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Highlights 

x Fine-grain bioclimatic variables are useful to make reliable ecological modelling. 

x We propose a high-resolution dataset based on WorldClim 2 bioclimatic variables in Sardinia. 

x Fine-grain vs WorldClim 2 differences are not evenly distributed in the territory.  

x Greater discrepancies correspond to areas with a complex orographic system. 

x We recommend caution using coarse-grain in physiographically complex landscapes. 
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Abstract 

Understanding the effects of climate on biodiversity and its different levels of response to climatic variation 
is important for addressing conservation-based questions: the use of bioclimatic variables and species 
modelling tools is common in environmental, agricultural and biological sciences. Unfortunately, most of the 
ecological local studies are limited to the use of global data with coarse spatial resolutions, while fine‐grain 
climate data are necessary to capture environmental variability and perform reliable modelling. We propose a 
high-resolution dataset (40 m grid) of the suite of original coarse-grain bioclimatic variables proposed by 
WorldClim 2 for the island of Sardinia (Italy); variations among our dataset and WorldClim 2 were 
calculated and mapped to show the spatial distribution of differences between all pairs of variables.  

We observed relevant differences for the bioclimatic variables related to rainfall (mean RMSE = 39.79; mean 
nRMSE = 0.21) compared to the temperature ones (mean RMSE = 4.81; mean nRMSE = 0.11). Moreover, 
discrepancies are not evenly distributed in the territory: the greater differences correspond to the areas 
characterized by complex orographic systems. 

Results recommend caution in making ecological assessments based on bioclimatic variables derived from 
global data with coarse spatial resolutions in physiographically complex landscapes, especially in the 
Mediterranean regions, characterized by seasonal climatic variations and high levels of biodiversity and 
biogeographical complexity. 

These new data will support a new generation of research studies in a broad array of ecological applications 
at a much finer scale than previously possible. 
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1 Introduction 

Climate varies across space and species can shift their distribution in order to find appropriate climatic 
conditions where they can live suitably (Bellard et al., 2012). In the same way, climate fluctuations drive the 
ecological changes in species, populations, ecological networks and ecosystems functions and processes 
(Parmesan, 2006). Climate variation over time, including year-to-year variability, has been linked to a shift 
in phenology and physiology of plants and animals (Bellard et al., 2012; Parmesan, 2006); moreover, also 
latitudinal and altitudinal range shifts are well documented for a wide number of species (Lenoir and 
Svenning et al., 2015), especially for those with high dispersal capacities like marine invertebrates, birds, and 
insects (Parmesan, 2006).  

Bioclimatic variables, unlike climate data, are developed focusing on relevant combination of variables, 
considering biotic thresholds; hence they better describe, and predict, the response of living organisms 
(Jennings and Harris, 2017; Rivas-Martínez et al., 2011). 

In the middle 1980s, the earliest computer-based methods were developed for estimating mean climate 
conditions of a given site on Earth’s surface, by using point location data sets (Sutherst and Maywald, 1985) 
or spatially local gridded climate data (e.g. Booth et al., 1987). Following the development of more 
sophisticated and complex spatial interpolation methods (Hutchinson et al., 1994), modellers have rapidly 
built spatially gridded climatologies, appropriately scaled on land elevation (Hutchinson, 1995). 
Subsequently, spatially interpolated gridded climate data have become available for researchers, improving 
environmental information in sites where there was a lack of local data (Hijmans et al., 2005). 

Open data on gridded bioclimate datasets, which differ in their quality over time, space and resolution (from 
30 seconds ~1 km2 to 10 minutes ~340 km2 at the equator), are for example WorldClim (Fick and Hijmans, 
2017), MerraClim (C. Vega et al., 2017), CHELSA (Karger et al., 2017), CliMond (Kriticos et al., 2012), 
EuMedClim (Fréjaville and Benito Garzón, 2018) and ENVIREM (Title and Bemmels, 2018). Most of these 
global datasets consist of monthly average temperature (minimum, maximum and medium), monthly 
precipitation and solar radiation assessed across a large temporal range, as well as bioclimatic variables. 
Bioclimatic variables, originally devised by Nix (1986) and deriving from the monthly temperature and 
rainfall values, describe annual trends (e.g., mean annual temperature and precipitation), seasonal trends 
(e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., 
temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). 

Considering their peculiar characteristics, bioclimatic variables were considered suitable for studying species 
distributions, under current or possible future conditions, using species distribution modelling (SDM) tools 
(Kriticos et al., 2012). The use of bioclimatic variables and species modelling tools have thus found a 
widespread use in environmental, agricultural and biological sciences (Booth et al., 2014; Di Febbraro et al., 
2018; Guisan and Thuiller, 2005; Pecchi et al., 2019): assessing the environmental niche of species or their 
invasion and proliferation; quantifying the impact of climate and other environmental changes on species 
distributions; modelling species assemblages from individual species predictions; testing biogeographical, 
ecological and evolutionary hypotheses; identifying sites of high potential of occurrence for rare species; 
developing strategies and action plans to ensure a long-term conservation of species. 

For many applications, fine spatial grain climate data is considered necessary to capture environmental 
variability, especially in physiographically complex landscapes (Hijmans et al., 2005); for example, they are 
preferable to study distribution of species with low-dispersal ability (Chust et al., 2004; Franklin et al., 2013; 
Guisan et al., 2007), species corridors and effects of barriers, or for others detailed ecological or conservation 
studies (Elith and Leathwick, 2009; Hess et al., 2006; Nezer et al., 2017). Fine‐grain climate grids are able to 
detect potential microrefugia (Hannah et al., 2014; Meineri and Hylander, 2017), i.e. sites with peculiar 
microclimates that support populations of species outside their main distribution area. Microrefugia are thus 
particularly relevant to understand the spatial distribution of species in response to climate change 
(Dobrowski, 2011) and the demographic and genetic performance of populations at the periphery of their 
range (Papuga et al., 2018; Pironon et al., 2017).  



Unfortunately, fine‐grain climate grids are only available for limited parts of the world (Hijmans et al., 2005) 
and most of the ecological local studies are limited to and by the use of global data with coarse spatial 
resolutions. 

The development of high spatial resolution bioclimatic data is particularly important in the Mediterranean 
basin, one of the 35 terrestrial biodiversity hot spots of the world (Medail, 2017), where climate-driven 
habitat loss was recognized as a major threat to biodiversity (Barredo et al., 2016). Nevertheless, as for 
Sardinia, the second-largest island of the Mediterranean basin, several studies to assess the distribution of 
plants (e.g. Casazza et al., 2014; Fois et al., 2018a; Fois et al., 2018b; Ongaro et al., 2018) or animals (e.g. 
Iannella et al., 2019; Russo et al., 2014; Sýkora et al., 2017) relied on coarse-grain bioclimatic open data 
such as Worldclim. To fill this gap in Sardinia, we propose a novel high-resolution dataset (40 m grid, equal 
to ~ 1.69 arcsec) of the suite of bioclimatic variables proposed by WorldClim 2 (Fick and Hijmans, 2017), 
one of the most used dataset in ecological modelling (Marchi et al., 2019).  

We calculated the suite of 19 bioclimatic variables using a high-resolution monthly climatologies of 
temperature and precipitation of Sardinia, based on long-term climate time series and local topography.  

To assess the differences among our fine-grain dataset and the original coarse-grain bioclimatic variables of 
WorldClim 2, we performed a quantitative comparison and spatial distribution of errors between all pairs of 
variables of these datasets.  

The high-resolution data produced can be particularly suited for studying species distributions under current 
conditions, improving ecological studies at finer spatial scales.  

2 Study area 

The island of Sardinia, one of the two largest Mediterranean islands, is located in the middle of the western 
Mediterranean Basin and covers a surface area of around 24,000 km2 with a coastline of about 1900 km, 
marked by a variety of landforms (cliffs, sandy dunes, long or pocket beaches). Due to its large extension, 
the territory is characterized by a complex orographic pattern with hilly lands, plateaus, mountain and plains 
(Fig.1), placed on heterogeneous geological substrata for age and typology. 

More than 600 formations and more second-rank lithostratigraphic units have been recognized (Carmignani 
et al., 2016): Palaeozoic magmatic intrusive units and metamorphic complexes related to Hercynian 
Orogenesis; sedimentary successions linked to Mesozoic and Tertiary marine transgression; volcano-
sedimentary successions related to the opening of the Tyrrhenian Sea; Quaternary deposits of various origin 
(alluvial, aeolian, lacustrine, littoral and slope movement-related) covering the previous geological 
formations. 

The climate is typically Mediterranean, with mild and poorly rainy winters, warm and dry summers.  Recent 
detailed bioclimate mapping, using the bioclimatic classification of Rivas-Martínez et al. (2011), identified 
that the island is characterized by two macrobioclimates (Mediterranean pluviseasonal oceanic and 
Temperate oceanic), four classes of continentality (from weak semihyperoceanic to weak subcontinental), 
eight thermotypic horizons (from lower thermomediterranean to upper supratemperate) and seven 
ombrothermic horizons (from lower dry to lower hyperhumid), whose combination resulted in 43 different 
isobioclimates (Canu et al., 2015).  

The heterogeneous climate, morphology and geological substrata of the island determine a high rate of 
endemism (Fois et al., 2017) and a wide variety of Potential Natural Vegetation sensu Farris et al. (2010), 
described in detail by Bacchetta et al. (2009). 

  



Fig. 1 Sardinia is the second main island in the Mediterranean and it is characterised by a complex orographic pattern. 
 

 

 

3 Methods 

Monthly average temperatures (minimum, maximum and mean) and precipitations were originally 
interpolated to produce the bioclimatic map of Sardinia (Canu et al., 2015). The data at 40 m resolution were 
created using high quality meteorological data from 203 rain gauges and 68 temperature gauges of the 
regional climatic database of the Weather and Climate Department (ARPA Sardegna) for the time period 
1971-2000. Monthly average temperature and precipitation were interpolated by Regression Kriging, 
combining a Multiple Linear Regression with an Ordinary Kriging of the regression residuals. Factors such 
as latitude, longitude, altitude, sea distance and local topography were considered as independent geographic 
variables to account for topographic effects (Canu et al., 2015). 

Starting from this baseline data, we calculated bioclimatic variables at 40 m resolution using the C++ code 
included in the System for Automated Geoscientific Analysis (SAGA) version 7.5.0 (Conrad et al., 2015). 
The free and open-source Geographical Information System SAGA under the GNU public license was 
specifically developed for regional climate and environmental modelling applications (Conrad et al., 2015).  

In order to evaluate the extreme or limiting environmental factors, we defined the quarterly parameters by 
following the definitions provided by WorldClim (Hijmans et al., 2005) and ANUCLIM (Xu and 
Hutchinson, 2013).  

Three types of bioclimatic variables were evaluated (Table 1): variables related to temperature (BIO01-
BIO07 and BIO10-BIO11); variables related to rainfall (BIO12-BIO17); variables related to both 
temperature and rainfall (BIO08-BIO09 and BIO18-BIO19). 

The calculation of bioclimatic variables related to temperature was performed using average monthly 
maximum, minimum and mean temperatures. Cell-by-cell calculations of bioclimatic variables related to 
rainfall were conducted using monthly average precipitation.  



Some descriptive statistics such as mean, minimum and maximum were used to describe the results. To 
assess the rate of dispersion of data, for each bioclimatic variable we calculated the coefficient of variation 
(in percentage).  

Table 1. Bioclimatic variables, types, descriptions and units of the new high-resolution bioclimatic variables of Sardinia (Italy). 
Filename Type of variable Description Unit 

BIO01.tif Temperature-related variable Annual Mean Temperature °C 

BIO02.tif Temperature-related variable Mean Diurnal Range (Mean of monthly (max temp - min temp)) °C 

BIO03.tif Temperature-related variable Isothermality (BIO02/BIO07) (x 100) Index 

BIO04.tif Temperature-related variable Temperature Seasonality (standard deviation x 100) Index 

BIO05.tif Temperature-related variable Maximum Temperature of Warmest Month °C 

BIO06.tif Temperature-related variable Minimum Temperature of Coldest Month °C 

BIO07.tif Temperature-related variable Temperature Annual Range (BIO05-BIO06) °C 

BIO08.tif Temperature-related and rainfall-related 
variable Mean Temperature of Wettest Quarter °C 

BIO09.tif Temperature-related and rainfall-related 
variable Mean Temperature of Driest Quarter °C 

BIO10.tif Temperature-related variable Mean Temperature of Warmest Quarter °C 

BIO11.tif Temperature-related variable Mean Temperature of Coldest Quarter °C 

BIO12.tif Rainfall-related variable Annual Precipitation mm 

BIO13.tif Rainfall-related variable Precipitation of Wettest Month mm 

BIO14.tif Rainfall-related variable Precipitation of Driest Month mm 

BIO15.tif Rainfall-related variable Precipitation Seasonality (Coefficient of Variation) Index 

BIO16.tif Rainfall-related variable Precipitation of Wettest Quarter mm 

BIO17.tif Rainfall-related variable Precipitation of Driest Quarter mm 

BIO18.tif Temperature-related and rainfall-related 
variable Precipitation of Warmest Quarter mm 

BIO19.tif Temperature-related and rainfall-related 
variable Precipitation of Coldest Quarter mm 

 

3.1 Comparisons with the WorldClim 2 bioclimatic variables 

Comparison among WorldClim 2 and the new high-resolution bioclimatic variables of Sardinia was possible 
because they were based on the same temporal range: 1970–2000 for WorldClim 2 (Fick and Hijmans, 2017) 
and 1971-2000 for Sardinia (Canu et al., 2015).  

Variables were compared following three main steps: (i) at first, we resampled WorldClim 2 data to the 
resolution of our variables (40 m) using the nearest neighbour method; (ii) then we checked errors in raster 
alignment and adjusted alignment using the nearest neighbour method and one of our raster as snap raster, to 
ensure all cells were properly aligned; (ii) finally we performed the quantitative comparison analyses.  

To assess if and where the two datasets are different, we calculated Spearman’s correlation coefficient (𝜌), 
the root mean square error (RMSE) and the normalized root mean square error by the mean (nRMSE) 
between all pairs of variables.  

For each variable we mapped the spatial distribution of errors, by means of the difference between the two 
datasets, namely the new high spatial resolution dataset minus WorldClim 2. 

All data manipulation and geographic analyses were performed with R (R Core Team, 2020), using raster 
(Hijmans, 2020) and gdalUtils (Greenberg and Mattiuzzi, 2020) packages. Metadata of rasters were added 
using ArcGIS software by Esri. 

4 Results 



We generated a high-resolution suite of 19 bioclimatic variables of Sardinia: all rasters are provided at 
roughly 1.69 arcsec (40 m cell size) resolution and in the WGS84 geographic coordinate system (EPSG code 
of 4326). GeoTIFF rasters of all 19 bioclimatic variables of Sardinia (Italy) are included in Annex I. 
Metadata files include file name, thumbnail, tags and description for all rasters. 

The coefficient of variation (in %) of bioclimatic variables was lower in the temperature-related variables 
(mean CV = 11.39), higher for the precipitation-related ones (mean CV = 23.79) and intermediate in the 
variables related to both temperature and precipitation (mean CV = 21.33). In particular, the maximum 
coefficient of variation of the temperature ones amounts to 33.78 for the Minimum Temperature of Coldest 
Month (BIO06), with BIO10 having the minimum value (CV = 4.02, Table 2). Within rainfall-related 
bioclimatic variables, the Precipitation of Driest Month (BIO14) had a higher variation (CV =44.88) than 
other variables, representing the highest level of variability in all the dataset. Regarding variables related to 
both temperature and precipitation the Precipitation of Warmest Quarter (BIO18) showed the highest level of 
variation (CV = 33.77), while the Mean Temperature of Driest Quarter (BIO09) showed the lowest one (CV 
= 5.27). 

Table 2. Mean, minimum, maximum and coefficient of variation (CV) values for each of the new high spatial resolution bioclimatic 
variables of Sardinia (Italy). 

Variable Name of variable Mean Minimum Maximum CV (%) 

BIO01 Annual Mean Temperature 15.44 8.61 18.12 8.51 

BIO02 Mean Diurnal Range (Mean of monthly (max temp - 
min temp)) 9.69 4.06 13.46 13.64 

BIO03 Isothermality (BIO02/BIO07) (x 100) 37.08 22.71 43.69 7.99 

BIO04 Temperature Seasonality (standard deviation x 100) 571.91 461.06 655.64 4.98 

BIO05 Maximum Temperature of Warmest Month 30.59 24.16 33.96 4.40 

BIO06 Minimum Temperature of Coldest Month 4.57 -2.13 9.79 33.78 

BIO07 Temperature Annual Range (BIO05-BIO06) 26.02 17.45 31.16 7.25 

BIO08 Mean Temperature of Wettest Quarter 11.85 3.22 17.36 22.54 

BIO09 Mean Temperature of Driest Quarter 23.54 17.43 26.16 5.27 

BIO10 Mean Temperature of Warmest Quarter 24.30 18.90 26.16 4.02 

BIO11 Mean Temperature of Coldest Quarter 8.60 0.98 12.29 17.98 

BIO12 Annual Precipitation 690.58 418.54 1376.38 19.22 

BIO13 Precipitation of Wettest Month 100.73 57.82 209.09 19.23 

BIO14 Precipitation of Driest Month 8.21 0.46 22.32 44.88 

BIO15 Precipitation Seasonality (Coefficient of Variation) 50.23 39.75 60.48 7.28 

BIO16 Precipitation of Wettest Quarter 288.68 164.44 582.96 19.26 

BIO17 Precipitation of Driest Quarter 36.71 11.24 82.44 32.89 

BIO18 Precipitation of Warmest Quarter 39.97 11.24 90.93 33.77 

BIO19 Precipitation of Coldest Quarter 222.29 113.18 495.01 23.73 

 

The spatial distribution of the calculated bioclimatic variables is shown according to the three groups 
temperature (Fig.2), rainfall (Fig.3), temperature and rainfall related variables (Figure 4). 

  



Fig. 2. Temperature-related bioclimatic variables (BIO01-BIO07 and BIO10-BIO11) of Sardinia (Italy). 

 
 
 
Fig. 3. Rainfall-related bioclimatic variables (BIO12-BIO17) of Sardinia (Italy). 

 
 
  



Fig. 4. Bioclimatic variables of Sardinia (Italy) related to both temperature and precipitation (BIO08-BIO09 and BIO18-BIO19). 

 
 
4.1 Comparisons with the WorldClim 2 bioclimatic variables 

The comparison of our high-resolution dataset vs. WorldClim2 in terms of Spearman’s correlation 
coefficient (𝜌) showed significant linear correlations (all p-values < 0.001) for all the 19 bioclimatic 
variables (Table 3) with the highest correlation among BIO11 values and the lowest for BIO15. 

The normalized root mean square error (nRMSE) revealed relevant differences (Table 3), in particular for the 
bioclimatic variables related to rainfall showing a higher discrepancy (mean RMSE = 39.79; mean nRMSE = 
0.21) compared to the temperature ones (mean RMSE = 4.81; mean nRMSE = 0.11). 

Table 3: Pairwise comparison of the new high-resolution bioclimatic variables and WorldClim 2 bioclimatic variables in terms of 
Spearman’s correlation coefficient (𝜌) and normalized root mean square error (nRMSE).  

Variable Name of variable Spearman’s rho RMSE nRMSE 

BIO01 Annual Mean Temperature 0.94 0.49 0.03 

BIO02 Mean Diurnal Range (Mean of monthly (max temp - min temp) 0.76 1.00 0.10 

BIO03 Isothermality (BIO02/BIO07) (x 100) 0.72 2.22 0.06 

BIO04 Temperature Seasonality (standard deviation x 100) 0.76 31.10 0.05 

BIO05 Maximum Temperature of Warmest Month 0.77 3.00 0.10 

BIO06 Minimum Temperature of Coldest Month 0.93 2.04 0.45 

BIO07 Temperature Annual Range (BIO05-BIO06) 0.79 1.47 0.06 

BIO08 Mean Temperature of Wettest Quarter 0.77 1.90 0.16 

BIO09 Mean Temperature of Driest Quarter 0.68 1.20 0.05 

BIO10 Mean Temperature of Warmest Quarter 0.87 1.53 0.06 

BIO11 Mean Temperature of Coldest Quarter 0.96 0.41 0.05 

BIO12 Annual Precipitation 0.60 137.00 0.20 

BIO13 Precipitation of Wettest Month 0.61 19.57 0.19 

BIO14 Precipitation of Driest Month 0.75 2.41 0.29 



BIO15 Precipitation Seasonality (Coefficient of Variation) 0.42 4.90 0.10 

BIO16 Precipitation of Wettest Quarter 0.56 64.76 0.22 

BIO17 Precipitation of Driest Quarter 0.81 10.09 0.27 

BIO18 Precipitation of Warmest Quarter 0.55 21.75 0.54 

BIO19 Precipitation of Coldest Quarter 0.54 52.59 0.24 
 

All bioclimatic variables related to temperature showed a high correlation (𝜌 > 0.70) with WorldClim 2 
(Table 3). 

Rainfall-related bioclimatic variables were less strongly correlated with WorldClim 2 than temperature-
related ones; Seasonality trend of precipitation (BIO15) was poorly correlated (𝜌 = 0.42).  

With regard to bioclimatic variables related to both temperature and precipitation, mean Temperature of 
Wettest and Driest quarters showed good correlations with corresponded WorldClim 2 bioclimatic variables 
(𝜌 > 0.60). On the contrary, the precipitation of the driest and warmest quarters highlighted a low correlation 
(𝜌 < 0.60). 

The spatial distribution of errors, calculated as the difference between the two datasets i.e. new high-
resolution dataset minus WorldClim2, showed the heterogeneous distribution of the spatial discrepancies of 
the variables (Figs. 5-7) and a specific pattern according to the different bioclimatic variable analysed. In 
these figures red colours indicate areas where a given variable was overestimated by Worldclim2, blue 
colours the underestimated ones. 

For example, the spatial distributions of the differences for the Annual Mean Temperature (BIO01) 
highlighted lower values modelled by WorldClim 2 compared to our dataset in the mountain areas, with 
differences of more than 2 °C (Fig. 5). Maximum/minimum temperatures (BIO05/06/10) are generally 
underestimated by WorldClim 2, with peaks up to 7 °C for the maximum temperature of the warmest month 
(BIO05). Accordingly, the annual range of extreme temperature conditions (BIO07) was underestimated by 
WorldClim 2 in the internal and mountain areas of the island, being overestimated in coastal areas in the 
north, south and eastern coast (Fig. 5).  

 

Regarding rainfall-related bioclimatic variables, a markedly different spatial distribution was observed for 
the Annual precipitation (BIO12), showing a gradient moving from north-west to south-east: in the NW 
areas WorldClim 2 overestimated, while the SE areas are underestimated, with strong differences (higher 
than 500 mm) (Fig. 6). Precipitation Seasonality (Coefficient of Variation, BIO15) is strongly overestimated 
by WorldClim 2 in the internal and mountain areas and slightly underestimated along the S-E coast. The 
Precipitation of Driest Quarter (BIO17) is generally overestimated, in particular in the NW zones. An 
asymmetry similar to the one observed for BIO12 was detected for the Mean Temperature of Wettest Quarter 
(BIO08), with underestimated values in the western part of the island and overestimated ones in the eastern 
ones (Fig. 7). Furthermore, a general overestimation was observed for the Precipitation of Warmest Quarter 
(BIO18) in all western areas of the island, from north to south, up to 40 mm (Fig. 7).  

  



Fig. 5. Spatial distribution of the differences between all pairs of the new high spatial resolution dataset and WorldClim 2 
temperature-related bioclimatic variables (BIO01-BIO07 and BIO10-BIO11). Red colours indicate overestimated areas by 
Worldclim2, blue colours the underestimated ones. 

 
  



Fig. 6. Spatial distribution of the differences between all pairs of the new high spatial resolution dataset and WorldClim 2 rainfall-
related bioclimatic variables (BIO12-BIO17). Red colours indicate overestimated areas by Worldclim2, blue colours the 
underestimated ones. 

 
 
Fig. 7. Spatial distribution of the differences between all pairs of the new high spatial resolution dataset and WorldClim 2  
bioclimatic variables related to both temperature and precipitation (BIO08-BIO09 and BIO18-BIO19). Red colours indicate 
overestimated areas by Worldclim2, blue colours the underestimated ones. 

 

5 Discussions  

Bioclimatic variables are fundamental for understanding and modelling the ecological processes and the 
distribution of biodiversity of earth (Jennings and Harris, 2017; Rivas-Martínez et al., 2011). Nevertheless, 



our study demonstrated that comparing the global dataset to a high spatial resolution one, revealed that we 
should pay attention on the accuracy of coarse spatial resolutions data, especially in areas of high 
heterogeneity where weather stations are few and sparsely distributed (Sandoval et al. 2020), like the 
Mediterranean area.  

We observed that the discrepancies existing among our high spatial resolution dataset and WorldClim 2 are 
evident and each bioclimatic variable behaved in a different way: we did not detect a general 
over/underestimation pattern (or trend) of the bioclimatic variables, but we rather observed variable-specific 
patterns mainly linked to the local orographic conditions and to the direction of the dominant winds driving 
weather perturbations.  

The new high spatial resolution dataset compared to WorldClim 2 showed that the larger discrepancies were 
spotted in the bioclimatic variables related to precipitation. Those inconsistencies are not evenly distributed 
in the territory: the greater differences between the two datasets correspond to the areas characterized by 
complex orographic systems. Moreover, since the dominant air mass perturbations in Sardinia come from 
west and the rain shadow effect is not considered in the model, the global dataset, probably limited by an 
uneven distribution of meteorological stations, strongly underestimated the annual precipitation in the eastern 
zones and overestimated the annual and the summer precipitations (i.e. driest and warmest quarter) in the 
western zones (up to 40 mm). These discrepancies, if applied, for example, to vascular plant species 
distribution models, can cause biases in the comprehension of the distribution of thermo-xerophilous species 
particularly (or exclusively) abundant in the western coast of the island (like Chamaerops humilis, Polygala 
rupestris, Viola arborescens, among the others (Biondi et al., 2001), and, contrarily, of mesophilous species 
of non-Mediterranean origin that can  surprisinglycolonize low elevation (down to the sea level) in the 
eastern coast, like Ostrya carpinifolia Scop.(Bacchetta et al., 2004a) and Taxus baccata (Farris et al., 2012).   

Similar limitations of the WorldClim spatial dataset accuracy, especially in isolated mountainous areas, were 
indicated for the first and second versions of this dataset by Hijmans et al. (2005) and Fick and Hijmans 
(2017), respectively. In particular for Italy, Pesaresi et al. (2014, 2017) highlighted that the lower accuracy in 
precipitation spatialization of WorldClim, could be explained by the scarcity of meteorological stations 
density respect to the topographic complexity and heterogeneity of the Italian territories. Bedia et al. (2013) 
highlighted that the discrepancy in precipitation-related variables between local and WorldClim datasets 
could determine a lack of robustness of the species distribution models leading, for example, to artifacts in 
the projections of climate change scenarios at regional or local scales. This can eventually compromise the 
successful use of models in biodiversity conservation and management actions.  

The maximum/minimum temperature of the warmest/coldest month are underestimated, i.e. compared to the 
high spatial resolution dataset, the global dataset generally models cooler summer maximum (up to 7°C) and 
colder winter minimum (more than 4°C). Accordingly, the coarse scale dataset models a smaller temperature 
annual range in the mountains and a wider one on the coasts, underrating the continentality values in the 
internal areas and exaggerating it on the coasts.  These discrepancies are particularly important in the 
Mediterranean climate, since the seasonal distribution of rainfall and the extreme temperatures determine the 
limits for species survival. Since Sardinia shows many plains and depressed areas in the internal parts of the 
island, often surrounded by hills or mountains, it is of crucial importance to discriminate areas with higher 
temperature annual range (i.e. more continental) from those characterized by a smaller temperature annual 
range (i.e. more oceanic). In the more continental areas, no matter the altitude above the sea level, species 
like Arbutus unedo L., Laurus nobilis L. and Myrtus communis L., among the others, are very rare if not 
completely absent (Bacchetta et al., 2007; Farris et al., 2007), whereas species more tolerant to continentality 
like Quercus gr. pubescens Willd. are relatively abundant even at lower elevation (Bacchetta et al., 2004b). 

The observed differences related to the precipitation of driest/warmest periods also influence the delimitation 
between Mediterranean and Temperate macro-bioclimates (Rivas-Martínez et al., 2011).The definition of 
this ecological boundary can be particularly important in a Mediterranean island where  zones with a 
Temperate bioclimate are crucial for the conservation of small, isolated populations of plant species of 
boreal-temperate origin, often living at their rear edge and therefore with important conservation concerns 



such as Daphne laureola L., Isopyrum thalictroides L., Lotus alpinus (DC.) Schleicher, and Sanicula 
europaea L. (Farris et al., 2018; Rosati et al., 2020) but also characterized by a high evolutionary potential 
(Hampe and Petit, 2005). In the same way, those Temperate areas in a Mediterranean context host non-
sclerophyllous plant communities like woods with Quercus gr. pubescens Willd., Ostrya carpinifolia Scop., 
Taxus baccata L. and Ilex aquifolium L., as shrubs with Sorbus torminalis (L.) Crantz, Malus pumila Mill., 
Pyrus communis L. and Juniperus nana Willd. (Bacchetta et al., 2009; Farris et al., 2012) and perennial 
pasturelands with Anthoxanthum odoratum L. and Cynosurus cristatus L. (Farris et al., 2013), identified as 
habitats of European concern. 

Treating the bioclimatic indices individually helps us to understand which are more reliable, indicating the 
critical issues to be faced when one is forced to use global datasets such as Worldclim2 in a Mediterranean 
territory. According to our results, in Sardinia the most consistent indices regard temperature, with the 
Annual Mean Temperature being the most reliable one. Yet, the spatial distribution of the variables 
highlights that mountain areas are difficult to model; in fact, even the annual mean temperature shows some 
variations.  

On the contrary, WorldClim 2 does not seem to be reliable on the precipitation indices, influencing the 
combined indices too: among the least performing variables we can identify Minimum Temperature of 
Coldest Month (BIO06) and the Precipitation of Warmest Quarter (BIO18).  

Given the high discrepancy identified in several sectors of our study area, we recommend being cautious in 
making ecological assessments based on bioclimatic variables derived from global data with coarse spatial 
resolutions. The high degree of variability of the new high-resolution bioclimatic variables of the island 
underlined the need to use fine spatial resolution data to capture the ecological response in physiographically 
complex landscapes (Hijmans et al., 2005). 

 

6 Conclusions 

In this paper we present and make available the first high spatial resolution dataset for the second largest 
island in the Mediterranean (Sardinia, Italy), including the 19 bioclimatic variables proposed in WorldClim 
and widely used for ecological studies (e.g. Iannella et al., 2019; Sýkora et al., 2017). 

Increasing the availability of high spatial resolution data to improve ecological understanding of variation at 
finer scales is extremely important, especially in the Mediterranean regions where past geographical and 
climatic changes and current environmental heterogeneities have determined high levels of biodiversity and 
biogeographical complexity (Medail, 2017; Thompson, 2020). Tree species composition and richness in 
Europe is shaped and strongly influenced by both historical and environmental conditions, in particular 
climate (Svenning and Skov, 2005): high levels of divergence have been highlighted, particularly on islands, 
which have been attributed to the combined effects of climatic changes, current ecological conditions, and 
anthropogenic factors, that have originated a long history of population isolation (González-Martínez et al., 
2010). 

These new data will support a new generation of research studies in a broad array of ecological applications 
at a much finer scale than previously possible. This sharpening of analysis is particularly urgent in those 
areas considered as climate-change hotspots (Giorgi, 2006), like the Mediterranean basin (Giorgi and 
Lionello, 2008): in southern European mountains boreo-temperate species are suspected to undergo a serious 
decline in future decades, as a consequence of the climatic change (Erschbamer et al., 2009; Normand et al., 
2007; Stanisci et al., 2005). 

Coarse-scale data is certainly useful for studying patterns on a global scale, but to model in order to obtain 
reliable results for planning conservation actions and biodiversity management, we need data with good 
spatial resolution (Sandoval et al. 2020), showing the variability of our territories. 



Annex I. GeoTIFF rasters of all 19 bioclimatic variables of Sardinia (Italy) are included. Metadata files 
include file name, thumbnail, tags and description for all rasters. Rasters are provided at roughly 1.69 arcsec 
(40 m cell size) resolution, WGS84 geographic coordinate system (EPSG code of 4326). 
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