system embedding

a multiplier-less spike detection pipeline and a spike-sparsity-aware spiking neural network

decoder. The spike detector is equipped with filter, dynamic threshold updates, refractory

period spike burst limitation, and spike binning features and ensures reliable spike detection

by only employing five additions per channel and zero multiplications. The spiking neural

network model, used to decode the neural signal, takes advantage of the spike sparsity feature

of intracortical recordings, by dynamically indexing the active synaptic weights during the

computation of the synaptic currents, avoiding waste of dynamic power and accelerating the

layers’ inference. The effectiveness of the method was proved on two datasets, where the 88%

and the 91% of the sums during the computation of the synaptic currents were saved, at the

expense of 568 REGs and 214 LUTs.

Further improvements of this work are possible in several directions. It would be interesting

to verify the accuracy of spiking neural network models on more datasets, their low-power

characteristic makes them intrinsically attractive, especially in a field where the power budget

is so constrained, as for neural interfaces. From the resource requirements point of view would

be appealing to study the effect given by a reduction of the model’s weight size on the decoding

accuracy.
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Chapter 6

Conclusions

The Thesis focused on providing a road map for next generation neural interface design based

on available multielectrode arrays and high-density multielectrode arrays embedding thou-

sands of recording sites. In particular, it provided an extensive exploration of spike detection

algorithms where both the accuracy and computational complexity of the methods were ana-

lyzed, respectively in Sections 2.2 and 2.3, taking into consideration all the steps that make up

the signal processing chain, and suggesting a multiplier-less detection pipeline, embedding a

moving average difference filtering stage, an absolute value based spike emphasis algorithm, a

dynamic mean value threshold update, and a refractory period control, that achieved compa-

rable results with the State of the Art when tested on synthetic datasets, and when embedded

in a neural activity decoder and tested on a delayed reach-to-grasp neural decoding task.

Moreover, in Chapter 3 was presented a spike sorting system hosted by a Xilinx All-Programmable

System-On-Chip device, capable of sorting online the neural activity of about 5,500 recording

sites with a latency of 2.3 ms, using the reconfigurable blocks, along with a new online method

for minimizing poor spike set choice during the evaluation of the templates by exploiting the

ARM-based processing system.

Furthermore, in Chapter 4, with the idea of enabling bio-realistic real-time emulation of spik-

ing neural networks with arbitrarily interconnected neurons, was proposed a fully-connected

spiking neural network of Izhikevich neurons deployed on a Xilinx All-Programmable System-

On-Chip device and a new method to exploit the physiological spike propagation delay of

biological neurons to take advantage of the off-chip ram to store the synaptic weights with-
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out affecting real-time performances, achieving the possibility of emulating in real-time up to

3,098 neurons and 9.6e6 synaptic interconnections. Moreover, the Izhikevich model accuracy

was assessed at both the single cell and network level when the model is integrated using

fixed-point arithmetic for several data formats and a custom fixed-point point representation

built respecting the Xilinx DSP48E1 data format. The custom fixed-point data mapping permits

saving 39% of memory and achieves negligible behavioral differences with the floating-point

model.

Finally, the feasibility of exploiting spiking neural networks as neural signal decoders was

demonstrated in Chapter 5 by relying on the above-mentioned spike detection pipeline and a

spiking neural network composed of two fully connected layers of Loihi Cuba neurons. Biolog-

ical spikes are intrinsically in the proper format to be processed by SNNs, i.e. it is not necessary

to convert continuous signals into spiking signals, as happens when SNNs are used in conjunc-

tion with EMGs or ECoGs. The spike decoder was prototyped on a Xilinx All-Programmable

System-On-Chip and validated on a delayed reach-to-grasp task achieving comparable results

with State of the Art neural decoders tested on the same dataset. However, its number of pa-

rameters was significantly lower, entailing inferior memory requirements as well as reduced

computational complexity. In addition, when tested on real neural data the spiking neural net-

work saved about the 90% of the computations, taking advantage of spike sparsity, proofing

to be at the same time a better choice from the memory, power, and computational points of

view.

Although this research provides new instruments and platforms for analyzing high-channel-

count multielectrode arrays data and emulating spiking neural networks in real time, several

challenges still need to be faced. Nowadays is extremely problematic to get access to datasets

for neural decoding recorded using emerging CMOS MEAs and HDMEAs, whereas, new gen-

eration computing platforms would benefit from thoroughly testing over a multitude of neural

decoding experiments. Furthermore, being power consumption a key aspect in the field of neu-

ral interfaces, it is crucial to study low-power solutions for both ASIC implementations and

low-power FPGA prototyping to foster the development of viable solutions and truly enable

quality of life improvements for people affected from neurological diseases.
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Appendix A

Target device: All Programmable

System on Chip

All Programmable System on Chip (APSoC) devices are promising instruments for facing ex-

tremely parallel and computationally intensive real-time processing of neural data, real-time

low-latency emulation of large-scale brain models, and real-time low latency execution of ar-

tificial neural network models.

All Programmable System on Chip (APSoC) devices from The Zynq-7000 family embed on the

same chip a dual-core Cortex-A9 based processing system (PS) and a Xilinx Programmable

Logic (PL) [123]. The PS includes on-chip memory, single and double precision Vector Float-

ing Point Unit and a DDR3 external memory interface, enabling the execution of moderately

compute-intense processes, as well as providing support for housekeeping tasks. Moreover,

the PS is provided with a rich set of peripheral connectivity interfaces such as two 10/100/1000

tri-speed Ethernet MAC peripherals, two USB 2.0 peripherals, two CAN bus interfaces, two

SD/SDIO controllers, two full-duplex SPI ports, two high-speed UARTs, two master and slave

I2C interfaces, and four 32-bit banks General Purpose Inputs Outputs (GPIOs). Furthermore,

the PS is provided with ARM AMBA AXI based high-bandwidth connectivity links for com-

municate with the PL.

The Xilinx Programmable Logic comprises Configurable Logic Blocks (CLB) embedding Look-

Up Tables (LUT), flip-flops and cascadeable adders, 36 Kb Block RAMs, and Digital Signal

Processor (DSP) blocks. The number of processing and memory elements vary depending on
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the chosen device, however, the DSP blocks permit speeding up the most demanding portion

of the algorithm that requires hardware support, taking advantage of the hardwired multiply-

and-accumulate (MAC) blocks embedded in the DSPs; the look-up tables permit controlling

the data-flow and solving boolean conditions; the adaptability of the BRAM consents adjust-

ing the memory port widths, fostering the modularity of the design and permitting the re-use

of the architecture for several experiments addressing different MEA and HDMEA recording

systems.
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information based OSort for real-time spike sorting using FPGA”. In: IEEE Transactions

on Biomedical Engineering 68.1 (2020), pp. 99–108.

[49] Carlos Pedreira, Juan Martinez, Matias J Ison, and Rodrigo Quian Quiroga. “How many

neurons can we see with current spike sorting algorithms?” In: Journal of neuroscience

methods 211.1 (2012), pp. 58–65.

[50] Carl Gold, Darrell A Henze, Christof Koch, and Gyorgy Buzsaki. “On the origin of the

extracellular action potential waveform: a modeling study”. In: Journal of neurophysi-

ology 95.5 (2006), pp. 3113–3128.

152

https://doi.org/10.1109/JSSC.2013.2264616
https://doi.org/10.1109/TNSRE.2012.2211036
https://doi.org/10.1109/TNSRE.2016.2641499
https://doi.org/10.1109/TNSRE.2016.2641499


[51] Sara Zaher, Davide Lonardoni, Fabio Boi, Giovanni Pietro Seu, Gian Nicola Angotzi,

Paolo Meloni, and Luca Berdondini. “A Closed-Loop System Processing High-Density

Electrical Recordings and Visual Stimuli to Study Retinal Circuits Properties”. In: 2019

9th International IEEE/EMBS Conference on Neural Engineering (NER). 2019, pp. 652–

656. doi: 10.1109/NER.2019.8716913.

[52] “ynq-7000 SoC Technical Reference Manual”. In: 22 (), p. 658. url: https://www.

xilinx.com/support/documentation/userguides/ug585-Zynq-

7000-TRM.pdf.

[53] “K-means++ Clustering Code”. In: (). url: https : / / rosettacode . org /

wiki/K-means%5C%2B%5C%2Bclustering#C.

[54] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.

Tech. rep. Stanford, 2006.

[55] “Self-Organizing Map (SOM) Kohonen artificial neural network code”. In: ().url:https:

//github.com/albertnadal/Kohonen.
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