
Computers & Security 132 (2023) 103321

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Design, implementation, and automation of a risk management

approach for man-at-the-End software protection

Cataldo Basile

a , 1 , Bjorn De Sutter b , 1 , ∗, Daniele Canavese

a , Leonardo Regano

a , Bart Coppens b

a Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
b Computer Systems Lab, Ghent University, Technologiepark-Zwijnaarde 126, 9052, Gent, Belgium

a r t i c l e i n f o

Article history:

Received 5 May 2022

Revised 12 April 2023

Accepted 1 June 2023

Available online 16 June 2023

Keywords:

Software protection

Standardization

Risk framing

Risk assessment

Risk mitigation

a b s t r a c t

The last years have seen an increase in Man-at-the-End (MATE) attacks against software applications,

both in number and severity. However, software protection, which aims at mitigating MATE attacks, is

dominated by fuzzy concepts and security-through-obscurity. This paper presents a rationale for adopt-

ing and standardizing the protection of software as a risk management process according to the NIST

SP800-39 approach. We examine the relevant constructs, models, and methods needed for formalizing

and automating the activities in this process in the context of MATE software protection. We highlight

the open issues that the research community still has to address. We discuss the benefits that such an

approach can bring to all stakeholders. In addition, we present a Proof of Concept (PoC) decision support

system that instantiates many of the discussed construct, models, and methods and automates many ac-

tivities in the risk analysis methodology for the protection of software. Despite being a prototype, the

PoC’s validation with industry experts indicated that several aspects of the proposed risk management

process can already be formalized and automated with our existing toolbox and that it can actually assist

decision making in industrially relevant settings.

© 2023 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

w

o

i

s

i

g

i

c

(

g

i

(

p

m

l

l

i

s

m

t

l

v

e

g

h

0

. Introduction

In the Man-At-The-End (MATE) attack model, attackers have

hite-box access to the software. This means they have full control

ver the systems on which they identify successful attack vectors

n their lab, for which they use all kinds of attacker tools such as

imulators, debuggers, disassemblers, decompilers, etc. Their goal

s to reverse engineer the software (e.g., to steal valuable secret al-

orithms or embedded cryptographic keys or to find vulnerabilities

n the code), to tamper with the software (e.g., to bypass license

hecks or to cheat in games), or to execute it in unauthorized ways

e.g., run multiple copies in parallel). In general, MATE attacks tar-

et software to violate the security requirements of assets present

n that software
∗ Corresponding author.

E-mail addresses: cataldo.basile@polito.it (C. Basile), bjorn.desutter@ugent.be

(B. De Sutter), daniele.cavanese@polito.it (D. Canavese), leonardo.regano@polito.it

L. Regano), bart.coppens@ugent.be (B. Coppens) .
1 Cataldo Basile and Bjorn De Sutter share dual first authorship.

p

L

t

w

u

M

ttps://doi.org/10.1016/j.cose.2023.103321

167-4048/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article u
MATE Software Protection (SP) then refers to protections de-

loyed within that software to mitigate MATE attacks. 2 SP is hence

uch narrower than the broad umbrella of software security. The

atter also includes scenarios in which software is exploited to vio-

ate security requirements of other system components , e.g., infiltrat-

ng networks or escalating privileges. In such scenarios, attackers

tart with limited capabilities, such as having only unprivileged, re-

ote access to a computer via a web server interface.

Because MATE attackers have full control over the systems in

heir labs, SP needs to defend assets in the software without re-

ying on external services and capability restrictions that are pro-

ided by the platform on which the software normally runs. For

xample, whereas iOS and Android restrict the end user’s debug-

ing and app monitoring capabilities, MATE attackers have root

rivileges on their lab’s workstations that can run customized

inux versions, custom debuggers, and other reverse engineering

ools. MATE defenders can hence only rely on protections deployed

ithin the protected software itself and possibly on remote servers

nder control of the defenders. Advances in cryptography have
2 For the sake of brevity, we will omit the MATE and simply use SP to mean

ATE SP in the remainder of this paper.

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2023.103321
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103321&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:cataldo.basile@polito.it
mailto:bjorn.desutter@ugent.be
mailto:daniele.cavanese@polito.it
mailto:leonardo.regano@polito.it
mailto:bart.coppens@ugent.be
https://doi.org/10.1016/j.cose.2023.103321
http://creativecommons.org/licenses/by/4.0/

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

y

f

o

T

s

b

d

s

t

i

c

2

O

s

m

d

v

l

t

o

a

s

I

w

c

S

G

t

w

p

c

n

f

a

a

f

D

fi

a

a

i

t

i

p

p

a

s

p

a

w

h

t

d

h

R

w

S

d

e

c

a

n

s

r

t

s

w

a

t

t

a

s

v

p

m

a

S

r

a

s

t

t

p

c

r

r

i

p

m

t

E

a

i

t

f

s

w

p

a

D

r

s

v

t

h

m

s

S

2

ielded techniques that can provide strong security guarantees

rom within an application itself, but they also introduce orders

f magnitude performance overhead (Horváth and Buttyán, 2020).

hey are hence rarely practical today. Then again, practical SP is

till dominated by fuzzy concepts and techniques (Nagra and Coll-

erg, 2009). SPs such as remote attestation, obfuscation, and anti-

ebugging do not aim to mitigate MATE attacks completely. In-

tead, they only aim to delay attacks and to put off potential at-

ackers by increasing the expected cost of attacks and by decreas-

ng the attackers’ expected Return In Investment (ROI).

As observed during a recent Dagstuhl seminar on SP De-

ision Support and Evaluation Methodologies (De Sutter et al.,

019), the SP field is facing severe challenges: Security-through-

bscurity (StO) is omnipresent in the industry, SP tools and con-

ultancy are expensive and opaque, there is no generally accepted

ethod for evaluating SPs and SP tools. Moreover, SP tools are not

eployed sufficiently (Alliance, 2018; Berlato and Ceccato, 2020;

an der Ende et al., 2018; Knight, April 2019), and expertise is

argely missing in software vendors to deploy (third-party) SP

ools (Gartner Inc., 2020; Irdeto, 2020; Mandiant, 2020). More-

ver, we lack standardization. The National Institute of Standards

nd Technology (NIST) SP800-39 IT systems risk management

tandard (Joint Task Force Transformation Initiative, 2011) or the

SO27k framework for information risk management (ISO, 2018),

hich are deployed consistently in practice to secure corporate

omputer networks, have no counterpart or instance in the field of

P. Neither do we have concrete technical guidelines to implement

eneral Data Protection Regulation (GDPR) compliance in applica-

ions.We can summarize the status of the SP domain as an industry

ith information system business needs involving so-called wicked

roblems (Hevner et al., 2004). The foundations and methodologies

urrently available in the SP knowledge base have not met those

eeds.

To plug gaps in this knowledge base, most existing SP research

ocuses on piece-wise, bottom-up extensions to its foundations

nd methodologies by presenting ever more novel SP artifacts and

ttack artifacts in an SP arms race. In that regard, existing of-

ensive and defensive research fits into the information systems

esign-Science Research (DSR) paradigm. Hevner et al. (2004) de-

ne this paradigm as research seeking to “extend the bound-

ries of human and organizational capabilities by creating new

nd innovative artifacts,” and “create innovations that define the

deas, practices, technical capabilities, and products through which

he analysis, design, implementation, management, and use of

nformation systems can be effectively and efficiently accom-

lished” (Hevner et al., 2004).

However, to overcome the aforementioned shortcomings and to

ave the road towards a standardized risk management approach

nd automated decision support for SP, we are of the opinion that

uch bottom-up DSR does not suffice. Instead it needs to be com-

lemented with holistic, top-down DSR in which we study what

n end-to-end SP risk management approach has to cover and

hat parts can and should ideally be automated. Our own research

ence includes both the bottom-up and the top-down approach in

he search for answers to the following research questions (RQs):

• RQ1 : To what extent can automated decision support tools be

useful for experts and/or non-experts by assisting them with

the deployment of SPs and the use of SP tools?
• RQ2 : To adopt a standardized risk management approach in

the domain of SP, which constructs, models, and methods does

the adopted approach need to entail, and which ones thereof

should ideally be automated?
• RQ3 : Which parts of such an approach can already be auto-

mated using decision support tools that instantiate the iden-
tified constructs, models, and methods? H

2
RQ1 is formulated rather broadly, as being useful covers many

ifferent aspects such as usability, efficiency, correctness, compre-

ensibility, and acceptability by the users. Later in the paper this

Q will be refined according to those aspects. For answering RQ1,

e developed a Proof of Concept (PoC) decision support tool for

P bottom-up, based on concrete requirements and needs from in-

ustrial partners of a European research project. Towards RQ2, we

xplored top-down how a standardized risk management approach

an benefit the domain of SP. With the birds-eye view of such an

pproach, we identified existing work to build on and aspects that

eed more research and/or collaboration in the community. To en-

ure the relevance of our proposed design, we build on our expe-

ience in our academic SP research and past collaborations with

he industry. That experience allows us to formulate the domain-

pecific requirements and to consider the relevant industrial Soft-

are Development Life Cycle (SDLC) requirements and practices. It

lso enables us to position existing domain-specific knowledge in

he design. Finally, for formulating a partial, lower bound answer

o RQ3 we identified which artifacts from our answer to RQ2 are

lready instantiated and automated in our PoC tool.

This paper reports our research findings and presents our an-

wers to the RQs with the following contributions. First, we pro-

ide a rationale for adopting and standardizing risk management

rocesses for SP. We discuss several observations on the failing SP

arket and we analyse why existing standards are not applicable

s is for SP. Where useful, we also highlight differences between

P and other security fields such as cryptography, network secu-

ity, and software security.

Secondly, we discuss in depth how to adopt the NIST risk man-

gement approach. We identify which artifacts in the forms of con-

tructs, models, methods, and instantiations (i.e., (semi-)automated

ools) we consider necessary and feasible to introduce and deploy

he NIST risk management approach for SP. For all the required

rocesses, we highlight (i) the current status; (ii) SP-specific con-

epts/artifacts to be covered; (iii) what existing parts can be bor-

owed from other fields; (iv) open questions and challenges that

equire further research; (v) needs for the research community and

ndustry to come together to define standards; and (vi) relevant as-

ects towards formalizing and automating the processes.

Finally, we demonstrate that several aspects can already be for-

alized and automated by presenting a PoC decision support sys-

em that automates some of the major risk management activities.

ven if not completely automated, this demonstrates that the more

bstract constructs, models, and methods we discuss can indeed be

nstantiated concretely. This PoC provides a starting point for pro-

ecting applications and for building a more advanced system that

ollows all the methodological aspects of a NIST 800-compliant

tandard with industrial-grade maturity. The first results obtained

ith the tool have been validated mostly positively by industry ex-

erts on Android mobile app case studies of real-world complexity

nd are presented according to the Framework for Evaluation of

esign Science (Venable et al., 2016).

The remainder is structured as follows. Section 2 presents our

esearch approach. Section 3 provides background information on

tandardization and the state of the field of SP. Section 4 pro-

ides a motivation for standardization, formalization, and automa-

ion and discusses challenges towards them. Section 5 discusses

ow to adopt the four phases of the NIST IT systems risk manage-

ent standard for MATE SP. Section 6 presents the PoC decision

upport system we designed, and Section 7 presents its evaluation.

ection 8 draws conclusions and discusses future work directions.

. Research approach

Beyond their quotes in the previous section,

evner et al. (2004) describe DSR as “achieving knowledge

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

Fig. 1. Three research steps leading to the results presented in this paper.

a

b

2

i

D

c

o

i

w

c

u

a

S

a

S

o

S

S

o

a

t

S

s

a

p

s

t

k

c

s

2

p

2

l

D

e

s

t

c

l

i

c

e

v

c

d

a

e

w

a

a

d

i

l

m

d

g

t

a

i

p

m

b

o

w

2

P

C

m

m

t

u

c

i

i

w

t

I

p

i

w

f

d

nd understanding of a problem domain and its solution by the

uilding and application of designed artifacts” (Hevner et al.,

004). For doing so in the SP risk management problem domain,

n particular for answering the three RQs, we followed up on the

SR guideline of design as an artefact (Hevner et al., 2004) by

ollecting, structuring, designing, building, and applying a large set

f related artifacts. We did so in the three research steps shown

n Fig. 1 .

First, in the collaborative European ASPIRE research project,

e designed, developed, and evaluated a largely automated PoC

alled Expert system for Software Protection (ESP). This bottom-

p research was driven by the industrial partners’ business needs

nd SDLC requirements. Section 6 presents the PoC, of which

ection 7 presents the evaluation.

Second, we studied how to adopt a standardized IT risk man-

gement approach, the NIST SP800-39 standard, in the domain of

P. This was driven by our observations of the state of the domain

f SP as discussed in Section 3 and the motivation presented in

ection 4 . The result of this study is the approach presented in

ection 5 .

Third, we analyzed which of the constructs, models, and meth-

ds required in the adopted approach are actually covered by the

utomated tool support in the ESP. The result is a mapping be-

ween the artifacts introduced in Section 5 and those discussed in

ection 6 .

With the design, implementation, and evaluation of all the in-

tantiation artifacts (which are available as open-source), as well

s with our study and the development of the standard-based ap-

roach for MATE risk management and the discussion of more ab-

tracts artifacts that constitute that approach, we added design ar-

ifacts , as well as foundations , and methodologies to the scientific

nowledge base, in accordance with the DSR guideline on research

ontributions (Hevner et al., 2004).

We now discuss our approach in the aforementioned three

teps in more detail.

.1. Step 1: Bottom-up development and evaluation of

roof-of-Concept decision support tools

Our research into SP decision support intensified in the 2013–

016 European ASPIRE FP7 research project 3 in which we col-

aborated with three SP companies: Nagravision with a focus on

RM, Gemalto (now Thales) with a focus on software trusted ex-

cution environments and SafeNet (now Thales) with a focus on

oftware license management. The project researched a layered SP

oolchain for mobile apps and corresponding (semi-)automated de-

ision support methods and tools. The companies identified the

ack of such automated support tools as a critical, foundational gap
3 https://aspire-fp7.eu/

i

3
n the SP knowledge base that hampered the effective and effi-

ient deployment of SP in practice. In the traditions of DSR, we

ndeavoured to close this gap by researching the design and de-

elopment of novel artifacts, including proof-of-concept tools. The

ompanies and their technical and commercial SP business needs

rove the project’s requirements analysis and scope determination,

s well as the considered attack model. In technical meetings, we

ngaged with their stakeholders and experts in SP, including soft-

are developers, SP tool developers and users, security architects,

nd penetration testers. We engaged with higher management in

dvisory board meetings. The insights obtained there drove the

evelopment of decision support techniques in a bottom-up fash-

on during the ASPIRE project, i.e., starting from concrete SP prob-

ems and business requirements and solutions, as well as existing,

ostly informally described best practices 4 By having our research

riven by the companies needs, we acted according to the DSR

uideline of problem relevance (Hevner et al., 2004). As we were,

o the best of our knowledge, the first project to research largely

utomated end-to-end decision support tools, conforming to exist-

ng standards was at that time not at all a requirement or concern.

Through the SP tool flow and decision support developed in the

roject, we provide an answer to RQ1, demonstrating that auto-

ated decision support that effectively assists experts, and possi-

ly non-experts, may be within reach. That evidence in the form

f artifacts and their evaluation is presented later in this paper.

We performed and present that evaluation using the Frame-

ork For Evaluation of Design Science (FEDS) (Venable et al.,

016), the taxonomy of evaluation methods for IS artifacts by

rat et al. (2015) , and the evaluation criteria and terminology by

leven et al. (2009) .

Our ex-post evaluation from an engineering perspective focused

ainly on human risk and effectiveness , as the aim was to deter-

ine whether the artifacts consisting of our PoC decision support

ool and all the data it generates are accepted by the involved

sers and whether it benefits their work. We focused on properties

ompliant with the ISO/IEC 9126-1:2001 criteria 5 , namely usabil-

ty, efficiency, correctness, and comprehensibility and acceptabil-

ty by the users. As Section 7.1 will describe in much more detail,

e organized the evaluation in multiple iterative steps to gather

imely feedback, and we gradually involved more external experts.

nitially, a qualitative assessment of the automatic decision support

rototype (and of the artifacts it used) was performed with three

ndustrial experts working on the ASPIRE project. The objective

as to improve the early versions and components iteratively, be-

ore the release of the final prototype. This back and forth between

esign and evaluation clearly implements the design as a search
4 Unfortunately, many documents that formalized and structured those insights

n the ASPIRE project are confidential.
5 https://www.iso.org/standard/22749.html

https://aspire-fp7.eu/
https://www.iso.org/standard/22749.html

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

p

t

b

c

b

p

fi

t

u

t

w

t

w

s

D

d

q

a

S

D

m

t

s

(

f

e

2

m

u

t

s

fi

R

a

m

S

o

b

s

M

t

t

i

e

c

t

o

a

s

s

c

i

e

a

3

f

i

t

i

s

s

t

S

m

p

f

p

a

a

g

w

i

c

a

p

w

o

e

v

a

w

c

t

d

s

o

p

T

f

s

w

g

g

o

p

2

f

f

l

t

n

s

c

v

s

e

m

w

d

a

p

fi

r

rocess guideline of DSR Hevner et al. (2004) . For this evaluation,

hree mobile applications provided by the industrial partners have

een used as reference scenarios: a media streaming app, a licence

hecker, and a one-time password generator. These were developed

y the partners to be representative of their actual business ap-

lications. A second qualitative assessment was performed on the

nal PoC, for which we involved two additional industrial experts

hat had not participated in the development. Moreover, they eval-

ated the performance of the algorithms and techniques used in

he PoC on both the reference use cases and artificial applications,

ith measurements and with a complexity analysis.

By relying on industrial experts as subject groups, by having

hem deploy the artifacts on use cases representative for real-

orld cases, and by focusing the evaluation on aforementioned

tandardized criteria, we aimed to meet the requirements of the

SR research rigor guideline (Hevner et al., 2004).

In our evaluation, we also questioned the potential use of the

eveloped tools by non-experts. This allowed us to identify re-

uired knowledge that experts have to deploy the tools effectively

nd that non-experts might be lacking, as will be reported in

ection 7 . This reporting is part of the communication of research

SR guideline (Hevner et al., 2004), in particular the part on com-

unication to management-oriented audiences.

In addition, we performed a purely technical artifact assessment

o verify that the tool provides solutions in a useful time with rea-

onable use of resources.

Combined, we deployed observational (case study), analytical

 dynamic analysis), experimental (simulation), and descriptive (in-

ormed argument) evaluation methods to implement the design

valuation guideline of DSR (Hevner et al., 2004).

.2. Step 2: Top-Down adoption of a standardized IT risk

anagement approach

After the ASPIRE project had formally finished, we contin-

ed our collaboration and gradually developed our vision that

he best way to approach decision support is from the per-

pective of information risk management approaches. This vision

rst manifested itself in the July 2019 Ph.D. thesis of Leonardo

egano Regano (2019) that presents the components of the ESP

nd that is structured according to the phases of information risk

anagement standards.

We reached out to other researchers and practitioners in the

P domain to gather their opinions and insights, as well as doubts

n decision support for SP. This happened in informal discussions

ut also in structured ones, including the August 2019 Dagstuhl

eminar on Software Protection Decision Support and Evaluation

ethodologies (De Sutter et al., 2019), of which B. De Sutter was

he main organizer. In this one-week seminar, the three senior au-

hors of this paper engaged again with a range of experts, includ-

ng, amongst others, SP researchers, security economists, reverse

ngineering practitioners, software analysis experts, and commer-

ial SP developers. During the seminar, the need for standardiza-

ion came to the forefront, if not formalized, then at least in terms

f best practices and guidelines for conducting research into SP

nd evaluating the strength of proposed SPs and attacks thereon.

Following that seminar, we invested in a top-down approach,

tudying the adoption of existing information and system security

tandards in the domain of SP. We investigated how the generic

oncepts that make up these standards are specialized and adopted

n specific security domains such as network security. We then

xtensively brainstormed about how they can also be specialized

nd adopted in the domain of SP. For example, the NIST SP800-

9 IT systems risk management standard (Joint Task Force Trans-

ormation Initiative, 2011) prescribes a top-level method consist-

ng of four generic risk management phases, each corresponding
4
o their own, conceptually formulated, abstract method. We stud-

ed the domain-specific organizational problems that need to be

olved in the different phases, and which more concrete domain-

pecific concepts those phases need to encompass for SP.

We started this research by collecting our combined insights,

hen structuring them, and then iteratively coming to the text of

ection 5 that, in essence, presents a top-level SP risk assessment

ethod and the necessary artifacts for using that method, thus

roviding our answer to RQ2.

We want to thank the reviewers of earlier versions of this text

or their valuable insights that helped us produce the final result.

Our iterative process for coming to our description of the ap-

roach is again illustrative of how we implemented the design as

 search process DSR guideline (Hevner et al., 2004). The presented

pproach is itself an artifact, in line with the design as an artifact

uideline. Moreover, by rooting our work in interactions with the

ide variety of stakeholders mentioned above, by building on ex-

sting standards, and by extensively discussing existing work that

an be built upon, we further implemented the problem relevance

nd research rigor guidelines.

During our research, and in the resulting description of the ap-

roach in Section 5 , we also discussed open research questions

ith potential interesting future research directions, as well as

pen standardization issues into which collaborative community

ffort should be invested. These discussions are particularly rele-

ant for a management-oriented audience. With those discussions,

s well as by constructing and expressing the approach in line

ith existing risk management standards and in terms of abstract,

onceptual artifacts, we hope that this paper not only serves a

echnology-oriented audience, but also management-oriented au-

ience, in line with the DSR guideline on communication of re-

earch (Hevner et al., 2004).

Importantly, while this research step was rooted in our previ-

us experience with SP, we tried to perform this study as inde-

endently as possible from the PoC results of the ASPIRE project.

his shows, amongst others, in the fact that in Section 5 , we put

orward about 40% more concepts to be included in the proposed

tandard approach adoption than are covered in the PoC results

e present in Section 6 . As a concrete example, we discuss the or-

anizational problem of SP tool vendors and their customers not

iving each other white-box access because they do not trust each

ther in Section 5.1.5 . That problem was out of scope in the ASPIRE

roject and is hence not tackled by the presented PoC tools.

.3. Step 3: Coverage analysis of the adopted approach in the DSR

ramework

An important consideration in our study in step 2 was the need

or automation, as reflected in the last part of RQ2 and in RQ3. In

ater sections, we argue in more detail why we consider automa-

ion of many of the adopted and specialized methods beneficial, if

ot crucial.

Our answer to RQ3 is not based on theoretical analysis and ab-

tract reasoning but on tangible evidence, i.e., the existence of the

oncrete artifacts that form the PoC developed in step 1. To pro-

ide this answer to RQ3, we organized numerous internal discus-

ions in which we analyzed which of the concepts from the differ-

nt phases of the proposed approach are instantiated by the auto-

ated components of our PoC.

To do this more methodologically, we adopted the DSR frame-

ork by Hevner et al. (2004) , in particularly focusing on their

esign as an artifact guideline. First, we rephrased the adopted

pproach such that all essential concepts of the approach’s four

hases are clearly identified as either constructs (vocabulary to de-

ne and communicate concrete SP cases), models (abstractions and

epresentations to aid case understanding and to link case features

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

a

g

t

f

a

e

t

t

f

P

o

c

t

d

3

p

t

w

t

s

3

c

p

N

i

t

a

t

s

a

e

p

k

a

i

fi

t

y

a

w

t

f

m

(

c

i

T

b

w

l

a

t

t

w

t

d

f

s

w

t

n

w

n

3

y

w

p

i

m

t

s

t

c

e

r

p

e

b

B

(

a

p

t

t

t

u

t

2

c

r

3

l

q

2

i

o

c

nd solution components to enable exploration), and methods (al-

orithms, practices, and processes, as well as guidance on how to

ackle concrete cases). These are the three abstract types of arti-

acts that Hevner et al. (2004) identify as foundational elements of

n information systems knowledge base, in this case the SP knowl-

dge base.

Next, we identified which of these abstract artifacts are instan-

iated by means of components of the PoC ESP. Such implementa-

ions are called instantiation artifacts by Hevner et al. (2004) . They

orm the fourth type of foundational element in a knowledge base.

The mapping from more abstracts DSR artifacts onto concrete

oC instantiation artifacts is documented in this paper by means

f recurring tags. The tags are introduced in Section 5 when the

onstructs, models, and method artifacts are first introduced, and

hey recur in Section 6 where the corresponding instantiations are

iscussed.

. Background on standardization and the state of software

rotection

We first discuss some risk management standards and how

hey have been adopted in other security domains, such as net-

ork security, and the healthy market for products and services

hat exists there as a result. We then contrast this with the lack of

uch a market and standards for SP.

.1. Standardized risk management approaches

Protecting software can be seen as a risk management pro-

ess, a customary activity in various industries such as finance,

harmaceutics, infrastructure, and Information Technology (IT). The

IST has proposed an IT systems risk management standard that

dentifies four main phases (Joint Task Force Transformation Initia-

ive, 2011):

1. risk framing : to establish the scenario in which the risk must be

managed;

2. risk assessment : to identify threats against the system assets,

vulnerabilities of the system, the harm that may occur if those

are exploited, and the likelihood thereof;

3. risk mitigation : to determine and implement appropriate actions

to mitigate the risks;

4. risk monitoring : to verify that the implemented actions effec-

tively mitigate the risks.

The ISO27k framework also focuses on information risk man-

gement in three phases (ISO, 2018):

1. identify risk to identify the main threats and vulnerabilities that

loom over assets;

2. evaluate risk to estimate the impact of the consequences of the

risks;

3. treat risk to mitigate the risks that can be neither accepted nor

avoided.

ISO27k adds an explicit operational phase for handling changes

hat happen in the framed scenario.

Those approaches have been consistently applied in practice for

ecuring corporate networks. Regulations stimulate companies to

nalyse the risks against their IT systems. For instance, the GDPR

xplicitly requires a risk analysis of all private data handling. Com-

anies invest in compliance with the ISO27k family to obtain mar-

et access. Consequently, risk analysis of networks has developed

 common vocabulary, and a company’s tasks have been properly

dentified and often standardized, so offerings from consultancy

rms can be compared easily. There is a business market related

o this task, best practices, and big consultant firms have risk anal-

sis of corporate networks in their catalogs (Gartner Inc., 2019).
5

In the domain of software security, several frameworks for risk

nalysis and decision support exist that mainly focus on Soft-

are Vulnerability Management (Dempsey et al., 2020) and En-

erprise Patch Management (Souppaya and Scarfone, 2017). Other

rameworks focus on quality assurance best practices and bench-

arking, including the OWASP Software Assurance Maturity Model

SAMM) OWASP (2020) , the OWASP Application Security Verifi-

ation Standard (ASVS) OWASP (2021) , and the Building Security

n Maturity Model (BSIMM) Building Security in Maturity Model .

hese address problems of software security and are not applica-

le to SP.

NIST SP800-53 Joint Task Force (2020) extends beyond soft-

are security and provides a comprehensive and flexible cata-

og of privacy and security controls for systems and organizations

s part of their organizational risk mitigation strategy, for which

hey build on NIST SP800-39 (Joint Task Force Transformation Ini-

iative, 2011). It targets whole IT infrastructures, including hard-

are and software. Regarding software, it advises to ”Employ anti-

amper technologies, tools, and techniques throughout the system

evelopment life cycle” in its SR-9 Supply Chain Risk Management

amily of controls. Obfuscation is mentioned only as an option to

trengthen the tamper protection, not to protect the original soft-

are. The document does not discuss how to deploy these protec-

ions, or how to select the ones to deploy. NIST SP800-53 is hence

ot applicable to SP. For much of the remainder of this paper,

e will actually discuss what an SP counterpart of NIST SP800-53

eeds to entail.

.2. The state of MATE software protection

Compared to network security and software security, SP has

ears of delay. For setting the scope, Table 1 lists a number of

ell-known SPs. Out-of-scope are mitigations to prevent the ex-

loitation of vulnerabilities, such as Address Space Layout Random-

zation (ASLR), compartmentalization techniques, or safe program-

ing language features in, e.g., Rust. In the MATE attack model, at-

ackers have full control over the devices on which they attack the

oftware. They can disable security features of the operating sys-

em and the run-time environment, such as ASLR, which therefore

annot be trusted. For that reason, SP centers around protections

mbedded in the software itself, rather than relying on the secu-

ity provided by the run-time environment.

The market of such SP is neither open nor accessible to com-

anies with a small budget. In 2017 Gartner projected that 30% of

nterprises would have used SP to protect at least one of their mo-

ile, IoT, and JavaScript critical applications in 2020 Zumerle and

hat (2017) . However, two years later Arxan reported that 97%

and 100% of financial institutions) of the top 100 mobile apps

re easy to decompile as they lack binary code protection or im-

lement weak protection (Knight, April 2019). A study confirms

he absence of both anti-debugging and anti-tampering protec-

ions for 59% of about 38k Play Store apps. The study highlights

hat weak Java-based methods are employed in 99% of the SP

ses (Berlato and Ceccato, 2020). Repackaging benign apps to ob-

ain malicious apps (Khanmohammadi et al., 2019; Zhou and Jiang,

012) is easy because of the intrinsically weak app packaging pro-

ess but also because used anti-repackaging protections are cur-

ently weak (Merlo et al., 2021). Furthermore, it is estimated that

7% of installed software is not licensed, for a total amount of

osses estimated at $46.3B in 2015–2017 (Alliance, 2018). Conse-

uently, the SP market, which accounted for $365.4M dollars in

018, is expected to grow fast 2016 .

Cybersecurity competences are lacking (Gartner Inc., 2020). SP

s no exception. Few companies have internal SP teams: only 7%

f respondents stated their organization has all it needs to tackle

ybersecurity challenges; 46% stated they need additional exper-

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

Table 1

A number of software protections.

protection type explanation

anti-debugging Techniques to detect or prevent the attachment of an

attacker’s debugger Abrath et al. (2020b) .

branch functions Indirect, computed jumps replace direct control

transfers to prevent reconstruction of control flow

graphs Linn and Debray (2003) .

call stack checks Checks if functions are called from allowed callers to

block out-of-context calls.

code mobility Code is lifted from the binary to prevent static

analysis. At run time, the code is downloaded into

the running app from a server Cabutto et al. (2015) .

code virtualization Code in the native instruction set is replaced by

bytecode and an injected interpreter interprets that

bytecode, of which the format is

diversified Anckaert et al. (2006) .

control flow

flattening

A structured control flow graph graph is replaced by

a dispatcher that transfers control to any of the

original nodes based on data. This makes it harder to

comprehend the original flow of control and the

code Wang et al. (2000) .

data obfuscation Transformations that alter data values and structures

to hide the original ones.

opaque predicates Logic that evaluates to true/false based on invariants

known at protection time but that are hard to

discover by an attacker Collberg et al. (1998) . This

enables inserting bogus control flow to hinder code

comprehension and precise analysis Van den Broeck

et al. (2021, 2022) .

remote attestation Techniques in which a remote server sends

attestation requests to a running program. If the

program fails to deliver valid proof of integrity, it is

considered to be tampered with, and an appropriate

reaction can be triggered Viticchié et al. (2016) .

white-box crypto Implementations of cryptographic primitives such

that even white-box access to the run-time program

state does not reveal the used keys Wyseur (2011) .

t

M

s

i

h

s

S

F

p

b

fi

v

o

T

a

a

n

e

t

m

s

d

a

p

h

a

b

u

p

Y

y

s

p

4

f

N

p

l

g

4

u

c

f

c

i

r

i

p

p

c

m

i

c

m

s

m

d

S

r

i

t

p

t

r

a

n

r

i

N

H

d

a

d

t

h

c

ise/skills to address all aspects of cybersecurity (Irdeto, 2020).

eanwhile, many organizations lack competent staff, budget, or re-

ources (Mandiant, 2020).

When the value of assets justifies it, developers resort to pay-

ng third parties to protect their software. The price is typically

igh, involving licenses to tools and often access to expert con-

ultants. Moreover, the services and the strength of the obtained

P are covered by a cloak of opaqueness, with StO omnipresent 6 .

or example, whereas early white-box cryptography schemes were

eer reviewed (Bringer et al., 2006; Chow et al., 2003) and then

roken (De Mulder et al., 2010; Wyseur et al., 2007), we could not

nd peer-reviewed analyses of schemes currently marketed by big

endors. Moreover, most vendors’ licenses forbid the publication

f reverse engineering and pen testing reports on their products.

hey do not share their internal procedures, tools, or reports with

cademics.

We deduce that many companies do not understand the risk

nd therefore do not feel the need for deploying SP, or they do

ot have the internal competences and knowledge to do so prop-

rly, or they lack the money to pay third-party providers. In short,

here exists no widely accessible, functional, transparent, open SP

arket. At some of the big SP vendors that are also active in other

ecurity fields, risk analysis and mitigation is most certainly the
6 Abandoning StO implies that transparency is given about the SP process, the

esign and implementation of all SP tools being used, including the supported SPs

nd decision support tools. It does not at all imply that SP users need to be trans-

arent about the applications they protect. Indeed, the very objective of using SP to

amper MATE attacks on assets with confidentiality requirements is to keep those

ssets obscured. This is to be achieved by keeping the unprotected code secret, and

y keeping the used tool configuration secret, not by hiding the used tools or eval-

ations of their effectiveness.

m

t

p

(

e

n

i

w

6
rinciple that drives their experts and that is encoded in policies.

et no methodology is publicly available for applying a risk anal-

sis process when deciding how to protect software. Needless to

ay, no standard process guarantees the proper selection and ap-

lication of available SPs given a case at hand.

. Motivation and challenges for standardization,

ormalization, and automation

This section first motivates why we strive for standardization.

ext, it argues why formalization and automation are (equally) im-

ortant. The section concludes with a discussion of some chal-

enges towards these objectives, thus complementing the back-

round provided above.

.1. Motivation for standardization

Standardization efforts aim at “striking a balance between

sers’ requirements, the technological possibilities and associated

osts of producers, and constraints imposed by the government

or the benefit of society in general” (Tassey, 20 0 0). The benefits

ome from the positive impact of standards on quality/reliability,

nformation standards, compatibility/interoperability, and variety

eduction (Tassey, 20 0 0). In line with those benefits, a standard-

zed, methodological approach to MATE risk analysis could have a

lethora of benefits. This section speculates on this potential.

First, it could force stakeholders to follow a more rigorous ap-

roach to SP. Risk framing forces analysts to define workflows, pro-

esses, methods, and formulas to evaluate risks and the impact of

itigations. In network security, a structured risk analysis has lim-

ted the impact of subjective judgments by suggesting the use of

ollegial decisions involving more roles (Joint Task Force Transfor-

ation Initiative, 2011). A more rigorous approach for SP could

imilarly increase the transparency of all phases, guaranteeing a

ore reliable estimation of the reached SP level and of the quality

elivered by third parties. In turn, we expect less reliance on StO.

imply adopting the OWASP Security Design Principles forces secu-

ity specialists to avoid StO, which is also considered a weakness

n MITRE CWE 656 CWE-656 .

A standard could induce the community to use well-defined

erminology and to agree on the meaning of each term, as hap-

ened after NIST SP 800 (Joint Task Force Transformation Ini-

iative, 2011). Building common ground and well-defined playing

ules would also benefit the SP market by creating a more open

nd transparent ecosystem where services can be compared as

ormal products, thus bridging the gap with the network secu-

ity market in which products are evaluated by third parties us-

ng standardized methods such as the Gartner Magic Quadrant for

etwork Firewalls Gartner Magic Quadrant for Network Firewalls .

ence, we expect the rise of consultancy firms that can indepen-

ently evaluate SP effectiveness. We also expect a price reduction,

s highlighted in a study 2016 . With a lower entry price and the

efinition of entry-level protection services, more companies can

hen afford professional SP services, with benefits for all the stake-

olders.

When SP becomes standardized and more clearly defined, it

ould also create a market for decision support products that auto-

ate risk management. This could in turn lead to cost savings and

o more accessible and more effective SP.

The availability of standards increases awareness, as re-

orted by an EU agency one year after adopting the GDPR

 European Union Agency for Fundamental Rights , FRA). The mere

xistence of a standard would initially inform people about the

eed for SP. Compliance would then force all parties to obtain

n-depth knowledge, and the standards and related best practices

ould eventually be incorporated into educational programs.

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

i

g

d

i

a

i

w

e

i

s

a

2

$

t

b

t

i

o

K

b

s

p

e

a

d

t

c

t

h

c

l

4

n

f

r

d

i

a

c

o

i

c

m

b

2

a

t

a

K

a

t

t

a

t

s

a

w

t

i

m

c

t

v

t

b

s

b

h

b

o

c

c

a

t

e

f

S

a

v

o

v

t

a

t

t

t

t

a

f

w

p

c

c

4

a

t

o

l

a

d

M

i

c

t

m

i

t

i

o

r

t

n

p

The work towards standards could also impact research. It could

nitially stimulate the community to focus on identifying and plug-

ing existing gaps and, later on, create new or more effective, vali-

ated SPs to be integrated into a standard framework. The interest

n the field and the impact of research results would then likely

ttract more researchers to the SP field, which is now marginal

n the software engineering community. We have found analogies

ith the impact of the ISO/SAE 21434 standard for cybersecurity

ngineering of road vehicles (Macher et al., 2020). Years before

ts adoption, car manufacturers anticipated effort and funded re-

earch to cope with the demanding standard. The investments in

utomotive cybersecurity will grow from $4.9B in 2020 to $9.7B in

030, with a market size expected to grow from $238B in 2020 to

469B in 2030 (Burkacky et al., 2020). Parts of this increase and of

he focal shift towards cybersecurity might not be caused directly

y the ISO/SAE 21434 standardization. However, we are convinced

hat the planned standardization was a major contributing factor

n the past years, given that compliance with the standard as part

f UN R155 has already become mandatory in Europe, Japan, and

orea since July 2022. The anticipation of the standard can also

e observed in guidelines published long before its finalization,

uch as in the ”ENISA good practices for security of Smart Cars”

ublished in November 2019 with contributions of major carmak-

rs (ENISA, 2019).

Increased attention by research institutions and academia usu-

lly translates into better education opportunities, possibly with

edicated curricula, which usually pair well with the career oppor-

unities created by a more open market. Ultimately this could help

ompanies employ skilled people and support a freer job market

o compensate at least partially for the lack of SP experts.

In the end, the benefit would extend to the whole society, as

aving better-protected software reduces the global exposure of

itizens to risks and, we hope, would make MATE attacks a less

ucrative field, or at least reduce its growth.

.2. Motivation for formalization and automation

A standardized, methodological risk management approach is

ot necessarily formalized or automated. We argue, however, that

ormalization and automation are by and large required. The main

eason is the need for precision, i.e., the repeatability or repro-

ucibility of obtained results.

In the security field, including SP, we want to avoid a scenario

n which different experts that deploy the same risk management

pproach on the same software under the same conditions would

ome up with different sets of identified threats and different sets

f supposedly good combinations of protections. One of the more

mportant reasons to stay clear of such a scenario is that it would

omplicate the validation and enforcement of compliance.

Cognitive psychology research has shown, however, that hu-

ans are incorrigibly inconsistent in making summary judgments

ased on complex information (Kahneman, 2011; Osbeck and Held,

014). Hence they provide different answers when asked to evalu-

te the same information multiple times. Experts also suffer from

his. Their judgments hence lack precision in environments that

re not sufficiently regular to be predictable (Kahneman, 2011;

ahneman and Klein, 2009). Those environments are also known

s low-validity environments. Determining the major MATE at-

ack threats on a given piece of software given the source code,

he formulated security requirements, the domain knowledge, etc.,

s well as selecting appropriate combinations of SPs come down

o making predictions in such an environment. One of the rea-

ons is that there are many parameters one cannot think of in

dvance, such as the configurations with which the final soft-

are will be deployed on-site. Psychology research has also shown

hat the precision of expert judgment improves when there ex-
7
sts backup in the form of formulas and algorithms to comple-

ent, guide, or replace otherwise imprecise human cognitive pro-

esses (Dawes, 1979). We hence put forward formalization and au-

omation as important objectives for MATE risk management.

We are not the first ones to do so. For example, in their sur-

ey on architectural threat analysis, Tuma et al. analyse whether

he surveyed methods are supported by formal frameworks and

y (semi-)automated tools because of their impact on preci-

ion (Tuma et al., 2018). They also differentiate between template-

ased approaches and example-based ones, as the former yield

igher precision. Similarly, we put forward that using an unam-

iguous vocabulary with clear definitions will benefit the precision

f MATE risk management.

Economic arguments further support our claim that automation

annot be separated from the aim of adopting a risk analysis pro-

ess for SP. Manual SP decision making requires expertise, effort,

nd hence time. As we discussed, there are not enough experts

o protect all software that can benefit from rigorous SP. Even if

nough experts were available to put in the necessary manual ef-

ort, they would remain costly, keeping good SP out of reach for

MEs.

Scaling up the number of experts to meet all demands without

utomating parts of the processes is not realistic. Every time a new

ersion of an application is issued (e.g., because of regular updates

r a bug), it needs to be protected. Part of the work on previous

ersions can probably be reused, but typically the SPs at least need

o be diversified.

Additionally, SP firms may have to protect many versions, such

s ports of the same software to different platforms, including lap-

ops or mobiles with limited computational power. If maintaining

he application’s usability is at risk on some platforms because of

he SP overhead, developers may decide to limit the features on

hose platforms. As an example, media players with DRM will only

ccess low-quality versions of media if the platform does not allow

ull protection.

Moreover, even if human experts were available, their latency

ould still be problematic. Software vendors face time-to-market

ressure. For that reason alone, automated tool support that can

ut the time and effort required to protect applications is benefi-

ial.

.3. Challenges towards standardization, formalization, and

utomation

Despite the many benefits a standardized, formalized, and au-

omated approach would bring, such an approach is a long way

ff, and adopting a NIST-style risk management faces several chal-

enges.

A first challenge relates to the definition of asset categories

nd their relation with security properties. These are lacking to-

ay, which is problematic for the framing of risks. SP relies on the

ATE attacker model that has never been defined clearly. The abil-

ties of MATE attackers are unclear, not in the least because of the

omplexity of modelling human code comprehension and software

ampering capabilities.

A second challenge is the definition of threat and risk assess-

ent models that allow enough precision and objectivity. Estimat-

ng the feasibility of MATE attacks requires a white-box analysis of

he assets and of the entire application. The complexity of mount-

ng static, dynamic, symbolic, and concolic attacks heavily depends

n the structure and artifacts of the software, such as the occur-

ence of all kinds of patterns or observable invariants.

Thirdly, moving towards a more precise categorization of pro-

ections and risk in the MATE scenario is another challenge that

eeds to be overcome for the risk mitigation phase. In practice, SP

rovides only fuzzy forms of protection. SPs have only been catego-

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

r

n

n

M

w

e

r

c

n

l

m

t

l

o

s

c

s

n

p

h

i

2

S

d

o

r

c

a

v

i

n

a

i

a

y

w

p

S

n

d

2

m

t

t

i

f

n

a

a

b

a

T

t

t

e

t

a

t

S

n

p

g

n

p

e

m

r

t

m

v

t

a

n

w

a

o

s

o

o

b

5

t

w

f

q

c

a

d

o

w

a

i

S

d

c

d

a

p

a

a

f

d

m

n

(

5

a

t

m

e

l

r

s

s

7 In most cases, we identify only the abstract top-level constructs, under which

more concrete constructs have to be included as well. For example, we will mention

the ”software protection” construct, without enumerating concrete protections such

as opaque predicates, control flow flattening, virtualization, etc.
ized coarsely (e.g., obfuscation vs. anti-tampering). In general, it is

ot clear what security level they offer where, and there yet exists

o well-defined set of categories of security controls to mitigate

ATE risks. This contrasts with, e.g., the field of cryptography, in

hich algorithms are characterized in terms of well-defined prop-

rties such as ciphertext indistinguishability or second pre-image

esistance (Kaltz and Lindell, 2008). Also in network security, it is

lear what firewalls and VPNs do and how to use them to mitigate

etwork security risks. There are accepted measures and guide-

ines to estimate the effectiveness of categories of network security

itigations and in some cases categorization of tools and vendors

hat help in estimating their efficacy (ISO, 2016). The MATE domain

acks such well-definedness.

Fourthly, today it remains a huge challenge to simply measure

r estimate the efficacy of SPs. This is obviously necessary to as-

ess the residual risks of deployed SPs. However, no metrics are

urrently available to quantify SP efficacy. Potency, resilience, and

tealth are commonly accepted criteria (Collberg et al., 1997), but

o standardized metrics are available for measuring them. Com-

lexity metrics originating from the field of software engineering

ave been proposed (Ceccato, 2016), and ad-hoc metrics are used

n academic papers (Van den Broeck et al., 2021; Linn and Debray,

003). However, none have been empirically validated for use in

P, and practitioners most often do not see the metrics used in aca-

emic papers as reliable proxies of real-world potency, resilience,

r stealth. Using those metrics is hence not yet considered a viable

eplacement for human expertise and manual pen testing. In many

ases, there are no hard proofs that SPs are effective in delaying

ttackers. Rather than encouraging checks by external parties, SP

endors often contractually prevent the analysis of protected code,

nstead relying on StO. As a result, there is neither an objective

or a measurable assurance of protection, nor an objective evalu-

tion of the companies’ work. In academic research, the situation

s not much better. For example, the seminal obfuscation versus

nalysis survey from Schrittwieser et al. never refers to a risk anal-

sis framework (Schrittwieser et al., 2016). Their results, although

idely acknowledged, are hence not readily usable in a decision

rocess.

The aforementioned challenges are particularly hard because in

P, determining the boundaries between assets and protections is

o easy task. SP s are often processes that transform assets to hin-

er analysis and comprehension of their logic (Schrittwieser et al.,

016). For instance, most forms of obfuscation transform code frag-

ents. Since SPs need to be layered for stronger and mutual pro-

ection and to exploit synergies, obfuscation can transform code

hat results from previous transformations, such as code guards

njected for anti-tampering purposes. Some obfuscations even aim

or eliminating recognizable boundaries between different compo-

ents (Van den Broeck et al., 2021), and others aim for re-using

pplication code for obfuscations (Van den Broeck et al., 2022). As

 result, the code of multiple SPs and of the assets they protect

ecomes highly interwoven. We hence need to talk of protected

ssets, certainly not of separated protection and asset entities.

Furthermore, software internals must be known to the tools.

his includes the types of instructions, structure and semantics of

he code, and the presence of any artifacts that might benefit at-

ackers. This information is needed to decide whether some (lay-

red) SP can be effective or not and to tune its parameters. In addi-

ion, it is generally accepted that in order to deploy SPs effectively,

n application’s architecture needs to be designed with the pro-

ection of the sensitive assets in mind. If it is not designed well,

Ps will only provide superficial mitigation. For theoretical defi-

itions of SP, such as virtual black-box obfuscation, Barak already

roved the impossibility of achieving obfuscation on contrived pro-

rams (Barak et al., 2001). But also in practice, architectural weak-

esses can often not be overcome with SP. Examples of design
8
roblems that are hard, if not impossible, to fix with SPs are bad

xternal or internal APIs, missing authorization, and improper or

issing crypto key ladders to protect various assets. Such ladders

equire complex key management, key storage, and crypto func-

ionality, which are easy to get wrong for non-experts. Risk assess-

ent methods must hence recognize software whose design pre-

ents proper protection and report that risks cannot be reduced to

he desired level solely with SPs. This again stresses that MATE risk

nalysis requires insights into software internals to identify weak-

esses that may turn into vulnerabilities that cannot be protected

ith SP.

SP thus poses challenges that impact the standardization and

utomation of risk management, and, in particular, the definition

f objective criteria for assessing the mitigations.

In conclusion, despite their obvious appeal, risk management

tandardization and a functioning open market as they exist in

ther areas of ICT security are in our opinion missing in SP not

nly because the community is late in developing them, but also

ecause managing the risks in SP is really challenging.

. Adopting a standard towards proper risk management

This section provides an answer to RQ2 by discussing what

he four phases of the NIST IT systems risk management standard

ould entail as applied to SP, i.e., what tasks need to be done in its

our phases. Fig. 2 presents an overview. Note how the tasks flow

uite naturally, each task building on the previous ones. The dis-

ussion of these tasks will cover various recurring aspects, which

re highlighted by means of numbered text markings. We intro-

uce the necessary c.X constructs 7 , M.X models, and m.X meth-

ds/practices, introducing some useful new terminology along the

ay.

Tables 2 , 3 , and 4 present an overview of the covered abstract

rtifacts. For those artifacts that have already been implemented

n an actual instantiation, the ESP column lists the subsections of

ection 6 in which that instantiation will be discussed in more

etail. Those instantiations will demonstrate that these artifacts

an in fact be implemented in a working system. They will hence

emonstrate the feasibility of the covered artifacts, thus also en-

bling a concrete assessment of their suitability for their intended

urpose, as will be discussed in Section 7 .

We also highlight ?.X open issues that are research challenges

nd discuss where we think s.X existing state of the art can serve

s a foundation, in some cases by pointing out !.X potentially use-

ul research directions to find solutions. We present r.X recommen-

ations and requirements, in particular a.X automation require-

ents, and we highlight aspects on which different stakeholders

eed to perform f.X future standardization and engineering work

as opposed to research).

.1. Risk framing

In this phase of the approach, one defines the context in which

 risk analysis will be performed. For the case at hand, one defines

he relevant software targets, their assets and security require-

ents, potential attacks, available SPs, and SDLC requirements. To

nable standardization, a common vocabulary needs to be estab-

ished that covers all possible constructs and models to describe all

elevant scenarios. This needs to be unambiguous and formalized

uch that automated support tools can be engineered. f.1 Provi-

ioning the complete vocabulary to describe the risk frame is, of

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

Fig. 2. Four phases of the proposed risk management approach with reference to the corresponding sections in the presentation of the approach in Section 5) and in the

presentation of the PoC implementation in Section 6 .

Table 2

Constructs of the proposed approach, with references to the discussions of their instantiation, if any.

No. Construct Name ESP No. Construct Name ESP

c.1 primary asset 6.1 c.26 protection applicability 6.1

c.2 secondary asset 6.1 c.27 protection composability 6.1,6.3

c.3 attack path 6.2 c.28 layered protection deployment 6.1,6.3

c.4 attack step 6.1,6.3 c.29 protection synergies 6.1,6.2

c.5 attack pivot c.30 potency 6.1,6.3

c.6 attack time frame c.31 resilience 6.1

c.7 asset renewability c.32 stealth 6.1

c.8 primary security req. 6.1 c.33 overhead/cost constraints 6.1,6.3

c.9 non-functional security req. 6.1 c.34 software development life cycle req. 6.1

c.10 attack identification phase c.35 profile information

c.11 attack exploitation phase c.36 software connectivity 6.1

c.12 secondary security req. 6.1 c.37 software update ability

c.13 functional security req. c.38 environment limitations 6.1

c.14 assurance security req. 6.1 c.39 actual threats 6.2

c.15 protection policy req. c.40 actual risks 6.2

c.16 weaknesses c.41 attack surface 6.2

c.17 attack resources 6.1 c.42 attack vectors 6.2

c.18 attack capabilities 6.1 c.43 attack paths of least resistance

c.19 worst-case scenario assumptions c.44 analysis tools / toolbox 6.1,6.2

c.20 attack enabling features 6.1 c.45 software features 6.2

c.21 attack preventing features 6.1 c.46 third-party-provided incomplete analysis

c.22 attack effort determination features 6.1,6.2 c.47 residual risks 6.3

c.23 attack likelihood of success features 6.1 c.48 most protective protection solution 6.3.1

c.24 software protections 6.1 c.49 alternative protection targets 6.3.1

c.25 protection strength metrics 6.1,6.3 c.50 mitigation round

Table 3

Models required in the proposed approach, with references to the discussions of their instantiation, if any.

No. Model Name ESP No. Model Name ESP

M.1 application and asset model 6.1 M.4 attack model 6.1

M.2 secondary asset attributes model 6.1 M.5 software protection model 6.1

M.3 asset value evolution model M.6 actual threat model 6.1

c

a

m

e

2

5

a

k

S

m

m

m

d

r

d

t

t

ourse, out of reach here. That will instead need to be done in

 larger document that results from a community effort. s.1 The

eta-model of Basile et al. can serve as a starting point for mod-

lling all the relevant constructs and their relations (Basile et al.,

019).

.1.1. Assets

A first task for a case at hand is to determine which assets

re potentially relevant. This is needed for all the potential assets

nown a priori, i.e., in the original application, in already deployed
9

Ps, if any, or in any of the SPs that might later be deployed in the

itigation phase.

The c.1 primary assets are static and dynamic software ele-

ents of which a MATE attacker might violate security require-

ents because they have value for the attacker or the ven-

or: monetary value, public image, customer satisfaction, bragging

ights, etc. Examples are secret keys or confidential data embed-

ed in applications, algorithms that constitute valuable intellec-

ual property or trade secrets, multiplayer game logic that needs

o remain intact to prevent cheating (e.g., see-through walls, use

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

Table 4

Methods in the proposed approach’s phases, with references to the discussions of their instantiation, if any.

Phase Phase

& No. Method Name ESP & No. Method Name ESP

1 m.1 primary asset description 6.1 3 m.17 mitigation deployment 6.3.3

1 m.2 software analysis tools 6.1 3 m.18 mitigation validation

1 m.3 secondary asset description 6.1 3 m.19 SP impact estimation 6.3

1 m.4 secondary asset identification algorithms 6.1 3 m.20 single-pass mitigation decision making 6.3.2

1 m.5 requirement description 6.1 3 m.21 iterative mitigation decision making

1 m.6 export models of supported protections 6.1 3 m.22 asset hiding 6.3.2

2 m.7 threat analysis 6.2 3 m.23 SP selection optimization 6.3.1

2 m.8 threat impact estimation 6.2 3 m.24 SP select search space pruning 6.3.1

2 m.9 risk prioritization 6.2 3 m.25 cookbooks with SP recipes

2 m.10 defender’s analysis toolbox execution 6.2 3 m.26 driving the SP tool 6.3.3

2 m.11 incremental attack path enumeration 4 m.27 risk analysis updating

2 m.12 incremental threat analysis 4 m.28 application exposure monitoring

2 m.13 transparent threat analysis reporting 6.2 4 m.29 monitoring risk framing input evolution

2 m.14 risk monetisation 4 m.30 monitoring running applications 6.4

2 m.15 OWASP risk rating methodology 4 m.31 monitoring communication of running apps 6.4

3 m.16 mitigation decision making 6.3 4 m.32 user experience evaluation

a

n

M

u

t

r

e

a

m

c

s

t

t

i

c

m

t

p

t

i

h

u

s

t

s

m

c

t

p

t

t

t

t

t

q

t

t

b

h

r

t

a

d

e

M

r

c

r

e

d

g

c

m

m

s

m

t

s

v

S

d

a

d

s

fi

t

m

n

e

l

r

t

p

s

s

g

M

v

s

o

i

p

b

u

s

b

im-bots, or show full world maps), and authentication checks that

eed to remain in place. These assets are the primary targets of

ATE attackers. They cover a range of abstraction levels and gran-

larities corresponding to a range of code and data elements (func-

ions, variables, global data, constants, etc.). For example, an algo-

ithm can be large and expressed in abstract terms, while a secret

ncryption key to steal is merely a string of bits. Primary assets are

lready present in the vanilla, unprotected software.

The c.2 secondary assets are software elements that attackers

ight target on their c.3 attack path (i.e., the sequence of exe-

uted c.4 attack steps) towards the primary assets. Attackers con-

ider these elements as mileposts on their way to their primary

argets. Secondary assets can be c.5 attack pivots (a.k.a. hooks) in

he vanilla software, but they can also be artifacts or fingerprints of

njected SPs that attackers need to overcome. An example pivot is a

iphertext buffer containing high-entropy data, which an attacker

ight first try to identify with statistical dynamic analysis. Once

he buffers have been identified, the attacker might pivot to the

rogram slices that produce the buffers’ data, and in those slices

hey can obtain the secret keys. An example of an injected SP is an

ntegrity check. A gamer that wants to alter the speed with which

e can move around in the virtual game world might first have to

ndo or bypass the integrity check.

r.1 The distinction between primary and secondary assets

hould not be strict. For example, a cryptographic key that pro-

ects one movie might be a secondary asset if the attacker tries to

teal one movie. A similar key that serves as a master key for all

ovie encryptions is clearly a primary asset. Moreover, SP vendors

onsider the SPs supported with their tools as primary assets that

hey do not want to be reverse-engineered easily. While those SPs

rotect the primary assets of their customers’ software, they are

he primary assets of the SP vendors. Should attackers learn how

o attack or circumvent them automatically, their value goes down

he drain.

The deployment of some SPs requires one to describe the rela-

ionship between assets and non-asset program elements. This is

he case when SP transformations applied to the code of assets re-

uire other non-asset code to be transformed with it to conserve

he program semantics. When deploying an SP on only the assets,

his should not make those assets stand out to the attacker, e.g.,

ecause the entropy of encrypted data or obfuscated code is much

igher than that of plain data or because the protection introduces

ecognizable fingerprints. To increase the attacker’s effort needed

o localize them, one can deploy the same SPs on non-asset code,

s proposed by Regano et al. Regano et al. (2017) . Furthermore, to

ecide which SPs can be deployed conservatively, it might be nec-
10
ssary to analyse the whole application and model it. In short, an

.1 application and asset model is needed to describe the wide

ange of software elements that form the target application, in-

luding the elements of assets and non-assets, and the relevant

elations between them. The s.2 application meta-model of Basile

t al. can provide a useful starting point (Basile et al., 2019), but it

efinitely needs to be refined, as it currently only captures coarse-

rained relations such as call graphs.

Multiple methods need to be considered for instantiating a con-

rete application model. Obviously, a m.1 primary asset description

ethod is required to let a user identify and describe their pri-

ary assets, preferably at a high level of abstraction, such as with

.3 source code annotations (Basile and Report, 2016). Next, a.1

.2 software analysis tools need to map those descriptions onto

he corresponding lower-level software elements (e.g., onto corre-

ponding assembly operations) and extract the structure and rele-

ant properties of the software. Such tools are already used in all

P tools we know of, both commercially and in research. If the SP

ecision support tools cannot identify secondary assets themselves,

 m.3 secondary asset description method is required to let a user

escribe the secondary assets and how they relate to primary as-

ets. Alternatively, we foresee that a.2 m.4 secondary asset identi-

cation algorithms can be developed to automate their identifica-

ion. Such algorithms would be executed in the later risk assess-

ent phase, but in the framing phase, the necessary knowledge

eeds to be modelled in the form of M.2 secondary asset mod-

ls that describe what technical attributes of software elements al-

ow attackers to exploit them as mileposts. An example is the al-

eady mentioned buffers that contain high-entropy data. Precisely

he fact that some buffer holds such data makes it a potential mile-

ost. ?.1 The design of such secondary asset models is an open is-

ue. Note that those models would not need to be recreated from

cratch for every application. Instead, they would be reusable and

row over time as new types of secondary assets are considered.

As SP aims to delay attacks rather than prevent them, we need

.3 asset value evolution models to describe the evolution of their

alue over time, including the c.6 attack time frame in which as-

ets have value as well as the impact a successful attack can have

n a business model. This includes the c.7 renewability of assets,

.e., how easy it is to replace software and assets to reduce the im-

act of successful attacks. For modelling this evolving relationship

etween business value and assets, we expect that companies can

se s.4 their existing asset valuation models.

f.2 To enable asset risk framing in a standardized manner,

takeholders first need to join forces to draft a taxonomy of possi-

le assets and their features. A starting point can be s.5 Wyseur’s

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

l

d

t

s

s

5

c

T

i

s

r

e

i

e

q

u

m

t

s

a

b

s

s

c

t

a

s

o

c

a

c

r

p

s

m

S

t

s

p

2

w

q

c

c

c

p

t

p

s

a

o

R

q

q

a

e

5

a

t

t

i

i

d

m

v

t

t

p

p

o

?

w

s

a

e

c

f

i

w

c

f

t

t

s

e

m

m

t

a

(

i

e

o

t

S

M

m

p

(

s

s

o

w

p

a

a

R

n

b

s

s

b

c

w

o

d

t

h

8 https://grand- re- challenge.org/
ist of assets in the form of private data, public data, unique

ata, global data, traceable code/data, code, and application execu-

ion (Wyseur, 2014a). Another starting point can be Ceccato et al.’s

.6 taxonomy of code and data elements that MATE attackers con-

idered in their experiments (Ceccato et al., 2019).

.1.2. Security requirements

The c.8 primary security requirements of assets are often the

.9 non-functional requirements of confidentiality and integrity.

hese come in different forms, levels of abstraction, and granular-

ty. Their scope differs from that in other domains, so their clas-

ifications can not be trivially reused. For example, MATE integrity

equirements can include constraints on where or how code is ex-

cuted, that at any point in time at most one copy of a program

s running, and that certain program fragments are not lifted and

xecuted ex-situ. In addition, there might be non-repudiation re-

uirements. For example, unauthorized copies must be detected

pon execution.

r.2 For different phases in the software SDLC, different require-

ents may hold, and different types of attack activities may need

o be mitigated, such as in the c.10 attack identification phase ver-

us the c.11 attack exploitation phase. Some requirements may be

bsolute, such as a master key that should never leak; others may

e time-limited, such as a key to a live event that should remain

ecret for 5 minutes; still, others may be relative and economical,

uch as that running many copies in parallel undetected should

ost more than licensing them.

Assessing whether non-functional requirements can be guaran-

eed is hard in practice because of the MATE attackers’ white-box

ccess. c.12 Secondary security requirements can help frame pos-

ible risks. These can be (i) non-functional requirements for sec-

ndary assets; (ii) c.13 functional requirements that are easier to

heck but of which the mere presence in itself provides few guar-

ntees, such as the presence of a copy-protection mechanism; (iii)

.14 assurance security requirements that minimize the risk that

elevant aspects are overlooked; and (iv) what we will call !.1 c.15

rotection policy requirements. The latter relates to worst-case as-

umptions about attacker capabilities, such as assuming that the

ere presence of some features suffices to enable certain attacks.

uch assumptions can compensate for the lack of proper evalua-

ion of primary requirements. For example, a lack of stealth re-

ulting from easily identifiable invariants in injected SPs hints for

otential c.16 weaknesses vis-à-vis certain attacks (Yadegari et al.,

015). Protection policy requirements then require that elements

ith certain features are not present at all or meet certain re-

uirements, such as statistical properties. This is similar to se-

urity policies in the domain of remote exploitation, where, e.g.,

ode pointer integrity is a policy about handling code pointers that

an ensure that indirect control flow cannot be hijacked by ex-

loits (Kuznetsov et al., 2014).

In the risk framing phase, the task for a case at hand is to de-

ermine and describe the security requirements for all assets and

otential weaknesses identified as relevant. A m.5 requirement de-

cription method is needed for the user to describe their primary

nd part of their secondary requirements, using a requirement tax-

nomy. One option is s.7 to annotate the source code (Basile and

eport, 2016; Coppens, 2016). f.3 Standardizing a taxonomy re-

uires a community effort. ?.2 How to model protection policy re-

uirements is an open issue. It is closely related to the secondary

sset model discussed in the previous section; the necessary mod-

ls will hence best be co-designed.

.1.3. Attack models

MATE risk management needs to consider a range of potential

ttacks described in an M.4 attack model. This needs to cover at-

ackers with different levels of c.17 attack resources and c.18 at-
11
ack capabilities: money, expertise, available tools, etc. The latter

nvolves a range of methods and evolves over time, so a f.4 liv-

ng catalog is needed. ?.3 We currently do not know what level of

etail will produce the best results, so both more generic attack

ethods and tool usage scenarios (e.g., disassembling code) and

ery concrete ones (e.g., using the IDA Pro-8.0 disassembler) need

o be supported. As the goal of SP is to delay attacks, r.3 not only

he feasibility of successful attacks is to be covered, but also the

otential effort involved, possibly including what attackers would

robabilistically waste in unsuccessful attack strategies.

While research has shown that attackers commonly waste time

n unsuccessful attack steps in real attacks (Ceccato et al., 2019),

.4 it is unclear whether useful attack models can build on c.19

orst-case scenario assumptions. Examples are attackers being

erved by an oracle always to choose the right attack path, and

nalysis tools producing results with ground-truth precision. For

xample, locating the code of interest is an important, time-

onsuming attack step that cannot simply be assumed to be per-

ormed effortlessly using an oracle (Mantovani et al., 2022). Do-

ng so would imply that increasing the stealth of SPs is not useful,

hich experts certainly reject.

For each potential attack step, the attack model needs to en-

ode which features of software elements are c.20 attack-enabling

eatures, c.21 attack-preventing features, and c.22 attack effort de-

ermination features, i.e., that enable or prevent an attack step, or

hat significantly affect the required time and effort of an attack

tep, as well as the c.23 attack likelihood of success features. An

xample is the presence of certain secondary assets. These features

ight include features of the software under attack, the environ-

ent in which attacks can be performed, but also knowledge ob-

ained by the attacker. ?.5 The best abstraction levels to consider

re an open question.

The same holds for the c.24 software protections and a set of

quantitative) c.25 protection strength metrics that can be used

n later phases to estimate the effort/time/resources that attack-

rs will need to invest in the attack steps in scope. Depending

n the maturity of a decision support tool, that set may have

o be selected manually during the risk framing. As discussed in

ection 4.3 , there currently is no widely accepted set of metrics.

any proposals (Anckaert et al., 2007; Ceccato, 2016) have been

ade on features that should be measured (e.g., control flow com-

lexity) and on concrete metrics for doing those measurements

e.g., cyclomatic complexity (McCabe, 1976) or code comprehen-

ion (Tamada et al., 2012)). s.8 Those proposals on metrics can

erve as starting points, but ?.6 more empirical research is needed

n top of existing work (Mantovani et al., 2022) to determine

hich metrics are valid under which circumstances and for which

urposes. s.9 RevEngE by Taylor and Collberg seems to be a good

pproach for enabling more productive research of human attack

ctivities (Taylor and Collberg, 2019). In the context of the Grand

everse Engineering challenge 8 , their data collection software is

ot only used to analyze attacks on randomly generated programs

ut also on purposely designed MATE challenges, which allows

tudying the relations between human attack effort and metrics.

.10 For automated attack tools, such as symbolic execution or

lack-box deobfuscation, the framework proposed by Banescu et al.

an be a starting point (Banescu et al., 2017). Because that frame-

ork relies on Machine Learning (ML), thus requiring evaluations

n many samples, it is not suited for manual attack activities.

In the risk framing phase, the task for a case at hand is to

etermine the attack model, i.e., the combinations of the men-

ioned attributes that potential attackers in scope might potentially

ave. Existing models from network security risk analysis cannot

https://grand-re-challenge.org/

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

b

t

e

v

t

c

e

f

p

2

v

h

a

l

z

5

u

s

o

e

e

h

c

t

s

a

t

(

a

i

f

c

m

c

i

o

f

w

m

r

i

o

h

i

o

f

o

c

g

m

m

d

u

t

o

s

r

fi

p

t

C

5

m

d

c

t

a

o

w

e

a

g

t

t

f

t

f

(

c

o

a

w

i

n

s

t

p

w

r

t

t

a

c

n

t

p

c

w

w

p

s

c

i

u

d

w

a

s

l

p

t

i

i

m

r

t

t

e reused. r.4 MATE attack modelling needs to include manual

asks and human comprehension of code, which are not consid-

red in network security. For example, in network security, the de-

elopment of zero-day exploits (using tools also found in the MATE

oolbox) is handled as an unpredictable event, which side-steps the

omplexity of analysing and predicting human activities. s.11 This

ntirely prevents the use of existing assessment models developed

or the network security scenario.

Some s.12 studies document how MATE attackers operate in

ractice (Ceccato et al., 2017; 2019; Mantovani et al., 2022; Wyseur,

014b). Together with s.13 numerous blogs and case studies by re-

erse engineers, such as those by Rolles Rolles (2009) , they can

elp to determine an appropriate attack model. s.14 Existing MATE

ttack taxonomies can also be built upon to enable users to formu-

ate attack models for their cases (Ahmadvand et al., 2019; Akhun-

ada et al., 2015; Banescu and Pretschner, 2017).

.1.4. Software protections

A M.5 software protection model is needed to describe in a

nified manner the wide range of SPs that a user’s tools might

upport. This model needs to include at least possible limitations

n c.26 applicability and c.27 composability, be it for c.28 lay-

red SP deployment to protect each other or to exploit c.29 syn-

rgies between multiple SPs; the security requirements that they

elp to enforce; (measurable) features or limitations they have that

an enable, slow-down, ease, block, or otherwise impact poten-

ial attacks, on the SPs themselves but also on the assets they are

upposed to protect; how big those impacts are on the potential

ttacks; and potential implementation weaknesses including how

hey can fail to meet protection policy requirements and become

easily) attackable assets themselves; etc. The link to validated (but

s of yet still missing) metrics mentioned above is clear, and the

mpact that deployed SPs have on metrics used to asses attack ef-

ort, i.e., the c.30 potency, c.31 resilience, and when relevant the

.32 stealth of potentially deployed SPs obviously also needs to be

odelled.

The SP model needs to capture the costs of using an SP. This

an include the direct monetary costs of SP tool licenses, but also

ndirect costs such as having to budget for more security servers

r having a longer time to market, or any other cost that might

ollow from changes to the SDLC.

The potential overhead of all available SPs needs to be known

.r.t. run time, latency, throughput, size, ... This is critical because

any applications have a little overhead budget when it comes to

esponsiveness, computation times, etc. In part, the performance

mpact depends solely on an SP itself, such as the (constant) time

r memory required to initialize it. The impact can also depend on

ow an SP is deployed. For example, whenever an SP requires the

njection of a few instructions into code fragments, the resulting

verhead will depend heavily on how frequently executed those

ragments are. r.5 Multiple ways for expressing the potential cost

f SPs are hence needed.

In the risk framing phase, the user needs to determine which

ombinations of SPs can potentially be deployed to mitigate risks,

iven the available SP tools. For automating the later phase of risk

itigation, a.3 the used SP tool should be able m.6 to export a

odel of all discussed features of all SPs it supports, such that a

ecision support tool can import that model and such that the tool

ser does not have to provide the information manually. Therefore,

he SP tool vendor is responsible for instantiating the SP model

f their tool. f.5 This obviously requires tool vendors and other SP

takeholders to agree on a standardized taxonomy of SPs and their

elevant features. To model the available composability, the s.15

nite state automata proposed by Heffner and Collberg to model

re/post-requirements, pre/post prohibitions, and pre/post sugges-
12
ions for combinations of SPs are an interesting idea (Heffner and

ollberg, 2004).

.1.5. Software development life cycle requirements

SPs come with side-effects, such as slowing down software,

aking it bigger, making debugging harder, requiring changes to

istribution models, requiring certain scalability on the side of se-

ure servers, etc. Taking the time to decide on SPs, possibly itera-

ively with the involvement of experts and time-consuming human

nalysis, also affects the time to market.

Hard and soft c.33 constraints need to be collected in terms

f quantifiable overheads/costs in all possible relevant forms, and

ith respect to compatibility with c.34 SDLC requirements. Differ-

nt constraints might apply to different parts of a program. For ex-

mple, in an online game or a movie player, the launching of the

ame or player might have a large overhead budget, while during

he game or movie real-time behavior is critical.

For all available SPs, later phases of the risk analysis will need

o estimate the impact on the relevant costs and SDLC. It is, there-

ore, necessary to obtain all relevant c.35 profile information on

he software, including execution frequencies of all relevant code

ragments.

An important complication occurs when the vendors of SP tools

hereafter named SP vendors) and users of such tools (hereafter

alled application vendors) do not trust each other. Both parties

ften put severe constraints on how the SP tools are deployed

nd on the amount of information they exchange. An SP vendor

ill typically not be very forthcoming about the weaknesses or

nternal artifacts of the supported SPs and disallow reverse engi-

eering of them, while the application vendors do not want to

hare too many details or code with the SP vendor. Consequen-

ially, only illegitimate attackers will get white-box access to the

rotected applications in which SPs and original assets are inter-

oven as discussed in Section 4.3 . If the experts performing the

isk management lack white-box access to all available SPs and to

he protected application, this will have a tremendous impact on

he methods and data that can be used during the risk assessment

nd risk mitigation phases that target attackers with white-box ac-

ess. r.6 This lack of white-box access by the defenders obviously

eeds to be documented, and the potential impact thereof needs

o be assessed during the risk framing.

In addition, aspects of the SDLC relevant to the monitoring

hase (that will be discussed later) need to be framed, such as c.36

onnectivity and c.37 updatability. Whether an application will al-

ays be online, occasionally connected, or mostly offline impacts

hich online SPs and which monitoring techniques can be de-

loyed. So does the ability to let application servers such as video

treaming servers or online game servers interact with online se-

urity services such as a remote attestation server. Likewise, it is

mportant r.7 to document whether updates can be forced upon

sers and to what extent the vendors can synchronize users’ up-

ates.

Finally, c.38 limitations to the environment in which software

ill be distributed and executed need to be documented. For ex-

mple, Android supports fewer OS interfaces for debugging, and

ome device vendors limit what applications can do after instal-

ation, such as iOS’s limitation on downloading binary code blobs

ost-installment. Such limitations clearly affect the types of SPs

hat can be deployed, so they need to be included in the risk fram-

ng.

a.4 To avoid the need for costly human expertise and manual

ntervention in the next process phase, as much as possible infor-

ation discussed above needs to be formalized, such that tools can

eason about them in the subsequent phases. As already noted at

he beginning of Section 5.1 , this obviously requires a standardiza-

ion effort by the community to create a standard vocabulary and

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

t

i

5

f

c

t

r

a

f

n

o

t

s

t

t

d

5

c

s

t

s

r

a

n

l

n

e

w

t

c

p

n

s

a

a

p

c

a

t

f

c

o

t

t

a

c

t

i

c

d

d

f

w

o

s

t

o

t

p

w

v

t

a

t

a

b

d

a

h

b

w

f

l

a

t

t

n

t

m

e

w

a

a

t

a

r

n

S

f

t

y

l

p

p

t

r

s

e

m

o

d

e

h

a

p

t

R

g

b

i

s

i

e

b

f

t

s

t

axonomies that cover all constructs and models to be documented

n the risk framing phase.

.2. Risk assessment

In the discussion of risk framing, the term “potential” occurs

requently, because in that phase all forms of knowledge are still

onsidered in isolation, including potential SP weaknesses, applica-

ion features, SP tool capabilities, and attacker capabilities. In the

isk assessment phase, one assesses how they interact for the case

t hand by determining which of all potential risks actually mani-

est themselves in the software at hand. First, a m.7 threat analysis

eeds to identify the c.39 actual threats starting from an analysis

f the assets and their intrinsic weaknesses, as well as from at-

ack strategies and their technical attributes that impact their fea-

ibility. Then a qualitative, semi-qualitative, or preferably quantita-

ive m.8 threat impact estimation needs to be performed to iden-

ify the c.40 actual risks, and a m.9 risk prioritization needs to be

one.

.2.1. Identification of the actual threats

This phase aims to determine a list of attacks that could suc-

eed on one or more of the application’s assets by violating their

ecurity requirements. This phase therefore consists of a detailed

hreat analysis that outputs a M.6 actual threats model that de-

cribes those analyzed attacks deemed feasible within the assets’

elevant attack time frames, i.e., the actual c.41 attack surface

nd the c.42 attack vectors on it (e.g., exploited pivots and weak-

esses), the c.43 attack paths of least resistance among them, the

evels and amounts of expertise, effort, and resources attackers

eed to mount those attacks, the damage caused by exploitation,

tc. For each attack path contributing to the major threats, r.8 the

eaknesses and secondary assets used by attackers as pivots need

o be included, as well as the used assumptions, such as worst-

ase-scenario considerations or parameters that are unknown in

ractice. Reporting this information in an actual threat report is

ecessary to enable confidence in the outcome of the assessment.

Critically, r.9 the enumeration and assessment of feasible attack

teps must be performed on both the attack identification phase

nd the attack exploitation phase. The former takes place in the

ttacker’s lab on their infrastructure, the latter more often takes

lace on other users’ devices.

Several open issues need to be addressed to perform this task

orrectly. First, f.6 standardization should produce a more precise

pproach and methodology for defining the MATE threat model,

he attack surface, and attack vectors. The latter includes the in-

ormation attackers can extract from the target software. Assets

an be attacked with different strategies, in which attackers rely

n automated tools and analyses to collect and exploit informa-

ion about the software and to represent the software in struc-

ured representations. A range of c.44 analysis tools and techniques

re applicable, all with their own strengths and limitations, in-

luding static, dynamic, symbolic, and concolic analyses. Knowing

he attacker’s goals and tools is the starting point for identify-

ng and enumerating the possible attack paths. This knowledge in-

ludes the kinds of analysis results that the different tools can pro-

uce, i.e., c.45 software features such as taint information, profiles,

ata, and control flow dependencies. It also includes the software

eatures those analyses depend on to produce their results, their

eaknesses, limitations, and precision.

In this phase m.10 the defender hence needs to deploy their

wn analysis toolbox to determine the features of the primary as-

ets and related application elements that can have an impact on

he feasibility of attacks because they enable, prevent, slow down,

r otherwise impact attacks. This includes r.10 checking whether

he protection policy requirements formulated in the risk framing
13
hase are violated. It also r.11 needs to be done for all potential

eaknesses that were identified in the framing phase, such as in-

ariants or fingerprints in the code that might facilitate certain at-

ack vectors. Moreover, r.12 the set of actually present secondary

ssets needs to be determined to identify the presence of features

hat make them pivots for attackers towards the primary assets.

.5 Obviously, most if not all of the analyses in the toolbox should

e applied automatically.

While we are convinced that such defender toolboxes can pro-

uce most of the necessary information for enumerating feasible

ttacks, a number of research questions are open. For example, ?.7

ow can the formal pieces of information extracted by the tools

e used to precisely identify the viable attack paths? In particular,

hen attackers need to resort to manual efforts, that is not easy to

ormalize. ?.8 How do we then assess the required effort and like-

ihood of success? ?.9 To what extent can automated analysis with

 defender toolbox suffice to avoid the need for actual penetration

esting involving human experts?

It is also an open question ?.10 how fine-grained or concrete

he enumeration of considered attacks paths and their attack steps

eeds to be and how their attributes are to be aggregated. Since

he assessment must drive the mitigation, the generated infor-

ation must be rich enough for the mitigation decision mak-

rs. Therefore, to some extent, the answer to the above question

ill depend on the goal of the assessment. This can be a semi-

utomated or fully automated mitigation phase. In the latter case,

ssessment information must be extensive and accurate, as an au-

omated decision support system cannot rely on human intuition

nd experts’ past experience.

The identification of attacks with an analysis toolbox requires

.13 white-box access to the application code. In case this is

ot possible, e.g, because of SDLC requirements discussed in

ection 5.1.5 , r.14 alternative sources of information about the dif-

erent integrated components need to be considered, such as c.46

hird-party-provided incomplete analysis reports, i.e., partial anal-

sis reports provided by the involved parties. Alternatively, and as

ong as the discussed enumeration approach cannot completely re-

lace human expertise, the inclusion of results of penetration tests

erformed by red teams could be considered. In short, ?.11 the

hreat analysis needs to be able to take into consideration a wide

ange of information sources and forms.

For the scalability and practical use of a software threat analy-

is process, another open issue is ?.12 m.11 incremental attack path

numeration, i.e., how to update and maintain the attack path enu-

eration without repeating a full analysis from scratch when any

f the involved aspects evolve while the application is still being

eveloped, be it the application itself, the SP tool flow, the attack-

rs’ tool boxes, etc. Especially if the attack enumeration involves

uman expertise, a solution in the form of a.6 m.12 incremental

nalysis is critical.

The current state of the art still requires such human ex-

ert involvement. Past research aimed to s.16 automate the at-

ack discovery with abductive logic and Prolog Basile et al. (2015) ;

egano et al. (2016) . That suffers from computational issues, since

enerating attack paths as sequences of attack steps causes a com-

inatorial explosion and requires massive pruning. With the prun-

ng by Regano et al. Regano et al. (2016) only high-level attack

trategies can be generated, which often do not contain enough

nformation to make fine-tuned selections among similar SPs. For

xample, they allow determining the need for using obfuscation

ut do not provide hints for selecting among different types of ob-

uscation.

!.2 ML might be useful to synthesize attack paths from at-

ack steps more effectively (van der Aalst, 2012). Moreover, !.3

.17 methods for exploit generation (Brumley et al., 2008; Shoshi-

aishvili et al., 2016) that automatically construct remote exploits

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

f

M

i

f

a

t

e

s

t

t

t

d

i

w

l

g

b

l

e

m

n

m

c

o

c

i

t

g

o

a

t

t

a

5

t

p

r

t

s

s

l

a

e

o

c

l

p

c

t

t

i

S

t

h

t

t

i

A

a

5

m

t

5

d

t

t

h

r

H

p

c

o

m

s

p

t

c

t

l

a

i

t

b

h

t

c

m

n

w

S

t

r

b

v

t

D

r

p

p

p

l

f

I

o

a

s

c

c

t

t

t

c

p

s

b

t

or vulnerable applications could be investigated to determine

ATE attack paths automatically. They will certainly need mod-

fications, as finding exploitable vulnerabilities is rather different

rom finding MATE attack paths. For example, in the MATE threat

nalysis, for each identified attack path r.15 defenders need to es-

imate the likelihood of succeeding as a function of the invested

ffort, att acker expertise, time, money, and luck in trying the right

trategy first or not, etc. All of that is absent in the mentioned au-

omated exploit generation.

Regarding automation, we think the identification and descrip-

ion of primary assets cannot be automated, as those depend on

he business model around the software. They can hence not be

etermined by only analysing the software. By contrast, a.7 the

dentification of secondary assets, as mentioned in Section 5.1.1 , as

ell as the discovery of attack paths and the assessment of their

ikelihood, complexity, and other risk factors, should be prime tar-

ets for automation.

Even if full automation is out of reach because parts cannot

e automated or do not produce satisfactory results, automating

arge parts of the threat identification phase will already have ben-

fits. It will reduce human effort, thus making proper risk assess-

ent cheaper and hence more accessible, and it can raise aware-

ess about identified attack strategies, thus making the assessment

ore effective. !.4 A gradual evolution from a mostly manual pro-

ess, over a semi-automated one, to potentially a fully automated

ne, is hence a valuable R&D goal. We stress that in order to suc-

eed, automated tools should then not only provide the necessary

nputs for later (automated) phases of the risk management, a.8

hey should also enable experts to validate the produced results to

row confident in the tools, by m.13 providing a transparent report

n the performed threat analysis. Section 6 will present a tool that,

lthough rather basic, achieves just that. s.18 For presenting the

hreats to human experts, different formats have been proposed in

he literature, including attack graphs (Phillips and Swiler, 1998)

nd Petri Nets Wang et al. (2013) .

.2.2. Evaluating and prioritizing risks

The r.16 risk assessment report must indicate the consequences

hat exploitation of an identified actual threat may have. It must

roduce an easily intelligible value or score associated with all the

isks to all assets. Since the objective of the report is prioritizing

he risks to drive the mitigation phase, r.17 it must not only con-

ider the direct value of the violated primary assets, but also the

ide effects, like impact on the business reputation or market share

osses.

Furthermore, r.18 it may consider the likelihood that attackers

re interested in executing the identified threats because of differ-

nt expected ROIs. For example, an attack path that offers a lot

f potential gains for the attacker might be less attractive when it

omes with a high probability of being detected and having to face

egal consequences.

When outcomes from the impact analysis are available in

roper form, our feeling is that this phase has no peculiarities

ompared to risk analysis in other fields. Models and methods can

herefore be adopted from existing literature to build a system

hat allows the consistent evaluation of the impact. As a promis-

ng option, we consider !.5 s.19 m.14 risk monetisation (Doerry and

ibley, 2015), the process of estimating the economic loss related

o risk and the ROI of mitigation activity. This eases reporting to

igher management and is general enough to work for every asset

ype, including software assets. !.6 s.20 Investigating the aspects of

he m.15 OWASP risk rating methodology could also yield interest-

ng results that might work in the MATE context (Williams, 1930).

utomation support for the available options can then obviously

lso be reused, possibly after some adaptations.
14
.3. Risk mitigation

This phase comprises two parts: first m.16 mitigation decision

aking, and next there is m.17 implementing and m.18 validating

he decisions.

.3.1. Mitigation decision making

r.19 Risk mitigation requires the defenders to evaluate how the

eployment of combinations and configurations of SPs will affect

he high(est) risk attack paths.

Ideally, this evaluation can be done through m.19 SP impact es-

imation without having to actually deploy the considered SPs and

aving to measure their effect. This is a major difference from the

isk assessment phase, which relied heavily on measurements. ?.13

ow precise the estimations need to be to enable a sufficiently

recise comparison of c.47 residual risks is an open question. We

onsider two possible approaches.

First, we consider m.20 single-pass mitigation. !.7 This builds

n an assumption that estimations are accurate enough to deter-

ine the best possible combination of SPs without additional mea-

urement. A human or tool then first determines the c.48 most

rotective selection, i.e., the combination and configuration of SPs

hat achieves the minimal residual risk while not violating hard

onstraints. Next, one selects c.49 alternative protection targets

hat trade off some of the residual risks for other aspects, such as

ower performance penalty. For each alternative target, one then

gain selects the best target-specific SPs and estimates the delta

n residual risk and in other relevant aspects over the selection

hat yielded the minimal residual risk. Finally, one then chooses

etween the most protective selection and the alternatives. This

uman decision will typically involve SP experts, application archi-

ects, and managers familiar with the business strategy. Given the

omplexity of SP as discussed before, we consider such a decision

aking process not automatable at this point in time, nor in the

ear future.

The alternative is m.21 iterative mitigation. !.8 This approach,

hich is familiar to practitioners in the industry, adds additional

Ps iteratively in a layered fashion. The assessment and mitiga-

ion phases are not executed once, but alternated over multiple

ounds. In each c.50 mitigation round, an assessment is followed

y mitigation. In the first round, the risk assessment is done on the

anilla application. In later rounds, the assessment is performed on

he application protected with all SPs selected in previous rounds.

uring such later assessments, measurements are performed on al-

eady selected and deployed SPs. This works around the lack of

recise enough estimation methods as needed for the first ap-

roach. It also eases the handling of novel risks introduced by de-

loyed SPs, such as when the location of non-stealthy SPs might

eak the location of assets.

In each round, the mitigation adds an SP layer consisting of a

ew additional SPs to the ones already selected in previous rounds.

n each round, different combinations of SPs can be proposed that

ffer different risk reduction and cost trade-offs. Humans will then

gain select one combination and continue to the next round, or

top once the whole cost budget is consumed or no more signifi-

ant risk reduction is achieved. In each round, different constraints

an be imposed that limit the SPs considered in that round, and

he set of SP is chosen that offers the best potential to reduce

he residual risk. Estimating the reduction potential rather than

he immediate reduction in each round allows for taking into ac-

ount a priori knowledge about the fact that some SPs have the

otential to become much stronger after additional rounds corre-

ponding to additional layers are deployed, while other SPs cannot

ecome stronger because of a lack of synergies.

An example of constraints evolving between rounds is that in

he first rounds SPs might only be deployed on assets, while in

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

l

n

fi

t

i

h

c

a

i

r

t

c

t

t

s

fi

f

t

s

d

p

S

m

e

a

d

a

s

p

o

o

r

e

o

S

l

f

e

t

m

b

f

b

m

t

W

c

c

o

d

c

p

s

t

n

t

a

c

o

a

a

e

C

p

b

f

S

a

m

p

t

c

f

d

f

r

d

B

o

u

m

2

t

q

5

t

t

T

t

t

f

c

i

s

S

j

t

d

w

p

p

5

i

t

m

p

u

t

t

m

ater m.22 asset hiding rounds, non-stealthy SPs can be added for

on-assets to avoid that protected assets stand out because of SP

ngerprints. Our PoC contains such an asset hiding step, albeit in

he same round as the asset protection step, i.e., without perform-

ng measurements in between, as will be detailed in Section 6.3.2 .

The iterative approach is more realistic for several reasons. The

umans making decisions in each round can make up for defi-

iencies in the existing tool support and formalized knowledge,

nd they can build more confidence in the outcomes of the mit-

gation process. Secondly, measurements are performed in each

ound, which again allows for more confidence in the outcomes.

Automation poses the most severe constraints on the mitiga-

ion task. m.23 Optimizing the selection of SPs must comply with

omputational constraints. a.9 In most usage scenarios, optimiza-

ion models must return results within minutes or hours. Given

he large search space to explore, this requires ad hoc m.24 search

pace pruning methods that prune less relevant combinations ef-

ciently. In some usage scenarios, optimization models returning

ar-from-optimal results quickly are acceptable, such that the time-

o-market requirements of a software launch can be met while

pending more time to find better SP combinations for later up-

ates. 9

r.20 Within one round of decision making, the optimization

rocess should be driven by at least the potency of the selected

P combination and by estimating the protected software’s perfor-

ance. Ideally, resilience is also considered. Current methods for

stimating the potency, resilience, and (to some extent) overheads

re not usable for automatic decision support, as they require the

eployment of the SPs to perform a measurement. Given the time

nd resources needed to apply SPs on non-toy programs to mea-

ure objective metrics and run-time overheads, an optimization

rocess that requires measurements instead of estimations would

nly consider a very limited solution space, which would make the

ptimization process useless.

?.14 Estimating the strength (and overhead) of layered SPs is

eally hard, as their code is highly interwoven.Our work on s.21

stimating the potency of obfuscations (Canavese et al., 2017) and

n s.22 a game-theoretic approach to optimize the selection of

Ps (Regano, 2019) will be discussed in Section 6.3.1 . !.9 ML can

ikely help to solve this difficult problem, as already demonstrated

or specific aspects of strength such as resilience against symbolic

xecution (Banescu et al., 2017), but clearly need further research.

?.15 Another open issue is that SPs have varying effects on at-

ack success probability, in particular when the security require-

ents are time-limited or relative. In some cases, the effects can

e quantified in absolute terms, such as increased brute-force ef-

ort required to leak an encryption key from well-studied white-

ox crypto protection. In other cases, such as the delay in hu-

an comprehension of code that has undergone design obfusca-

ions (Nagra and Collberg, 2009), the effect is harder to quantify.

hen software contains different assets with different forms of se-

urity requirements, the relative value of different SPs hence be-

omes difficult to determine, and hence the overall risk mitigation

ptimization becomes increasingly difficult.

s.23 There is a limited body of existing work available on the

escribed decision support, and it does not cover all necessary

onstructs, models, and methods. In industrial practice, companies

rovide so-called m.25 cookbooks with SP recipes. For each as-

et, users of their tools are advised to manually select and deploy

he prescribed SPs in an iterative, layered fashion as long as the
9 Anonymously, SP suppliers confirm to us that for many of their customers the

orm is weak implementation at first because security/protection is not on the fea-

ure list from product management, and then complaining when things get broken,

fter which the supplier needs to help out. Obviously, they prohibit us to document

oncrete cases.

5

t

o

t

t

15
verhead budget allows for additional SPs. Automated approaches

re either overly simplistic or limited to specific types of SPs,

nd hence only support specific security requirements. Collberg

t al. Collberg et al. (1997) , and Heffner and Collberg Heffner and

ollberg (2004) studied how to decide which obfuscations to de-

loy in which order and on which fragments given an overhead

udget. So did Liu et al. Liu (2016) ; Liu et al. (2017) . They dif-

er in their decision logic and in the metrics they use to measure

P effectiveness. Im portantly, however, their used metrics are fixed

nd limited to specific program complexity and program obscurity

etrics, without adapting them to the identified attack paths. Cop-

ens et al. proposed an iterative software diversification approach

o counter a concrete form of attack, namely diffing attacks on se-

urity patches (Coppens et al., 2013). Their work measured the per-

ormance of concrete attack tools to steer diversification and re-

uce residual risks. All of the mentioned works are limited to ob-

uscations. In all works, measurements are performed after each

ound of transformations, much like in the second approach we

iscussed above.

To improve the user-friendliness of manually deployed SP tools,

runet et al. proposed composable compiler passes and reporting

f deployed transformations (Brunet et al., 2019). Holder et al. eval-

ated which combinations and orderings of obfuscating transfor-

ations yield the most effective overall obfuscation (Holder et al.,

017). However, they did not discuss the automation of the selec-

ion and ordering according to a concrete program and security re-

uirements.

.3.2. Actual deployment

r.21 In each mitigation round, the chosen SP combination needs

o be deployed, so SP tools need to be configured and run to inject

he SPs selected so far. Ideally, this is completely automated. a.10

his requires tool interfaces that allow m.26 the decision support

ools to drive the SP tools. Providing such interfaces and enabling

his automation would have significant benefits. Besides saving ef-

ort on manual user interventions, it would also skip the learning

urve of configuring the used tool flows properly. Moreover, hav-

ng such an integrated framework could pave the road for an open

tandard for an API for SP.

Following the deployment, r.22 it is critical to validate that the

P tools actually delivered as expected. Were the selected SPs in-

ected in the intended way? Do the injected SPs have weaknesses

hat were not expected? ?.16 How to obtain the necessary vali-

ation is an open question in some usage scenarios, in particular

hen the deployment of the mitigation is executed by multiple

arties that do not want to share sensitive information and do not

rovide white-box access to their software components.

.4. Risk monitoring

According to the NIST Joint Task Force (2018) risk monitoring

ncludes “assessing control effectiveness, documenting changes to

he system or its environment of operation, conducting risk assess-

ents and impact analysis, and reporting the security and privacy

osture of the system.” For SP, r.23 monitoring involves the contin-

ous tasks to be performed once the software has been released

o track how the risk exposition evolves over time. This consists of

wo related activities: m.27 updating the risk analysis, and m.28

onitoring the risk exposure of the released application.

.4.1. Keeping the risk analysis up-to-date

Keeping the analysis up-to-date requires m.29 monitoring how

he inputs used in the three earlier risk analysis phases evolve

ver time and how that evolution affects the decisions made in

hose phases. We can abstract these into monitoring the evolu-

ion of three different pillars of information: the information re-

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

l

u

t

c

d

w

c

a

p

t

e

a

n

w

m

i

r

h

h

l

a

s

b

w

v

t

v

t

v

5

s

b

t

f

t

o

l

t

a

p

c

f

o

a

t

t

p

w

s

t

t

v

e

t

e

s

s

t

t

Fig. 3. The ESP workflow.

6

m

w

t

t

t

t

s

t

c

i

a

a

w

a

a

a

r

A

w

o

t

d

t

d

e

a

f

a

10 In the ASPIRE project and in some cited papers, the ESP was called the ASPIRE

Decision Support System (ADSS).
11 https://github.com/daniele-canavese/esp/
12 https://www.youtube.com/watch?v=pl9p5Nqsx _ o
ated to the assessments (e.g., new attacks, attack techniques, tool

pdates), the information related to SPs (e.g., updates, vulnerabili-

ies, breaches), and the information related to the protected appli-

ation. Of course, monitoring can then lead to the decision that a

ifferently-protected version of the application should be released

henever any tracked changes lead to a re-evaluation of earlier de-

isions.

The r.24 monitoring of information related to SPs concerns both

ttacks against existing SPs and newly developed SPs. For exam-

le, when a complex attack technique (e.g., generic deobfusca-

ion (Yadegari et al., 2015)) is first presented in the academic lit-

rature, it might not be considered relevant during an original risk

ssessment because the attack is hard to replicate and its effective-

ess has not been demonstrated on more complex pieces of soft-

are. However, when attackers later release a toolbox that auto-

ates the replication and publish a blog discussing how they used

t to attack a complex application successfully, this should lead to a

e-evaluation. Similarly, r.25 when new SPs become available with

igher effectiveness against old or new attacks, or with lower over-

ead, this may lead to a re-evaluation.

Similarly, r.26 monitoring must consider that information re-

ated to the application can itself evolve. One example is where

 company might decide that there are, in fact, additional as-

ets in the program that need to be protected. This can happen

oth as a late realisation after deployment, but also in the case

here the application itself evolves over time, by virtue of new

ersions being released with changes in functionality or struc-

ure. Another example is that the priorities in the company’s

alue estimation can change over time. This would mean that

he associated formulas for the risk analysis produce different

alues.

.4.2. Risk monitoring of the released application

Next, one needs to m.30 monitor how copies of the released

oftware are running on their users’ premises. This can be achieved

y m.31 monitoring the information that the protected applica-

ion communicates to the vendors. Such information may originate

rom a s.24 monitoringby-design SP such as reactive remote attes-

ation (Viticchié et al., 2016), but also from communication with

ther online components that were not originally designed for on-

ine monitoring. This is particularly the case when anomaly de-

ection can link irregular communication patterns to unauthorized

ctivities, such as running multiple copies in parallel or executing

rogram fragments in a debugger in execution orders or frequen-

ies not consistent with authorized uses. Such patterns can occur

rom communications present in the original applications, or from

nline SPs such as code s.25 renewability (Abrath et al., 2020a)

nd s.26 client-server code splitting (Ceccato et al., 2007). Impor-

antly, the use of non-monitoring communication does not require

he implementation of reaction mechanisms in the protected ap-

lication to be effective.

In many cases, r.27 it is advisable to analyse the data obtained

ith the monitoring. The insights extracted can be helpful to re-

pond to detected anomalies, for example, by letting the applica-

ion server take action in case of discovered attacks, as well as

o keep the risk analysis process up-to-date, for example, to re-

aluate the threats and their likelihood.

Finally, the vendor of the released application needs m.32 user

xperience evaluation methods to monitor whether the impacts of

he deployed SPs on the user experience and cost are in line with

xpectations or promises by the SP vendor. For example, if users

tart reporting usability issues or if online SPs lead to scalability is-

ues, e.g., because more copies are sold than originally anticipated,

hose evolutions might also warrant a revision of the risk mitiga-

ion strategy.
16
. Proof-of-Concept expert system for software protection

Expert systems exist in cybersecurity since 1986 when Hoff-

an proposed one for the risk analysis of computer net-

orks (Hoffman, 1986). From the initial intrusion detection sys-

ems (Denning and Neumann, 1985; Tsudik and Summers, 1990)

o modern ones using AI (Owens and Levary, 2006), expert sys-

ems have been used to automatically configure security con-

rols (Eronen and Zitting, 2001), for post-incident network foren-

ics (Kim et al., 2004; Liao et al., 2009) and decision making.

The Expert System for Software Protection (ESP) is our PoC tool

hat implements a semi-automated SP risk analysis 10 Its complete

ode is available 11 , as well as a technical report on its inner work-

ngs (Basile and Report, 2016), a user manual (Coppens, 2016), and

 demonstration video 12 . The ESP is primarily implemented in Java

s a set of Eclipse plug-ins with customized UI. It protects soft-

are written in C and needs source code access. The target users

re software developers or SP consultants. After the user manu-

lly annotates the assets in the source code, the ESP can gener-

te what it considers optimally protected binaries and the cor-

esponding security-server-side logic without human intervention.

s requested by the SP experts involved in the evaluation, a step-

ise execution is also available where users can check and possibly

verride any information generated by the tool before executing

he next step.

Fig. 3 depicts the high-level workflow, split into the four phases

iscussed in Section 5 .

All the data needed for the risk analysis process, starting from

he risk framing information and including all the data obtained

uring the other three phases, are modeled and stored in a Knowl-

dge Base (KB). The used model and corresponding KB structure

re designed specifically to support the reasoning methods needed

or a software risk analysis (Basile et al., 2019). For example, it

llows representing context information, like the attacker model

https://github.com/daniele-canavese/esp/
https://www.youtube.com/watch?v=pl9p5Nqsx_o

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

Fig. 4. The top level of ESP meta-model to support modeling the relations between

all relevant constructs.

a

t

s

M

i

t

t

s

e

s

t

d

S

o

s

a

a

l

t

d

t

S

u

c

e

t

p

6

r

m

c

F

s

g

d

e

c

m

t

S

n

c

c

c

c

c

u

E

c

t

f

t

t

q

t

C

t

g

G

s

m

p

o

a

w

t

c

i

d

f

c

i

6

t

b

t

s

e

s

t

t

g

w

o

C

w

p

i

t

t

i

(

a

i

13 https://projects.eclipse.org/projects/tools.cdt
nd the SPs available to mitigate the risks, and information about

he application to protect, including the assets and abstract repre-

entations of the application code collected through code analyses.

ore details about these constructs and the model are presented

n Section 6.1 .

Next, the ESP performs the risk assessment phase, whose de-

ails are provided in Section 6.2 . This phase enriches the data in

he model. It infers the possible attacks against the assets and as-

esses the risks against each asset by estimating the complexity of

xecuting those attacks. The risk is evaluated by considering the

oftware’s structure and the attacker model, i.e., the skills an at-

acker is likely to have, and asset values as defined by the user

uring the risk framing. The ESP’s risk mitigation phase, detailed in

ection 6.3 , is also based on innovative methods. It uses ML and

ptimization techniques to select the best solution , i.e., the best

equence of SPs to be deployed and their configurations. It then

utomatically deploys it on the software to generate the protected

pplication binaries. If remote SPs are included in the selected so-

ution, the deployment phase also generates the server-side logic

o be executed on a trusted remote entity.

Finally, the risk monitoring is performed. However, the ESP

oes not dynamically update the risk analysis process parame-

ers. It only performs real-time integrity checking (as discussed in

ection 5.4.2) depending on the methods implemented by the SPs

sed.

The ESP can also be used in two additional modes. It can be

onfigured to propose a set of solutions that experts can manually

dit to control the SP deployment fully. Moreover, it can be used

o evaluate the effectiveness of solutions manually proposed by ex-

erts.

.1. Risk framing in the ESP

This tasks’ purpose is to initialize all the constructs and their

elations as needed for risk analysis, and to store them into a

odel formally defined in Basile et al. (2019) and named the KB. It

overs half of the models (M.1, M.4, M.5) highlighted in Section 5 .

ig. 4 presents the core classes, which will be discussed in the next

ections. The KB is instantiated as an OWL 2 ontology (Owl, 2012).

The risk framing starts with the preparation of the KB with

eneric a-priori information . This includes the core concepts and

ata not related to the specific application to be protected but rel-

vant to framing the risk analysis process. A priori information in-

ludes the assets types (c.1, c.2); the supported security require-

ents (c.8, c.9, c.12, c.13, c.14); all the known attack steps and

heir characterization (c.4, c.17, c.18, c.20, c.21, c.22); the available

Ps and their composability (c.24, c.26, c.27, c.28, c.29); and the
17
ecessary constructs to evaluate risks and mitigations (c.23, c.25,

.30, c.31, c.32, c.33) that were discussed in Section 5.1 . The user

an also set preferences and analysis parameters (c.38, c.44), in-

luding hard and soft constraints and SDLC requirements (c.34,

.36), as well as the SPs to consider and the kinds of attacks to

ounter.

The ESP then performs a source code analysis (m.2) that pop-

lates the KB with a-priori analysis-specific information using the

clipse C Development Toolkit 13 . The analysis collects all the appli-

ation parts , i.e., the variables, functions, and code regions. It de-

ermines additional information such as variables’ data types and

unction signatures. It produces additional representations such as

he call graph, which are useful for making decisions about the SPs

o apply.

The PoC of the ESP supports confidentiality and integrity re-

uirements. The user needs to annotate the source code with cus-

om pragma and attribute annotations (Basile and Report, 2016;

oppens, 2016) to formally identify the code’s assets and to specify

heir security requirements (m.1, m.5). The ESP then uses the call

raph to identify potential secondary assets. These are listed in the

UI where the user can manually select which ones are to be con-

idered assets in the later phases, and with which security require-

ents (m.3, m.4). Using only a call graph as a model (M.2) to find

otential secondary assets that need to be manually confirmed is

verly simple, and hence definitely a topic of future research.

Together with a-priori information, the KB model represents

-posteriori information , i.e., data inferred and stored during later

orkflow phases such as the inferred attacks and the solutions.

In addition, the ESP offers a GUI to edit the framing informa-

ion, e.g., to mark additional assets, characterize the attacker, and

hoose SPs. The GUI also allows importing and exporting risk fram-

ng data as XML or OWL files (m.6). This feature was appreciated

uring the validation as it allows augmenting the analysis with in-

ormation that may be missed by the automatic but as of yet in-

omplete process, like the secondary assets that might be linked

nto a protected program as part of certain SPs.

.2. Risk assessment in the ESP

The risk assessment implements several methods to estimate

he actual threats and risks. In the threat analysis , the ESP uses

ackward reasoning methods (m.7) to identify the attacks (c.39)

hat can breach the primary assets’ security requirements, and

tores them in the KB (Regano et al., 2016). This stage is roughly

quivalent to the ISO27k “identify risk” step as discussed in

ections 3.1 and 5.2 .

The identified attacks are represented as a set (M.6) of at-

ack paths (c.3). These are ordered sequences of atomic attacker

asks called attack steps (c.4). Attack paths are equivalent to attack

raphs (Phillips and Swiler, 1998) and can serve to simulate attacks

ith Petri Nets Wang et al. (2013) . The attack steps that populate

ur PoC KB originate from a study and taxonomy by Ceccato et al.

eccato et al. (2017, 2019) and from data from industrial SP experts

ho participated in the ASPIRE project.

The attack paths are built via backward chaining (m.7) as pro-

osed in earlier work (Basile et al., 2015; Regano et al., 2016) and

mplemented with SWI-Prolog Wielemaker et al. (2012) . An at-

ack step can be executed if its premises are satisfied. It produces

he results of its successful execution as conclusions. The chain-

ng starts with steps that allow reaching an attacker’s final goal

the breach of a primary requirement) and stops at steps without

ny premise. The search algorithm builds a proof tree with increas-

ng depth and width, with exponential complexity. The ESP hence

https://projects.eclipse.org/projects/tools.cdt

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

i

a

f

t

v

f

p

t

m

i

a

i

r

r

(

fi

a

t

t

m

i

m

p

O

s

e

p

p

d

t

a

i

c

w

t

n

p

m

6

t

p

c

t

e

p

n

t

p

P

t

d

c

p

a

m

p

r

o

b

m

p

e

T

t

w

t

p

p

c

a

e

a

m

p

T

v

o

i

a

p

s

c

s

c

a

c

r

6

m

E

s

a

q

A

a

m

p

h

u

S

s

M

s

K

p

l

g

e

t

mplements basic yet aggressive search space pruning to build an

ttack catalogue, e.g., by considering a maximum length for the in-

erred attack paths (Regano, 2019). The proof tree models the ac-

ual threats (M.6). Its nodes can be seen as the exploited attack

ectors (c.42), of which the leaves form the identified attack sur-

ace (c.41).

The ESP performs the threat impact evaluation (m.8) and risk

rioritization (m.9) by assigning a risk index (c.40) to each iden-

ified attack path. Every attack step in the KB is associated with

ultiple attributes, including the complexity to mount it, the min-

mum skills required, the availability of support tools and their us-

bility . Additional attributes can be associated with entities triv-

ally. Each attribute assumes a numeric value in a five-valued

ange. For assessing the actual risks, the values of complexity met-

ics and software features (c.45) computed on the involved assets

 m.10) with the available analysis tools (c.44) are used as modi-

ers on the attributes (c.22). For instance, an attack step labelled

s medium complexity can be downgraded to lower complexity if

he asset to compromise has a cyclomatic complexity below some

hreshold.

The risk index of an attack path is obtained by aggregating the

odified attributes of its steps into a single value (m.8). Our PoC

s rather simple. Per attack step, it first aggregates all the step’s

odified attributes into a single attack step risk index. The attack

ath risk index is then computed by multiplying its steps’ indices.

ther aggregation functions are supported, such as summing the

teps’ indices, selecting maxima, and more complex features can

asily be incorporated, like making the attack path risk index de-

end on how many different expert tools are required.

The report (m.13) presenting the attack paths and the com-

uted risk indices was welcomed by security experts (as will be

iscussed in more detail in Section 7), amongst others because

hey serve as a starting point for evaluating the weaknesses of

n application before more manual risk mitigation. Experts were

nterested in refining the identified, most risky paths into more

oncrete sequences of attack operations, and in some cases, they

ould have manually updated the risk indices. In our PoC, the at-

ack steps are coarse-grained, such as “locate the variable using dy-

amic analysis” and “modify the variable statically”. This is an im-

ortant limitation. As Section 5.2.1 discusses, understanding how

uch refinement is needed is an open research question.

.3. Risk mitigation in the ESP

Before presenting the ESP’s risk mitigation process m.16 , we in-

roduce more precise constructs. In the ESP, an SP is a specific im-

lementation of an SP technique by a specific SP tool. For instance,

ontrol flow flattening (Wang et al., 20 0 0) as applied by Diablo in

he ASPIRE Compiler Tool Chain (ACTC) and by Tigress are consid-

red distinct SPs (Collberg et al., 2012; Van Put et al., 2005). 14 A

rotection instance (PI) is a concrete configuration of an SP tech-

ique. The ESP can use the PI to drive the SP tool to apply an SP

echnique on a chosen application part. Depending on the available

arameters, multiple PIs can be defined for the same SP. An applied

I is the association of a PI with an application part, which states

hat the PI has been selected to be applied to the part. A candi-

ate solution is a sequence of applied PIs. It is ordered because of

omposability and layering requirements and benefits (c.27).

The ESP first searches for suitable SPs . These are SPs that im-

act attributes of the listed attack steps (m.19). For example, they

re able to defer an attack step. Each PI is associated with a for-

ula that alters these attributes for each attack step. After the ap-
14 https://github.com/aspire-fp7/actc and https://tigress.wtf/

i

fi

a

18
lication of an SP, the risk index of the attack steps and paths are

e-assessed.

The formulas also consider complexity metrics (c.25) computed

n the protected assets’ code. This way, the ESP incorporates Coll-

erg’s prescription of potency (Collberg et al., 1997) (c.30) as a

easure of the additional effort that attackers have to invest on

rotected code. The parameters to be used in the formulas for

valuating the impact of SPs on attack steps are stored in the KB.

hey are based on a survey among the developers of all SPs in-

egrated into the ASPIRE SP tool flow (Basile and Report, 2016),

hom we asked to score the impact of their SPs on a range of at-

ack activities in terms of concrete impacts. These include the im-

act on human comprehension difficulty by increasing code com-

lexity, the impact of moving relevant code fragments from the

lient-side software to a secure server not under the control of

n attacker (Abrath et al., 2020a; Cabutto et al., 2015; Viticchié

t al., 2016), the impact on the difficulty of tampering through

nti-tampering techniques with different reaction mechanisms and

onitoring capabilities (Viticchié et al., 2016), and the impact of

reventive SPs such as anti-debugging (Abrath et al., 2020b; 2016).

he survey results were complemented with expert feedback and

alidated in pen test experiments (Ceccato et al., 2017; 2019).

Additional modifiers are activated when specific combinations

f PIs are applied on the same application part. They model the

mpact of layered SPs (c.28) when recomputing the risk indices

nd synergies between SPs. The existence of synergies (c.29) was

art of the mentioned survey.

Candidate solutions must also meet cost and overhead con-

traints (c.33). Our PoC filters candidate SPs using five overhead

riteria: client and server execution time overheads, client and

erver memory overheads, and network traffic overhead.

Finally, the SP index associated with a candidate solution is

omputed based on the recomputed risk indices of all discovered

ttack paths against all assets, weighted by the importance asso-

iated with each asset. The SP index is the ESP’s instantiation of

esidual risk (c.47).

.3.1. Asset protection optimization

The ESP finds the mitigations by building an optimization

odel that it solves with a game-theoretic approach (m.23). The

SP tries to combine the suitable SPs to build the optimal layered

olutions, i.e., the candidate solution that maximizes the SP index

nd satisfies the constraints.

Computing the SP index by re-computing the risk index re-

uires knowledge of the metrics on the protected application.

s applying all candidate solutions would consume an infeasible

mount of resources, we have built an ML model to estimate the

etrics delta after applying specific solutions without building the

rotected application (Canavese et al., 2017). The ESP’s ML model

as been demonstrated to be accurate for predicting variations of

p to three PIs applied on a single application part. With more

Ps, however, the accuracy starts decreasing significantly. This is-

ue seems to be solvable with larger data sets and more advanced

L techniques.

The ESP uses the same predictors to estimate the overheads as-

ociated with candidate solutions. Per PI and kind of overhead, the

B stores a formula for estimating the overhead based on com-

lexity metrics computed on the vanilla application. These formu-

as were determined by the developers of the different SPs inte-

rated into the tool flow of the ASPIRE project.

Combinations greatly increase the solution space. To explore it

fficiently and to find (close to) optimal solutions in an acceptable

ime, the ESP uses a game-theoretic approach, simulating a non-

nteractive SP game (m.24). In the game, the defender makes one

rst move, i.e., proposes a candidate solution for the protection of

ll the assets. Each proposed solution yields a base SP index, with

https://github.com/aspire-fp7/actc
https://tigress.wtf/

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

Table 5

SPs supported by the ESP, with enforced security requirements and tools used to deploy the

SPs. For each tool, we only mark techniques supported on our target platforms, i.e., Android

and Linux on ARMv7 processors.

a The ACTC provides limited support for code virtualization, meaning that it is not reliably

applicable to all code fragments. Hence the ESP does not consider it a potential protection

instance.

a

t

m

a

S

a

l

a

f

t

m

c

(

f

a

S

6

c

2

m

n

l

s

g

a

t

e

i

c

p

l

s

i

m

t

c

c

m

S

s

a

b

e

k

f

p

l

i

T

6

t

a

(

c

E

o

v

m

F

m

e

p

s

t

c

n

s

c

d

M

a

6

i

e

15 See http://lpsolve.sourceforge.net/5.5/ and https://www.ibm.com/analytics/

cplex-optimizer .
 positive delta over the risk index of the vanilla application. Then

he attacker makes a series of moves that correspond to invest-

ents of an imaginary unit of effort in one attack path, which the

ttacker selects from the paths found in the attack discovery phase.

imilarly to how potency-related formulas of the applied SPs yield

 positive delta in the SP index, we use resilience-related formu-

as that estimate the extent to which invested attack efforts eat

way parts of the SP potency, thus decreasing the SP index. These

ormulas are also based on expert feedback. We refer to Regano’s

hesis for more details on this game-theoretic approach that uses

ini-max trees and a number of heuristics to yield acceptable out-

omes in acceptable times (Regano, 2019).

After solving the game, the ESP shows the best SP solutions

 c.4 8, c.4 9) it found, i.e., the best first moves by the defender,

rom which the user can choose one. The ESP then invokes the

utomated SP tools to apply the solution, as will be explained in

ection 6.3.3 .

.3.2. Asset hiding

As discussed in Section 5.1 , SPs are not completely stealthy be-

ause they leave fingerprints. In a previous paper (Regano et al.,

017), we proposed a solution to this problem based on the refine-

ent of existing SP solutions with additional SPs also deployed on

on-asset code regions (m.22). Those lure the attacker into ana-

yzing such regions in lieu of the assets’ code, thus hiding the as-

ets from plain sight. We have devised three asset-hiding strate-

ies. In fingerprint replication , SPs already deployed on assets are

lso applied to other code parts to replicate the fingerprints such

hat attackers analyse more parts. With fingerprint enlargement , we

nlarge the assets’ code regions to which the SPs are deployed to

nclude adjacent regions such that attackers need to process more

ode per region. With fingerprint shadowing , additional SPs are ap-

lied on assets to conceal fingerprints of the chosen SPs to prevent

eaking information on the security requirements.

The PoC ESP hides the protected assets in an additional deci-

ion making step. In this step, it adds confusion indices to the SP

ndices, which are computed by an ad hoc formula built to esti-

ate the additional time the attacker needs to find the assets in

he application binary after the application of hiding strategies. The

omputation of the confusion indices requires estimating the code

omplexity metrics after the application of the SPs. To build this

odel, we have studied the effects of the hiding strategies for the

Ps devised during the ASPIRE project. The results of this study,

tored in the ESP KB, are used to compute the confusion index.
19
Starting from the solutions generated via the game-theoretic

pproach, the ESP proposes additional application parts to protect

y solving a Mixed Integer-Linear Programming (MILP) problem,

xpressed as a heavily customized instance of the well-known 0–1

napsack problem (Kellerer et al., 2004) that maximizes the con-

usion index and uses overhead as weight in constraints. The MILP

roblem is solved using an external solver; the PoC ESP supports

p_solve and IBM CPLEX Optimizer 15

In between the asset protection optimization and the asset hid-

ng, no measurement is done on code on which SPs are deployed.

he ESP’s decision making is a single-pass process (m.20).

.3.3. Deployment

The final step in the ESP workflow deploys the solution on the

arget application (m.17,m.26). The solution is chosen by the user

mongst the ones presented by the ESP. The result of this step

and of the whole workflow) is the protected binary plus source

ode for the server-side components for selected online SPs. The

SP deploys a solution by driving automatic SP tools. At the time

f writing, the ESP supports Tigress, a source code obfuscator de-

eloped at the University of Arizona, and the ACTC, which auto-

ates the deployment of SP techniques developed in the ASPIRE

P-7 project (Basile and Report, 2016; Coppens, 2016). Table 5 sum-

arizes the SP techniques supported by the ESP.

Finally, we point out that the ESP has been engineered to be

xtensible. All the modules can be replaced with alternative com-

onents. For example, the risk assessment based on backward rea-

oning could be replaced with a more advanced attack discovery

ool, the only constraint being that it needs to produce output

ompliant with the SP meta-model. It is also possible to support

ew SPs. It is enough to add the required information into the KB,

uch as the evaluation of strengths and impacts on attack steps,

onflicts, and synergies with other SPs plus all parameters of the

iscussed formula. The only demanding activities are training the

L algorithms to predict how new SPs alter the metrics, and the

utomation of the deployment of the SPs.

.4. Risk monitoring in the ESP

If the selected SPs include online SPs such as code mobil-

ty (Cabutto et al., 2015) and reactive remote attestation (Viticchié

t al., 2016), the ESP generates all the server-side logic, including

http://lpsolve.sourceforge.net/5.5/
https://www.ibm.com/analytics/cplex-optimizer

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

t

p

r

b

m

t

i

G

S

n

l

6

e

t

e

c

5

j

t

A

d

h

a

t

t

t

m

p

i

i

m

n

p

h

t

a

n

c

h

i

u

e

t

c

c

E

r

t

m

n

i

w

q

t

t

q

r

a

t

A

y

c

i

a

m

t

d

r

e

t

t

s

o

p

t

w

b

a

a

7

(

t

a

a

d

m

M

a

d

E

m

s

t

i

1

m

e

S

7

t

t

A

l

c

a

a

s

b

f

s

t

t

he backends that perform the risk monitoring of the released ap-

lication. This includes the untampered execution as checked with

emote attestation, but also the communication with the code mo-

ility server (m.30,m.31).

Our PoC does not automatically include the feedback and other

onitoring data such as the number and frequency of detected at-

acks and compromised applications, and server-side performance

ssues. The knowledge base needs to be manually updated using

UIs to change risk framing data related to attack exposure and

P effectiveness. Issues related to insufficient server resources also

eed to be addressed independently; the ESP only provides the

ogic, not the server configurations.

.5. Coverage

As could already be seen in Tables 2 , 3 , and 4 , the ESP cov-

rs many of the constructs, models, and methods we positioned in

he overall risk management approach in Section 5 . Albeit to some

xtent in a rudimentary form, as can be expected from a proof-of-

oncept tool, the ESP instantiates 36 of the 50 identified constructs,

 of the 6 discussed models, and 21 of the 32 methods.

All of the instantiated artifacts were required to meet the ob-

ectives and requirements of the ASPIRE project. The reasons why

he other 14+1+11 artifacts are not instantiated in the ESP are that

SPIRE research project plan was drafted and executed before the

evelopment of our vision on standardization, and that the project

ad a limited time frame and resources, and hence a limited scope

nd set of requirements to meet.

The non-instantiated artifacts relate to five major limitations

hat in our opinion do not impact the possibility to build an en-

ire SP workflow that includes mostly automated tasks. Indeed, all

he activities that we have not (yet) automated can be performed

anually, so if a fully automated approach would be proven im-

ossible at some point in the future, a semi-automated approach

s certainly possible.

First, ASPIRE focused solely on the technical threats, neglect-

ng the relationship with business risks. Constructs c.6 and c.11 ,

odel M.3 , and methods m.14, m.15 , and m.28 that relate to busi-

ess models were hence out of scope. With the attack exploitation

hase (c.11) being out of scope, the decision support tool did not

ave to differentiate between threats in that phase and in the at-

ack identification phase, and hence no tool support to treat (c.10)

s an explicit construct was needed. Existing methods to link tech-

ical threats and constraints to business risks are available as dis-

ussed in Section 5.2.2 , if not automated then certainly relying on

uman judgments. Furthermore, providing support for consider-

ng multiple attack phases requires no fundamental changes to the

sed models and methods.

Second, another scope limitation was that ASPIRE only consid-

red the protections of application instances in isolation, not as

hey evolve over time, and with the SP tool having white-box ac-

ess to all relevant application code. Hence constructs c.7, c.37 and

.46 , and methods m.11, m.12, m.27 , and m.29 were out of scope.

xperts can manually deal with those SDLC issues in case future

esearch would fail to provide automated solutions.

Third, whenever functional requirements were stated, such as

he need to deploy a copy-protection scheme, only one imple-

entation of that functionality was developed. Hence no decisions

eeded to be made on how to meet those requirements, mak-

ng decision support for functional requirements (c.13) irrelevant

ithin the project. In general, decision support for functional re-

uirements is simpler than for non-functional requirements: func-

ional requirements are typically expressed as “some form of pro-

ection functionality X needs to be included.” If anything, such re-

uirements limit the search space that the SP optimization algo-

ithms need to explore, rather than complicating it.
20
Fourth, whereas Section 4.2 argued for maximal formalization

nd automation to minimize the potential reduction in precision

hat can stem from the subjective expert judgments, within the

SPIRE project complete automation was not considered viable

et. The involvement of experts in making judgments was still ac-

epted, so some aspects were not formalized and automated but

nstead left to human experts. This is the case for methods m.18

nd m.132 for validating that the SP deployment is in line with

ade choices and requirements; for constructs c.5, c.15 , and c.16

hat serve to identify which application parts require protection

espite not being primary assets; for identifying the path of least

esistance (c.43) among the enumerated attack paths; and for it-

rative mitigation decision making (c.50, m.21). An expert can use

he ESP manually in an iterative manner, but the ESP does not au-

omate this. Finally, while the SP tool developed in ASPIRE con-

iders profile information for minimizing the performance impact

f injected control flow obfuscations, the ESP does not consider

rofile information (c.35) for selecting SPs. It is hence left up to

he human expert to manually exclude expensive SPs for assets on

hich they cannot be afforded.

Fifth, the one remaining unsupported artifact is that of cook-

ooks with SP recipes (m.25). Those cookbooks are only intended

s backups for when automated SP selection is not supported. They

re hence superfluous in the ESP.

. Evaluation of the instantiated artifact

The ESP has been designed and implemented to answer RQ1

whether automated decision support tools can assist experts with

he deployment of SPs and the use of SP tools) within the scope

nd requirements of the ASPIRE project. However, this evaluation

lso provides evidence to answer RQ3 on which parts of a stan-

ardized risk management approach to SP can already be auto-

ated, as it provides a lower bound on the set of those parts.

oreover, since the ESP implements a NIST-based four-phase risk

nalysis approach, a positive evaluation of the tool provides evi-

ence that modelling SP as a risk management task is feasible. The

SP hence partially backs up the list of constructs, models, and

ethods discussed in Section 5 to answer RQ2 on which artifacts a

tandardized risk management approach in the domain of SP needs

o entail.

For this evaluation, the research question RQ1 is further split

nto more precise technical questions according to ISO/IEC 9126-

:2001 evaluation criteria. Table 6 lists these questions and the

ain results/answers. We answer RQ1.a–RQ1.c with the qualitative

valuation in Section 7.2 of which the design is first discussed in

ection 7.1 . RQ1.d is answered in Section 7.3 and Section 7.4 .

.1. Design of the qualitative evaluation

The ESP has been validated with expert SP users drawn from

he ASPIRE project consortium and advisory boards. This qualita-

ive evaluation is a snapshot of experts’ opinions about the final

SPIRE PoC at the end of the project in Q4 2016, when they were

ast available to us.

In ASPIRE, each industrial partner provided an Android app use

ase: a One-Time Password generator for home banking apps, an

pp licensing scheme, and a video player with Digital Rights Man-

gement (DRM) for protected content. Each app included security-

ensitive code and data elements in dynamically linked, native li-

raries written in C. Those libraries served as reference use cases

or all research. They were designed and implemented to repre-

ent the industrial partners’ commercial software. Being sensitive,

he industrial partners only gave access rights to their use cases

o academic partners, not to each other. Less sensitive information

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

Table 6

Refinement of RQ1 into concrete ESP research questions and this paper’s main an-

swers to them.

Usability

RQ1.a.1 Is the ESP usable by software protection experts?

→ positive answer: experts did not have problems in using

the tool and understanding the meaning of all the artifacts

RQ1.a.2 Can the ESP become part of the experts’ daily workflow?

→ positive answer: experts reported that the ESP was

suitable for their daily job but further effort is needed for a

better business alignment

RQ1.a.3 Could the ESP be used also by software developers with

limited or no background in software protection?

→ partially positive answer: proper tuning of the ESP

requires a solid background in SP, protection will be less

effective when using the ESP as a push-one-button tool

Correctness

RQ1.b Does the ESP propose appropriate combinations of

protections to protect the assets and to hide them properly?

→ positive answer: experts analysed all artifacts produced

by the ESP, compared them to data from tiger teams, and

judged them as correct or appropriate

Comprehensibility and Acceptability

RQ1.c.1 Is the ESP’s output useful to comprehend and assess the

tasks (automatically) performed by the ESP?

→ positive answer

RQ1.c.2 Is the output produced by the ESP useful to help software

protection experts manually perform their job?

→ answer is limited: the inferred attacks has been judged

too coarse-grained, this affects the precision in automatically

deciding the mitigating protections

Efficiency

RQ1.d.1 Is the ESP fast enough to produce valid solutions in a useful

time?

→ positive answer

RQ1.d.2 Is the complexity of the algorithms it uses acceptable for the

size of the tasks it has to perform?

→ positive answer: experts and developers considered the

execution times acceptable, scalability may be an issue due

to worst-case complexity, but heuristics and optimization

allowed producing solution in useful time

Table 7

Lines of source code counts of the ASPIRE validation use cases.

application

C

Java C + assets

sources headers

DemoPlayer 2595 644 1859 1389 25

LicenseManager 53,065 6748 819 0 43

OTP 284,319 44,152 7892 2694 25

o

w

a

v

t

C

t

t

i

m

r

a

t

a

r

s

7

a

v

t

r

s

i

r

w

a

n

w

e

t

t

t

d

W

m

l

m

o

t

d

o

p

b

c

r

m

a

7

o

p

e

a

t

t

w

t

E

w

i

o

E

l

(

2

t

s

7

n

i

u

16 This material is available in Section 5 of the public ASPIRE Validation Re-

port (Basile et al., 2016) and in sections 8 – 11 of the public ASPIRE Security Evalu-

ation Methodology Report (Ceccato, 2016)
n the use cases, their assets, their security requirements, the soft-

are features obtained with the analysis tools, and their experts’

ssessments are available in a public report that presents a joint

alidation of all project results (Basile et al., 2016). Table 7 presents

he Source Lines Of Code (SLOC) metrics and the number of assets.

learly, the ESP was not evaluated merely on toy examples.

The evaluation of the ESP in ASPIRE was planned to be done by

wo experts per industrial partner: one internal expert familiar with

he project and involved in it, and one external expert that was not

nvolved in the project. However, one of the three partners only

ade the internal expert available, who hence participated in both

oles. According to FEDS, this limitation in the number of experts

nd the limitation in the scope (each company’s experts evaluated

he artifact using only their own use case) needs to be considered

 significant constraint.

We then organized the qualitative evaluation of usability, cor-

ectness, comprehensibility, and acceptability in three steps, as vi-

ualised in Fig. 5 .
21
.1.1. Step 1: Early internal expert assessment

During the ESP’s development the internal experts performed

 qualitative analysis of the prototype artifact to improve early

ersions. They followed the design and development of the ESP

hroughout the three-year project and continuously monitored the

esults of the SP on their use cases, using the ESP to provide con-

tructive feedback. They analysed methods, models, constructs, and

nstantiations of the individual ESP components to check the cor-

ectness of their results. They were also involved in designing the

orkflows to comply with their corporate needs. The result was an

lpha version of the tool components integrated into the workflow.

This alpha version was then evaluated as a whole by the inter-

al experts. Each internal expert was asked to protect their soft-

are only using the artifact with the support of the ESP develop-

rs. They manually annotated the assets in the source code using

he ESP GUI and then used the ESP to identify the best SPs and

heir configuration parameters. They then discussed and analysed

he identified threats and the selected SPs, as well as the entire

ecision making process, on which they then commented in detail.

e collected their inputs through interviews during face-to-face

eetings, ad-hoc calls, and emails. Since these inputs were col-

ected during the normal project development, the collection was

anaged informally. The experts also gave a qualitative assessment

f the correctness of the artifact’s used models.

Moreover, the effectiveness of the ESP’s selection of SPs was

ested against the judgment of other experts. Indeed, the use cases’

evelopers and security architects proposed the best combination

f SPs for each of the assets, according to their expertise and ex-

erience. Each of the three use cases protected with the best com-

ination were then pen tested by two external pen testers per use

ase for several weeks to establish the attack paths. The pen testers

eported on the attacks that were prevented entirely for the De-

oPlayer use case within the pen test time frame, and that the

ttacks were delayed effectively for the other two use cases 16 .

.1.2. Step 2: Final internal expert assessment

Towards the end of the ASPIRE project, a first stable version

f the whole ESP was available. On the basis of this version, ex-

erts were asked to assess the ESP by answering a set of open-

nded questions, which are provided in Appendix A . The experts’

nswers were used to develop the final release of the tool during

he ASPIRE project. Their answers are not reported in this paper as

hey were considered confidential material. Several calls took place

ith those experts to clarify questions and to ensure that we in-

erpreted their answers correctly.

This assessment of the design and implementation of the

SP constitutes a qualitative evaluation in a naturalistic scenario,

hich, using FEDS terminology, means that a real system (artifacts)

s used by real users to solve real problems (Prat et al., 2015). In

ur case, the artifact consists of the first complete version of the

SP; the real users are the industrial experts; and the real prob-

em is the selection of protections to mitigate real MATE attacks

as evaluated in pen tests by pen testing experts (Ceccato et al.,

019)) on applications developed by the industrial project partners

o be equivalent to their commercial applications, i.e., feature the

ame types of assets, similar functionality, and similar complexity.

.1.3. Step 3: Assessment with external experts

Finally, external experts from the industrial partners, which had

o prior insights or bias regarding the ESP, were involved in a qual-

tative evaluation of the final ESP version in the ASPIRE project. We

sed the same questionnaire for this evaluation.

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

Fig. 5. Graphical representation of the qualitative evaluation process.

t

f

t

t

r

m

e

t

b

t

p

7

p

b

c

d

t

g

a

v

b

f

b

t

t

f

n

f

t

d

i

m

t

t

t

a

i

m

s

t

t

m

i

t

t

t

a

m

c

a

p

b

s

I

a

f

I

u

I

i

p

t

s

a

a

s

i

(
k
s

i

o

We prepared a virtual machine (VM) with a running copy of

he ESP pre-configured with all the manual operations already per-

ormed by their colleagues. The assets were already annotated, and

he other ESP running parameters were set to default values, which

hey were allowed to modify. However, they experienced configu-

ation issues when integrating the ESP VM with the SP tools. To

ake good use of their extremely limited time, we therefore also

xecuted the tool with the pre-configured information and all au-

omation enabled and provided them with the output generated

y the tool in the form of a report 17 The expert was then asked

o assess the identified threats, the selected SPs, and the selected

roperties of the evaluation.

.2. Qualitative evaluation results and discussion

Overall, based on the analysis of their questionnaires, the ex-

erts have judged the ESP as promising and potentially effective

ecause of the high level of automation and configurability (in-

luding the possibility to override default configurations) and the

etailed output. Nonetheless, they were skeptical about extending

he tool’s use to software developers with a more limited back-

round in SP as this background is needed for understanding the

rtifacts, making decisions, and evaluating results. This is not pre-

enting software developers from using the ESP as a push-of-the-

utton tool and having their applications protected. However, they

eared that in the push-of-the-button mode, the applications risked

eing less protected than under the supervision of experts. Fur-

hermore, the acceptability showed limitations at the level of in-

egration with their daily work and tool chains, which means that

urther effort is needed to ensure so-called alignment with busi-

ess (Prat et al., 2015). The usability was hence assessed positively

or experts in SP (RQ1.a.1), positively with limitations for the in-

egration into the experts’ tool flow (RQ1.a.2), and only partial for

evelopers (RQ1.a.3).

Among the data extracted by the tool, experts highlighted the

mportance of making decisions by considering the application
17 The reports are available at https://github.com/daniele-canavese/esp/tree/

aster/reports . The ESP user manual (Coppens, 2016) describes how to interpret

he different parts of those reports. In two of the three reports, we renamed iden-

ifiers of code and data elements (such as function names) in consideration of the

wo companies’ confidentiality requirements. Apart from that, the linked reports

re identical to the ones assessed by the experts. A summary of the most signif-

cant data, their interpretation, and the major findings is presented on the afore-

entioned GitHub site.

a

t

S

b

p

a

d

a

22
tructure and metrics because results are to be tailored to the

arget application. They also appreciated that all the data ex-

racted and represented in the KB are structured using a for-

al meta-model, as this reassured them of the correctness of the

nferences.

Experts analysed the attack paths inferred by the tool as well as

he SPs solutions that were proposed by the optimization process

o mitigate the inferred attacks. The experts compared those solu-

ions to the ones they (or their colleagues) had assembled manu-

lly earlier on during the project as part of the requirements for-

ulation. Solutions have been validated in terms of achieved se-

urity for the assets, preservation of the application business logic,

nd containment of the inevitable slow-down of the protected ap-

lication w.r.t. the original one. Furthermore, the attack paths have

een compared with the real attacks discovered by the profes-

ional pen testers previously involved, as discussed in Section 7.1.1 .

n particular, the inferred solutions have been judged as appropri-

te to protect the use case code and effective in blocking the in-

erred attack paths and the real attacks reported by the pen testers.

n addition, the protected binaries were evaluated as semantically

naltered and usable: they still delivered the original observable

O-relation without excessive overhead introduced by the SPs. It

s worth mentioning that, as is the case for all the risk analysis

rocesses, there is not a correct set of answers forming a ground

ruth. The experts hence provided their qualitative estimations of

olution effectiveness.

The main flaw of ESP reported by the experts is that inferred

ttack steps were too coarse-grained because of too generic

ttack rules. This limitation has a technical impact on the pos-

ibility of making fine-grained decisions on the SPs to use. For

nstance, consider the listed attack step staticallyLocate
'ProvisioningManager_LaunchProcess.r16'(attac-
er)) . This denotes an attacker disassembling the binaries with

tatic tools such as Radare2 or IDA Pro-to locate basic block r16
n function LaunchProcess . From this, it is possible to infer that

bfuscation is needed. However, on the basis of this information

lone, it is impossible to determine which specific obfuscation

echnique should be preferred without looking at the actual code.

o expert judgment and interaction to refine the SP selection

y the ESP is currently still required. It is definitely possible to

opulate the KB with more fine-grained attacks steps, but as

lready mentioned in Section 5.2.1 , further research is needed to

etermine the best level of granularity to model and enumerate

ttacks steps.

https://github.com/daniele-canavese/esp/tree/master/reports

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

Table 8

ESP times in seconds.

application Total Framing Assessment Mitigation

DemoPlayer 145.6 0.1 76.3 69.1

LicenseManager 296.1 0.3 187.6 108.1

OTP 170.0 0.9 69.2 99.9

c

a

h

m

r

t

d

b

fl

r

a

a

c

a

a

a

m

p

7

p

b

s

b

h

c

t

c

t

p

i

R

s

t

a

r

s

e

s

v

d

t

e

n

r

I

a

l

w

Table 9

Statistics of ESP experimental assessment applications.

Application SLOC functions

assets

code data total

demo-s 443 18 2 2 4

demo-m 1029 47 12 3 15

demo-l 3749 178 26 13 39

o

i

t

t

r

i

m

m

(

n

t

p

p

b

8

G

c

m

t

s

o

a

t

l

f

t

s

p

t

t

t

t

t

i

e

P

i

p

a

t

p

t

m

t

7

a

f

o

From all of the above, we conclude a positive evaluation of the

orrectness of the artifact (RQ1.b) and the comprehensibility of the

rtifact-generated data (RQ1.c.1). The usability of specific artifacts

as limitations (RQ1.c.2).

The efficiency has been measured with a quantitative assess-

ent, as will be discussed in Section 7.3 . In addition, no experts

eported issues with the performance of the artifact.

Overall, the evaluation result is hence positive. Quoting from

he related project deliverable, “after the analysis of the validation

ata, the experts concluded that the tool has a very high potential” to

e used in their everyday tasks and to enter their current work-

ow in the near future, even if some had doubts on the matu-

ity of the tool and its readiness to be used to protect commercial

pplications with all of their SDLC intricacies and complexity. For

n artifact developed as a research proof-of-concept, this should of

ourse not come as a surprise.

We conclude that a large part of the proposed risk management

pproach can indeed be automated through decision support tools,

s identified by many of the checkmarks in Table 4 that provide an

nswer to RQ3. While not yet capable of completely replacing hu-

an experts, those proof-of-concept automated tools have shown

romise to aid users of SP tools.

.3. Technical assessment

Our evaluation also includes a purely technical analysis of the

erformance of the algorithms and techniques used in the ESP on

oth the reference use cases and artificial applications.

First, we have measured the execution time of the final ver-

ion of the ESP on the three use cases, with the assets annotated

y the experts, as reported in Table 7 . In all three cases, 17 PIs

ave been considered using the SPs listed in Table 5 . Opaque predi-

ates, branch functions, and control flow flattening were applied at

hree configuration levels (low, medium, and high frequencies with

orresponding overhead levels). Data obfuscation included three

echniques: XOR-masking, residue number encoding, and data-to-

rocedural conversions (Collberg et al., 1997).

Table 8 shows the ESP computation times. The framing phase

s almost instantaneous and driven by the lines of annotated code.

egarding the assessment and the mitigation phases, these mea-

urements do not provide sufficient data for a full assessment of

he scalability and complexity of the used algorithms, as the three

pplications do not provide enough data points to identify cor-

elations between the computation times and the number of as-

ets/PIs.

We hence complemented the measurements with a formal

valuation of the algorithms’ complexity and a performance mea-

urement on artificial scenarios (in FEDS terminology). The formal

alidation investigated the most influential factors for the attack

iscovery tool and the game-theoretic optimization of the mitiga-

ion phase. The complexity of the attack discovery algorithms is

xponential in the number of attack steps in the KB, hence the

eed to consider pruning strategies. The complexity of the algo-

ithms in the mitigation phase is linear in the number of assets.

t exponentially depends on the number of PIs and the number of

ttacks discovered in the assessment phase. In this case, having a

imited number of PIs and pruning the sequences of SPs helped

ith reasonable performance.
23
To assess scalability, we evaluated the performance of the ESP

n three synthetic standalone Linux applications with an increas-

ng number of assets. Table 9 summarizes their metrics. These ar-

ificial applications have been randomly generated with a process

hat selects a call graph (from a set of call graphs extracted from

eal applications), and then generates randomized function bod-

es to meet specific code metrics. Then it randomly selects frag-

ents in the generated code as data or code assets. In this experi-

ent, we used all the previously listed PIs except white-box crypto

which was a proprietary algorithm of one industrial ASPIRE part-

er). We also added four instances of obfuscation using Tigress, i.e.,

he ones marked in Table 5 .

On the three artificial applications, we deployed the asset

rotection optimization approach described in Section 6.3 multi-

le times for different configurations that feature varying num-

ers of available PIs. This deployment was done on an Intel i7-

750H workstation with 32 GB RAM, using Java 1.8.0_212 under

NU/Linux Debian 4.18.0. Fig. 6 depicts the measured total ESP

omputation time, along with the time needed for the risk assess-

ent, asset protection, and asset hiding phases. The time needed

o complete the workflow increases with the number of PIs con-

idered during the mitigation; such an increase strongly depends

n the application code complexity, and in particular on its SLOC

nd number of assets and functions.

The time needed to analyze the applications’ source code and

o generate the application meta-model instance was negligible at

ess than 1 s. The time required to deploy the solution is irrelevant

or assessing the ESP’ computational feasibility, as it only measures

he negligible time needed to execute the external SP tools for the

ingle selected solution.

As expected, the time needed to execute the risk assessment

hase does not depend on the number of PIs available to protect

he application, as attacks are determined on the vanilla applica-

ion. Nonetheless, we report that it has limited impact because of

he aggressive pruning we have implemented that avoids exponen-

ial growth. The asset protection phase is by far the most compu-

ationally intensive, especially when the number of available PIs

ncreases. Since the mitigation considers sequences of SPs, the ex-

cution time is exponential as it depends on the combination of

Is. The same holds for the asset hiding phase, although less time

s needed to execute the latter compared to the asset protection

hase.

These experiments allowed the positive evaluation of RQ1.d.1,

s the computation times were considered acceptable by both the

ool developers and the involved experts. They also enable the

ositive evaluation of RQ1.d.2, as the heuristics implemented in

he game-theoretic approach scaled sufficiently well in our experi-

ents to allow producing solutions in useful time, even though its

heoretic worst-case behavior might be intractable.

.4. Framing effort in the ESP

As mentioned in Section 7.1.3 , all framing tasks, including the

nnotation of the assets in the source code, were performed be-

ore the external industrial experts got involved in the assessment

f the ESP. This enabled them to focus on the qualitative assess-

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

Fig. 6. ESP execution times on applications reported in Table 9 .

m

t

p

T

c

e

c

R

s

i

t

t

d

o

t

a

t

l

a

t

v

c

o

fi

f

t

t

a

w

n

h

t

d

n

a

t

n

f

m

a

a

n

o

s

a

a

7

a

i

2

2

e

N

b

t

o

t

l

P

E

d

f

h

r

d

u

(

e

s

r

t

v

a

s

f

f

t

b

u

s

r

o

p

p

t

t

n

t

w

r

s

e

s

d

b

t

w

w

s

ent without wasting their precious time on the more mechanis-

ic framing tasks. This section analyzes the effort that is needed to

erform those framing tasks with the ESP.

First, the user needs to annotate the assets in the source code.

he ESP supports two options: manually annotating the source

ode or manually tagging code and data elements in the ESP. Our

valuation with experts only used source code annotations, which

onsist of (mostly single-line) pragmas and attributes (Basile and

eport, 2016; Coppens, 2016) that identify the assets and specify

ecurity requirements. For users proficient with their syntax, typ-

ng out the annotations requires at most tens of seconds per asset.

More time is required to determine precisely which elements in

he source code need to be annotated because they correspond to

he application assets. Security architects and software designers

escribe assets abstractly. When those are known upfront, devel-

pers can annotate their code as they write it, thus only requiring

he aforementioned tens of seconds per asset. For developers that

re familiar with the code base but need to annotate the code af-

erwards, we estimate that locating the assets in the code takes

ess than a minute for assets with high locality (e.g., single vari-

bles or single functions) to potentially tens of minutes for assets

hat are spread out more throughout the code base (e.g., the in-

ocations of a specific reaction mechanism spread throughout the

ode for remote attestation).

The annotations were added to the ASPIRE use cases by their

riginal developers after the development was finished. It was the

rst time they were adding our style of annotations. They hence

aced a learning curve. Moreover, while adding the annotations,

hey had to validate the syntax and expressiveness of the annota-

ion language on the fly. Had they already been proficient with the

nnotations beforehand and had they just needed to inject them

ithout having to validate their design, we estimate that the time

eeded to annotate their use cases would have been less than one

our for the use cases with 25 assets, and less than two hours for

he one with 43 assets.

In any case, locating the assets in the code base given abstract

escriptions is something that any user of any non-trivial SP tool

eeds to do, both to configure the tool to protect the relevant code

nd to validate that that code has actually been protected by the

ool. So compared to other SP approaches, the mentioned times are

ot considered overhead required to use the ESP. The same holds

or selecting the attacks the user wants to mitigate and for deter-

ining which of the available SPs to consider. In the ESP, selecting

ttacks and SPs from the ones modelled in the KB happens with

 click-of-a-button GUI interface. The time required for clicking is

egligible compared to the time for deciding which ones to include

r exclude. That decision making needs to happen with any deci-

ion support tool, so the ESP is not less efficient in this regard than

ny other decision making process. This discussion completes the

nswer to RQ1.d.1.

.5. Threats to validity

We have checked the procedure we used for evaluating the ESP

gainst a checklist of the possible threats to validity: construct,
24
nternal, conclusion, and external validity threats (Wohlin et al.,

0 0 0), as well as instantiation validity threats (Lukyanenko et al.,

014a).

Threats to construct validity concern the metrics defined for the

valuation. We have used a set of standard metrics from the ISO.

onetheless, the risk remains that the selected metrics are not the

est ones for our assessment. The evaluation scores were posi-

ive, negative, and partial, which appeared expressive enough for

ur purposes. However, we could not objectively assess these cri-

eria’ satisfaction as the questionnaires included open answers. To

imit subjectivity, we have evaluated the answers within the AS-

IRE project. Moreover, the ASPIRE project reviewers hired by the

uropean Commission did not contradict our conclusions.

Threats to internal validity concern the inferences between in-

ependent variables and evaluation outcomes. One possible noise

actor that may confound the inference relates to the task compre-

ension. We assess this factor as negligible in this case. The task,

esembling their day-to-day job and their typical applications, was

escribed by the experts as clear; the use of the tool was doc-

mented; moreover, the experts were assisted in case of doubts

by their colleagues or by us). Another potential noise factor is the

xperts’ commitment to perform their tasks diligently before an-

wering the questionnaire. We gave the experts the tool and the

eports to be assessed offline. We hence cannot establish the effort

hey invested in using and reading them. We checked that all rele-

ant artifacts were analysed in their comments (main attack paths

nd all the combinations of protections); however, we cannot as-

ess their commitment accurately. Moreover, another confounding

actor is the actual objective evaluation. The experts were selected

rom the industrial partners of the project. Even if they were asked

o evaluate the artifact objectively, their judgment may have been

iased by the will not to hinder the project and the positive eval-

ation by the European funding agency.

Threats to external validity affect the generalisation of the re-

earch results to the real world, i.e., experts who want to protect

eal applications using an automated decision support system. In

ur case, the subjects of the evaluation are real experts that are

rotecting apps. The evaluation could hence be generalized to ex-

erts with a similar background protecting programs analogous to

he ones presented in the evaluation and not too dissimilar from

he ones they protect during normal job tasks in the same compa-

ies. However, it does not necessarily extend to other experts pro-

ecting different applications in other companies. Significant effort

as invested in the use case applications to ensure that they are

epresentative (in terms of size and complexity) of the code bases

uch experts have to protect in their daily jobs. However, since ev-

ry expert only evaluated the ESP on one application, we cannot be

ure that applications with different structures or from a different

omain would yield similar results.

Another potential threat to external validity concerns the possi-

ility to generalize the evaluation made on a specific tool, the ESP,

o general SP tasks, which may affect answers to RQ3. In other

ords, this threat is not limited to the ESP, but extends to the

hole approach we presented in Section 5 . In this case, we as-

essed this threat as negligible. Having automated a specific SP

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

t

t

e

w

a

v

S

f

i

t

u

t

m

a

b

l

e

b

b

m

t

i

E

a

e

i

I

h

c

w

m

c

t

n

a

p

a

o

s

e

w

e

t

t

d

E

c

i

w

m

8

8

i

t

T

f

s

d

d

P

t

p

e

r

a

d

i

m

c

m

m

t

t

m

t

d

t

8

t

ask, we have proved that automation is feasible, even if the same

ask could be done in different, possibly better ways. Moreover, the

xternal experts performing the evaluation did not assess the ESP

ithin the ASPIRE scope and requirements, as they did not know

bout the ASPIRE-defined scope. Instead, they evaluated it vis-à-

is their day-to-day job requirements. The limitations identified in

ection 6.5 on the ESP, which does not automate all tasks of the

ull risk management approach we presented, do not apply, as RQ3

s related to individual parts of a risk management approach for SP.

Threats to conclusion validity affect the validity of the methods

o draw reasonable conclusions from the assessment. In the eval-

ation of the ESP, we have asked experts to answer open ques-

ions from a standard questionnaire structured according to the

ain protection workflow. Given the experts’ limited availability,

 state-of-the-art controlled experiment was impossible. The num-

er of experts involved was limited as well, which does not al-

ow us to use statistical methods that are standard in quantitative

valuations. However, through interactions with the experts, and

y splitting the questions and formulating them clearly, we have

een able to interpret their qualitative inputs reliably, thus mini-

izing the noise and errors that might otherwise have obscured

he data from which we have drawn conclusions.

Finally, threats to instantiation validity affect the possibil-

ty of considering the artifact we have implemented, i.e., the

SP, an instance of the theoretical object we had in mind, i.e.,

 semi-automated decision support system for SP Lukyanenko

t al. (2014b) . The instantiation space is very large, as one can

magine many ways to implement all the tasks the ESP performs.

n this space, we opted for a NIST-based four-phases approach. We

ave not considered alternative approaches, first and foremost be-

ause we were convinced upfront that the standard approach that

orks for other fields is also valid for SP. Secondly, we have imple-

ented the ESP in the ASPIRE project, where resources for PoC and

ompletion times were constrained. This relates to another threat,

he artifact cost, that prevented the implementation of more alter-

atives.

Two more threats to instantiation validity apply to the ESP:

uxiliary features and emergent properties, which stress the com-

lexity of IT tools and oblige considering additional aspects that

re not the main focus of the instantiation. Indeed, the integration

f the components and the definition of the workflow has revealed

everal auxiliary features related to the UI comprehension, the user

xperience, and the effectiveness of the designed workflow to cope

ith daily SP experts’ tasks. Furthermore, several emergent prop-

rties appeared related to the complexity of the data, their rela-

ionships, and the correct data presentation. We tried to mitigate

hese threats by continuously interacting with the internal experts
t

Table 10

Open issues and topics of open research questions identified in t

No. Open Issue / Research Question Subjects

?.1 secondary asset (a.k.a. pivots, hooks, and mileposts) m

?.2 selection and models of protection policy requiremen

?.3 level of detail needed in models of attacker capabiliti

?.4 to what extent worst-case assumptions are useful

?.5 best abstractions to model software features that imp

?.6 empirical validation of such models and metrics, in p

?.7 identification of viable attack paths on the basis of so

?.8 estimation of attack step’s required effort and likeliho

?.9 extent to which automated techniques can replace hu

?.10 required granularity of attack steps forming attack pa

?.11 incorporation of informal information obtained from

?.12 incremental attack path enumeration

?.13 required precision of pre-deployment SP impact estim

?.14 pre-deployment potency, resilience, and stealth estim

?.15 pre-deployment estimation of SP impact on attack su

?.16 validation of deployed SP against assumptions made

25
uring the design, development, integration, and validation of the

SP and the data artifact it produces. Moreover, every time we re-

eived suggestions in the answers to the questionnaires, we have

ncorporated them before the next evaluation phase. Nonetheless,

e cannot exclude that these threats to the instantiation validity

ay have an impact.

. Conclusion and future work

.1. Conclusions

We discussed the necessity and potential benefits of a standard-

zed, formalized, and automated approach for risk management in

he context of software protection against man-at-the-end attacks.

o that end, we discussed just such a risk management approach

or software protections, which we based on the NIST SP800-39

tandard for risk management for information security.

To provide an answer to RQ1 on the feasibility of automated

ecision support tools to improve the useability of SP tools, we

eveloped and presented the ESP design and an evaluation of its

oC implementation. We found that many human expert judgment

asks can already benefit from automated tools and the data they

roduce, which experts found sufficiently usable, acceptable, and

fficient; and of which they assessed the results as sufficiently cor-

ect and comprehensible.

As an answer to RQ2 on how standardized risk management

pproaches can be adopted for SP, we discussed in detail how the

ifferent aspects of software protection deployment decision mak-

ng could and should be mapped onto risk framing, risk assess-

ent, risk mitigation, and risk monitoring phases. For all phases

ombined, we identified 50 required constructs, 6 models, and 32

ethods that the adopted approach should entail.

We answered RQ3 on the feasibility of formalizing and auto-

ate parts of the adopted approach by providing a mapping of

he abstract construct, model, and method artifacts identified for

he adopted approach onto the concrete instantiation artifacts that

ake up the ESP.

With these answers, we have provided convincing evidence that

he proposed approach is feasible and can be automated to a large

egree, and deserves the launch of a structured community effort

hat leads to future standardization and automation.

.2. Future work

It is clear that quite some future work is needed, however, for

he standardization itself, as well as for improving, refining, ex-

ending, replacing, and complementing the rather embryonic in-
he paper.

odel design

ts

es

act the execution of attack steps

articular for manual human activities

ftware analysis results

od of success

man pen testing

ths

experts (e.g., pen testers) in automated threat analysis

ation

ation for layered SPs

ccess probability

pre-deployment

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

Table 11

Potentially interesting research directions identified in the paper.

No. Research Direction

!.1 the concept and use of protection policy requirements

!.2 machine learning techniques to identify and quantify feasible attack paths

!.3 adoption of exploit generation techniques to identify feasible attack paths

!.4 gradual path from a mostly manual process to automated feasible attack path identification

!.5 adoption of risk monetisation to evaluate and prioritize actual risks

!.6 adoption of the OWASP risk rating methodology to evaluate and prioritize actual risks

!.7 single-pass selection of layered SPs with accurate assessment of impact on threats and risks

!.8 multi-pass selection of layered SPs with accurate assessment of impact on threats and risks

!.9 machine learning techniques to select the most effective layered combinations of SPs

Table 12

Topics requiring a collaborative development effort by various stakeholders in the SP community.

No. Required community effort s

f.1 provisioning a complete vocabulary and methodology to describe the risk frame

f.2 provisioning a standard taxonomy of assets and their relevant features

f.3 provisioning a standard taxonomy of SP security requirements

f.4 provisioning and maintaining a living catalog of potential attack steps and their relevant features

f.5 provisioning a standard taxonomy of SPs and their relevant features in support of decision support

f.6 standardizing methodology for defining the actual threat model, attack surface and attack vectors

s

r

o

h

m

i

d

w

a

F

F

S

o

P

h

w

6

D

f

S

I

D

p

C

p

B

p

i

S

i

D

o

i

D

e

o

A

t

n

m

a

s

tantiations of the necessary constructs, models and methods cur-

ently available in the presented ESP in support of the automation

f tasks in the approach. The artifacts in Tables 2 , 3 , and 4 which

ave no counterpart in the ESP yet are clear examples of where

ore research is needed.

Section 5 also highlighted a number of topics for future work

n the form of open issues and open research questions, research

irections that we consider interesting, and development steps for

hich a community effort is needed. Tables 10 , 11 , and 12 provide

n overview of that future work.

unding

This research was partly funded by the Cybersecurity Initiative

landers (CIF) from the Flemish Government and by the Fund for

cientific Research - Flanders (FWO) [Project No. 3G0E2318]. Part

f the presented results were obtained in the context of the AS-

IRE FP7 research project. This project ran until October 2016 and

as received funding from the European Union Seventh Frame-

ork Programme (FP7/2007-2013) under grant agreement number

09734.

eclaration of Competing Interest

Bjorn De Sutter reports financial support was provided by Fund

or Scientific Research - Flanders (FWO). Bart Coppens, Bjorn De

utter reports financial support was provided by Cybersecurity

nitiative Flanders. Bjorn De Sutter, Bart Coppens, Cataldo Basile,

aniele Cavanese, Leonardo Regano reports financial support was

rovided by European Commission.
26
RediT authorship contribution statement

Cataldo Basile: Conceptualization, Methodology, Validation, Su-

ervision, Writing – original draft, Writing – review & editing.

jorn De Sutter: Conceptualization, Methodology, Validation, Su-

ervision, Writing – original draft, Writing – review & edit-

ng, Project administration, Funding acquisition. Daniele Canavese:

oftware, Methodology, Validation, Data curation, Writing – orig-

nal draft. Leonardo Regano: Software, Methodology, Validation,

ata curation, Writing – original draft. Bart Coppens: Methodol-

gy, Validation, Writing – original draft, Writing – review & edit-

ng.

ata availability

The authors do not have permission to share all data used in

xperiments. Source code of the evaluated artifact, i.e., the proof-

f-concept decision support tool called ESP, is available however.

ppendix A. The questionnaire for the expert assessment of

he ESP.

This questionnaire is semantically equivalent to the question-

aire provided to the experts during the ASPIRE project. We re-

oved ASPIRE-specific terms, which have been substituted with

 wording coherent with this paper, and slightly rephrased some

entences for clarity.

https://doi.org/10.13039/501100011878
https://doi.org/10.13039/501100004963

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

R

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

C

eferences

brath, B., Coppens, B., Nevolin, I., De Sutter, B., 2020. Resilient Self-debugging Soft-
ware Protection. In: 2020 IEEE European Symposium on Security and Privacy

Workshops. IEEE Computer Society, pp. 606–615 .

brath, B., Coppens, B., Van den Broeck, J., Wyseur, B., Cabutto, A., Falcarin, P., De
Sutter, B., 2020. Code renewability for native software protection. ACM Trans.

Privacy Secur. 23 (4) .
brath, B., Coppens, B., Volckaert, S., Wijnant, J., De Sutter, B., 2016. Tightly-

coupled Self-debugging Software Protection. In: Proc. of the 6th Workshop
on Software Security, Protection, and Reverse Engineering (SSPREW). ACM,

pp. 7:1–7:10 .

hmadvand, M., Pretschner, A., Kelbert, F., 2019. A taxonomy of software integrity
protection techniques. Adv. Comput. doi: 10.1016/bs.adcom.2017.12.007 .

khunzada, A., Sookhak, M., Anuar, N.B., Gani, A., Ahmed, E., Shiraz, M., Furnell, S.,
Hayat, A., Khurram Khan, M., 2015. Man-at-the-end attacks: analysis, taxonomy,

human aspects, motivation and future directions. J. Netw. Comput. Appl. 48, 44–
57. doi: 10.1016/j.jnca.2014.10.009 .

lliance, B.. T. S., 2018. BSA global software piracy survey. Online at https://gss.bsa.

org/ .
nckaert, B., Jakubowski, M., Venkatesan, R., 2006. Proteus: virtualization for Di-

versified Tamper-resistance. In: Proceedings of the ACM Workshop on Digital
Rights Management. ACM, pp. 47–58 .

nckaert, B., Madou, M., De Sutter, B., De Bus, B., De Bosschere, K., Preneel, B., 2007.
Program obfuscation: a quantitative approach. In: Proc. 2007 ACM workshop on

Quality of Protection, pp. 15–20 .

anescu, S., Collberg, C., Pretschner, A., 2017. Predicting the resilience of obfuscated
code against symbolic execution attacks via machine learning. In: Proc. 26th

USENIX Security Symposium, pp. 661–678 .
anescu, S., Pretschner, A., 2017. A Tutorial on software obfuscation. In: Advances in

Computers, Vol. 108. Elsevier, pp. 283–353. doi: 10.1016/bs.adcom.2017.09.004 .
27
arak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.,

2001. On the (im)possibility of obfuscating programs. In: Kilian, J. (Ed.), Ad-
vances in Cryptology. Springer, Berlin Heidelberg, pp. 1–18 .

asile, C., Canavese, D., d’Annoville, J., De Sutter, B., Valenza, F., 2015. Automatic dis-

covery of software attacks via backward reasoning. In: Proc. 1st Int’l Workshop
on Software Protection, SPRO ’15. IEEE Press, pp. 52–58 .

asile, C., Canavese, D., Regano, L., Falcarin, P., De Sutter, B., 2019. A meta-model for
software protections and reverse engineering attacks. J. Syst. Softw. 150, 3–21 .

asile, C., Canavese, D., Regano, L., Validation, A., 2016. ASPIRE Project Deliverable
1.06. https://aspire-fp7.eu/sites/default/files/D1.06- ASPIRE- Validation- v1.01.pdf .

asile, C., Report, A. F., et al., 2016. Deliverable d5.11, ASPIRE EU FP7 Project. https:

//aspire- fp7.eu/sites/default/files/D5.11- ASPIRE- Framework- Report.pdf .
erlato, S., Ceccato, M., 2020. A large-scale study on the adoption of anti-debugging

and anti-tampering protections in android apps. J. Inf. Secur. Appl. 52, 102463 .
ringer, J., Chabanne, H., Dottax, E., 2006. White box cryptography: another attempt.

cryptology eprint archive. Report 2006/468 .
rumley, D., Poosankam, P., Song, D., Zheng, J., 2008. Automatic patch-based exploit

generation Is possible: techniques and implications. In: IEEE Symposium on Se-

curity and Privacy. IEEE Computer Society, pp. 143–157 .
runet, P., Creusillet, B., Guinet, A., Martinez, J.M., 2019. Epona and the obfuscation

paradox: transparent for users and developers, a pain for reversers. In: Proceed-
ings of the 3rd ACM Workshop on Software Protection. Association for Comput-

ing Machinery, pp. 41–52 .
uilding Security in Maturity Model. https://www.bsimm.com/ .

urkacky, O., Deichmann, J., Klein, B., Pototzky, K., Scherf, G., 2020. Cybersecurity in
Automotive. Tech. rep.. McKinsey & Company .

abutto, A., Falcarin, P., Abrath, B., Coppens, B., De Sutter, B., 2015. Software protec-

tion with code mobility. In: Proc. of the 2nd ACM Workshop on Moving Target
Defense, MTD ’15. ACM, pp. 95–103 .

http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0003
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0002
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0004
https://doi.org/10.1016/bs.adcom.2017.12.007
https://doi.org/10.1016/j.jnca.2014.10.009
https://gss.bsa.org/
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0007
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0008
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0009
https://doi.org/10.1016/bs.adcom.2017.09.004
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0011
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0012
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0013
https://aspire-fp7.eu/sites/default/files/D1.06-ASPIRE-Validation-v1.01.pdf
https://aspire-fp7.eu/sites/default/files/D5.11-ASPIRE-Framework-Report.pdf
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0014
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0015
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0018
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0019
https://www.bsimm.com/
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0020
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0021

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

C

C

C

C

C

C

C

C

C

C

C

C

C

D

D

D

D

D

D

E

E

E

F

G

G

G

H

H

H

H

H
I

I

I

J

J

J

K

K

K

K

K

K

K

K

L

L

L

L

L

L

M

M

M

M

M

N

O

O

O

O

O

P

anavese, D., Regano, L., Basile, C., Viticchié, A., 2017. Estimating software obfus-
cation potency with artificial neural networks. In: Security and Trust Manage-

ment. Springer International Publishing, pp. 193–202 .
eccato, M., 2016. ASPIRE Security evaluation methodology. Deliverable D4.06, AS-

PIRE EU FP7 Project .
eccato, M., Dalla Preda, M., Nagra, J., Collberg, C., Tonella, P., 2007. Barrier slicing

for remote software trusting. In: 7th IEEE Int’l Working Conference on Source
Code Analysis and Manipulation (SCAM). IEEE Computer Society, pp. 27–36 .

eccato, M., Tonella, P., Basile, C., Coppens, B., De Sutter, B., Falcarin, P., Torchi-

ano, M., 2017. How professional hackers understand protected code while per-
forming attack tasks. In: 2017 IEEE/ACM 25th International Conference on Pro-

gram Comprehension (ICPC). IEEE Computer Society, pp. 154–164 .
eccato, M., Tonella, P., Basile, C., Falcarin, P., Torchiano, M., Coppens, B., De Sut-

ter, B., 2019. Understanding the behaviour of hackers while performing attack
tasks in a professional setting and in a public challenge. Empir. Softw. Eng. 24

(1), 240–286 .

how, S., Eisen, P., Johnson, H., van Oorschot, P.C., 2003. A white-box DES implemen-
tation for drm applications. In: Feigenbaum, J. (Ed.), Digital Rights Management.

Springer Berlin Heidelberg, pp. 1–15 .
leven, A., Gubler, P., Hüner, K.M., 2009. Design alternatives for the evaluation of

design science research artifacts. In: Proc. 4th Int’l Conf. on Design Science
Research in Information Systems and Technology, DESRIST ’09. Association for

Computing Machinery, New York, NY, USA doi: 10.1145/1555619.1555645 .

ollberg, C., Martin, S., Myers, J., Nagra, J., 2012. Distributed application tamper de-
tection via continuous software updates. In: Proc. of the 28th Annual Computer

Security Applications Conference. ACM, pp. 319–328 .
ollberg, C., Thomborson, C., Low, D., 1997. A taxonomy of obfuscating transforma-

tions. Computer science technical reports 148. Dep. of Computer Science, Uni-
versity of Auckland, New Zealand .

ollberg, C., Thomborson, C., Low, D., 1998. Manufacturing cheap, resilient, and

stealthy opaque constructs. In: Proc. 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 184–196 .

oppens, B., De Sutter, B., Maebe, J., 2013. Feedback-driven binary code diversifi-
cation. In: ACM Transactions on Architecture and Code Optimization (TACO),

Vol. 9, pp. 1–26 .
oppens, B., et al., 2016. ASPIRE Open source manual. Deliverable D5.13, ASPIRE

EU FP7 Project . https://aspire- fp7.eu/sites/default/files/D5.13- ASPIRE- Open-

Source-Manual.pdf
WE-656. Reliance on security through obscurity. https://cwe.mitre.org/data/

definitions/656.html .
awes, R.M., 1979. The robust beauty of improper linear models in decision making.

Am. Psycholog. 34 (7), 571 .
e Mulder, Y., Wyseur, B., Preneel, B., 2010. Cryptanalysis of a Perturbated

White-box AES Implementation. In: Gong, G., Gupta, K.C. (Eds.), Progress in

Cryptology-INDOCRYPT 2010. Springer Berlin Heidelberg, pp. 292–310 .
e Sutter, B., Collberg, C., Dalla Preda, M., Wyseur, B., 2019. Software protec-

tion decision support and evaluation methodologies (dagstuhl seminar 19331).
Dagstuhl. Rep. 9 (8), 1–25 .

empsey, K., Takamura, E., Eavy, P., Moore, G., 2020. NISTIR 8011 Vol. 4. Automa-
tion support for security control assessments: software vulnerability manage-

ment. Tech. rep.. National Institute of Standards & Technology, Gaithersburg,
MD, United States .

enning, D., Neumann, P.G., 1985. Requirements and model for ides – a real-time

intrusion-detection expert system. Tech. rep.. SRI International, Menlo Park, CA,
USA .

oerry, N., Sibley, M., 2015. Monetizing risk and risk mitigation. Nav. Eng. J. 127,
35–46 .

NISA, 2019. ENISA good practices for security of Smart Cars. Tech. rep.. European
Union Agency for Cyber Security .

ronen, P., Zitting, J., 2001. An expert system for analyzing firewall rules. In: Pro-

ceedings of the 6th Nordic Workshop on Secure IT Systems (NordSec 2001),
pp. 100–107 .

uropean Union Agency for Fundamental Rights (FRA), 2019. The general data pro-
tection regulation – one year on. Tech. rep.. European Union Agency for Funda-

mental Rights (FRA) .
rost, 2016. Global software licensing and monetization market, forecast to 2021.

Tech. Rep. 3715874. Frost & Sullivan .

artner Inc., 2019. Risk assessment process and methodologies primer for 2019. On-
line at https://www.gartner.com/en/documents/3938592 .

artner Inc., 2020. Cybersecurity labor shortage and COVID-19. Online at https://
www.gartner.com/en/human-resources/research/talentneuron/cybersecurity-

labor- shortage- and- covid- 19 .
artner Magic Quadrant for Network Firewalls. https://www.gartner.com/en/

documents/4007809 .

effner, K., Collberg, C., 2004. The obfuscation executive. In: Zhang, K., Zheng, Y.
(Eds.), Information Security. Springer Berlin Heidelberg, Berlin, Heidelberg,

pp. 428–440 .
evner, A.R., March, S.T., Park, J., Ram, S., 2004. Design science in information sys-

tems research. MIS Q. 75–105 .
offman, L.J., 1986. Risk analysis and computer security: bridging the cultural gaps.

In: Proceedings of the 9th National Computer Security Conference. National In-

stitute of Standards and Technology, pp. 156–161 .
older, W., McDonald, J.T., Andel, T.R., 2017. Evaluating optimal phase ordering in

obfuscation executives. In: Proc. 7th Software Security, Protection, and Reverse
Engineering Workshop, SSPREW-7. ACM .
28
orváth, M., Buttyán, L., 2020. Cryptographic obfuscation: A Survey. Springer .
rdeto, 2020. Irdeto global connected industries cybersecurity survey. Online at

https://go.irdeto.com/connected- industries- cybersecurity- survey- report/ .
SO, 2016. Information technology - security techniques - information security man-

agement - monitoring, measurement, analysis and evaluation. Standard, Interna-
tional Organization for Standardization. International Electrotechnical Commis-

sion .
SO, 2018. Information technology - security techniques - information security man-

agement systems - overview and vocabulary. Standard, International Organiza-

tion for Standardization. International Electrotechnical Commission, Geneva, CH .
oint Task Force Transformation Initiative, 2011. SP 800-39. managing information

security risk: Organization, mission, and information system view. Tech. rep..
National Institute of Standards & Technology .

oint Task Force, 2018. SP 800-37. risk management framework for information sys-
tems and organizations (revision 2). Tech. rep.. National Institute of Standards &

Technology, Gaithersburg, MD, United States .

oint Task Force, 2020. SP 800-53. security and privacy controls for information sys-
tems and organizations (revision 5). Tech. rep.. National Institute of Standards &

Technology, Gaithersburg, MD, United States .
ahneman, D., 2011. Thinking, Fast and Slow. Macmillan .

ahneman, D., Klein, G., 2009. Conditions for intuitive expertise: a failure to dis-
agree. Am. Psychol. 64 (6), 515 .

altz, J., Lindell, Y., 2008. Introduction to Modern Cryptography: Principles and Pro-

tocols. Chapman and Hall .
ellerer, H., Pferschy, U., Pisinger, U., 2004. Knapsack Problems. Springer-Verlag .

hanmohammadi, K., Hamou-Lhadj, A., Ebrahimi, N., Khoury, R., 2019. Empirical
study of android repackaged applications. Empir. Softw. Eng. 24 (6), 3587–3629 .

im, J.S., Kim, M., Noh, B.N., 2004. A fuzzy expert system for network forensics. In:
Computational Science and Its Applications (ICCSA). Springer Berlin Heidelberg,

pp. 175–182 .

night, A., April 2019. In plain sight: the vulnerability epidemic in financial mobile
apps.

uznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D., 2014. Code–
pointer integrity. In: 11th USENIX Symposium on Operating Systems Design and

Implementation. USENIX Association, pp. 147–163 .
iao, N., Tian, S., Wang, T., 2009. Network forensics based on fuzzy logic and expert

system. Comput. Commun. 32 (17), 1881–1892 .

inn, C., Debray, S., 2003. Obfuscation of executable code to improve resistance to
static disassembly. In: Proceedings 10th ACM conference on Computer and com-

munications security. ACM, New York, NY, USA, pp. 290–299 .
iu, H., 2016. Towards better program obfuscation: optimization via language mod-

els. In: Proc. 38th Int’l Conference on Software Engineering Companion, ICSE
’16. Association for Computing Machinery, pp. 6 80–6 82 .

iu, H., Sun, C., Su, Z., Jiang, Y., Gu, M., Sun, J., 2017. Stochastic optimization of pro-

gram obfuscation. In: Proceedings of the 39th International Conference on Soft-
ware Engineering, ICSE ’17. IEEE Press, pp. 221–231 .

ukyanenko, R., Evermann, J., Parsons, J., 2014. Instantiation validity in is design
research. In: Advancing the Impact of Design Science: Moving from Theory

to Practice: 9th International Conference, DESRIST 2014, Miami, FL, USA, May
22–24, 2014. Proceedings 9. Springer, pp. 321–328 .

ukyanenko, R., Evermann, J., Parsons, J., 2014. Instantiation validity in is design re-
search. In: Tremblay, M.C., VanderMeer, D., Rothenberger, M., Gupta, A., Yoon, V.

(Eds.), Advancing the Impact of Design Science: Moving from Theory to Practice.

Springer International Publishing, Cham, pp. 321–328 .
acher, G., Schmittner, C., Veledar, O., Brenner, E., 2020. ISO/SAE DIS 21434 au-

tomotive cybersecurity standard - in a Nutshell. In: Proceedings of Computer
Safety, Reliability, and Security (SAFECOMP) Workshops: DECSoS 2020, De-

pDevOps 2020, USDAI 2020, and WAISE 2020. Springer-Verlag, pp. 123–135.
doi: 10.1007/978- 3- 030- 55583- 2 _ 9 .

andiant, 2020. 2020 security effectiveness: Deep dive into cyber reality. Online

at https://content.fireeye.com/security- effectiveness/rpt- security- effectiveness-
2020- deep- dive- into- cyber- reality .

antovani, A., Aonzo, S., Fratantonio, Y., Balzarotti, D., 2022. RE-Mind: a first look
inside the mind of a reverse engineer. In: Proc. 32st Usenix Security Sympo-

sium . To appear
cCabe, T.J., 1976. A Complexity Measure. In: IEEE Transactions on Software Engi-

neering, Vol. SE-2, pp. 308–320 .

erlo, A ., Ruggia, A ., Sciolla, L., Verderame, L., 2021. You shall not repackage! de-
mystifying anti-repackaging on android. Comput. Secur. 103, 102181 .

agra, J., Collberg, C., 2009. Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Pearson Education, London, UK .

sbeck, L.M., Held, B.S., 2014. Rational Intuition: Philosophical Roots, Scientific In-
vestigations. Cambridge University Press .

WASP, 2020. OWASP software assurance maturity model v2.0. https://owaspsamm.

org/ .
WASP, 2021. OWASP application security verification standard v4.03. https://

owasp.org/www- project- application- security- verification- standard/ .
wens, S.F., Levary, R.R., 2006. An adaptive expert system approach for intrusion

detection. Int. J. Secur. Netw. 1 (3/4), 206–217 .
wl, 2012. Owl 2 web ontology language new features and rationale (second edi-

tion). w3c recommendation, world wide web consortium (w3c), cambridge, MA,

US. https://www.w3.org/TR/owl2- new- features/ .
hillips, C., Swiler, L.P., 1998. A graph-based system for network-vulnerability anal-

ysis. In: Proceedings of the 1998 Workshop on New Security Paradigms, NSPW

’98. ACM, pp. 71–79 .

http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0022
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0023
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0024
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0025
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0026
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0027
https://doi.org/10.1145/1555619.1555645
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0029
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0030
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0031
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0033
https://aspire-fp7.eu/sites/default/files/D5.13-ASPIRE-Open-Source-Manual.pdf
https://cwe.mitre.org/data/definitions/656.html
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0034
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0035
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0036
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0037
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0038
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0039
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0040
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0041
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0042
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0043
https://www.gartner.com/en/documents/3938592
https://www.gartner.com/en/human-resources/research/talentneuron/cybersecurity-labor-shortage-and-covid-19
https://www.gartner.com/en/documents/4007809
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0044
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0045
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0047
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0048
https://go.irdeto.com/connected-industries-cybersecurity-survey-report/
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0049
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0050
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0053
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0051
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0052
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0054
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0055
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0056
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0057
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0058
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0059
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0060
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0061
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0062
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0063
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0064
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0065
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0066
https://doi.org/10.1007/978-3-030-55583-2_9
https://content.fireeye.com/security-effectiveness/rpt-security-effectiveness-2020-deep-dive-into-cyber-reality
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0068
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0068
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0069
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0070
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0071
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0072
https://owaspsamm.org/
https://owasp.org/www-project-application-security-verification-standard/
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0073
https://www.w3.org/TR/owl2-new-features/
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0074

C. Basile, B. De Sutter, D. Canavese et al. Computers & Security 132 (2023) 103321

P

R

R

R

R

S

S

S

T

T

T

T

T

V

V

v

V

v

V

V

W

W

W

W

W

W
W

W

W

Y

Z

Z

rat, N., Comyn-Wattiau, I., Akoka, J., 2015. A taxonomy of evaluation methods for
information systems artifacts. J. Manag. Inf. Syst. 32 (3), 229–267. doi: 10.1080/

07421222.2015.1099390 .
egano, L., 2019. An Expert System for Automatic Software Protection. Politecnico

di Torino Ph.d. thesis .
egano, L., Canavese, D., Basile, C., Lioy, A., 2017. Towards optimally hiding protected

assets in software applications. In: Proc. Int’l Conf. on Software Quality, Relia-
bility and Security. IEEE Computer Society, pp. 374–385 .

egano, L., Canavese, D., Basile, C., Viticchié, A., Lioy, A., 2016. Towards automatic

risk analysis and mitigation of software applications. In: Information Security
Theory and Practice. Springer International Publishing, pp. 120–135 .

olles, R., 2009. Unpacking virtualization obfuscators. In: Proceedings of the 3rd
USENIX Conference on Offensive Technologies, WOOT’09. USENIX Association .

1–1
chrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., Weippl, E., 2016. Pro-

tecting software through obfuscation: can it keep pace with progress in code

analysis? ACM Comput. Surv. 49 (1), 1–37 . Article no. 4
hoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A., Grosen, J.,

Feng, S., Hauser, C., Kruegel, C., Vigna, G., 2016. Sok: (state of) the art of war:
offensive techniques in binary analysis. In: 2016 IEEE Symposium on Security

and Privacy (SP). IEEE Computer Society, pp. 138–157 .
ouppaya, M., Scarfone, K., 2017. SP 800-40 Rev. 4. Guide to Enterprise Patch Man-

agement Planning: Preventive Maintenance for Technology. Tech. rep.. National

Institute of Standards & Technology .
amada, H., Fukuda, K., Yoshioka, T., 2012. Program incomprehensibility evaluation

for obfuscation methods with queue-based mental simulation model. In: 13th
ACIS Int’l Conf. on Software Engineering, Artificial Intelligence, Networking and

Parallel Distributed Computing, pp. 498–503 .
assey, G., 20 0 0. Standardization in technology-based markets. Res. Policy 29 (4–5),

587–602 .

aylor, C., Collberg, C., 2019. Getting RevEngE: a system for analyzing reverse engi-
neering behavior. In: 14th International Conference on Malicious and Unwanted

Software (MALCON) .
sudik, G., Summers, R.C., 1990. Audes - an expert system for security auditing. In:

Proceedings of the The Second Conference on Innovative Applications of Artifi-
cial Intelligence. AAAI Press, pp. 221–232 .

uma, K., Calikli, G., Scandariato, R., 2018. Threat analysis of software systems: a

systematic literature review. J. Syst. Softw. 144, 275–294 .
an den Broeck, J., Coppens, B., De Sutter, B., 2021. Obfuscated integration of soft-

ware protections. Int’l J. Inf. Secur. 20, 73–101 .
an den Broeck, J., Coppens, B., De Sutter, B., 2022. Flexible software protection.

Comput. Secur. 116, 102636 .
an der Ende, M., Hageraats, M., Poort, J., Quintais, J. P., Yagafarova, A.,

2018. Global online piracy study 2018. Online at https://www.ivir.nl/projects/

global- online- piracy- study/ .
an Put, L., Chanet, D., De Bus, B., De Sutter, B., De Bosschere, K., 2005. DIABLO: A

Reliable, Retargetable and Extensible Link-time Rewriting Framework. In: Proc.
Fifth IEEE Int’l Symposium on Signal Processing and Information Technology.

IEEE Computer Society, pp. 7–12 .
an der Aalst, W., 2012. Process mining: overview and opportunities. ACM Trans.

Manage. Inf. Syst. 3 (2). doi: 10.1145/2229156.2229157 .
enable, J., Pries-Heje, J., Baskerville, R., 2016. FEDS: A framework for evaluation in

design science research. Eur. J. Inf. Syst. 25 (1), 77–89. doi: 10.1057/ejis.2014.36 .

iticchié, A., Basile, C., Avancini, A., Ceccato, M., Abrath, B., Coppens, B., 2016. Reac-
tive attestation: automatic detection and reaction to software tampering attacks.

In: Proceedings of the 2016 ACM Workshop on Software PROtection, SPRO ’16.
ACM, pp. 73–84 .

ang, H., Fang, D., Wang, N., Tang, Z., Chen, F., Gu, Y., 2013. Method to evaluate
software protection based on attack modeling. In: Int’l Conf. on High Perfor-

mance Computing and Communications (HPCC) & Int’l Conf. on Embedded and

Ubiquitous Computing (EUC). IEEE Computer Society, pp. 837–844 .
ang, C., Hill, J., Knight, J., Davidson, J., 20 0 0. Software tamper resistance: Obstruct-

ing static analysis of programs. Tech. rep.. University of Virginia, Charlottesville,
VA, USA .

ielemaker, J., Schrijvers, T., Triska, M., Lager, T., 2012. SWI-Prolog. Theory Pract.
Logic Program. 12 (1–2), 67–96 .

illiams, J., 1930. OWASP risk rating methodology. Online at https://owasp.org/

www-community/OWASP _ Risk _ Rating _ Methodology .
ohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A., 20 0 0. Exper-

imentation in Software Engineering - An Introduction. Kluwer Academic Pub-
lishers .

yseur, B., 2011. White-box cryptography. KU Leuven Ph.d. thesis .
yseur, B., 2014. Assets. In: ASPIRE Project Deliverable 1.02: Attack Model,

pp. 10–12 .

yseur, B., 2014. Classification of attacks. In: ASPIRE Project Deliverable 1.02: Attack
Model, pp. 13–52 .

yseur, B., Michiels, W., Gorissen, P., Preneel, B., 2007. Cryptanalysis of white-box
des implementations with arbitrary external encodings. In: Adams, C., Miri, A.,

Wiener, M. (Eds.), Selected Areas in Cryptography. Springer Berlin Heidelberg,
pp. 264–277 .
29
adegari, B., Johannesmeyer, B., Whitely, B., Debray, S., 2015. A generic approach to
automatic deobfuscation of executable code. In: Proc. Symposium on Security

and Privacy. IEEE Computer Society, pp. 674–691 .
hou, Y., Jiang, X., 2012. Dissecting android malware: characterization and evolution.

In: 2012 IEEE Symposium on Security and Privacy, pp. 95–109. doi: 10.1109/SP.
2012.16 .

umerle, D., Bhat, M., 2017. Gartner: Market guide for application shielding.

Cataldo Basile is an assistant professor at the Politecnico

di Torino, from which he received an M.Sc.in 2001 and
a Ph.D. in Computer Engineering in 2005. His research

concerns software protection, software attestation, policy-
based security management, and general models for de-

tecting, resolving, and reconciling security policy conflicts.

Bjorn De Sutter is associate professor at Ghent Univer-
sity in the Computer Systems Lab. He obtained his MSc

and PhD degrees in Computer Science from the univer-
sity’s Faculty of Engineering in 1997 and 2002. His re-

search focuses on techniques to aid programmers with

non-functional aspects such as performance and software
protection to mitigate reverse engineering, software tam-

pering, code reuse attacks, fault injection, and side chan-
nel attacks. He co-authored over 100 papers.

Daniele Canavese received an M.Sc. degree in 2010 and

a Ph.D. in Computer Engineering in 2016 from Politecnico
di Torino, where he is currently a research assistant. His

research interests are concerned with security manage-

ment via machine learning and inferential frameworks,
software protection systems, public-key cryptography, and

models for network analysis.

Leonardo Regano received an M.Sc.degree in 2015 and a
Ph.D. in Computer Engineering in 2019 from Politecnico

di Torino, where he is currently a research assistant. His

current research interests focus on software security, ar-
tificial intelligence and machine learning applications to

cybersecurity, security policies analysis, and software pro-
tection techniques assessment.

Bart Coppens is a assistant professor at Ghent Univer-
sity in the Computer Systems Lab. He received his PhD

in Computer Science Engineering from the Faculty of En-

gineering and Architecture at Ghent University in 2013.
His research focuses on protecting software against dif-

ferent forms of attacks using compiler-based techniques
and run-time techniques.

https://doi.org/10.1080/07421222.2015.1099390
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0076
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0077
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0078
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0079
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0079
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0080
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0080
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0081
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0082
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0083
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0084
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0085
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0086
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0087
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0016
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0017
https://www.ivir.nl/projects/global-online-piracy-study/
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0088
https://doi.org/10.1145/2229156.2229157
https://doi.org/10.1057/ejis.2014.36
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0090
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0092
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0091
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0093
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0094
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0095
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0096
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0097
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0098
http://refhub.elsevier.com/S0167-4048(23)00231-6/sbref0099
https://doi.org/10.1109/SP.2012.16

	Design, implementation, and automation of a risk management approach for man-at-the-End software protection
	1 Introduction
	2 Research approach
	2.1 Step 1: Bottom-up development and evaluation of proof-of-Concept decision support tools
	2.2 Step 2: Top-Down adoption of a standardized IT risk management approach
	2.3 Step 3: Coverage analysis of the adopted approach in the DSR framework

	3 Background on standardization and the state of software protection
	3.1 Standardized risk management approaches
	3.2 The state of MATE software protection

	4 Motivation and challenges for standardization, formalization, and automation
	4.1 Motivation for standardization
	4.2 Motivation for formalization and automation
	4.3 Challenges towards standardization, formalization, and automation

	5 Adopting a standard towards proper risk management
	5.1 Risk framing
	5.1.1 Assets
	5.1.2 Security requirements
	5.1.3 Attack models
	5.1.4 Software protections
	5.1.5 Software development life cycle requirements

	5.2 Risk assessment
	5.2.1 Identification of the actual threats
	5.2.2 Evaluating and prioritizing risks

	5.3 Risk mitigation
	5.3.1 Mitigation decision making
	5.3.2 Actual deployment

	5.4 Risk monitoring
	5.4.1 Keeping the risk analysis up-to-date
	5.4.2 Risk monitoring of the released application

	6 Proof-of-Concept expert system for software protection
	6.1 Risk framing in the ESP
	6.2 Risk assessment in the ESP
	6.3 Risk mitigation in the ESP
	6.3.1 Asset protection optimization
	6.3.2 Asset hiding
	6.3.3 Deployment

	6.4 Risk monitoring in the ESP
	6.5 Coverage

	7 Evaluation of the instantiated artifact
	7.1 Design of the qualitative evaluation
	7.1.1 Step 1: Early internal expert assessment
	7.1.2 Step 2: Final internal expert assessment
	7.1.3 Step 3: Assessment with external experts

	7.2 Qualitative evaluation results and discussion
	7.3 Technical assessment
	7.4 Framing effort in the ESP
	7.5 Threats to validity

	8 Conclusion and future work
	8.1 Conclusions
	8.2 Future work

	Funding
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Appendix A The questionnaire for the expert assessment of the ESP.
	References

