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ABSTRACT
Recent approaches to behavioural user profiling employ Graph Neu-
ral Networks (GNNs) to turn users’ interactions with a platform into
actionable knowledge. The effectiveness of an approach is usually
assessed with accuracy-based perspectives, where the capability to
predict user features (such as gender or age) is evaluated. In this
work, we perform a beyond-accuracy analysis of the state-of-the-art
approaches to assess the presence of disparate impact and disparate
mistreatment, meaning that users characterised by a given sensi-
tive feature are unintentionally, but systematically, classified worse
than their counterparts. Our analysis on two real-world datasets
shows that different user profiling paradigms can impact fairness
results. The source code and the preprocessed datasets are available
at: https://github.com/erasmopurif/do_gnns_build_fair_models.

CCS CONCEPTS
• Human-centered computing → User models; • Social and
professional topics → User characteristics; • Applied com-
puting → Law, social and behavioral sciences.
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1 INTRODUCTION
In recent years, due to the huge amount of data provided by web
applications and platforms, user profiling has become a key topic
in many real-world scenarios, mainly social networks [23] and
e-commerce [32]. The main goal of user profiling is to infer an
individual’s interests, personality traits, or behaviours from gener-
ated data to create an efficient user representation, i.e. a user model,
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which is exploited by adaptive and personalised systems [12]. Early
profiling approaches considered only the analysis of static char-
acteristics (explicit user profiling), with data often coming from
online forms and surveys [24]. However, these methods have been
proven ineffective as users are not concerned about providing their
information directly. Therefore, modern systems focus more on
profiling users’ data implicitly based on individuals’ actions and
interactions (implicit user profiling). This approach is also referred
to as behavioural user profiling [18].

A natural way to model these behaviours is through graphs,
where edges describe the interactions between users, represented
by nodes. Graph Neural Networks (GNNs) [15, 19, 29, 37, 38] have
demonstrated to be effective in modelling graph data in several
domains, such as recommender systems [17, 35], natural language
processing [34], text mining [28] and user profiling [6, 7, 26, 33].

State of the art. Li et al. [21] put the first steps towards user
profiling on graph data, leveraging a heterogeneous graph built
upon “following” and “tweeting” interactions to infer users’ loca-
tion. Rahimi et al. [26] proposed a geolocation model based on
Graph Convolutional Networks (GCNs), which makes use of text
and network information to detect users’ location. Chen et al. [7]
introduced a Heterogeneous Graph Attention Network (HGAT) for
learning user representations considering the graph structure and
the attention mechanism to discern the importance of each node’s
neighbour. The most recent and promising works in this field were
published last year. Chen et al. [6] introduced a GCN-based model
which shows the benefits of enhancing the node representation
before performing user profiling tasks. Yan et al. [33] proposed a
Heterogeneous Graph Network (HGN) to improve prediction per-
formances by considering multiple types of relations and entities
for user profiling, in contrast to previous works only based on single
types. Generally, existing approaches evaluate user profiling models
based on the effectiveness of a classification task at predicting a
user’s personal characteristics, such as gender or age [7].

Motivation. Despite the success in classifying user profiles, as
any machine learning (ML) system trained on historical data, GNNs
are prone to learn biases in such data and reveal them in their
output. This is mainly due to the topology of graph structures and
the typical message-passing process of GNNs, which can amplify
discrimination as nodes of the same sensitive attribute are more
likely to be linked to each other than those different [27]. Algorith-
mic fairness has recently emerged as a crucial topic alongside the
increasing use of automated decision-making systems. Consider-
able literature has been produced on general methods to detect and
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mitigate bias in MLmodels [1, 5, 30] and user-related scenarios [25],
especially recommenders [11, 20, 22]. Only a few works have been
published to evaluate fairness on GNNs (e.g. [8, 9]), but to the best
of our knowledge, none of them assesses potential discrimination
in state-of-the-art GNN-based models for user profiling tasks.

Unfairness practices hidden in this class of models can be haz-
ardous. Indeed, on one hand, by focusing only on behavioural data,
they do not create intentional unfairness (disparate treatment [36]).
On the other hand, if modelling is more effective for specific de-
mographic groups, they would inevitably systematically receive
less effective services. To provide an example, considering the at-
tributes exploited in this work, when a system provides systemati-
cally worse gender predictions for a specific age group, this group
will systematically get worse service (e.g. ads targeted for the oppo-
site gender). Hence, characterising unfairness in behavioural user
profiling models becomes a crucial problem in this domain.

Our contributions. In this paper, we aim to assess fairness in
behavioural user profiling tasks for GNN-based models first in
terms of disparate impact [2, 31] and then we expand the evalu-
ation to consider disparate mistreatment [36] perspective. Our
fairness analysis is conducted on two state-of-the-art GNNs (i.e.
CatGCN [6] and RHGN [33]), proven to be the most effective in
user profiling. Our contributions can be summarised as follows:

• we perform two user profiling tasks by executing a binary
classification on two real-world datasets (Sec. 3.1) by lever-
aging the most performing GNNs in this context (Sec. 2.1);

• we assess disparate impact and disparatemistreatment (Sec. 3)
for GNNs designed for behavioural user profiling, consider-
ing four algorithmic fairness metrics (Sec. 2.2);

• from the results of an extensive set of experiments (Sec. 3.3),
we derive three observations about the analysed models,
correlating their different user profiling paradigms with the
fairness metrics scores to create a baseline for future assess-
ment considering GNN-based models for user profiling.

2 PRELIMINARIES
In this section, we first describe the state-of-the-art GNN models
analysed in our work. Then we introduce the metrics adopted for
fairness assessment, including their mathematical definition.

2.1 Models’ description
The analysis performed in this work considers two GNN-based
models published in the last year that represent the state of the art
in user profiling tasks, i.e. CatGCN and RHGN.

CatGCN [6] is a Graph Convolutional Network (GCN) model
tailored for graph learning on categorical node features. This model
enhances the initial node representation by integrating two types
of explicit interaction modelling into its learning process: a local
multiplication-based interaction on each pair of node features and a
global addition-based interaction on an artificial feature graph. The
proposed method shows the effectiveness of performing feature
interaction modelling before graph convolution.

RHGN [33] is a Relation-aware Heterogeneous Graph Network
designed to model multiple relations on a heterogeneous graph
between different kinds of entities. The core parts of this model
are a transformer-like multi-relation attention, used to learn the

node importance and uncover the meta-relation significance on
the graph, and a heterogeneous graph propagation network em-
ployed to gather information from multiple sources. This approach
outperforms several GNN-based models on user profiling tasks.

2.2 Metrics
We define the fairness metrics adopted in our work considering
𝑦 ∈ {0, 1} as the binary target label and 𝑦 ∈ {0, 1} as the prediction
of the user profiling model 𝑓 : 𝑥 → 𝑦. The sensitive attribute is
denoted with 𝑠 ∈ {0, 1}. In the metrics’ descriptions, we also exploit
the following notation which relates to classification properties: TP,
FP, TN and FN, denoting true positives, false positives, true negatives
and false negatives, respectively.

Our focus in this paper is the assessment of the fairness of the
GNNs introduced in the previous section in terms of disparate
impact. Also known as adverse impact, it refers to a form of indirect
and often unintentional discrimination that occurs when practices
or systems seem to apparently treat people the same way [14].
It concerns with situations where the model disproportionately
discriminates against certain groups, even if the model does not
explicitly employ the sensitive attribute to make predictions but
rather on some proxy attributes [31]. This is exactly what happens
in the analysed GNNs, where the user models are created by aggre-
gating information from neighbours, and the sensitive attribute is
not explicitly taken into consideration during classification. The
notion of disparate impact is beneficial when there is not a clear
linkage in training data between the predicted label and the sensi-
tive attribute, i.e. it is hard to define the validity of a decision for a
group member based on the historical data [36].

As reported in several works on fairness in ML, such as [8, 36],
we evaluate the disparate impact value of the analysed models
through statistical parity and equal opportunity metrics.

Statistical parity (or demographic parity) [10, 13] defines fair-
ness as an equal probability for each group of being assigned to the
positive class, i.e. predictions independent with sensitive attributes.

𝑃 (𝑦 = 1|𝑠 = 0) = 𝑃 (𝑦 = 1|𝑠 = 1) (1)

Equal opportunity [16] requires the probability of a subject in
a positive class to be classified with the positive outcome should be
equal for each group, i.e. TP should be the same across groups.

𝑃 (𝑦 = 1|𝑦 = 1, 𝑠 = 0) = 𝑃 (𝑦 = 1|𝑦 = 1, 𝑠 = 1) (2)

To extend the disparate impact evaluation conducted in previous
works, we measure the overall accuracy equality metric to consider
both TP and TN and look at relative accuracy across the groups.

Overall accuracy equality [3] defines fairness as the equal
probability of a subject from either positive or negative class to
be assigned to its respective class, i.e. each group should have the
same prediction accuracy.

𝑃 (𝑦 = 0|𝑦 = 0, 𝑠 = 0) + 𝑃 (𝑦 = 1|𝑦 = 1, 𝑠 = 0) =
= 𝑃 (𝑦 = 0|𝑦 = 0, 𝑠 = 1) + 𝑃 (𝑦 = 1|𝑦 = 1, 𝑠 = 1) (3)

In a scenario where it is hard to define the correctness of a
prediction related to sensitive attribute values, we argue that a com-
plete fairness assessment should always include the perspective
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of disparate mistreatment. This concept considers the misclassi-
fication rates for user groups having different values of the sensi-
tive attribute, instead of considering the corrected predictions [36].
Furthermore, the notion of disparate mistreatment is significant in
contexts where misclassification costs depend on the group affected
by the error. We select the treatment equality metric to evaluate
this fairness perspective.

Treatment equality [3] requires the ratio of errors made by the
classifier to be equal across different groups, i.e. each group should
have the same ratio of false negatives (FN) and false positives (FP).

𝑃 (𝑦 = 1|𝑦 = 0, 𝑠 = 0)
𝑃 (𝑦 = 0|𝑦 = 1, 𝑠 = 0) =

𝑃 (𝑦 = 1|𝑦 = 0, 𝑠 = 1)
𝑃 (𝑦 = 0|𝑦 = 1, 𝑠 = 1) (4)

According to [4] and [8], to quantitatively evaluate the disparate
impact and disparate mistreatment of the analysed models, we
operationalise the metrics defined by Eqs. (1)-(4) as follows:

Δ𝑆𝑃 = |𝑃 (𝑦 = 1|𝑠 = 0) − 𝑃 (𝑦 = 1|𝑠 = 1) |, (5)
Δ𝐸𝑂 = |𝑃 (𝑦 = 1|𝑦 = 1, 𝑠 = 0) − 𝑃 (𝑦 = 1|𝑦 = 1, 𝑠 = 1) |, (6)

Δ𝑂𝐴𝐸 = |𝑃 (𝑦 = 0|𝑦 = 0, 𝑠 = 0) + 𝑃 (𝑦 = 1|𝑦 = 1, 𝑠 = 0)− (7)
− 𝑃 (𝑦 = 0|𝑦 = 0, 𝑠 = 1) + 𝑃 (𝑦 = 1|𝑦 = 1, 𝑠 = 1) |,

Δ𝑇𝐸 =

����𝑃 (𝑦 = 1|𝑦 = 0, 𝑠 = 0)
𝑃 (𝑦 = 0|𝑦 = 1, 𝑠 = 0) −

𝑃 (𝑦 = 1|𝑦 = 0, 𝑠 = 1)
𝑃 (𝑦 = 0|𝑦 = 1, 𝑠 = 1)

���� (8)

3 FAIRNESS ASSESSMENT
To carry out the fairness assessment, we conduct extensive empiri-
cal studies to investigate the following research questions:

• RQ1 How do the different input types of the analysed GNNs
and the way the user models are constructed affect fairness?

• RQ2 To what extent can the user models produced by the
analysed state-of-the-art GNNs be defined as fair?

• RQ3 Are disparate impact metrics enough to assess the fair-
ness of GNN-based models in behavioural user profiling
tasks or is disparate mistreatment needed to fully assess the
presence of unfairness?

We describe below the datasets used in our work, the different
experiments executed to answer each research question, and the
parameters chosen to set the models before fairness. To conclude
the section, we present the results of the assessment.

3.1 Datasets
We choose two public real-world user profiling datasets, namely
Alibaba and JD, from the two popular e-commerce platforms.

Alibaba dataset1 contains click-through rates data about ads
displayed on Alibaba’s Taobao platform, and has been adopted in
both [6] and [33] for evaluation. According to [6], for CatGCN
model, we select the categories of products as the categorical fea-
tures related to user nodes. In particular, we only consider items
clicked at least by two users to establish a co-click relationship used
as the model’s local interaction. We apply the same filtering process
to RHGN model to make the datasets consistent before creating the
heterogeneous graph. For our experiments, we consider the users’
gender as the user profiling task label, and their age as the sensitive
attribute for fairness evaluation. Since the metrics we are focusing

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

Table 1: Dataset characteristics

Dataset Users Items Edges Features

Alibaba 166 958 64 553 427 464 2 820
JD 38 322 49 634 315 970 2 056

Table 2: Distribution of label and sensitive attribute values

Dataset Label Count (Percentage)
Class 1 Class 0

Alibaba gender 42 192 (25.3%) 124 766 (74.7%)
JD gender 13 735 (35.8%) 24 587 (64.2%)

Dataset Sens. Attr. Count (Percentage)
Class 1 Class 0

Alibaba bin-age 71 583 (42.9%) 95 375 (57.1%)
JD bin-age 25 717 (67.1%) 12 605 (32.9%)

on work with binary attributes, we split this feature in two groups
(bin-age) defining a clear separation between the two groups. In
the Alibaba dataset, the age range of each class is not specified and
is only characterised by a label.

JD dataset2 consists of users and items from the retailer com-
pany of the same name having click and purchase relationships,
already used in [33]. Since our experiments are not focused on the
effectiveness of user profiling, and due to the massive size of the
original dataset, we consider a sample of 15% of the items and only
the click relationship to make experimental settings comparable.
As for the previous dataset, CatGCN’s local interaction modelling
incorporates a co-click relationship. Tomake the experiments consis-
tent, also for this dataset select gender as the label for user profiling
task and age as the sensitive attribute. In this case, we binarised it
(bin-age) by considering users under and over 35 years old.

Table 1 displays the characteristics of the two datasets. In particu-
lar, features represent the dimension of the categorical feature array
used as input for CatGCN model. Table 2 shows the distribution
within the datasets of target class and sensitive attribute values.

3.2 Experimental setting
We explore RQ1 and RQ2 for disparate impact assessment by
running a user profiling task (i.e. classification of the gender class
in both datasets) for each of the two models, CatGCN and RHGN,
and computing the related fairness score in terms of Δ𝑆𝑃 , Δ𝐸𝑂 and
Δ𝑂𝐴𝐸 , which are defined in Eq. (5), Eq. (6) and Eq. (7), respectively.

In particular, to answer RQ1, we consider the three mentioned
metrics and compare their scores between the two models to mea-
sure the models’ discrimination level and evaluate the impact of
the different user profiling paradigms on fairness, knowing that the
smaller these scores are, the fairer the classifier is.

For RQ2, we contextualise the values of Δ𝑆𝑃 and Δ𝐸𝑂 with the
results of FairGNN [8], a recent model that focuses on learning
fair GNNs for node classification.

2https://github.com/guyulongcs/IJCAI2019_HGAT
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Table 3: Experiment results. We report the best result for each dataset and metric in bold.

Dataset Label Model Performance Fairness
Accuracy F1-score ROC AUC Δ𝑆𝑃 Δ𝐸𝑂 Δ𝑂𝐴𝐸 Δ𝑇𝐸

Alibaba gender CatGCN 0.787 ±0.017 0.714 ±0.006 0.714 ±0.008 0.046 ±0.019 0.147 ±0.080 0.175 ±0.109 0.068 ±0.021
RHGN 0.812 ±0.005 0.704 ±0.017 0.681 ±0.016 0.018 ±0.013 0.133 ±0.086 0.148 ±0.101 0.017 ±0.013

JD gender CatGCN 0.721 ±0.007 0.706 ±0.006 0.712 ±0.006 0.033 ±0.013 0.050 ±0.017 0.062 ±0.020 0.150 ±0.066
RHGN 0.735 ±0.005 0.696 ±0.007 0.658 ±0.008 0.009 ±0.007 0.041 ±0.017 0.054 ±0.017 0.019 ±0.015

Table 4: Variations in fairness scores between CatGCN and
RHGN. Differences in averages are considered.

Dataset Variations in fairness scores
Δ𝑆𝑃 Δ𝐸𝑂 Δ𝑂𝐴𝐸 Δ𝑇𝐸

Alibaba 0.028 0.014 0.027 0.051
JD 0.024 0.009 0.008 0.131

To answer RQ3, we extend our fairness evaluation to consider
Δ𝑇𝐸 , defined in Eq. (8). The aim is to determine to what extent the
analysed models discriminate against users from the perspective of
disparate mistreatment, in comparison to disparate impact.

Regarding the user profiling tasks, models’ hyper-parameters
are defined as follows. For CatGCN, the learning rate is searched
in {0.01, 0.1}, the 𝐿2 regularisation coefficient and the dropout ratio
are tuned among {1e-5, 1e-4} and {0.1, 0.3, 0.5, 0.7}, respectively, and
the aggregation parameter 𝛼 is searched within {0.1, 0.3, 0.5, 0.7,
0.9}. For RHGN, due to the heavier computational time for each
experiment, the hyper-parameter selection is narrower than the
other model. The learning rate and the 𝐿2 regularisation coefficient
are set to 0.01 and 0.001, respectively; the hidden dimension of
the two layers of the entity-level aggregation network is searched
in {32, 64}, while the number of heads in multi-head attention is
tuned among {1, 2}. All other parameters are set according to the
original papers. After the grid search, the experiments on fairness
are executed 10 times and the probabilities characterised by Eqs. (5)-
(8) are evaluated on the test set. The experiments are performed on
a GPU Nvidia Quadro RTX 8000 48GB.

3.3 Results
Table 3 shows the results of the presented assessment. For each
dataset and model, we first report the accuracy, F1-score, and ROC
AUC performance results. Then, we measure the fairness scores.

The results in terms of performance show that, in both datasets,
RHGN is more accurate than its counterpart. Anyhow, the F1-score
and the ROC AUC show that CatGCN is more effective from these
two perspectives. Hence, CatGCN is less impacted by false positives
and false negatives. On the other hand, RHGN produces more true
positives and true negatives.

Moving to the analysis of the fairness values, RHGN can produce
less discrimination in its outcome than CatGCN (RQ1), and this
result is confirmed for all the considered metrics.

Observation 1. The ability of RHGN to represent users through
multiple interaction modelling gains better values in terms
of fairness than a model only relying on binary associations
between users and items, as CatGCN, which also amplifies
discrimination by modelling users’ local interactions (e.g. co-
click relationship).

Comparing the fairness scores with the results of the baseline
model, FairGNN (RQ2), we observe different cases: knowing that
the values must be close to 0 for a model to be considered fair
for a specific metrics, only RHGN is effective w.r.t. Δ𝑆𝑃 in both
experimental settings, while in all other cases none of the two
analysed models can be deemed fair.

Observation 2. Even though RHGN demonstrates to be a fairer
model than CatGCN, a debiasing process is equally needed in
order to exploit the user models produced by both GNNs as fair.

The extended fairness analysis (RQ3) is presented in Table 4 by
providing the variations in fairness metrics scores between CatGCN
and RHGN. The results show that the widest difference is registered
for Δ𝑇𝐸 , denoting the need to consider both disparate impact and
disparate mistreatment metrics to have a complete picture of the
fairness situation.

Observation 3. In scenarios where the correctness of a deci-
sion on the target label w.r.t. the sensitive attributes is not well
defined, or where there is a high cost for misclassified instances,
a complete fairness assessment should always take into account
disparate mistreatment evaluation, since disparate impact re-
sults could be misleading for these specific contexts.

4 CONCLUSIONS AND FUTUREWORK
Recent GNN-based behavioural user profiling models monitor the
interactions between the users and a platform to build a user repre-
sentation that characterises their preferences. While the rest of the
literature has analysed how effective are these models at predicting
certain characteristics of the users, in this paper, we analysed pos-
sible disparities emerging from how users belonging to different
demographic groups are classified (unfairness).

Our analysis on two state-of-the-art models, and real-world
datasets, covering four fairness metrics, showed that directly mod-
elling raw user interactions with a platform hurts a demographic
group, who gets misclassified more than its counterpart.

In future work, we will explore these phenomena more in-depth,
also considering different attributes, datasets, andmodels. Moreover,
we will provide interventions to mitigate unfairness.
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