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In silico prediction of xenobiotic metabolism is an important strategy to accelerate the drug discovery 
process, as candidate compounds often fail in clinical phases due to their poor pharmacokinetic profiles. 
Here we present MetaQM, a dataset of quantum-mechanical (QM) optimized metabolic substrates, 
including force field parameters, electronic and physicochemical properties. MetaQM comprises 2054 
metabolic substrates extracted from the MetaQSAR database. We provide QM-optimized geometries, 
General Amber Force Field (FF) parameters for all studied molecules, and an extended set of structural 
and physicochemical descriptors as calculated by DFT and PM7 methods. The generated data can 
be used in different types of analysis. FF parameters can be applied to perform classical molecular 
mechanics calculations as exemplified by the validating molecular dynamics simulations reported 
here. The calculated descriptors can represent input features for developing improved predictive 
models for metabolism and drug design, as exemplified in this work. Finally, the QM-optimized 
molecular structures are valuable starting points for both ligand- and structure-based analyses such as 
pharmacophore mapping and docking simulations.

Background & Summary
The prediction of drug metabolism has been attracting great interest in recent years for its capacity to rapidly 
screen huge databases of compounds allowing a cost-effective discarding of the molecules with a predicted 
unfavourable profile. Notably, such an in silico screening can be performed in the early phases of the drug dis-
covery process with clear benefits in the reduction of the failures related to pharmacokinetic and toxicological 
concerns1.

The approaches for metabolism prediction can be subdivided into two major groups. On one hand, the local 
methods focus on a specific metabolic reaction and on the related metabolizing enzyme(s). On the other hand, 
global methods aim to predict the overall metabolic fate a given compound can undergo. Even though the global 
approaches often involve knowledge-based metabolic rules, local and global methods can develop their predic-
tive models by exploiting both ligand- and structure-based approaches2. Over the last years, all metabolism pre-
dictive studies greatly benefit from the artificial intelligence algorithms which allow the predictive performances 
to be constantly enhanced3.

The major factor which has so far limited the development of metabolism predictive models (especially 
involving global methods) is the scarcity of highly accurate and extended datasets. Most available metabolic 
resources are indeed collected by automatic interrogation of other databases4 combining xenobiotic and endog-
enous metabolic data for omics analyses5. Hence, we recently proposed the MetaQSAR resource6, a manually 
curated database collected by meta-analysis of the recent primary specialized literature. MetaQSAR comprises 
3788 first generation metabolic reactions which are grouped by a finely organized classification which subdi-
vides them in 3 major classes, 21 classes and 101 subclasses7. MetaQSAR is thus a fruitful source of highly accu-
rate datasets well suited for developing metabolism predictive analyses which indeed proved successful in both 
local3 and global ligand-based studies8,9. Altogether, the developed predictive models emphasized the key role of 
electronic descriptors, a quite expected outcome when considering their capacity to parameterize the intrinsic 
reactivity of each atom/molecule. The hitherto published studies involved electronic descriptors as computed by 
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semi-empirical methods, an almost compulsory choice to reduce the computational costs10. Nevertheless, one 
may imagine that the predictive power of these descriptors should parallel the level of theory by which they are 
calculated.

Hence, we undertook a highly demanding campaign of DFT calculations in which all the 2054 first gen-
eration substrates, as extracted from MetaQSAR, underwent DFT-based full optimization and frequency cal-
culations. Here, we release all the so derived molecular data for more than 2000 molecules including: (a) two 
datasets of all the QM-optimized substrates (at both DFT and semiempirical PM7 levels, with the corresponding 
Gaussian output files); (b) an homogeneous database of General Amber Force-Field parameters including sev-
eral compounds bearing non-standard atoms; (c) all the derived electronic descriptors; (d) an extended set of 
physicochemical descriptors as computed by using the DFT-optimized conformations.

By considering the structural richness of the simulated molecules, the present data can have many applica-
tions. First, the collected force-field parameters can be used to perform molecular mechanics calculations as 
exemplified by the here reported validating molecular dynamics runs on the compounds including non-standard 
atoms. Second, as exemplified by few selected test-cases, the computed descriptors can be utilized to develop 
improved predictive models (not necessarily focused on drug metabolism). Third, the QM-optimized structures 
can represent valuable starting points for various ligand- and structure-based studies. Notice that the collected 
dataset of optimized structures mostly comprises marketed drugs and drug-like molecules and, therefore, it can 
be particularly suited for repurposing and virtual screening campaigns.

Methods
DFT-optimization of MetaQSAR molecules. As schematized in the workflow of Fig. 1, the 3D struc-
tures of the first-generation substrates contained in the MetaQSAR database7 (overall 2054 molecules) were gen-
erated at physiological pH 7.4 by the VEGA11 program.

All compounds underwent a two steps geometry optimization, using first a semi-empirical and then a 
Density Functional Theory (DFT)12 level of theory. In detail, the semi-empirical calculations were performed 
using the MOPAC 2016 software13 and the PM714 Hamiltonian. The DFT calculations included full optimization 
and frequency calculation using the Gaussian 16 software (Revision A.03)15. The hybrid B3LYP functional16 is 
widely recognized as the standard for the systematic study of organic molecules17,18. It has been used in com-
bination with the 6–31 G* basis set for C and H, and 6–31 + G* for heteroatoms such as N, O, P, S. For com-
pounds containing “non-standard” atoms (i.e., Pt, As, Hg, Se, Pb), LANL2DZ19 effective core potential (ECP) 
and double zeta basis set were used. In all cases, the absence of imaginary frequency modes for the optimized 
structure of the ligand confirms a true minimum on the potential energy surface. At the optimized geometry, 
the Multiwfn 3.8 program20 was used to calculate Hirshfeld Charges21 within the conceptual density functional 
theory (CDFT)22. Hirshfeld population analysis (HPA) has proven to be a suitable choice compared to other 
population analysis schemes23,24. It is particularly effective for studying and obtaining Fukui functions25, dual 
descriptors and Hirshfeld charges21 itself, which reveals nucleophile and/or electrophile reactive centers of the 
ligand that underwent a metabolic reaction. GuassSum26 3.0 was used to extract all the information associated 
with each molecular orbital, from the previously generated output files.

To check the quality of DFT calculations, we compared the DFT optimized structures with experimen-
tal crystallographic structures retrieved from the Cambridge Structural Database (CSD)27 of the Cambridge 
Crystallographic Data Center (CCDC). In detail, a subset of 100 molecules were selected from the MetaQSAR 
database considering their structural diversity, by means of RDkit diversity picker28 as implemented in the 
KNIME 4.6.4 analytic platform29. We restricted the selection to CSD experimental structures with R% factor 
value < 5. The root mean square deviation (RMSD) values on heavy atoms, between DFT optimized structures 

Fig. 1 Schematic view of the computational workflow adopted in this work.
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and experimental structures were calculated by using the Visual Molecular Dynamics software (VMD)30 along 
with the corresponding RMSDw (average value) (see Technical Validation section).

Amber force-field parameters generation. General Amber Force-Field parameters (GAFF2)31 were gen-
erated starting from the Gaussian log files and assigning the Hirshfeld atomic charges obtained as described above. 
For compounds containing non-standard atoms (i.e., selenium. platinum, arsenic, iron, silicon, mercury, tin, and 
boron) we generated bonded parameters following the metal center parameter builder procedure (MCPB.py)32 as  
implemented in Amber2233. For compounds containing boron atoms, not supported by the MCPB.py procedure, 
we used the parameters reported by Tafi et al.34. For molecules containing non-standard atoms the quality of 
the GAFF2 parameters was checked by performing a molecular mechanics optimization using the conjugated 
gradient algorithm followed by a 100 ns-long molecular dynamics simulation in explicit water solution using 
Amber22. In detail, compounds were inserted into a box of OPC water molecules35 and the systems were neutral-
ized by adding either Na+ or Cl− counter ions. The hydrogen mass repartition scheme was adopted36, as well as 
the SHAKE algorithm37. The NPT production runs were preceded by an energy minimization, a heating followed 
by a cooling phase, as described previously38. We used a time step of 4 fs, a cutoff for non-bonded interaction of 
9 Å, the Langevin thermostat and the Berendsen barostat for keeping the temperature at 310 K and the pressure at 
1 Atm. Periodic boundary conditions and PME method were applied.

Metabolism prediction model building. To show how the molecular descriptors provided by our study 
can be helpful in predicting the metabolism of compounds, we built machine learning models to predict whether 
a compound undergoes three selected metabolic reactions: glutathione or generic sulfur conjugation (MetaQSAR 
class 24), hydrolysis of amides, lactams, and peptides (MetaQSAR class 12), and oxidation and reduction of 
sulfur atoms (MetaQSAR class 08). A binary classification model based on the MetaQSAR system was used. 
The program Weka 3.8.639 was used to build the model, using the Random Forest algorithm with the follow-
ing parameters: (1) batch size = 100; (2) number of threads = 1; (3) number of iterations = 100; (4) the attribute 
importance was not evaluated. The most significant features were selected by using the Weka program according 
to both the BestFirst search algorithm (direction = Forward; lookupCacheSize = 1; searchTermination = 5) and 
theWrapperSubsetEval attribute evaluator (classifier = RandomForest with default settings; doNotCheckCapa-
bilities = False; evaluationMeasure = accuracy,RMSE; folds = 5; seed = 1; threshold = 0.01). The performance of 
the models was evaluated using different metrics: Precision and Recall, see Eqs. (1–5)), Matthew’s Correlation 
Coefficient (MCC), and the Receiver Operating Characteristic Curve Area (ROC Area)40, obtained through a 
10-fold cross-validation. Specifically, in the following equations, each symbol is represented as follows: TP for true 
positive, TN for true negative, FP for false positive, and FN for false negative.
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Data Records
The MetaQM database is available on figshare41. Figure 2 shows the structure of the database.

We shared two comma separated files containing molecular descriptors as derived from semiempirical 
optimized structures (MetaQM_PM7-based_descriptors.csv) and from DFT optimized structures (MetaQM_
DFT-based_descriptors.csv). The list of computed descriptors together with a precise description of their mean-
ing is reported in Supporting Information (Table S1). The DFT and PM7 optimized structures are contained in 
two MOL2 database files (MetaQM-DFT_opt_structures.mol2 and MetaQM-PM7_opt_structures.mol2).

The compress file MetaQM.tar.gz contains 2054 folders, one for each compound; the folder and the included 
files are named after the compound (e.g., Abacavir/). Each directory includes 6 files: the Gaussian output of 
DFT calculations (e.g., Abacavir.log), the list of atomic charges computed at DFT-level of theory (e.g., Abacavir.
txt), the list of all molecular orbitals (e.g., Abacavir.mo), the .mol2 file used for the force field generation (e.g., 
Abacavir.mol2), and the two GAFF2 files (e.g., Abacavir.prepin, Abacavir.frcmod). For compounds containing 
non-standard atoms (Table S2) the .lib file is supplied instead of .prepin (e.g., Arsenate.lib). For the Ferroquine 
compound, only the .log and .txt files are supplied (see Methods).

For compounds with non-standard atoms an additional subfolder (MD_traj/) is further provided. MD_traj/ 
contains the topology and coordinates (e.g., Arsenate.prmtop, Arsenate.inpcrd) of the solvated compound used 
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for the validating MD simulation. The MD trajectory is contained in the md_NPT.nc file. The Amber22 output 
files from minimization, equilibration and production steps are supplied as well (opt-restr.out, opt.out, anneal.
out, quench.out, equilibrate_NPT.out, md_NPT.out).

Technical Validation
DFT-optimized structures. The validation of molecular structures optimized by DFT calculations was car-
ried out by selecting 100 structurally diverse molecules from the simulated MetaQSAR substrates. We restricted 
the selection to the experimental crystal structures deposited on CSD with high quality resolution (i.e., R% < 5). 
In the case of compounds with more available structures, we chose the one with the lowest R% value.

The resolved structures of the so selected 100 compounds were then compared with the corresponding DFT 
optimized conformations. For each selected compound, Table S3 compiles the reference CSD code and R-factor 
together with the resulting RMSD value. The RMSD mean value (RMSDw) is also reported.

Almost 70% of the molecules have RMSD values < 1 Å, indicating that the DFT optimized structures 
are in good agreement with the corresponding resolved structures, with the lowest value being 0.01 Å for 

Fig. 2 Schematic representation of MetaQM structure.

Compound RMSD (Å) Formula Molecular weight Atoms

Ar-67 0.76 C26H30N2O5Si 478.61 64

Arsenate 0.44 HO4As 139.93 6

ARSENITE 0.61 H3O3As 125.94 7

Bortezomib 0.83 C19H25N4O4B 384.24 53

Carboplatin 0.47 H6N2Cl2Pt 300.04 11

Cisplatin 0.41 C2H7O2As 137.99 12

Dimethyl arsinate 0.76 C2H6Sn 148.78 9

Dimethyltin 0.40 C11H17NO4B 238.07 34

GSK2251052 1.13 C12H15N6OS2As 398.34 37

Melarsoprol 0.76 Cl2Hg 271.50 3

Mercury chloride 0.06 CH3Hg 215.62 5

Methylmercury 0.01 CH3ClHg 251.08 6

Methylmercury chloride 0.03 C8H14N2O4Pt 397.29 29

Oxaliplatin 0.05 C5H11NO2Se 196.11 20

Seleno-L-methionine 0.50 C20H24NO2FClSi 392.95 50

Sila-Haloperidol 0.56 C6H12N2O4Pt 371.25 25

Average 0.49

Table 1. RMSD values (Å) as computed on all atoms between molecular mechanics and DFT-optimized 
structure of compounds containing non-standard atoms.
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Tetrafluoroethene, Coumarin and Dioxane. In contrast, the 9% of the cases show large structural difference with 
RMSD > 2 Å, the maximum value of 3.49 Å being observed for Dabrafenib. As expected, the obtained results 
suggest that flexible molecules give rise to high RMSD values, while rigid molecules reveal low RMSD values. 
However, the RMSD mean value of 0.76 Å confirms an overall agreement between the DFT optimized confor-
mations and the experimental structures.

The molecular descriptors were computed on the DFT optimized conformations, that can differ in the gen-
eral case from the conformations of compounds when in complex with metabolic enzymes. Therefore, to check 
the robustness of the provided dataset, we collected a subset of 20 diverse representative compounds (ranging 
from 12 to 50 heavy atoms, and 0 to 18 flexible torsions), for which the experimental structures in complex 
with metabolic enzymes are available in the Protein Data Bank42. We then computed the QM-based descriptors 
(with both DFT and PM7 methods) on the experimental conformation, and we compared the results with those 
derived from the corresponding QM-optimized geometries (Supporting_TableS 4a, Supporting_TableS 4b). We 
obtained small differences between the different series of descriptors, with average percentage variations of 11% 
for the PM7-based descriptors, and 6% for DFT-based descriptors, indicating the overall reliability of the data.

Amber force-field parameters. To validate the quality of the GAFF2 parameterization for molecules 
containing non-standard atoms, we compared the optimized geometries derived from the molecular mechan-
ics minimization with those obtained by DFT calculations. Table 1 shows the RMSD values between the two 
structures, computed on all atoms. In 9 cases out of 16, the two compared structures are almost identical (i.e., 
RMSD < 0.5 Å) and only one molecule shows a RMSD value greater than 1 Å. Overall, the average value con-
sidering all “non-standard” cases is equal to 0.49 Å thus confirming the reliability of the computed force field 
parameters. For the same molecules, the force field parameters were utilized to perform 100 ns-long MD simu-
lations in explicit water solution to further test the reliability of the bonded parameters. The visual inspection of 
the MD trajectories, available on figshare, reveals a satisfactory stability of distances/angles/torsions involving 
non-standard atoms along the 100 ns timescale, thus demonstrating the reliability of the corresponding bonded 
parameters.

example of metabolic predictions using MetaQM. To test how the MetaQM descriptors can feed pre-
dictive machine learning models of metabolism, we performed three tests of selected metabolic predictions. 
Specifically, we followed the MetaQSAR metabolic reaction classification system to predict whether compounds 
undergo: (1) glutathione conjugation (metabolic class 24, 169 substrates plus 169 non-substrates), (2) hydrolysis 
(metabolic class 12, 117 substrates plus 117 non-substrates), and (3) oxidation and reduction of sulphur atoms 
(metabolic class 08, 127 substrates plus 127 non-substrates). For each prediction model, we used a balanced 
data set consisting of 50% of molecules that undergo the reaction (substrates) and 50% of molecules that do not 
undergo the reaction (non-substrates). To highlight the role of electronic descriptors, each reactive functional 
group was also used for non-substrate species. The results of the prediction models are shown in Table 2.

Overall, the performance of the three prediction models is satisfactory, with the glutathione conjugation 
reaction (class 24) and oxidations of sulphur atoms (class 08) showing the best results with an MCC of 0.71 and 
0.68, respectively. The ROC curves (i.e., true positive rate (TPR) vs False Positive Rate (FPR)) for all the three 
classes are reported in Figure S1. Class 12, representing the hydrolysis of amides, lactams and peptides, obtained 

n MCC ROC Area Precision YES Precision NO Recall YES Recall NO

Class 24 338 0.71 0.92 0.87 0.84 0.83 0.88

Class 12 234 0.41 0.75 0.73 0.68 0.64 0.77

Class 08 254 0.68 0.89 0.85 0.83 0.82 0.86

Table 2. Performances of the three machine-learning metabolic predictions based on MetaQM descriptors. 
The MCC value ranges from −1 (worse) to 1 (best), all the other metrics range from 0 (worse) to 1 (best). The 
overall number of instances for each model is also reported (n).

Class 24 Class 12 Class 08

ChiralAtms EzBnds Mass

HbDon ChiralAtms HbDon

Impropers Psa ChiralAtms

Rings Impropers Psa

Hirshfeld_positive_charges VirtualLogP Gap

piS_TOTAL Hirshfeld_positive_charges Chemical_potential

Fukui_positive Ionization_potential

D.E_Total_PM7 Nucleophilicity_index

Thermal_energy

Fukui_negative

Table 3. Features selection for the three test-case metabolic predictive models (see Table S1 for details about 
each molecular descriptor). QM-based electronic properties are highlighted in bold.
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a lower but acceptable performance in terms of prediction. These results could be related to the MetaQSAR 
classification scheme of reactions, for which both conjugation reactions and oxidation on sulphur atoms (classes 
24 and 08) include more homogeneous metabolic reactions. Instead, for class 12 (hydrolysis of amides, lactams 
and peptides), the collected metabolic reactions are more heterogeneous, which may partly explain the lower but 
acceptable performance of the corresponding model. Although the samples used to build each model included 
the same reactive functional group for both substrates and non-substrates, that can make the prediction more 
difficult, the novel electronic descriptors presented here show an overall satisfactory performance.

All predictive models contain three types of molecular descriptors (i.e., phys-chem, DFT-based, and semiem-
pirical) (Table 3) obtained after 10-fold cross validation (Table 3).

Class 08 is characterized by the highest number of features with respect to the other two classes, especially 
considering the electronic parameters. This could be ascribed to the complex biochemical mechanisms of the 
oxidation reaction catalyzed by CYP450 on the sulfur atom. In detail, the Cdp I complex is also referred to as an 
“electrophilic oxidant”43, which could explain why both Fukui_negative and Nucleophilicity_Index, both captur-
ing atomic and molecular nucleophilicity, are identified as important features for this model. In addition, other 
electronic descriptors are identified, that globally describe the chemical reactivity of the oxidation reaction. The 
physicochemical parameters are related to molecular size and shape except for HbDon and Psa, which encode 
both polarity and the presence of chemical groups susceptible to metabolism. When considering the other two 
classes, the number of electronic features is lower, possibly due to the simpler reaction mechanisms compared to 
the previous one. In these cases, electronic parameters that encode both electrophilicity and chemical reactivity 
(Hirshfeld_positive_charges, Fukui_positive, D.E_Total_PM7, and piS_TOTAL) are found to be important, as 
well as physicochemical parameters accounting for molecular size, molecular shape and polarity/lipophilicity 
properties.

code availability
The starting 3D structures of compounds were retrieved from the MetaQSAR7 database (available under licence). 
The ionization of compounds was performed using VEGA 3.2.111. The software MOPAC13 2016 was used for the 
semiempirical optimizations and for the calculation of semiempirical descriptors. Gaussian1615 (Revision A.03) 
was employed for both the DFT-based geometry optimizations and the descriptors collection, and Multiwfn 
3.820 was used only for the DFT-based descriptor computation. For each compound, GaussSum 3.026 was used 
to extract the molecular orbitals from the Gaussian16 output files in combination with a personalized script 
(extract_orbitals.py). VMD 1.9.430 was used for the visualization and computation of RMSD of compounds. 
Amber2233 was used for the generation of the force field parameters and the MD simulations. Weka 3.8.639 was 
employed to create the metabolism predictive machine learning models.
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