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Abstract: Objectives: Four-dimensional (4D) flow cardiac magnetic resonance (CMR) represents an
emerging technique for non-invasive evaluation of the aortic flow. The aim of this study was to
investigate a 4D-flow CMR sequence for the assessment of thoracic aorta comparing different vendors
and different magnetic fields of MR scanner in fifteen healthy volunteers. Methods: CMR was
performed on three different MRI scanners: one at 1.5 T and two at 3 T. Flow parameters and planar
wall shear stress (WSS) were extracted from six transversal planes along the full thoracic aorta by three
operators. Inter-vendor comparability as well as scan–rescan, intra- and interobserver reproducibility
were examined. Results: A high heterogeneity was found in the comparisons for each operator and for
each scanner in the six transversal planes analysis (Friedman rank-sum test; p-value ≤ 0.05). Among
all, the most reproducible measures were extracted for the sinotubular junction plane and for the
flow parameters. Conclusions: Our results suggest that standardized procedures have to be defined
to make more comparable and reproducible 4D-flow parameters and mainly, clinical impactfulness.
Further studies on sequences development are needed to validate 4D-flow MRI assessment across
vendors and magnetic fields also compared to a missing gold standard.

Keywords: cardiac magnetic resonance; 4D-flow; aorta; phase-contrast CMR; aortic blood flow

1. Introduction

The aorta is the main artery responsible for the oxygenated blood distribution to all
parts of the body [1]. In the last decades, non-invasive imaging techniques (mostly Com-
puted Tomography Angiography/CTA and Magnetic Resonance Angiography/MRA) have
been developed to assess the morphology of the aorta without intravascular catheters [2,3].
Cardiac magnetic resonance (CMR) imaging is a non-invasive imaging modality with high
spatial and temporal resolution, allowing a comprehensive assessment of the aorta without
the use of ionizing radiation or the use of iodinated contrast agents. In recent years, the
technological development of CMR has enabled performing functional evaluation of vessel
flow and cardiovascular hemodynamics as part of conventional examination [4].

In the last decade, four-dimensional (4D) flow CMR has significantly improved from
the technical and clinical standpoint becoming progressively more used in clinical routine.
In the 2015, Dyverfeldt et al. published a consensus statement on 4D-flow CMR in clinical
routine [5]. Therefore, 4D-flow CMR should be considered a comprehensive, non-invasive
diagnostic approach able to quantify the blood flow in the main vessels of the chest. Several
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derived parameters have been investigated such as helical and vortical flow [6–9] as well
as wall shear stress (WSS) [10–13] using the 4D-flow CMR technique [14].

Even though the technique is growing and improving, there are still several limitations
in the widespread application of the 4D-flow CMR methodology and technique. One of
the issues is related to reproducibility in different conditions and with different equipment
(both vendor-wise and magnetic field-wise).

The aim of this study was to investigate the 4D-flow CMR sequence for the assessment
of thoracic aorta (for evaluation of flow parameters and planar wall shear stress) comparing
different vendors and different magnetic fields of MR scanner in healthy volunteers.

2. Material and Methods
2.1. Study Cohort

A total of 15 healthy volunteers (9 female and 6 male) were included in the study.
All subjects had no aortic or cardiac pathology nor symptoms related to other diseases or
co-morbidities.

All volunteers gave their written informed consent before participating in the study,
and they underwent 4D-flow CMR based on an IRB-approved protocol (code 8/17 ap-
proved by Ethics Committee “Fondazione Pascale”). The study was approved by the
Institutional Ethics Committee in accordance with the ethical standard of the Declaration
of Helsinki.

2.2. CMR

CMR was performed on three different scanners: Philips digital 1.5 T (Achieva d-
Stream 1.5 T MRI, Philips Healthcare, Best, The Netherlands), Philips digital 3 T (Achieva
d-Stream 3 T MRI, Philips Healthcare, Best, The Netherlands) and Siemens 3 T (Biograph 3 T
mMR, Siemens Healthineers, Forchheim, Germany). All subjects underwent CMR includ-
ing, retrospectively, ECG gated time-resolved (CINE) balanced steady-state free precession
(SSFP) imaging in four-chamber, two-chamber and short axis. Moreover, prospectively
ECG gated time-resolved three-dimensional (3D) phase-contrast (PC) MR imaging with
three-directional velocity encoding (4D-flow MR) was employed to measure in vivo 3D
blood flow velocities in the whole aorta. The 4D-flow MR was acquired in a sagittal oblique
3D volume covering the entire thoracic aorta with prospective ECG gating and a respi-
ratory navigator placed on the lung–liver interface. Further 4D-flow MR pulse sequence
parameters were as follows: velocity encoding (VENC) 200 cm/s, field of view (FOV)
224 × 224 × 224 mm, scan matrix 160 × 160 × 160 (voxel size of 2.5 × 2.5 × 2.5 mm3), flip
angle 8◦, repetition time 4.35 ms and echo time 2.55 ms. No Compressed Sense was used.
This sequence is still under development and not commercially available yet. The total
acquisition time varied from 15 to 20 min depending on heart rate and navigator efficiency.

2.3. D-Flow Post-Processing

Six cross-sectional planes were equally distributed in the full thoracic aorta and were
positioned along the centerline and perpendicular to the longitudinal axis of the aortic
wall. Due to the variable shape and extend of the aorta, the three operators (OP1, OP2,
OP3) have tried to place the six planes in the best standardized and reproducible way.
Region of interest (ROI) 1 was positioned at the level of the sinotubular junction (above the
bulb and aortic root). ROI_2 was equidistant positioned from ROI_1 and from the highest
point of the aortic arch, proximal to the brachiocephalic trunk. ROI_3 was positioned
on the highest point of the aortic arch, between the left common carotid artery and the
left subclavian artery. The remaining ROIs (ROI_4, ROI_5 and ROI_6) were positioned
along the descending aortic tract: ROI_4 at level of the at the aortic isthmus, ROI_5 in
the descending aorta below the pulmonary artery, and ROI_6 was placed at level of the
diaphragmatic aortic tract. All ROI locations are shown in Figure 1.
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All data sets were analyzed using Circle Cardiovascular Imaging: CVI42 version 5.10.1
(Calgary, AB, Canada). A CVI42 4D-flow tool was used for the flow assessment. The data
were analyzed by three blinded expert operators (OP1, OP2, and OP3). The ascending
aorta was contoured in the magnitude images with the sharpest blood/tissue contrast.
Contours were propagated to phase contrast images in all temporal phases, which were
corrected manually and controlled carefully. Phase-contrast MR images were evaluated for
different parameters: flow parameters (peak velocity (PV), total volume (TV), maximum
pressure gradient (MaxPressGrad), mean pressure gradient (MeanPressGrad), maximum
flow (MaxFlow), maximum mean velocity (MaxMeanVel)), and planar Wall Shear Stress
(WSS) parameters (axial WSS (AxWSS), circumferential WSS (CircWSS), maximum axial
WSS (MaxAxWSS), maximum circumferential WSS (MaxCircWSS)) and were extracted
from six transversal planes along the aorta.

Moreover, 4D-flow gives capabilities for large blood flow assessment via blood flow
visualization using color-coded 3D multiplanar reformations, streamlines, and velocity
vectors.

As with eco color-doppler US, adding color coding allows a visualization of low and
high velocities within the volume at a glance. In general, red is used for high velocities and
blue is used for low velocities.

All data extracted from the processing were evaluated, and inter- and intra-observer
analysis was performed from three different researchers to measure data reproducibility.

2.4. Power Analysis

A priori power analysis was performed considering a repeated-measures design in which
multiple measurements by three different radiological operators are made on each MRI
scanner (Philips 1.5 T, Philips 3 T, Siemens 3 T). The minimum sample size was computed
using the ANOVA test for repeated measures given a power of 0.85, a small effect size
(f = 0.25) and an alpha level of 0.05. Based on previous assumptions, the required total
sample size was 39: 13 for each MRI scanner.

2.5. Data Analysis

All statistical analysis was performed using R Statistical Software (version 4.1.0; R
Foundation for Statistical Computing, Vienna, Austria) after the removal of outliers. De-
scriptive analysis was used to describe the basic features of the data. Descriptive data
are presented as mean and standard deviation (SD), coefficient variation (CV) and 95%
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confidence intervals (CI). Association among parameters was assessed by Spearman’s rank
correlation, and it was calculated on ROIs average. The Shapiro–Wilk test was used to
assess the normality of the data. Alpha was set at p ≤ 0.05. p-values are adjusted using the
Bonferroni multiple testing correction method.

Agreement in the test results repeatedly by the same operator (intra-rater reliability),
by three different operators (inter-operator agreement) and by three different devices
(inter-vendor reliability) was determined. Comparison among different ROIs (intra-rater
reliability) was assessed by Friedman rank-sum test.

The inter-operator agreement was assessed by Lin’s concordance correlation coefficient
(CCC) [15]. The Bland–Altman plot was used to measure the limits of agreement between
the measurements of the two operators and to evaluate the ROI_1 reproducibility. The
limits of agreement equaling two SD of the mean difference above and below the mean
were plotted [16].

The inter-device agreement was assessed by a Kruskal–Wallis rank-sum test followed
by post hoc analysis (Wilcoxon signed-rank test).

The methodological workflow is reported in Figure 2.
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3. Results

The population demographics and characteristics of 15 healthy volunteers are reported
in Supplementary Table S1.

3.1. Intra-Rater Reliability

The intra-rater reliability results are summarized in Supplementary Tables S2–S4.
Figure 3 shows a forest plot of the mean with the corresponding 95% CI obtained from

each ROI for AxWSS (A), CircWSS (B) and Flow (C) parameters. Regardless of operator,
parameters and device, all ROIs show statistically significant differences (Friedman rank-
sum test; p-value ≤ 0.05). Only the parameter CircWSS shows any significant difference
when measured by OP3 on a Philips 1.5 T device and OP2 on a Siemens 3 T device.
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Figure 3. Forest plot of the mean with 95% CI obtained from each ROI and from the three devices
(Philips 1.5 T, Philips 3 T and Siemens 3 T) for the (A) AxialWSS, (B) CircWSS, (C) Flow parameters.
Horizontal lines through the circle represent 95% confidence intervals. The circle represents the mean.

3.2. ROI_1 Reproducibility

The previous analysis showed a high variability between the different ROIs selected.
This may depend on the different anatomical positions of planes selected along the aorta.
The anatomical variability did not allow establishing a standard distance for each examined
ROI. One of the planes that is least affected by this variability is the ROI_1 positioned at
the aortic root. We therefore went to investigate how much these measurements in ROI_1
alone was reproducible among themselves.

Results from the analysis of the Bland–Altman plots (Figures 4–6) demonstrate that
95% of all measurement differences lay within the statistical LoA (±2SD), indicating that
the ROI_1 reproducibility among three investigators was acceptable.
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the mean difference along with the 95% CI (violet box). The lower (red box) and higher (green box)
limits of agreement (LoA) defined as the mean difference ± 1.96 standard deviations of differences
are reported along with the corresponding 95% CI.
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Figure 6. Bland–Altman plot of flow measures for each pair of raters. The dashed line represents
the mean difference along with the 95% CI (violet box). The lower (red box) and higher (green box)
limits of agreement (LoA) defined as the mean difference ± 1.96 standard deviations of differences
are reported along with the corresponding 95% CI.



J. Clin. Med. 2023, 12, 2960 9 of 14

3.3. Pre-Processing Data

A preliminary correlation analysis was performed to evaluate the adding value of
other extracted 4D-flow parameters. The results showed that for each device, these pa-
rameters did not have a high correlation between them in all operators (Supplementary
Figure S1); thus, we considered all extracted parameters for further inter-operator and
inter-device agreement analysis. Summary statistics for 4D-flow parameters are reported
in Supplementary Table S5.

3.4. Inter-Operator Agreement

The CCC was used to assess the agreement between operators. CCC values are
reported in Supplementary Table S6 along with the corresponding 95% confidence interval
(CI). Most of the CCC values were higher than 0.7, implying a good agreement. Only the
parameter CircWSS measured on the devices Philips 3 T and Siemens 3 T experienced
CCC values (CCC = 0.45, 95% CI = −0.071–0.784, and CCC = 0.61, 95% CI = 0.145–0.852,
respectively) corresponding to moderate agreement between the OP1 and OP2.

Results from the analysis of the Bland–Altman plots (Supplementary Figure S2) demon-
strate that 95% of all measurement differences lay within the statistical LoA (±2SD), in-
dicating that the agreement between measurements taken by the three investigators was
acceptable.

3.5. Inter-Device Agreement

Overall, for most of the parameters, the Siemens 3T measurements are the lowest,
followed by Philips 3 T and Philips 1.5 T, except for MaxMeanVel measured by OP3,
MaxFlow and TV (Supplementary Table S5; Figure 7; Supplementary Figures S3 and
S4). In the latter cases, the ANOVA analysis is not significant. All the other parameters
show statistically significant differences among the devices (Kruskal–Wallis rank-sum test;
p-value ≤ 0.05). The most significant differences are between the two Philips devices and
Siemens 3 T (post hoc analysis; Wilcoxon signed rank test, p-value ≤ 0.05).

Statistically significant differences among the three devices were also found for the
CircWSS parameter regardless of operators, for the MaxCircWSS-AllPhases parameter only
for the OP1 shown in Figure 7 and for the MeanPressGrad parameter for OP2 and OP3
(Supplementary Figure S4) (post hoc analysis; Wilcoxon signed-rank test, p-value ≤ 0.05).

Moreover, to evaluate the inter-device reproducibility, we estimated the coefficient of
variation (CV) (Supplementary Table S5). Regardless of operator, on the Philips 3 T, the lowest
CV was observed for the parameters CircWSS (meanCV = 10.2%), Flow (meanCV = 12.3%)
and MeanPressGrad (meanCV = 24.0%). On the Philips 1.5 T, the lowest CV was observed
for the parameters MaxFlow (meanCV = 19.2%) and TotalVolume (meanCV = 16.7%). Other
parameters (AxWSS, MaxAxialWSS-AllPhases, MaxMeanVel and MaxPressGrad) show
the lowest CV on the same device for only two raters. Only the parameter MaxCircWSS-
AllPhases shows the lowest CV on different devices depending on the rater (Supplementary
Table S5).
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Figure 7. Inter-device agreement of AxWSS, MaxAxWSS, CircWSS and MaxCircWSS. For each
parameter (AxWSS, MaxAxWSS, CircWSS, MaxCircWSS), boxplots of Kruskal–Wallis test show the
comparison of measurements from 3 devices (Philips 1.5 T, Philips 3 T, and Siemens 3 T) using data
by operator 1, operator 2 and operator 3.
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4. Discussion

Time-resolved 3D PC MRI sequences, named 4D-flow sequence, represent an emerging
technique for non-invasive evaluation of the aortic flow without contrast agent injection [17].
This technique can be used in both healthy volunteers, in order to validate its applicability,
as well as in patients affected by aortic pathologies. In the literature, 4D-flow can be used
to assess the adverse hemodynamic consequences of bicuspid aortic valve (BAV), such as
altered distribution of aortic blood flow helicity, vorticity, and eccentricity. Some studies
compared the blood flow pattern and WSS map in healthy individuals and patients with
BAV, and they found that the presence of a BAV alters the flow pattern and WSS distribution
in the ascending aorta [18,19].

This technique gives new insights into physiological and pathophysiological flow pat-
terns not currently observable with conventional two-dimensional (2D) flow sequences [20].

This study is a single-center experience that investigates 4D-flow multi-vendor and
multi-magnetic field reproducibility. It is important to note that nowadays, the sequence is
under investigation and not routinely employed for clinical use. Moreover, the absence of
reference standards and the absence of normal ranges for the parameters evaluated limit
any conclusion about the best MRI systems for 4D-Flow assessment. For this reason, in our
study, a preliminary setting of the technical parameters was performed.

The sequence parameters were evaluated for each scanner, and the discrepancies were
modified to make the sequence as reproducible as possible. FOV, slice thickness, flip angle,
VENC, etc. were modified accordingly (see Materials and Methods).

We use three different machines for both the vendor and magnetic field, as previously
described, and three different operators evaluated the following parameters: PV, TV,
MaxPressGrad, MeanPressGrad, MaxFlow, MaxMeanVel, AxWSS, CircWSS, MaxAxWSS,
and MaxCircWSS.

Usually, the quantitative analysis of CMR images is based on manual contouring or
manual correction of semi-automatic segmented ROI in CMR images.

A high heterogeneity was found in the comparisons for each operator and for each
machine in the six ROIs analysis. All the measures were statistically significant and
therefore different from each other.

According to our experience, the low reproducibility of the measurements could
depend on anatomical aortic variations (aorta length, diameter) such as intra-operator
variability given the difficulty of establishing a standard and reproducible distance along
the entire thoracic aortic axis. In fact, intra-rater reliability analysis showed statistically
significant differences among all ROIs regardless of operator, parameters, and device. This
suggests that the variability observed in the measurements may be due to differences in
the anatomical positions of the planes selected along the aorta. However, the ROI_1 (at
the level of sinotubular junction) has a higher degree of reproducibility. This is almost
certainly due to the possibility of a fixed and reproducible anatomical landmark such as
the aortic root. Regardless of the equipment, the agreement overall between the operators
is fair/moderate. For both AxWSS, CircWSS and Flow (PV), there is good concordance
between all three operators. This is an important finding, as it suggests that measurements
taken at this specific location may be more reliable than those taken at other locations along
the aorta.

In this study, 10 different parameters were evaluated with CCC. Inter-operator agree-
ment analysis showed that most of the CCC values were higher than 0.7, indicating good
agreement between the operators. However, there were some cases where the CCC val-
ues were lower, suggesting only moderate agreement between the operators. This was
particularly true for the parameter CircWSS measured on the Philips 3 T and Siemens 3 T
devices. Nonetheless, the Bland–Altman plots demonstrated that the agreement between
measurements taken by the three investigators was acceptable. Therefore, it would be
extremely useful to seek a standard method (as uniform as possible) in order to minimize
operator-dependent variability.
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Instead, significant differences were found between the different vendor scanners: the
inter-device agreement analysis showed that there were statistically significant differences
among the devices for most of the parameters except for MaxMeanVel measured by OP3,
MaxFlow, and TV. The Siemens 3T measurements were consistently the lowest, which were
followed by Philips 3 T and Philips 1.5 T. The most significant differences were observed
between the two Philips devices and Siemens 3 T. This suggests that the choice of device
may have an impact on the measurements obtained.

In the recent literature, most of the validation studies have been limited to one vendor
platform or multicenter enrollment that can influence the acquisition data. Thus, there is a
need to demonstrate how 4D-flow performs on scanners from different vendors [21].

Finally, the coefficient of variation (CV) was calculated to evaluate the inter-device re-
producibility. The results showed that the lowest CV was observed for different parameters
depending on the device and the rater. Nonetheless, the parameters with the lowest CV
were CircWSS, Flow, and MeanPressGrad on Philips 3 T, and MaxFlow and TotalVolume
on Philips 1.5 T. These findings suggest that certain parameters may be more reliable than
others, depending on the device and the rater.

Overall, these results highlight the importance of carefully selecting the location of
the ROI as well as the device used for measurements. Additionally, it is crucial to ensure
that the measurements are taken by well-trained operators who can achieve a high level of
agreement between themselves.

Further studies of sequences investigation across vendors and different magnetic
field are needed to standardize 4D-flow protocols across vendors and magnetic fields. In
particular, we will deepen the study both on healthy subjects and on pathological subjects.

The efficacy of non-invasive 4D-flow CMR protocol could shed light on how to stan-
dardize the measures assessment obtaining hemodynamic details, improving the CMR
information.

5. Limitations

In this study, only a small number of healthy volunteers were enrolled. Moreover, the
age range of our population was restricted to 26–49 years old, and elderly patients were
not included.

Nowadays, each vendor used its recommended protocol for optimal acquisition.
Nevertheless, the adjustment of acquisition parameters has been applied to optimize the
4D-flow sequence on three different machines, and this could represent a potential source
of error. Moreover, the lack of an evaluation on intra-device agreement (i.e., same patient
re-examined in the same scan system) represented the main limitation of the present study.

6. Conclusions

The 4D-flow CMR provided valuable information on hemodynamic parameters. Its
clinical utility has been especially useful in assessing flow patterns through the heart
and great vessels [22]. However, aortic hemodynamic parameters assessed with various
vendor-provided protocols obtained with 4D-flow CMR are not equivalent in a popula-
tion of healthy volunteers. Overall, the plane positioned at the ROI_1 showed the most
inter-vendor stability and agreement. Probably, this is due to the accurate ROI_1 place-
ment thanks to the aortic root reference point. A standardized anatomical reference point
in the setting of ROIs during post-processing analysis could be useful for parameters’
reproducibility.

The artificial intelligence application could help to better identify this type of “marker”
with the aim of decreasing the variability of the measurements.

Regarding the absence of existing commercial 4D-flow MR sequence for clinical use, it
would be suggested that the follow-up examination should occur at the same scanner. In
this way, the lack of potential confounders should be reduced [23].
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