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Abstract The Yang algebra was proposed a long time ago
as a generalization of the Snyder algebra to the case of curved
background spacetime. It includes as subalgebras both the
Snyder and the de Sitter algebras and can therefore be viewed
as a model of noncommutative curved spacetime. A pecu-
liarity with respect to standard models of noncommutative
geometry is that it includes translation and Lorentz genera-
tors, so that the definition of a Hopf algebra and the physi-
cal interpretation of the variables conjugated to the primary
ones is not trivial. In this paper we consider the realizations
of the Yang algebra and its κ-deformed generalization on an
extended phase space and in this way we are able to define a
Hopf structure and a twist.

1 Introduction

The Yang model [1] is an extension of the Snyder model [2]
to the full phase space, obtained assuming that both posi-
tion and momentum operators do not commute among them-
selves. It can therefore be interpreted as a noncommutative
geometry defined on a spacetime of constant curvature. Alge-
braically, it is based on an so(1, 5) algebra which includes
the Lorentz generators and the position and momentum oper-
ators, together with a further generator, necessary to close the
algebra. Contrary to most models of noncommutative geom-
etry, the action of the Lorentz algebra on phase space is not
deformed. It also enjoys an invariance under a (generalized)
Born duality [3].

The relevance of noncommutative geometries for Planck-
scale physics has been originally highlighted in [4] and since
then the subject has become fashionable. In particular the
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formalism of Hopf algebras has shown to be useful for the
description of the physical implications of the theory [5–7].
Among these, particular attention have received the defor-
mation of the symmetries of spacetime [8–13] and the appli-
cations to phenomenology and to the search for observable
effects, especially in the context of Doubly Special Relativity
[10,14,15]. In particular, the introduction of a curved back-
ground can be useful in cosmological contexts, especially
when considering phenomenological effects on the propaga-
tion of photons from distant sources [16,17].

Thus, after a long oblivion, the Yang model was resumed
in recent years. Some generalizations were presented by Khr-
uschev and Leznov (KL) [18] and in ref. [19], where an
extension of the model that includes also the related triply
special relativity (TSR) theory [20,21] was introduced. Fur-
ther investigations concerning in particular its realizations
on a canonical phase space have been recently performed
in [22–24], using the methods introduced in [25–27] for the
study of Snyder space. Other contributions to the study of
Yang model are given in [28–30], while different models of
noncommutative geometry in curved spaces can be found in
[31–34].

Finally, in [35] the Yang model has been further gener-
alized by deforming the so(1, 5) algebra to an so(1, 5; g)
algebra, so that it also includes κ-Poincaré deformations of
the kind introduced in [8,9] for the standard Poincaré alge-
bra, both in position and momentum spaces. Although from a
mathematical point of view the two algebras are isomorphic,
their physical interpretation is of course different, since, for
example, in so(1, 5; g) the Poincaré algebra is deformed.

In this paper, we study the explicit transformations lead-
ing from the generators of so(1, 5) to those of so(1, 5; g).
This will allow us to obtain a Hopf algebra structure for the
Yang model, by defining a coproduct and a twist and then an
associative star product. This will be done by using the meth-
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ods that have been proved successful in the case of Snyder
[25,26] and κ-deformed Snyder [36–39] spaces. In partic-
ular, exploiting the isomorphism of the Yang model to an
orthogonal algebra, one can use the results of [40], where
the Hopf structure associated to orthogonal groups has been
discussed in detail.

As shown in [24] a realization of the Yang model can be
obtained on an extended phase space, that includes momenta
canonically conjugated to both the original position and
momentum variables. Hence, in contrast with standard mod-
els of noncommutative geometry, in our case a coproduct
must be introduced also for the momentum variables. The
physical interpretation of this fact is presently under investi-
gation.

2 Generalized Yang models

The Yang model [1] is based on the Yang algebra, which is
a Lie algebra generated by x̂i , p̂i , M̂i j and ĥ and is isomor-
phic to the orthogonal algebra so(1, 5), so(2, 4) or so(3, 3),
depending on the signature chosen for the metric tensor [41].
It is defined by the commutation relations1

[x̂i , x̂ j ] = iβ2M̂i j , [ p̂i , p̂ j ] = iα2M̂i j ,

[x̂i , p̂ j ] = iηi j ĥ,

[ĥ, x̂i ] = iβ2 p̂i , [ĥ, p̂i ] = −iα2 x̂i , (1)

where the M̂i j generate the Lorentz algebra so(3, 1) and x̂i ,
p̂i transform as vectors under the Lorentz algebra, while ĥ is a
scalar. The parameters α and β are constant with dimensions
[L]−1 and [M]−1 respectively and are usually identified with
the square root of the cosmological constant and with the
inverse of the Planck mass. In spite of the notation, α2 and
β2 can be taken negative leading to the so(2, 4) and so(3, 3)

cases, which we shall not consider in detail here.
The operators x̂i and p̂i can be interpreted as the position

and the momentum operators in a quantum phase space. The
operator ĥ is necessary to close the algebra and generates
rotations in the x–p hyperplane. The Yang algebra satisfies
the Born duality [3], being invariant for α ↔ β, x̂i → − p̂i ,
p̂i → x̂i , M̂i j ↔ M̂i j , ĥ ↔ ĥ.

Defining

M̂i4 = x̂i
β

, M̂i5 = p̂i
α

, M̂45 = ĥ

αβ
. (2)

1 Latin indices run from 0 to 3, Greek indices from 0 to 5. For def-
initeness in the following we consider the so(1, 5) case with metric
ηi j = diag(−1, 1, 1, 1, 1, 1), but our considerations trivially extend to
the other cases. We use natural units, in particular we set h̄ = 1.

then the algebra (1) can be put in the explicit so(1, 5) form

[M̂μν, M̂ρσ ] = i
(
ημρ M̂νσ − ημσ M̂νρ − ηνρ M̂μσ

+ηνσ M̂μρ

)
. (3)

One can find alternative realizations of this algebra by defin-
ing linear combinations of the generators. The most general
new generators linear in x̂i , p̂i , M̂i j are

X̃i = A

(
cos ϕ x̂i + β

α
sin ϕ p̂i

)
+ βak M̂ik,

P̃i = B

(
cos ψ p̂i + α

β
sin ψ x̂i

)
+ αbk M̂ik, (4)

with M̃i j = M̂i j . The parameters A, B, ϕ, ψ , ai , bi are
dimensionless with AB �= 0. The transformations inverse to
(4) are

x̂i = A−1α cos ψ(X̃i − βa j M̃i j ) − B−1β sin ϕ(P̃i − αb j M̃i j )

α cos(ϕ + ψ)

p̂i = B−1β cos ϕ(P̃i − αb j M̃i j ) − A−1α sin ψ(X̃i − βa j M̃i j )

β cos(ϕ + ψ)

(5)

The new generators X̃i and P̃i generate a new class of
Lie algebras isomorphic to the initial Yang algebra. The new
algebra generated by X̃i , P̃i , M̃i j and H̃ is given by the fol-
lowing commutation relations

[X̃i , X̃ j ] = i
(
β2 ÃM̃i j + β(ai X̃ j − a j X̃i )

)
,

[P̃i , P̃j ] = i
(
α2 B̃ M̃i j + α(bi P̃j − b j P̃i )

)
,

[X̃i , P̃j ] = i
(
ηi j H̃ + αbi X̃ j − βa j P̃i + αβρ̃ M̃i j

)
,

[M̃i j , X̃k] = i
(
ηik X̃ j − η jk X̃i + β(ai M̃k j − a j M̃ki )

)
,

[M̃i j , P̃k] = i
(
ηik P̃j − η jk P̃i + α(bi M̃k j − b j M̃ki )

)
,

[M̃i j , H̃ ] = i
(
α(b j X̃i − bi X̃ j ) − β(a j P̃i − ai P̃j )

)
,

[H̃ , X̃i ] = i
(
β2 Ã P̃i − αβρ̃ X̃i − βai H̃

)
,

[H̃ , P̃i ] = i
(
−α2 B̃ X̃i + αβρ̃ P̃i + αbi H̃

)
, (6)

where we have defined

H̃ = AB cos(ϕ + ψ)ĥ + βa · P̃ − αb· X̃ − αβahbk M̂hk,

(7)

ρ̃ = ABρ + a ·b, Ã = A2 + a2, B̃ = B2 + b2,

(8)

with ρ = sin(ϕ + ψ). A generalized Born duality still holds
for α ↔ β, ai → −bi , bi → ai , Ã ↔ B̃, ρ̃ ↔ −ρ̃,
X̃i → −P̃i , P̃i → X̃i , M̃i j ↔ M̃i j , H̃ ↔ H̃ .

These commutation relations are of the kind introduced in
[24]. They can be put in the form of as an so(1, 5; g) algebra
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if one defines the generators M̃μν as

M̃i4 = X̃i

β
, M̃i5 = P̃i

α
, M̃45 = H̃

αβ
. (9)

They satisfy the algebra

[M̃μν, M̃ρσ ] = i
(
gμρ M̃νσ − gμσ M̃νρ − gνρ M̃μσ

+gνσ M̃μρ

)
, (10)

with gμν a symmetric matrix of the form

gμν =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

−1 0 0 0 a0 b0

0 1 0 0 a1 b1

0 0 1 0 a2 b2

0 0 0 1 a3 b3

a0 a1 a2 a3 Ã ρ̃

b0 b1 b2 b3 ρ̃ B̃

⎞

⎟⎟⎟⎟⎟
⎟
⎠

. (11)

Notice that det g = A2B2 cos2(ϕ + ψ), hence one must
require that cos(ϕ+ψ) �= 0, otherwise the matrix g becomes
singular.

The matrix gμν can be reduced to a diagonal form by a
transformation with a matrix S such that g = S η ST . This
matrix is defined up to multiplication by an orthogonal matrix
O such that O η OT = η. One can choose S in a lower
triangular form, as

S =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

−a0 a1 a2 a3 σ 0
−b0 b1 b2 b3 υ τ

⎞

⎟⎟⎟
⎟⎟⎟
⎠

, (12)

with

σ = A, υ = B sin(ϕ + ψ), τ = B cos(ϕ + ψ), (13)

and det S = στ = AB cos(ϕ + ψ).
Clearly, the generators M̂μν such that M̃μν = (S M̂ ST )μν ,

satisfy the commutation relations (3) and can then be identi-
fied with those defined in (2). The explicit relation between
their components are then M̃i j = M̂i j , and

X̃i = 1

σ
(x̂i − ak M̂ik),

P̃i = 1

τ
( p̂i − bk M̂ik) − υ

στ
(x̂i − ak M̂ik),

H̃ = 1

στ
(ĥ + bk x̂k − ak p̂k + ahbk M̂hk), (14)

with inverse transformations

x̂i = σ X̃i + ak M̃ik,

p̂i = τ P̃i + υ X̃i + bk M̃ik,

ĥ = στ H̃ + (σbk + υak)X̃k + τak P̃k + ahbk M̃hk . (15)

Note that if ak = bk = 0, then the KL model with α̃, β̃, ρ̃,
H̃ is isomorphic to the original Yang model with A, B, ρ, h
if α2 = α̃2/B2, β2 = β̃2/A2 and h = H̃/(AB cos(ϕ + ψ))

where A, B are real numbers and A2B2 > ρ̃2.
The same construction as (4)–(6) holds also for Yang

models isomorphic to so(3, 3). For models isomorphic to
so(2, 4), in Eq. (4) the trigonometric functions should be
replaced by the corresponding hyperbolic functions and the
parameter ρ can be arbitrary; in particular, when ϕ = ψ it
follows that ρ = 0.

3 Weyl representation of so(1, 5; g)

We shall now obtain representations for the κ-deformed Yang
model by using the previous relations between so(1, 5) and
so(1, 5; g). Notice that from a four-dimensional point of view
our primary fields are the generators M̃i j , X̃i , P̃i and H̃ ,
to each of which we shall assign a conjugate momentum.
The formalism is therefore analog to that introduced for the
extended Snyder model [38,39].

Consider then the generalized Heisenberg algebra

[xμν, xρσ ] = [kμν, kρσ ] = 0,

[xμν, k
ρσ ] = i(δ ρ

μ δ σ
ν − δ σ

μ δ ρ
ν ), (16)

where kμν are momenta conjugated to the xμν , and define
Xμν = (S x ST )μν and Kμν = (S‡ k S−1)μν , where S‡ =
(S−1)T .

These variables satisfy commutation relations analogous
to (16),

[Xμν, Xρσ ] = [Kμν, K ρσ ] = 0,

[Xμν, K
ρσ ] = i(δ ρ

μ δ σ
ν − δ σ

μ δ ρ
ν ), (17)

but their indices are raised and lowered by the metric gμν ,
for example Kμν = gμρgνσ K ρσ .

The variables Xμν can be decomposed as

Xi4 = Xi

β
, Xi5 = Pi

α
, X45 = H

αβ
. (18)

Moreover, the explicit relations between the four-dimensional
components of Kμν and kμν can be written as

Ki j = ki j + β

σ
(aiq j − a jqi ) + α

τ
(bi y j − b j yi )

−αυ

στ
(ai y j − a j yi ) + αβ(aib j − a jbi )w,

Qi = 1

στ

(
υqi − ατ

β
yi + αbiw

)
,

Yi = 1

στ
(σ yi − αaiw),

W = w

στ
, (19)
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with inverse

ki j = Ki j − β(ai Q j − a j Qi ) − α(biY j − b jYi )

+αβ(aib j − a jbi )W,

qi = σ(Qi − αbiW ) + υ

(
α

β
Yi + αaiW

)
,

yi = τ(Yi + βaiW ),

w = στW, (20)

where we have defined ki4 = βqi , ki5 = αyi , k45 = αβw

and

Ki4 = βQi , Ki5 = αY i , K 45 = αβW, (21)

so that

[Xi , Q j ] = iδi j , [Pi ,Y j ] = iδi j , [H,W ] = i. (22)

We now want to find a realisation of the M̃μν defined in
Sect. 1 in terms of the Heisenberg algebra generated by Xμν

and Kμν . The M̃μν satisfy the so(1, N ; g) algebra (10), that
we write as

[M̃μν, M̃ρσ ] = i C αβ
μν, ρσ M̃αβ. (23)

The structure constants are given by

C αβ
μν, ρσ = 1

2

[
− gνρ(δ α

μ δ β
σ − δ β

μ δ α
σ )

+gμσ (δ α
ρ δ β

ν − δ β
ρ δ α

ν ) − (μ ↔ ν)
]
, (24)

and obey the symmetry properties C αβ
μν,ρσ = −C αβ

νμ,ρσ =
−C αβ

μν,σρ = −C βα
μν,ρσ = −C αβ

ρσ,μν . Note that structure
constants in (23) are multiplied by h̄, which is set to 1 in our
conventions, and in the classical limit h̄ = 0 all generators
commute.

In general, if the operators Mμν generate a Lie algebra

with structure constants C αβ
μν,ρσ , the universal realization of

Mμν in terms of the Heisenberg algebra (17), corresponding
to Weyl-symmetric ordering, is given by [40,42]

Mμν = Xαβ

[ C
1 − e−C

] αβ

μν

, (25)

where C αβ
μν = − 1

2 C
αβ

μν, ρσ K ρσ .
This realization enjoys the property

e
i
2 t

μν M̃μν � 1 = e
i
2 t

μν Xμν , (26)

where the tμν are real numbers transforming as tensors under
so(1, N ; g) and the action � is defined as

Xμν � f (Xαβ) = Xμν f (Xαβ),

Kμν � f (Xαβ) = −i
∂ f (Xαβ)

∂Xμν

= [Kμν, f (Xαβ)]. (27)

In particular,

Xμν � 1 = Xμν, Kμν � 1 = 0,

Kμν � e
i
2 t

αβ Xαβ = tμνe
i
2 t

αβ Xαβ (28)

We can now expand (25) in powers of the structure con-
stants C αβ

μν,ρσ (i.e. in terms of h̄), Then the Weyl realization
of M̃μν in terms of the generalized Heisenberg algebra gen-
erated by Xμν and Kμν reads up to second order,

M̃μν = Xμν + 1

2
Xαβ C αβ

μν + 1

12
Xαβ

(
C2

) αβ

μν
. (29)

where

C αβ
μν = 1

2

(
δ α
μ K β

ν + δ β
ν K α

μ − (α ↔ β)
)
,

(
C2

) αβ

μν
= 1

2

(
2K α

μ K β
ν + δ β

ν KμρK
ρα

+δ α
μ KνρK

ρβ − (α ↔ β)
)
, (30)

and the indices are lowered by means of the metric gμν .
Inserting C in (29), we find up to first order,

M̃μν = Xμν + 1

2

(
XμαK

α
ν − XναK

α
μ

)
, (31)

and

[M̃μν, K
ρσ ] = i(δ ρ

μ δ σ
ν − δ σ

μ δ ρ
ν )

+ i

2
(δ ρ

μ K σ
ν − δ ρ

ν K σ
μ + δ σ

ν K ρ
μ − δ σ

μ K ρ
ν ).

(32)

We can write (31) in terms of four-dimensional variables,
defined by (9), (18) and (21), as

M̃i j = Xi j + 1

2

(
Xik(K

k
j − βa j Q

k − αb jY
k)

+Xi (Q j − αb jW ) + Pi (Y j + βa jW ) − (i ↔ j)
)
,

X̃i = Xi + 1

2

(
− βXi j (ak K

jk + β ÃQ j + αρ̃Y j )

+βXi (a j Q
j − αρ̃W )+X j (K

j
i −βai Q

j−αbiY
j )

+βPi (a jY
j + β Ã W ) − H(Yi + βaiW )

)
,

P̃i = Pi + 1

2

(
− αXi j (bk K

jk + α B̃Y j + βρ̃Q j )

+αPi (b jY
j+βρ̃W )+Pj (K

j
i −αbiY

j − βai Q
j )

+αXi (βb j Q
j−α B̃ W )+H(Qi − αbiW )

)
,

H̃ = H+1

2

(
αXi (α B̃Y

i − βρ̃Qi+b j K
i j )

−βPi (β ÃQi+αρ̃Y i+a j K
i j )+H(βai Q

i + αbiY
i )

)
,

(33)

where Latin indices are lowered using the flat metric.
Other realizations can be obtained from the Weyl realiza-

tion M̃W
μν using similarity transformations of the type

M̃μν = S M̃W
μν S

−1 (34)
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where S = exp(G) with G of the form G = XF(K ). Then
the corresponding realizations will be linear in X and can
be written as series in K . The corresponding coproducts, star
products and twists can be obtained using the same similarity
transformations [19].

4 Coproduct and star product in Weyl realization

Formulae for coproduct and deformed addition of momenta
can be deduced using the results of [38,39,42], with the dif-
ference that now the sums are performed with the curved
metric gμν instead of the flat metric. This formalism allows
us to construct a coproduct for the (κ-deformed) Yang model,
in particular, both the momenta conjugated to X̃i and to P̃i
will admit a coproduct. We remark that the coproduct so
defined is coassociative, contrary to some realization of the
Snyder model (see [25]).

Defining

e
i
2 s

μν M̃μν e
i
2 t

ρσ M̃ρσ = e
i
2 (sμν⊕tμν)M̃μν ≡ e

i
2Dμν(s,t)M̃μν , (35)

where sμν and tμν transform as so(1, 5; g) tensors, one has
at first order

Dμν(sαβ, tαβ) = sμν + tμν − 1

2

(
sμαtνα − sναtμα

)
. (36)

In the following, we shall write all the formulas up to first
order, without explicitly mentioning it.

The coproduct �Kμν is then

�Kμν = Dμν(Kμν ⊗ 1, 1 ⊗ Kμν) = �0K
μν

−1

2

(
Kμα ⊗ K ν

α − K να ⊗ Kμ
α

)
, (37)

where �0Kμν = Kμν ⊗ 1 + 1 ⊗ Kμν . The coproduct (37)
is coassociative.

In components, it reads

�Ki j =�0K
i j − 1

2

(
Kik⊗K j

k+β2 ÃQi ⊗ Q j +α2 B̃Y i ⊗Y j

+ αβρ̃(Qi ⊗ Y j + Y i ⊗ Q j )

+ βak(K
ik ⊗ Q j + Qi ⊗ K jk)

+ αbk(K
ik ⊗ Y j + Y i ⊗ K jk) − (i ↔ j)

)
,

�Qi =�0Q
i − 1

2

(
Kik ⊗ Qk − Qk ⊗ Kik

+ αβρ̃(Qi ⊗ W − W ⊗ Qi )

+ α2 B̃(Y i ⊗ W − W ⊗ Y i )

+ αbk(K
ik ⊗ W − W ⊗ Kik)

)
,

�Y i = �0Y
i − 1

2

(
Kik ⊗ Yk − Yk ⊗ Kik

− αβρ̃(Y i ⊗ W − W ⊗ Y i )

+ β2 Ã(Qi ⊗ W − W ⊗ Qi )

− βak(K
ik ⊗ W − W ⊗ Kik)

)
,

�W = �0W − 1

2

(
Qk ⊗ Yk − Y k ⊗ Qk

)
. (38)

Using the relations (19), the coproduct can also be written
in terms of tensors transforming under so(1, 5). It is also easy
to see that the antipodes are trivial.

The star product can easily be deduced from the previous
relations, since it is defined as

e
i
2 s

μν Xμν � e
i
2 t

ρσ Xρσ = e
i
2Dμν(s,t)Xμν , (39)

with Dμν(s, t) given in (36). This star product is associative.
It may be useful to explicitly write down the four-

dimensional expression of Dμν(s, t): setting Di = Di4,
D̄i = Di5, D = D45, one has

Di j (s, t) = si j + t i j − 1

2

(
sik t jk + β2 Ãsi t j + α2 B̃s̄i t̄ j

+αβρ̃(si t̄ j + s̄i t j ) + βak(s
ik t j + si t jk)

+αbk(s
ik t̄ j + s̄i t jk) − (i ↔ j)

)
,

Di (s, t) = si + t i − 1

2

(
sik tk − t iksk + αβρ̃(si t − st i )

+α2 B̃(s̄i t − st̄ i ) + αbk(s
ik t − st ik)

)

D̄i (s, t) = s̄i + t̄ i − 1

2

(
sik t̄k − s̄k t

ik − αβρ̃(s̄i t − st̄ i )

+β2 Ã(si t − st i ) − βak(s
ik t − st ik)

)

D(s, t) = s + t − 1

2

(
sk t̄k − s̄k tk

)
, (40)

where we have defined the components of the so(1, 5; g)
tensors tμν as t i = t i4, t̄ i = t i5, t = t45 and analogously for
si j .

5 The twist for the Weyl realization

In this section, we construct the twist operator at first order,
again using the results of [38,42]. The twist is defined as
a bilinear operator such that �m = F�0mF−1 for each m
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belonging to so(1, 5; g). Its use in the context of noncommu-
tative geometries was introduced in [43,44] as a tool useful
in the construction of quantum field theories.

The twist in a Hopf algebroid sense can be computed by
means of the formula [45]

F−1 ≡ eF = e− i
2 K

μν⊗Xμν e
i
2 K

ρσ ⊗M̃ρσ . (41)

Using the Campbell–Baker–Hausdorff formula one gets

F = i

2
Kμν ⊗ (M̃μν − Xμν). (42)

and substituting (31) in (42), one obtains

F = i

2
K αγ ⊗ XαβK

β
γ . (43)

It is easy to check that

F�0K
μνF−1 = �Kμν, (44)

with �Kμν given in (37).
In terms of components, one can write

F = Ki j ⊗
[
Xik(K

k
j − βa j Q

k − αb jY
k)

+Xi (Q j − αb jW ) + Pi (Y j + βa jW )
]

+Qi ⊗
[

− βXi j (β ÃQ j + αρ̃Y j + akK
jk)

+βXi (a j Q
j − αρ̃W ) + X j (K

j
i − βai Q

j − αbiY
j )

+βPi (a jY
j + β Ã W ) − H(Yi + βaiW )

]

+Y i ⊗
[

− αXi j (α B̃Y
j + βρ̃Q j + bkK

jk)

+αPi (b jY
j + βρ̃W ) + Pj (K

j
i − αbiY

j − βai Q
j )

+αXi (βb j Q
j − α B̃ W ) + H(Qi − αbiW )

]

+W ⊗
[
αXi (b j K

i j + α B̃Y i − βρ̃Qi ) − βPi (β ÃQi

+αρ̃Y i + a j K
i j ) + H(βai Q

i + αbiY
i )

]
. (45)

6 Coproduct and twist for the original Yang model

Of course the Hopf structure for the original Yang model can
be derived from the previous results simply setting A = B =
1, ϕ = ψ = 0 and a = b = 0. Since these results are not
discussed in the literature we briefly report them here.

The coproduct can be written in terms of the four-
dimensional variables defined in section 3 as

�K i j =�0K
i j − 1

2

(
Kik⊗K j

k+β2Qi ⊗Q j +α2Y i ⊗Y j

+αβ(Qi ⊗ Y j + Y i ⊗ Q j ) − (i ↔ j)
)
,

�Qi = �0Q
i − 1

2

(
Kik ⊗ Qk − Qk ⊗ Kik

+αβ(Qi ⊗ W − W ⊗ Qi )

+α2(Y i ⊗ W − W ⊗ Y i )
)
,

�Y i = �0Y
i − 1

2

(
Kik ⊗ Yk − Yk ⊗ Kik

−αβ(Y i ⊗ W − W ⊗ Y i )

+β2(Qi ⊗ W − W ⊗ Qi )
)
,

�W = �0W − 1

2

(
Qk ⊗ Yk − Y k ⊗ Qk

)
. (46)

It is evident that one cannot disentangle the various compo-
nents of the conjugated momenta.

Analogously, the twist takes the form

F = Ki j ⊗
[
Xik K

k
j + Xi Q j + PiY j

]

+Qi ⊗
[

− βXik(βQ
k + αY k) + XkK

k
i

+β(βPi − αXi )W − HY i
]

+Yi ⊗
[

− αXik(αY
k + βQk) + PkK

k
i

+α(βPi − αXi )W + HQi
]

+W ⊗
[
αXk(αY

k − βQk) − βPk(βQ
k + αY k)

]
.

(47)

7 Conclusions

The Yang model represents a noncommutative geometry
defined on a curved background, which is interesting because
of possible applications to quantum cosmology and for its
dual nature for the interchange of positions and momenta.

In this paper we have discussed a generalization of that
model, called doubly κ-deformed Yang model, originally
proposed in [35] performing a deformation of the flat metric
appearing in the definition of the Yang algebra, so that both
the de Sitter and Snyder subalgebras are deformed.

The formalism introduced in this paper, inspired to the
one used in Refs. [25,26] for the Snyder model, permits to
define an associative star product and a coassociative coprod-
uct, together with a twist. To our knowledge, a Hopf algebra
structure for the Yang model has never been discussed before
in the literature. Using this formalism, we have been able to
calculate in a straightforward way several properties of the
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associated Hopf algebra. The achievement of these results
necessitates the introduction as primary fields of extended
tensorial coordinates and a scalar coordinate, besides position
and momentum. In addition also the momenta conjugated to
these variables must be considered.

The problem of the interpretation of all these extended
coordinates is crucial. One possibility is that they derive
from the symmetry breaking of an so(1, 5, g) algebra to an
so(1, 3) algebra as proposed in [35]. Also the possibility to
relate Yang models to Kaluza–Klein theories, interpreting
the extra degrees of freedom as higher dimensions is under
investigation.

At this point, the question of what are the physical conse-
quences of such models and the possible physical predictions
of new observable effects that could be measured arises. A
first step in this direction would be to define a dynamics for
the theory, writing down a suitable Hamiltonian for parti-
cles leaving in Yang spacetime. Further developments may
include the definition of a quantum field theory compatible
with this structure.
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83, 065009 (2011)
38. S. Meljanac, S. Mignemi, Phys. Rev. D 104, 086006 (2021)
39. J. Lukierski, S. Meljanac, S. Mignemi, A. Pachol, Phys. Lett. B

838, 137709 (2023)
40. S. Meljanac, T. Martinić-Bilać, S. Krešić-Jurić, J. Math. Phys. 61,
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41. T. Martinić-Bilać, S. Meljanac, S. Mignemi, SIGMA 20, 049

(2024)
42. S. Meljanac, Z. Škoda, S. Krešić-Jurić, J. Math. Phys. 63, 123508
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