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Abstract: Cubic bi-magnetic hard–soft core–shell nanoarchitectures were prepared starting from cobalt
ferrite nanoparticles, prevalently with cubic shape, as seeds to grow a manganese ferrite shell. The
combined use of direct (nanoscale chemical mapping via STEM-EDX) and indirect (DC magnetometry)
tools was adopted to verify the formation of the heterostructures at the nanoscale and bulk level,
respectively. The results showed the obtainment of core–shell NPs (CoFe2O4@MnFe2O4) with a thin
shell (heterogenous nucleation). In addition, manganese ferrite was found to homogeneously nucleate
to form a secondary nanoparticle population (homogenous nucleation). This study shed light on
the competitive formation mechanism of homogenous and heterogenous nucleation, suggesting the
existence of a critical size, beyond which, phase separation occurs and seeds are no longer available in
the reaction medium for heterogenous nucleation. These findings may allow one to tailor the synthesis
process in order to achieve better control of the materials’ features affecting the magnetic behaviour,
and consequently, the performances as heat mediators or components for data storage devices.

Keywords: cobalt ferrite; core–shell; heterostructures; cubic shape; STEM-EDX

1. Introduction

In the field of nanotechnology, the combination of different materials for the obtain-
ment of heterostructured multifunctional nanoparticles (NPs) [1–3] or nanocomposites [4–8]
has driven the efforts of researchers with the aim of exploiting the physical (magnetic,
optical, electrical, etc.) and chemical (thermal stability, reactivity, bonding ability, dis-
persibility, solubility, etc.) properties of single components in a combined or synergistic
manner for selected applications. When two (or more) different phases are put in contact at
the nanoscale, new phenomena may arise from their coupling, with a crucial role played by
the interface extent. One of the most prominent examples is core–shell nanoarchitectures,
consisting of an inner core covered by an external layer (shell) of a different material. The
nature of the contact between the core and the shell is fundamental for these structures
to show their peculiar properties; particularly, a net change in the chemical composition
with no chemically mixed layers between the phases is desired. Diverse materials such as
ferrites, perovskites, silica, titania, noble metals, elemental carbon, alloys, and polymers
have been coupled to form inorganic/organic or inorganic/inorganic core–shell systems [9].
The choice of the materials to be coupled, the core–shell volume ratio, and the synthesis
method are elements to play with. Core–shell heterostructures featuring a heterojunction
between two different materials have an extensive range of applications, such as photocatal-
ysis [10,11], gas sensing [12,13], water purification [14], and hydrogen production [15,16].
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In these materials, the electron phenomena taking place at the interface between the two
phases play a crucial role [17,18].

In the case of magnetic materials, since the discovery of exchange bias phenom-
ena in a ferromagnet (FM)/antiferromagnet (AFM) system (Co/CoO core–shell NPs) by
Meiklejohn and Bean [19], and by Kneller and Hawig [20], other interfaces have been
built, such as AFM/ferrimagnet (FiM), or hard–soft FM or FiM [21–25]. The development
of the core–shell heterostructure is favoured by the choice of isostructural crystalline
phases, which should grow epitaxially one upon the other. In this context, spinel ferrite
(MIIFe2O4, MII = Fe2+, Co2+, Mn2+, Ni2+, Zn2+, etc.) bi-magnetic core–shell NPs have
been studied and proposed in different application fields, such as magnetic recording,
permanent magnets, spintronics, microwave absorption, biomedicine, magnetic heat
generation for catalysis [26–29], or magnetic fluid hyperthermia (MFH) [30–45]. In this
framework, the adoption of core–shell heterostructures was demonstrated to be efficient
to improve the heating abilities of spinel ferrites or their energy product as permanent
magnets [21,25,32,39,46]. The spinel ferrite core–shell NPs offer a tuneable range of hard
and soft magnetic behaviours by properly changing the chemical composition. They can
be successfully prepared with good crystallinity and good control over the composition,
the particle’s morphology, and heterostructure interface by seed-mediated approaches
applied to thermal decomposition and solvothermal methods [32,39,47–61].

Seed-mediated synthesis approaches consist of introducing pre-formed nanoparticles
(seeds) into the medium containing the precursors of the shell material. The nucleation of
the secondary material onto the surface of the seeds (heterogeneous nucleation) has a lower
energy barrier than the formation of new particles of the secondary material (homogeneous
nucleation), thus giving rise to the formation of the core–shell structures [62].

In particular, the magnetic behaviour of the core–shell NPs can also be modified
according to the shape, in addition to the size, for instance, due to surface anisotropy effects.
Regarding this effect, a remarkable influence of the NPs’ shape on their magnetic properties
was observed by several authors [9,63–69]. Concentric spherical core–shell NPs are the
most common systems [9].

Recently, we set up a versatile solvothermal synthesis method able to produce single-
phase spherical particles [70,71], chemically mixed spinel phases [72,73], homogeneous spher-
ical bi-magnetic core–shell NPs [46,70,74,75], and flower-like Ag-spinel ferrite nanoarchitec-
tures [1] with high crystallinity, low size dispersity, and precise control of the shell growth.

Herein, we studied the formation of cubic cobalt ferrite nanoparticles and their bi-
magnetic heterostructure counterparts by coating cubic cobalt ferrite nanoseeds with
manganese ferrite to form CoFe2O4@MnFe2O4 with the same oleate-based solvothermal
method adopted in our previous studies. High-resolution transmission electron microscopy
(HRTEM) and chemical mapping at the nanoscale, performed through STEM-EDX, together
with the Rietveld refinement of X-ray diffraction (XRD) patterns and DC magnetometry,
were employed to study morphological, structural, and magnetic properties.

The study aimed to provide precious details on the formation mechanism of core–shell
heterostructures by starting from larger (15 nm versus 6–8 nm) and anisotropic (cubic
versus spherical) cobalt ferrite nanoparticles compared with our previous studies. To
understand how the different morphologies of the seeds affect the final product, a com-
bination of direct microscopic and indirect macroscopic characterisation techniques was
adopted. The chemical mapping at the nanoscale via STEM-EDX allowed us to probe
the local chemical composition of a few nanoparticles with a good resolution, while DC
magnetometry provided a bulk-level view of the average physical behaviour, beyond the
representativeness limits of electron microscopy.

2. Materials and Methods
2.1. Chemicals

Oleic acid (>99.99%), 1-pentanol (99.89%), hexane (84.67%), and toluene (99.26%)
were purchased from Lach-Ner, Neratovice, Czech Republic; 1-octanol (>99.99%) and
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Mn(NO3)2·4H2O (>97.0%) from Sigma-Aldrich, St. Louis, MO, USA; absolute ethanol and
Co(NO3)2·6H2O (99.0%) from Penta, Prague 10, Czech Republic; NaOH (>98.0%) from
Fluka, Muskegon, MI, USA; Fe(NO3)3·9H2O (98.0%) from Lachema, Brno, Czech Republic.

2.2. Methods

Cobalt ferrite NPs and core–shells were prepared as described in previous work [46,70],
starting from metal oleates. The synthesis conditions are summarised in Table S1.

2.3. Characterisation

Fourier Transform Infrared (FT-IR) spectra were recorded in the region from 400 to
4000 cm−1 by using a FT/IR-4X Spectrometer from Jasco, Easton, MD, USA. Samples were
measured in a KBr pellet.

Thermogravimetric analysis (TGA) curves were obtained by using a PerkinElmer
(Waltham, MA, USA) STA 6000, in the 25–850 ◦C range, with a heating rate of 10 ◦C min−1

under 40 mL min−1 O2 flow.
The samples were characterised via X-ray diffraction (XRD), using a PANalytical

X’Pert PRO (Malvern PANalytical, Malvern, UK) with Cu Kα radiation (1.5418 Å), a sec-
ondary monochromator, and a PIXcel position-sensitive detector. The peak position and
instrumental width were calibrated using powder LaB6 from NIST. The refinement of
the structural parameters was carried out using the Rietveld method in the FullProf soft-
ware [76] using a pseudo-Voigt profile function. For mean crystallite shapes, the spherical
harmonics function was used [77]:

T(h) = T(ϑ, ϕ) =
n

∑
l=0,2,4...

l

∑
m=−l

al,mYl,m(ϑ, ϕ) (1)

where ϑ and ϕ are polar and azimuthal angles describing the direction of the normal to the
family of the lattice plane in a Cartesian coordinate system, a is the lattice parameter, and Y
is the Lorentzian isotropic size broadening.

TEM micrographs were acquired using a JEOL 200CX electron microscope (Jeol Ltd.,
Tokyo, Japan) operating at 160 kV. The size of more than 1000 particles was measured
using Pebbles software [78], selecting a cubic or spherical shape in order to determine the
particle size distribution. The average particle diameter was calculated together with the
percentage ratio between the standard deviation and the mean value to provide the size
dispersity. Additional TEM micrographs and EDX data for the Co:Mn:Fe molar ratios were
obtained by using a JEOL JEM 1400 Plus (Jeol Ltd., Tokyo, Japan) operating at 120 kV.

HRTEM micrographs and STEM-EDX measurements were carried out using an FEI
Talos F200X (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a field-emission
gun operating at 200 kV and a four-quadrant 0.9 sr energy-dispersive X-ray spectrometer.

The Quantum Design PPMS DynaCool system with a maximum magnetic field of 9 T
and the VSM module was used to investigate the DC magnetic properties of powders. The
magnetisation values were normalised based on thermogravimetric analyses to account
for the inorganic phase. Various magnetic measurements were conducted, including
studying the field dependence of magnetisation at 10 K and 300 K within a range of 7 to
−7 T. The saturation magnetisation values (Ms300K and Ms10K) were evaluated using the
following equation:

M = Ms

(
1 − a

H
− b

H2

)
(2)

For H tending to ∞, the magnetisation curve was fit from 4 to 7 T [79]. The anisotropy
field was calculated as a 3% difference between the magnetisation and demagnetisation
curves at 10 K. The temperature dependence of magnetisation was analysed using the
zero-field-cooled (ZFC) and field-cooled (FC) protocols. The sample was cooled to 5 K
without any magnetic field, and then, the signals were recorded under a static magnetic
field of 100 Oe. During the warm-up from 5 to 380 K, MZFC was measured, and MFC was
recorded during the cooling process.
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3. Results and Discussion

Cobalt ferrite NPs (labelled Co) with cubic shapes were obtained by following an adapted
one-pot solvothermal procedure previously set up for spherical NPs [46,70,74,80–82], de-
creasing the concentration of the mixed Co-Fe oleate precursor to produce larger NPs
(Figure 1, Table S1). This sample was used as seed material for the growth of a man-
ganese ferrite shell through a second solvothermal treatment in the presence of mixed
FeIII-MnII oleate to synthesise CoFe2O4@MnFe2O4 NPs (labelled Co@Mn). Indeed, in
previous works [46,70,74], the seed-mediated growth approach in solvothermal conditions
permitted the preparation of manganese-ferrite-coated cobalt ferrite NPs with different
core sizes and shell thicknesses, starting from spherical particles.

Nanomaterials 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 1. Scheme of the synthesis method: (a) XRD patterns and TEM images with size distributions 
of the Co (b–d) and Co@Mn (e–g) samples; the zones inside red boxes have been magnified as insets. 

The samples were characterised via FTIR and TGA to ascertain the presence of oleate 
molecules capping at the NPs’ surfaces (Figure S1). The FTIR spectra (Figure S1a) 
displayed vibrational modes of carboxylates (νas(COO−), νs(COO−)) at around 1550 and 
1430 cm−1, respectively, as well as hydrocarbon chain modes in the 3000 cm−1 region. 
Thermogravimetric analyses (TGA, Figure S1b) demonstrated a comparable decrease in 
weight for the two samples in the temperature range of 200–350 °C, attributable to the 
decomposition of about 10%wt. of oleate molecules (Table 1). The slight shift in the 
temperature of the TGA curves and dTGA curves (Figure S1c) towards lower values for 
the Co@Mn sample (minima in the dTGA shifted by 15 °C) might suggest weaker bonds 
between the oleate molecules and the manganese cations [83], different coordinations [84], 
or differences in the morphological properties of the two samples (e.g., different 
curvature) having effects in stabilising the bonds between the carboxylate and the cations 
(e.g., through the proximity of the hydrocarbon chains) [85]. 

Table 1. Lattice parameter (a), crystallite size (DXRD), volumetric particle size (DTEM_V), size 
distribution (σ), organic content calculated by TGA, metal atomic percentages, and molar ratio 
Co:Mn:Fe (with Fe moles fixed to 2) calculated via TEM-EDX of the samples. a and DXRD values are 

Figure 1. Cont.



Nanomaterials 2023, 13, 1679 5 of 15

Nanomaterials 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 1. Scheme of the synthesis method: (a) XRD patterns and TEM images with size distributions 
of the Co (b–d) and Co@Mn (e–g) samples; the zones inside red boxes have been magnified as insets. 

The samples were characterised via FTIR and TGA to ascertain the presence of oleate 
molecules capping at the NPs’ surfaces (Figure S1). The FTIR spectra (Figure S1a) 
displayed vibrational modes of carboxylates (νas(COO−), νs(COO−)) at around 1550 and 
1430 cm−1, respectively, as well as hydrocarbon chain modes in the 3000 cm−1 region. 
Thermogravimetric analyses (TGA, Figure S1b) demonstrated a comparable decrease in 
weight for the two samples in the temperature range of 200–350 °C, attributable to the 
decomposition of about 10%wt. of oleate molecules (Table 1). The slight shift in the 
temperature of the TGA curves and dTGA curves (Figure S1c) towards lower values for 
the Co@Mn sample (minima in the dTGA shifted by 15 °C) might suggest weaker bonds 
between the oleate molecules and the manganese cations [83], different coordinations [84], 
or differences in the morphological properties of the two samples (e.g., different 
curvature) having effects in stabilising the bonds between the carboxylate and the cations 
(e.g., through the proximity of the hydrocarbon chains) [85]. 

Table 1. Lattice parameter (a), crystallite size (DXRD), volumetric particle size (DTEM_V), size 
distribution (σ), organic content calculated by TGA, metal atomic percentages, and molar ratio 
Co:Mn:Fe (with Fe moles fixed to 2) calculated via TEM-EDX of the samples. a and DXRD values are 

Figure 1. Scheme of the synthesis method: (a) XRD patterns and TEM images with size distribu-
tions of the Co (b–d) and Co@Mn (e–g) samples; the zones inside red boxes have been magnified
as insets.

The samples were characterised via FTIR and TGA to ascertain the presence of oleate
molecules capping at the NPs’ surfaces (Figure S1). The FTIR spectra (Figure S1a) displayed
vibrational modes of carboxylates (νas(COO−), νs(COO−)) at around 1550 and 1430 cm−1,
respectively, as well as hydrocarbon chain modes in the 3000 cm−1 region. Thermogravi-
metric analyses (TGA, Figure S1b) demonstrated a comparable decrease in weight for the
two samples in the temperature range of 200–350 ◦C, attribuTable to the decomposition
of about 10%wt. of oleate molecules (Table 1). The slight shift in the temperature of the
TGA curves and dTGA curves (Figure S1c) towards lower values for the Co@Mn sample
(minima in the dTGA shifted by 15 ◦C) might suggest weaker bonds between the oleate
molecules and the manganese cations [83], different coordinations [84], or differences in
the morphological properties of the two samples (e.g., different curvature) having effects in
stabilising the bonds between the carboxylate and the cations (e.g., through the proximity
of the hydrocarbon chains) [85].

Table 1. Lattice parameter (a), crystallite size (DXRD), volumetric particle size (DTEM_V), size distribu-
tion (σ), organic content calculated by TGA, metal atomic percentages, and molar ratio Co:Mn:Fe
(with Fe moles fixed to 2) calculated via TEM-EDX of the samples. a and DXRD values are computed
via Rietveld refinement using two spinel ferrite phases for the Co@Mn sample: the first row of the
Table refers to CoFe2O4 and the second one to MnFe2O4.

Sample a (Å) DXRD
(nm) DTEM_V (nm) σTEM

(%)
Org. Phase

(%wt.)
Mn
(%) Co (%) Fe (%) Mn:Co:Fe

Co 8.3914(2) 10.1(3)
14.2 (64% Cube) 11

10 - 32.6(7) 67.4(7) 0:0.96:2
14.9 (36% Sphere) 15

Co@Mn 8.4030(9)
8.4684(7)

10.7(9)
8.3(4) 15.3 12 11 25.0(2) 9.6(3) 65.4(4) 0.76:0.30:2
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TEM micrographs of CoFe2O4 present well-defined cubic and spheroidal particles,
quantified as about 64% and 36%, and having similar particle sizes of about 14 nm and
15 nm, respectively (Figures 1b,c and S2, Table 1) with low size dispersity (σTEM = 11%,
15%). On the contrary, the TEM micrographs of the core–shell system (Figures 1e,f and S3)
reveal the obtainment of NPs with various shapes from spheroidal to faceted of about
15 nm (Table 1) and only a few well-defined cubic particles. EDX analysis was adopted to
determine the molar ratio between the cations in the two samples. Almost stoichiometric
cobalt ferrite (Co/Fe = 0.48) was obtained, in agreement with previous results on other
spherical cobalt ferrite nanoparticles prepared using the same synthesis method [70]. For
the core–shell sample, assuming that the cobalt content is associated with a cobalt ferrite
with the molar ratio obtained for the Co sample, we can hypothesise a Mn/Fe molar ratio
equal to 0.55, also revealing an almost stoichiometric manganese ferrite.

The XRD patterns of both samples show the formation of a spinel ferrite structure
(Figure 1d,g). The crystallite size of Co, obtained from Rietveld refinement (Figure S4a,
Table S2), is smaller (10.1(3) nm) than the mean physical size of the NPs obtained via
TEM (14–15 nm, Table 1). This discrepancy might be due to the presence of structural
disorder at the nanoparticle surface or to the limits of the Rietveld method in describing
samples with populations of differently shaped NPs (cubic and spherical). In addition,
the refinement of the Co@Mn sample using only one structural spinel phase leads to
a coherent domain size smaller than the original core size (7.2(4) nm and 10.1(3) nm,
respectively, Table S2). Therefore, an attempt to refine the XRD data with two spinel
structures (Figure S4b, Table S3), one corresponding to CoFe2O4 and another to MnFe2O4,
resulted in a better description of the XRD data. The crystallite size of the Co@Mn sample
was, in this case, equal to 10.7(9) nm for the cobalt ferrite phase and 8.3(4) nm for the
manganese ferrite counterpart. Moreover, the core–shell sample features a larger cell
parameter (8.4030(9) Å for cobalt ferrite phase and 8.4684(7) Å for manganese ferrite)
than the original core (8.3914(2) Å), in agreement with the inclusion of manganese in the
spinel structure (Table 1). The adoption of the spherical harmonics function in the Rietveld
refinement allowed us to visualise an average shape of the crystallites, revealing a cubic
shape with rounded corners for the core sample and more faceted cuboidal particles for the
core–shell one (Figure S4). The two contributions for the interpretation of the XRD pattern
of the Co@Mn sample with almost constant or smaller crystallite sizes compared to the core
and a slightly higher lattice parameter suggests the homogeneous nucleation of manganese
ferrite, along with the formation of core–shell heterostructures with thin manganese ferrite
shells, and also the occurrence of structural disorder phenomena. These findings suggest
the role of the shape and the chemical nature of the metal cations involved in determining
the success of the obtainment of core–shell heterostructures. To further investigate these
features, HRTEM and STEM-EDX chemical mapping at the nanoscale were adopted.

STEM-EDX chemical mapping and HRTEM images of the cobalt ferrite sample are
reported in Figures 2a–c and S5. The nanoscale chemical mapping (Figures 2a–c and S5)
reveals the spread of cobalt and iron throughout the particles, which appear differently
oriented towards the electron beam, with hexagonal projections besides cubic ones being
visible. Interestingly, the presence of the organic capping seems to be visible in the
micrograph reported in Figure S5b with a size of the layer coherent with the hydrocarbon
chain length [86]. HRTEM images (Figure 2d–f) show highly crystalline cubic-shaped
particles with rounded corners, revealing the typical inter-lattice distances of spinel
ferrite crystals and with the planes regularly aligned through the particle to the surface.
The high crystallinity of the cobalt ferrite nanoparticles proved via HRTEM further
suggests that the observed discrepancy between the particle and crystallite sizes is more
related to the difficulties in describing two populations of differently shaped NPs via
the Rietveld method.
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STEM-EDX images of the core–shell sample are shown in Figure 3, where the obtain-
ment of core–shell NPs with very thin shells (Figure 3a,b) accompanied by the formation of
manganese ferrite NPs with similar sizes and shapes (Figure 3c,d) is proved. Single-phase
cobalt ferrite NPs were not detected. These results indicate that the cubic cobalt ferrite seeds
of about 14 nm were homogenously coated and that the heterogeneous and homogeneous
nucleations of MnFe2O4 are competitive phenomena in the selected synthetic conditions.
On the contrary, the obtainment of highly crystalline NPs exclusively in a core–shell archi-
tecture was previously achieved on cobalt ferrite spherical seeds of 6 and 8 nm in size with
both manganese ferrite and spinel iron oxide as the coating shell, as proven via STEM-EDX,
STEM-EELS, and HRTEM [46,70]. Therefore, we can hypothesise that the bigger size as
well as the faceted shape of the cobalt ferrite seeds might be the main reason for the dif-
ferent formation mechanism of the final products. Nevertheless, it is worth noting that
the presence of uncoated seeds was never revealed in the final products obtained using
this oleate-based solvothermal method, regardless of the shape and size of the seeds. As
expected, at the beginning of the synthesis process, the heterogenous nucleation seems to
be favoured in comparison with the homogenous nucleation. Moreover, it seems that the
heterogeneous nucleation (i.e., formation of the core–shell heterostructures) goes on until
a critical size is reached (about 15 nm), at which, the particles lose their colloidal stability
in the liquid medium and settle at the bottom of the Teflon liner. Therefore, in the liquid
medium, only Mn and Fe oleates remain, and manganese ferrite nanoparticles nucleate
and grow. Figure 3a depicts cubic core–shell NPs with manganese ferrite shells of about
1.4 nm, while Figure 3b represents a core–shell nanoparticle where the manganese ferrite
grew in a different direction, generating a staggered cube with respect to the cubic core.
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(a,b) and manganese ferrite NPs (c,d).

This behaviour can also be observed in the HRTEM image of the same nanoparticle,
reported in Figure 4. The particle, pointed along the <110> zone axis, reveals twins between
the {220} planes of the cubic core and the {111} planes of the shell, as better evidenced in the
ellipsoidal spots visible in the FFT image (Figure 4b) and in the dashed-line white squares
in the inversed masked FFT images (Figure 4e,f). Figures S6 and S7 report other structural
defects found for the sample. The results obtained via HRTEM and STEM-EDX agree
with the scenario hypothesised for this sample on the basis of the XRD and conventional
TEM data, as previously discussed. In order to verify if these compositional and structural
inhomogeneities at the nanoscale level strictly related to the faceted shape of the NPs
affect the macroscopic behaviour of the sample, the magnetic properties were investigated
through DC magnetometry (Figure 5).
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Figure 5. Field-dependent magnetisation curves recorded at 10 K (a) and 300 K (b), and zero-
field cooled (ZFC) and field-cooled (FC) curves (c) of the samples Co (grey lines) and Co@Mn
(blue lines).

The Co sample shows hysteresis at 10 K with a large coercive field of 1.91 T and
high saturation magnetisation of about 90 Am2kg−1, while the Co@Mn sample coercivity
is only 0.13 T with wasp-waisted-shaped hysteresis that arises from the superposition
of the hard behaviour of the core–shell architectures and the soft behaviour of the
manganese ferrite NPs (Figure 5a, Table 2). This two-stage hysteresis loop at 10 K
resembles those of a physical mixture, as previously observed for an ad hoc reference
sample prepared by mixing two single-phase NPs (CoFe2O4 and MnFe2O4) of similar
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sizes (Figure 4 of [46]). A single-stage hysteresis loop with lower coercivity compared
with the cobalt ferrite seeds would be instead expected as a unique contribution for
core–shell heterostructures with thin shells, proving the rigid coupling between the
two spinel ferrite phases. Magnetisation isotherms at 300 K (Figure 5b) still show
small hysteresis with coercivity of 0.06 T for the Co sample, indicating the presence of
magnetically blocked particles. Furthermore, the slightly wasp-waisted shape is still
present at 300 K for the Co@Mn sample, consistent with the expected behaviour of the
physical mixture of the core–shell and manganese ferrite NPs.

Table 2. Coercive field (Hc) at 10 K and 300 K, anisotropy field (HK) at 10 K, saturation magnetisation
(Ms) at 10 K and 300 K, and remanent magnetisation (Mr) at 10 K of the samples.

Sample Hc
10K (T) HK

10K (T) Ms
10K

(Am2kg−1)
Mr

10K

(Am2kg−1) Mr/Ms
10K Hc

300K (T) Ms
300K

(Am2kg−1)

Co 1.91(1) 3.7(1) 92(3) 75(2) 0.82(2) 0.06(1) 77(2)

Co@Mn 0.13(1) 3.8(1) 98(3) 51(1) 0.52(2) 0.01(1) 77(2)

The temperature-dependent magnetisation curves (ZFC-FC curves of Figure 5c) con-
firmed the presence of magnetically blocked NPs in the two samples at room temperature
(with a temperature of the maximum above 350 K), but with the presence of a shallow
maximum in the ZFC curve (at about 140 K)) for the Co@Mn sample was associated with
the presence of the magnetically soft MnFe2O4 NPs.

4. Conclusions

A one-pot solvothermal approach was exploited with the aim of obtaining cubic cobalt
ferrite NPs and further coupled with a seed-mediated growth strategy to build core–shell
hard–soft heterostructures. Direct proof of the obtainment of highly crystalline, cubic and
spherical, stoichiometric cobalt ferrite nanoparticles was obtained via TEM, STEM-EDX,
and HRTEM. These techniques, and in particular the chemical mapping at the nanoscale
via STEM-EDX, allowed us to verify the production of bi-magnetic hard–soft core–shell
NPs (CoFe2O4@MnFe2O4) with a very thin shell in a physical mixture with manganese
ferrite NPs. Additionally, the magnetic properties were diagnostic of the superposition
of two contributions: the hard behaviour of the core–shell NPs and the soft one of the
manganese ferrite NPs. Indeed, a double-stage hysteresis loop in the 10 K magnetisation
isotherm and a maximum in the ZFC at about 140 K associated with a magnetically soft
phase were observed. These findings allowed us to hypothesise a formation mechanism in
which the heterogeneous nucleation (growth of a shell on the preformed seeds) and homo-
geneous nucleation (formation of new particles from the metal precursors) compete. From
the comparison with previous achievements in which only core–shell NPs starting from
small (6–8 nm) spherical NPs were achieved, it seems that starting from bigger and faceted
spinel ferrite seeds might direct the formation process of the core–shell heterostructures
towards systems with very thin shells, due to a critical size being reached that made these
particles no longer sTable in the mother solution and made them settle down at the bottom
of the synthesis reactor. Thus, the formation of new manganese ferrite nuclei occurred after
this phase separation.

In this view, the obtainment of a homogenous sample of core–shell NPs might be
achieved in these experimental conditions via the proper selection of the ratio between
the number of preformed seeds and the metal oleate added in the seed-mediated growth
process in order to avoid single-phase nucleation.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13101679/s1, Table S1: Synthesis condition for the samples;
Table S2: Refined structural parameters obtained via Rietveld refinement of the XRD patterns of Co
and Co@Mn samples by using one spinel ferrite phase (CoFe2O4) for both samples; Table S3: Refined
structural parameters obtained via Rietveld refinement of the XRD patterns of Co and Co@Mn
samples by using two spinel ferrite phases (CoFe2O4, MnFe2O4) for the Co@Mn sample; Figure S1:
FTIR spectra (a), TGA curves (b), and corresponding derivatives (c) of the Co and Co@Mn samples;
Figure S2: TEM micrographs of the Co sample; Figure S3: TEM micrographs of the Co@Mn sample;
Figure S4: Rietveld refinement via FullProf software of the XRD patterns of Co (pattern at the bottom)
and Co@Mn (pattern in the upper part) samples by using (a) one spinel ferrite phase (CoFe2O4)
for both samples and (b) two spinel ferrite phases (CoFe2O4, MnFe2O4); Figure S5: STEM-EDX
chemical mapping (a–c) for the sample Co; Figure S6: HRTEM images (a,c,d) of the sample Co@Mn
revealing structural defects; (b) represents the masked inversed FFT image of (a); Figure S7: HRTEM
micrographs (a–c) of the sample Co@Mn revealing structural defects. Reference [87] is cited in the
supplementary materials.
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