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Abstract
We study immersions of Sasakian manifolds into finite and infinite dimensional Sasakian
space forms. After proving Calabi’s rigidity results in the Sasakian setting, we characterise
all homogeneous Sasakian manifolds which admit a (local) Sasakian immersion into a nonel-
liptic Sasakian space form. Moreover, we give a characterisation of homogeneous Sasakian
manifolds which can be embedded into the standard sphere both in the compact and non-
compact case.

Keywords Sasakian space form · Sasakian immersion · Calabi Rigidity · Homogeneous
Sasakian manifold
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1 Introduction and statements of themain results

A Sasakian manifold M = (M, η, R, g,�) is a contact manifold equipped with a com-
patible Riemannian metric and a transverse complex structure defining a Kähler structure
transverse to the Reeb foliation. Other than the transverse one, there is another natural Kähler
structure associated to a Sasakian manifold: the one on its Riemannian cone. Due to their
deep connection, many problems in Kähler geometry can be studied in the Sasakian setting
with analogous results. This paper provides such an instance. Namely, we are interested in
Sasakian manifolds admitting a Sasakian immersion or embedding in a Sasakian space form.
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Although this problem has a long tradition in the Kähler case initiated in the 50s by Calabi
[4] (see [18] for a recent review), the Sasakian counterpart has recently received relatively
little attention. This problem has been studied in the late 60s and 70s under different names,
see e.g. Harada [9–12], Kenmotsu [13], Kon [14, 15], Okumura [19], and only more recently
by Bande, Cappelletti–Montano and the first two named authors [2, 5, 21].

We are interested in Sasakian immersions into simply connected Sasakian space forms
and we initially focus on Sasakian analogues of some classical results of Calabi. As in the
Kähler case, given N ≤ ∞, there are only three complete simply connected Sasakian space
forms M(N , c) (up to transverse deformation) of dimension 2N + 1 distinguished by the
φ-sectional curvature c. Namely, the hyperbolic space form with c < −3, the Heisenberg
space with c = −3 and the standard sphere with c > −3. Moreover, Sasakian space forms
are bundles over complex space forms, trivial ones in the first two cases. For this reason,
when the Sasakian manifolds considered are regular, some statements follow directly from
the Kähler case using the fact that a Sasakian immersion induces a Kähler immersion of the
space of Reeb leaves. As an example, the classification of immersions of Sasakian space
forms into Sasakian space forms was already pointed out by Harada [12] without claims of
originality. We exploit the fibration of Sasakian space forms repeatedly in this paper. For
instance, the proof of our first result, the Sasakian analogue of Calabi’s rigidity, relies on this
fact.

Theorem 1.1 (Sasakian rigidity) Let ϕ1, ϕ2 : M −→ M(n, c) be Sasakian immersions of a
Sasakian manifold M into a Sasakian space form M(N , c) with N ≤ ∞. Then there exists
a Sasakian transformation T of M(N , c) such that ϕ1 = T ◦ ϕ2.

Notice that this is a peculiarity of space forms. In fact, one can find many examples of
Sasakian manifolds which admit immersions in a Sasakian manifold M̂ not related by an
isometry of M̂ . For instance, one can take a M̂ to be a regular Sasakian manifold constructed
over the examples provided by Green [8]. Another classical result, whose proof follows
mutatis mutandis Calabi’s proof, is an extension result for local immersions.

Theorem 1.2 (Global extension) Let M be a simply connected Sasakian manifold. If for all
p ∈ M there exists a local Sasakian immersion ϕp : Up −→ M(N , c) of a neighbourhood
Up of p into a Sasakian space form M(N , c)with N ≤ ∞, then M admits a global immersion
into M(N , c). Furthermore, the immersion is unique up to rigid transformations of M(N , c).

This is clearly false for manifolds with nontrivial fundamental group. For example, the
compact Heisenberg manifold, being the quotient of R2n+1 = M(n,−3) by the integral
Heisenberg group, admits a local (but not global) immersion into M(n,−3) itself. The
hypothesis of existence of a local immersion at each point can be soften to the existence
of a local immersion at one point in some peculiar cases, e.g. when the Sasakian manifold is
locally homogeneous or the metric is real analytic.

Given a Sasakian manifold M , deciding whether M admits a Sasakian embedding or
immersion into a Sasakian space forms is a highly nontrivial problem. In light of this we
begin by investigating the special case of (locally) homogeneous Sasakian manifolds. In this
case, similarly to the Kähler setting, there is a dichotomy. Namely, immersions into Sasakian
space forms of φ-sectional curvature c ≤ −3 are much more restricted than immersions
into spheres. In the Sasakian setting this is already noticeable in [2] where the authors study
local immersions of η-Einstein manifolds into Sasakian space forms of φ-sectional curvature
c ≤ −3. In fact, we obtain a similar result for local immersions of locally homogeneous
Sasakian manifolds which is the Sasakian analogue of a theorem of Di Scala, Ishi and Loi
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[6]. Namely, writing F(n, b) for the complex space form of dimension 2n and holomorphic
sectional curvature 4b, we prove the following

Theorem 1.3 Let M be a complete locally homogeneous Sasakian manifold of dimension
2n + 1. Suppose there exists an open subset U ⊂ M and a Sasakian immersion ϕ : U −→
M(N , c) with N ≤ ∞.

(1) If c < −3, M is Sasaki equivalent to M(n, c)/� for a discrete group of Sasakian
transformations of M(n, c). Moreover, if U = M, then � = {1}.

(2) if c = −3, then M is Sasaki equivalent to the quotient of

R × F(k, 0) × F(n1, b1) × · · · × F(nr , br )

with k + n1 +· · ·+ nr = n, and bi < 0 for i = 1, . . . , r , by a discrete group of Sasakian
transformations �. Moreover, if U = M, the group � is trivial.

Let us briefly comment on this result. First of all, notice that any of the above Sasakian
manifoldswith nontrivial fundamental group shows the necessity of the assumption onπ1(M)

in Theorem 1.2. One can describe the fundamental groups � = π1(M) explicitly. More
specifically, � is the extension of a product of discrete subgroups of Kähler isometries of the
factors F(ni , bi ), cf. Remark 4.3. When the immersion considered in Theorem 1.3 is global
we can describe the immersion explicitly, seeRemark 4.2. In particular, if we assume N < ∞,
the immersion is just the linear inclusion ofM(n, c) inM(N , c). Observe that the same thesis
is obtained in [2] under the hypotheses that M is η-Einstein and N < ∞. Regarding infinite
dimensional Sasakian space forms, note that M(n, c) is η-Einstein and admits an immersion
in M(∞,−3) for c < −3 by Theorem 1.3. An interesting open problem, closely related to a
conjecture in theKähler setting [18, Conjecture 4.1.4], is to characterise η-Einsteinmanifolds
which admit an immersion into M(∞,−3).

In analogy with the Kähler realm, Sasakian immersions in space forms M(N , c) with
c> −3 are much more flexible. This is ultimately a consequence of Kodaira Embedding
Theorem and its Sasakian version explained in detail in Sect. 5 below. Namely, the pullback
of the Hopf bundle M(N , 1) −→ F(N , 1) via the Kodaira embedding X −→ F(N , 1) of
any projective manifold X provides a regular Sasakian manifold M together with a Sasakian
embeddingM −→ M(N , 1).On the other hand, given aSasakianmanifoldM , it is interesting
to knowwhether the Sasakian structure onM is of this type, that is, ifM admits an embedding
into a standard sphere. By the structure Theorem 2.1 a regular Sasakian manifold M is, up
to transverse homothety, the unitary bundle of a hermitian line bundle (L−1, h−1) over a
Kähler manifold (X , ω) with c1(L) = [ω]. Therefore, the problem at hand is strictly related
to finding an embedding of (X , L) into (CPN ,O(1)) isometric for the hermitian metrics on
the line bundles.

As in the nonelliptic case, we focus on homogeneous manifolds for the initial approach
to the problem. Notice that if we restrict to finite dimensional case, a Sasakian manifold
admitting an immersion in M(N , 1) is forced to be compact, see Remark 6.3. Our next result
shows that for homogeneous manifolds this condition is also sufficient and the immersion is
in fact an embedding. Moreover, we are able to describe the embedding explicitly.

Theorem 1.4 Up to transverse homothety, a compact homogeneous Sasakian manifold M
admits a Sasakian embedding ϕ into a finite dimensional standard sphere S2N+1 which is
unique up to unitary transformations of CN+1.
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Moreover, identifying M with the unitary bundle associated to the line bundle (L−1, h−1)

over a Kähler manifold X, the embedding is given by

ϕ : M −→ S2N+1

v �→ (v(s0(x)), . . . , v(sN (x)))
∑N

j=0 h
(
s j (x), s j (x)

)

where v lies in the fibre of L−1 over x ∈ X and (s0, . . . , sN ) is a suitable basis of H0(L).

It was proven in [25] that a Kähler manifold admitting an immersion in CPN is necessarily
simply connected. Although this is not the case in the Sasakian setting, the absence of an
assumption on the fundamental group is not unexpected because a compact homogeneous
Sasakian manifold necessarily has cyclic fundamental group. One should compare this result
with [5] where Cappelletti–Montano and the first named author characterised η-Einstein
manifolds admitting a codimension 2 immersion in M(N , 1).

If we allow the standard sphere to be infinite dimensional, there are plenty of Sasakian
manifolds which can be immersed into M(N , 1). Even restricting to the homogeneous case,
one can see that compactness is not a necessary condition. In the Kähler case, up to homo-
theties, a homogeneous manifold admits an immersion into CP∞ if and only if it is simply
connected, see [6, Theorem 3] and [16, Theorem 1.1]. We prove that the characterisation of
homogeneous Sasakian manifolds which can be immersed in the infinite dimensional sphere
is analogous.

Theorem 1.5 Let M be a homogeneous Sasakian manifold. Then a suitable D-homothetic
transformation of M admits a Sasakian immersion ϕ : M −→ S∞ if and only if π1(M) is
cyclic.

While in the compact case a transverse homothety is necessary to make the transverse Kähler
form integral, here this condition is essentially different. In fact, there are contractible homo-
geneous Sasakianmanifoldswhich cannot be immersed into S∞ even though every transverse
Kähler class is trivial and thus integral, see Remark 6.2. Observe that the immersion in The-
orem 1.5 is full, i.e. its image is not contained in a proper totally geodesic submanifold, if
and only if the manifold M is noncompact. This is no longer true if we drop the homogeneity
assumption, even if the metric is complete and N < ∞. See Example 6.4 for an injective
Sasakian immersion of a noncompact complete Sasakian manifold into a finite dimensional
standard sphere. Putting these together we get

Corollary 1.6 Up to transverse homothety, a homogeneous Sasakian manifold M admits a
Sasakian embedding ϕ into a finite dimensional standard sphere S2N+1 if and only if it is
compact.

Structure of the paper. The paper is organised as follows. In Sect. 2 we review the basics
of Sasakian geometry with particular focus on homogeneous Sasakian manifolds, Sasakian
immersions and regular Sasakian structures. The main results of this paper are divided into
three sections. Namely, in Sect. 3 we discuss immersions of Sasakian manifolds in Sasakian
space forms and prove Sasakian rigidity (Theorem 1.1) and the global extension theorem
(Theorem 1.2). Section4 is dedicated to the proof of Theorem 1.3. The remainder of the paper
deals with immersions into finite and infinite dimensional spheres. In particular, in Sect. 5
we discuss CR embeddings of regular Sasakian manifolds into standard spheres and discuss
the induced Sasakian structure. This discussion is used in Sect. 6 to prove Theorems 1.4 and
1.5.
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2 Sasakianmanifolds

Sasakian geometry can be understood in terms of contact metric geometry and via the
associated Kähler cone, cf. the monograph of Boyer and Galicki [3]. We will present both
formulations for the reader convenience, but we will focus mostly on the regular case for
it is central in this paper. In the following all manifolds and orbifolds are assumed to be
connected.

A K-contact structure (η,�, R, g) on a manifold M consists of a contact form η and an
endomorphism � of the tangent bundle TM satisfying the following properties:

• �2 = − Id+R ⊗ η where R is the Reeb vector field of η,
• �|D is an almost complex structure compatiblewith the symplectic formdη onD = ker η,

• theReebvector field R isKillingwith respect to themetric g(·, ·) = 1

2
dη(·,�·)+η(·)η(·).

Given such a structure one can consider the almost complex structure J on the Riemannian
cone

(
M × R

+, t2g + dt2
)
given by

• J = � on D = ker η, and
• R = J (t∂t )|{t=1} .

ASasakian structure is aK-contact structure (η,�, R, g) such that the associated almost com-
plex structure J is integrable, and therefore

(
M × R

+, t2 g + dt2, J
)
is Kähler. A Sasakian

manifold is a manifold M equipped with a Sasakian structure (η,�, R, g).
Equivalently, one can define Sasakian manifolds in terms of Kähler cones. Namely, a

Sasakian structure on a smooth manifold M is defined to be a Kähler cone structure on
M × R

+ = Y , that is, a Kähler structure (gY , J ) on Y of the form gY = t2g + dt2 where t
is the coordinate on R

+ and g a metric on M . Then (Y , gY , J ) is called the Kähler cone of
M which, in turn, is identified with the submanifold {t = 1}. The Kähler form on Y is then
given by


Y = i

2
∂∂t2.

The Reeb vector field on Y is defined as

R = J (t∂t ).

This defines a holomorphic Killing vector field with metric dual 1-form

η = gY (R, ·)
t2

= dc log t = i(∂ − ∂) log t

where dc = i(∂ − ∂). Notice that J induces an endomorphism � of TM by setting

• � = J on D = ker η|TM , and
• �(R) = 0.

Equivalently, the endomorphism � is determined by g and η by setting

g(X , Z) = 1

2
dη(X ,�Z) for X , Z ∈ D.

It is easy to see that, when restricted to M = {t = 1}, (η,�, R, g) is a Sasakian in the contact
metric sense whose Kähler cone is (Y , gY , J ) itself. When this does not lead to confusion,
we will use R and η to indicate both the objects on Y and on M .
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Since g and η are invariant for R, the Reeb foliation is transversally Kähler in the sense
that the distribution D admits a Kähler structure (gT , ωT , J T ) which is invariant under R.
Explicitly, we have

ωT = 1

2
dη, J T = �|D and gT (X , Z) = 1

2
dη(X , J T Z) = g|D .

In particular, one can see that

ωT = 1

2
dη = i

2
d(∂ − ∂) log t = i∂∂ log t . (1)

The Reeb vector field defines a foliation on M , called the Reeb foliation. A very important
dichotomy of Sasakian structures is given by the regularity of the leaves of the Reeb foliation.
Namely, if there exist foliated charts such that each leaf intersects a chart finitely many times,
the Sasakian structure is called quasi-regular. Other wise it is called irregular. Moreover,
if every leaf intesects every chart only once, the sasakian structure is said to be regular.
Compact regular and quasi-regular Sasakian manifolds are fairly well understood due to the
following structure theorem.

Theorem 2.1 [3] Let (M, η,�, R, g) be a quasi-regular compact Sasakian manifold. Then
the space of leaves of the Reeb foliation (X , ω, gω) is a compact Kähler cyclic orbifold with
integral Kähler form 1

2π ω so that the projection π : (M, g) −→ (X , gω) is a Riemannian
submersion. Moreover, X is a smooth manifold if and only if the Sasakian structure on M is
regular.

Viceversa, any principal S1-orbibundle M with Euler class − 1
2π [ω] ∈ H2

orb(X ,Z) over
a compact Kähler cyclic orbifold (X , ω) admits a Sasakian structure.

This result allows us to reformulate the geometry of a compact quasi-regular Sasakian man-
ifold M in terms of the algebraic geometry of the Kähler orbifold X . We will illustrate in
detail this correspondence for its importance in the remainder of the paper. We only present
this in the regular setting since it is the only one needed for our results. Nonetheless, the same
description applies to quasi-regular compact Sasakian manifolds. Let us first introduce the
concept of D-homothetic transformation of a Sasakian structure.

Definition 2.2 (D-homothety or a transverse homothety) Let (M, η,�, R, g) be a (not neces-
sarily compact) Sasakian manifold and a ∈ R a positive number. One can define the Sasakian
structure (ηa,�a, Ra, ga) from (η,�, R, g) as

ηa = aη, �a = �, Ra = R

a
, ga = ag + (a2 − a)η ⊗ η = agT + ηa ⊗ ηa .

Equivalently, we can define the same structure on M by setting a new coordinate on
the Kähler cone as t̃ = ta . It is clear from the formulation above that this induces on
M = {̃t = 1} = {t = 1} the same Sasakian structure (ηa,�a, Ra, ga). We will call this
structure the Da-homothety of (η,�, R, g).

Now let the compact regular Sasakian manifold (M, η,�, R, g) be given and consider the
projection π : (M, g) −→ (X , ω) given in Theorem 2.1 above. Notice that π locally identi-
fies the contact distributionD with the tangent space of X . Therefore, up toD-homothety, we
have that π∗(ω) = 1

2dη. Moreover, the endomorphism � determines the complex structure
on X and g induces the Kähler metric gω, i.e. gT = π∗gω.
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In this case the class 1
2π [ω] ∈ H2(X ,Z) defines an ample line bundle L over X . Moreover,

the cone Y = M ×R
+ is identified with the complement of the zero section in L−1 = L∗ in

the following way. Let h be a hermitian metric on L such that

ω = −i∂∂ log h.

Then its dual h−1 on L−1 defines the second coordinate of (p, t) ∈ M ×R
+ = L−1\{0} by

t : L−1\{0} −→ R
+

(p, v) �→ |v|h−1
p

(2)

where v is a vector of L−1 in the fibre over p. With this notation the Kähler form on the
Kähler cone

(
M × R

+, t2 g + dt2, I
)
is given by


 = i

2
∂∂t2. (3)

The Sasakian structure can be read from this data as

ωT = −i∂∂ log h, η = i(∂ − ∂) log t . (4)

Therefore, the choice of a hermitian metric h on an ample line bundle L over a compact
Kähler manifold X completely determines a Sasakian structure on theU (1)-orbibundle asso-
ciated to L−1. The Sasakian manifold (M, η, R, g,�) so obtained is called a Boothby–Wang
bundle over (X , ω). Observe that, although the differentiable manifold is uniquely deter-
mined by 1

2π [ω], the Sasakian structure does depend on, and is in fact determined by, the
choice of h.

The most basic example is the standard Sasakian structure on S2n+1, that is, the Boothby–
Wang bundle determined by the Fubini-Study metric h = hFS on O(1) over CPn . We give
the details of this construction to further illustrate the formulation above.

Example 2.3 (Standard Sasakian sphere) Let h = hFS be the Fubini-Study hermitian met-
ric on the holomorphic line bundle O(1) over CPn . Recall that its dual metric h−1 on
O(−1)\{0} = C

n+1\{0} is given by the euclidean norm. This defines a coordinate t
on the Kähler cone O(−1)\{0} = C

n+1\{0} = S2n+1 × R
+. Namely, for coordinates

z = (z0, z1, . . . , zn) on Cn+1 we have

t : Cn+1 −→ R
+

z �→ |z| =
√
√
√
√

n∑

i=0

zi zi

Now the Kähler metric on the cone is nothing but the flat metric


 f lat = i

2
∂∂t2 = i

2

∑
dzi ∧ dzi .

The Reeb vector field R0 and the contact form η0 read

R0 = J (t∂t ) = i
∑

zi∂zi − zi∂zi , η0 = i(∂ − ∂) log t = i

2t2
∑

zidzi − zidzi .

It is clear that, when restricted to S2n+1, η0 and R0, together with the round metric g0 and the
restriction �0 of J to ker η0 give a Sasakian structure on S2n+1. This corresponds exactly to
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the Hopf bundle S2n+1 −→ CPn . Moreover, we have

π∗ωFS = ωT = 1

2
dη0 = i

2|z|4
∑

i

|zi |2dzi ∧ dzi −
∑

i, j

zi z jdzi ∧ dz j

where π : Cn+1\{0} −→ CPn is the standard projection.

In general the space of leaves of theReeb foliations X is not even an orbifold. Nevertheless,
when the Sasakian structure is regular and complete, X is a Kähler manifold regardless of
the compactness of M , see e.g. [23].

Wenowswitch our attention back to not necessarily compact Sasakianmanifolds and recall
another well known class of deformations of Sasakian structures, the so-called transverse
Kähler transformations. Namely, given a Kähler cone Y = M × R

+ we consider all Kähler
metrics on (Y , J ) that are compatiblewith theReebfield R. In other terms, these are potentials
t̃2 such that t∂t = t̃ ∂̃t . This means that the corresponding Kähler and contact forms satisfy


̃ = 
 + i∂∂e2 f , η̃ = η + dc f

for a function f invariant under ∂t and R. Such functions are colled basic functions. We
still need to identify the manifolds {̃t = 1} and {t = 1}. This is done by means of the
diffeomorphism

F : Y −→ Y

(p, t) �→
(
p, te− f (p)

)

which maps {t = 1} to {t = e− f (p)} = {̃t = 1}. It is elementary to check that η, R and
dc f are invariant under F so that η̃ = η + dc f holds on M . Furthermore, the transverse
Kähler forms are related by ω̃T = ωT + i∂∂ f . Notice that when the Sasaki structure is
quasi-regular basic functions correspond to function on the base orbifold X . Thus, if t comes
from a hermitian metric h−1 on L−1, such a transformation is given by replacing h−1 with
e f h−1 for a function f : X −→ C such that ω + i∂∂ f > 0. This is equivalent to picking a
different Kähler form ω̃ in the same class as ω. We summarise the above discussion in the
following definition.

Definition 2.4 (TransverseKähler deformations) Let (M, η, R, g,�) be a Sasakianmanifold
with Kähler cone (Y , J ) and Kähler potential t2. A transverse Kähler transformation is given
by replacing t with t̃ = e f t for a basic function f and leaving (Y , J , R) unchanged. When
the Sasaki structure is quasi-regular and given as in (4), a transverse Kähler transformation
is given by replacing h−1 with e f h−1.

In this paper we are mostly interested with immersions and embeddings of Sasakian man-
ifold so we recall the most relevant definitions. Two Sasakian manifolds (M1, η1, R1, g1, φ1)

and (M2, η2, R2, g2, φ2) are equivalent if there exists a diffeomorphism ϕ : M1 −→ M2 such
that

ϕ∗η2 = η1 and ϕ∗g2 = g1.

If this holds then ϕ also preserves the endomorphism φ1 and the Reeb vector field. As
implicitly intended in the definitions above, a Sasakian equivalence from a Sasakianmanifold
(M, η, R, g, φ) to itself is often called a Sasakian transformation of (M, η, R, g, φ).
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2.1 Complex and Sasakian space forms

In order to fix the notation we recall some facts on complex and Sasakian space forms. In the
literature a space form is not assumed to be simply connected and complete but for us this
will always be the case.

Definition 2.5 A complex space form F(N , b), N ≤ ∞, is a complete simply connected
complex manifold of real dimension 2N with constant holomorphic sectional curvature 4b.

Complex space forms are distinguished by the sign of the holomorphic sectional curvature.
Namely, up to holomorphic isometry, there are three types of complex space forms.
(b = 0) F(N , 0) is the complex space CN . If N = ∞, F(∞, 0) is the Hilbert space �2(C)

of sequences (z1, z2, . . .) of complex numbers such that
∑∞

j=1 |z j |2 < ∞. In both cases
F(N , 0) is considered to be endowed with the flat metric.
(b > 0) F(N , b) is the complex projective space CPN . When N = ∞, F(∞, b) = CP∞
is the space of equivalence classes [z1 : z2 : . . .] such that (z1, z2, . . .) ∈ �2(C)\{0} with
respect to standard C

∗-action. This space is endowed with the Fubini-Study form ωFS of
constant holomorphic sectional curvature 4b, given in homogeneous coordinates by

ωFS = i

2b
∂∂ log

N∑

j=1

|z j |2.

(b < 0) F(N , b) = CH∞ is the ball of radius − 1
b in CN (or �2(C) when N = ∞) endowed

with the hyperbolic Kähler form ωhyp of constant holomorphic sectional curvature 4b:

ωhyp = i

2b
∂∂ log

⎛

⎝1 + b
N∑

j=1

|z j |2
⎞

⎠ .

Sasakian space forms are defined analogously. Given a Sasakianmanifold (M, η, R, g, φ)

with Riemannian sectional curvature Sec, the φ-sectional curvature H of g is defined by

H(X) = Sec(X , φX)

for all vector fields X of unit length orthogonal to R.

Definition 2.6 A Sasakian space form M(N , c), N ≤ ∞, is a complete simply connected
Sasakian manifold of dimension 2N + 1 with constant φ-sectional curvature H ≡ c.

Tanno [26] proved that there are three types of finite dimensional Sasakian space forms,
namely, those with c < −3, c = −3 and c > −3. Under the Boothby–Wang correspondence,
constant φ-sectional curvature c corresponds precisely to constant holomorphic transverse
sectional curvature c + 3. Namely, the φ-sectional curvature is related to to the sectional
curvature SecT of the transverse metric gT by

H(X) = SecT (X , φX) − 3 (5)

for a vector field X of unit length orthogonal to R, see for instance [3, Section 7.3]. We report
Tanno’s classification including the infinite dimensional case with particular focus on the
relation with complex space forms.
(c = −3)M(N ,−3) is Sasaki equivalent toR2N+1 = R×F(N , 0)with the contact standard
structure. In particular, if N = ∞, then M(∞,−3) is the Hilbert space R × �2(C). In both
cases M(N ,−3) is equipped with the contact form η = dt + i

2

∑N
j=1(z jdz j − z jdz j ) and
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Reeb vector field ∂t where t is the coordinate on the first factor. The endomorphism φ is
defined to be the horizontal lift of the complex structure of CN (�2(C)) via the projection
π : R × F(N , 0) −→ F(N , 0). The metric g is defined to be g = gT + η ⊗ η where gT is
the flat metric on F(N , 0).
(c > −3) M(N , c) is Sasaki equivalent to the standard Sasakian sphere S2N+1 (S∞ if
N = ∞). This is the Boothby–Wang bundle over CPN = F(N , b) whose transverse Kähler
metric has constant holomorphic sectional curvature 4b = c + 3.
(c < −3) M(N , c) is Sasaki equivalent toR×F(N , b)where the transverse Kähler structure
is that of the hyperbolic complex space F(N , b) of constant holomorphic sectional curvature
4b = c + 3. Namely, consider the projection on the second factor π : R × F(N , b) −→
F(N , b) and let α be a 1-form on F(N , b) such that dα = ωhyp . Define the contact form of
M(∞, c) to be η = dt + π∗α with Reeb vector field given by ∂t where t is the coordinate
on the first factor. The endomorphism φ is defined to be the horizontal lift of the complex
structure of F(N , b). The metric g is given by g = gT + η ⊗ η where gT is the Bergman
metric on F(N , b) associated to ωhyp .

The choice of the curvature being 4b instead of b derives from the fact that, with the
normalisation we have fixed, the Fubini-Study form onCPN has constant sectional holomor-
phic curvature 4. Moreover, with this choice the sphere S2N+1 with the round metric is the
Sasakian space form M(N , 1) fibring over the complex space form CPN = F(N , 1).

Notice that each simply connected space formM(N , c) admits a fibrationπ : M(N , c) →
F(N , b) over a complex space form with 4b = c+ 3 whose fibres are the leaves of the Reeb
foliation. When c > −3, π is a principal circle bundle, while in the other two cases the
fibration is trivial. Observe that in these two cases, any choice of any primitive α of the
Kähler form of the complex space form F(N , b) yields a Sasakian structure of constant
φ-sectional curvature which is Sasaki equivalent to the Sasakian structure we have fixed.

2.2 Some remarks on noncompact Sasakianmanifolds

Weconclude this section by discussing some basic properties of noncompact regular Sasakian
manifolds and, in particular, of noncompact homogeneous Sasakian manifolds. These are
fibre bundles over homogeneous Kähler manifolds with fibreR or S1, see [3, Theorem 8.3.5].
Let M be a homogeneous Sasakian manifolds and X be the Kähler base of the associated
fibre bundle.

Firstly, we point out that the bundle is trivial if the fibre is R. This follows from the fact
that both the total space M and the base X are orientable, therefore the bundle is too. Since
this is real line bundle, orientable means trivial.

Now we want to show that if the base manifold X is compact, then the Sasakian manifold
M cannot be the total space of a trivial bundle. This follows directly from the structure
theorem if M is compact. For M noncompact it follows from the next

Lemma 2.7 Let X be a Kähler manifold. The product X × R admits a Sasakian structure
such that the Reeb orbits are the fibres of the trivial fibration if and only if the transverse
Kähler form ω is exact on X.

Proof We write M = X × R and π : X × R −→ X for the projection onto the first factor.
Let t be the coordinate on the second factor.

Suppose firstly that ω = dα is an exact Kähler form on X and gT is the associated metric.
Moreover, let t be the coordinate on the second factor. Then the form η = dt + π∗α is a
contact form on M defining a Sasakian structure (η, ∂t , g,�)with g = gT +η⊗η and� the
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horizontal lift of the complex structure on X . In this case the projection onto the transverse
Kähler space is given simply by π above.

Suppose now that M admits a Sasakian structure (η, R, g,�) such that the Reeb orbits are
the fibres of the trivial fibration. That is, the Reeb orbit through (x, t) is {x}×R and π above
is exactly the projection onto the space of leaves of the Reeb foliation. Then the flow of the
Reeb vector field defines a coordinate t : R −→ X ×R for the second factor so that R = ∂t .
Thenwe canwrite η = dt+γ where γ (∂t ) = 0.Moreover, since ι∂t dγ = ι∂t dη = 0, the form
γ is basic, that is, γ = π∗α for some 1-form α on X . Therefore π∗ω = dη = dγ = dπ∗α
is exact, and so is ω. �

This result also holds if we replace R by S1. In fact, such a Sasakian structure on X × S1 can
be lifted to X ×R. Viceversa, if X admits a Kähler form ω = dα, then, for any volume form
β on S1, the contact form η = β +π∗α defines a Sasakian structure on X × S1. In particular,
if X is compact, then Lemma 2.7 implies that there cannot exist any Sasakian structure on
X × R fibring over X . Clearly, since X × S1 is compact, this is also given by Theorem 2.1.
For future reference, we specialise the discussion above to homogeneous manifolds.

Proposition 2.8 If M be a noncompact homogeneous Sasakian manifold, then M is the total
space of a fibration over a noncompact homogeneous Kähler manifold X. Moreover, if the
fibre is R, then X is contractible.

Proof Recall that a homogeneous Sasakian manifold M is regular and fibres over a homo-
geneous Kähler manifold X with fibre R or S1. If the base X is compact, then the fibre
is forced to be R because M is noncompact. By orientability, the fibration is trivial and
Lemma 2.7 implies that X admits an exact Kähler form. We conclude that the base X must
be noncompact.

If, additionally, the fibre is R, once again triviality of the bundle follows from the ori-
entability of M and X . Then Lemma 2.7 implies again that X admits an exact Kähler form.
Therefore X admits a global Kähler potential, that is, X is a contractible manifold, see [16,
Theorem 1.2]. �

Notice that the assumption on the fibre of the fibration is necessary to get the contractability
of X . For instance, one can construct a homogeneous Sasakian structure on the circle bundle
over the productCPk ×CHl . This argument shows that any homogeneous Sasakian manifold
fibring over a homogeneous Kähler manifold X without compact factors is X × R with the
structure described above.

3 Extensions and uniqueness of Sasakian immersions in Sasakian space
forms

In this section we give a general discussion on immersions of Sasakian manifolds
into Sasakian space forms. Given two Sasakian manifolds (M1, η1, R1, g1, φ1) and
(M2, η2, R2, g2, φ2), a Sasakian immersion (embedding) of M1 in M2 is an immersion
(embedding) ϕ : M1 −→ M2 such that

ϕ∗η2 = η1, ϕ∗g2 = g1,

ϕ∗R1 = R2 and ϕ∗ ◦ φ1 = φ2 ◦ ϕ∗.
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We can rephrase this definition in terms of the Kähler cone of the Sasakian manifolds M1

and M2. Namely, the map ϕ satisfying the conditions above clearly extends to a map

ϕ̃ : M1 × R −→ M2 × R

(p, t) �→ (ϕ(p), t).

It is clear that if ϕ is a Sasakian immersion (resp. embedding), then ϕ̃ is a Kähler immersion
(resp. embedding).

If, conversely, Y1 and Y2 are the Kähler cones of M1 and M2 with coordinates t1 and
t2, then a Kähler immersion (embedding) ϕ̃ : Y1 −→ Y2 such that ϕ̃∗(t2) = t1 restricts to
a Sasakian immersion (embedding) ϕ : M1 −→ M2. Since it is often more useful to our
purposes, we give the following

Definition 3.1 (Sasakian immersion and embedding) Let M1 and M2 be two Sasakian man-
ifolds with Kähler cones Y1 and Y2 and coordinates t1 and t2 respectively. A Sasakian
immersion (respectively embedding) of M1 in M2 is a Kähler immersion (resp. embedding)
ϕ : Y1 −→ Y2 such that ϕ∗(t2) = t1.

Remark 3.2 Given the equivalence between a Sasakian immersion M1 −→ M2 and a Kähler
immersion of the Kähler cones, with an abuse of notation, we will often denote both maps
with the same letter.

Proof of Theorem 1.1 Wewill prove the theorem in the case where M is a trivial fibration over
contractible Kähler manifold X . We then apply this to Darboux neighbourhoods in order to
get the thesis by a standard argument.

Let M be a Sasakian manifold such that the Reeb foliation defines a map to a contractible
Kähler manifold X , that is, M is diffeomorphic to X ×R. Firstly, we focus on the case where
c > −3. Here the Kähler cone M ×R

+ admits two Kähler immersions ϕ̃1 = ϕ1 × IdR+ and
ϕ̃2 = ϕ2 × IdR+ into S2N+2 × R

+ = C
N+1\{0} and therefore into the complex space form

C
N+1. Hence, by Calabi’s rigidity, there exists a rigid transformation F of CN+1 such that

ϕ̃1 = F ◦ ϕ̃2. This yields the thesis as F is forced to be unitary by the very definition of ϕ̃1

and ϕ̃2.
We can now assume c ≤ −3. Recall that in this case M(N , c) = F(N , b) × R with

4b = c + 3. Since Sasakian immersions map Reeb leaves to Reeb leaves, the immersions
ϕ1, ϕ2 cover two Kähler immersions defined so that the following diagram commutes

M = X × R M(N , c)

X F(N , b)

ϕi

π π̃

ψi

for i = 1, 2. Since the fibrations π and π̃ are trivial, the maps ϕi have the form ϕi (x, t) =
(ψi (x), fi (x, t)) for x ∈ X , fi ∈ C∞(M,R) and i = 1, 2. Now, by Calabi’s rigidity, there
exists a rigid transformation T̂ of F(N , b) such that ψ1 = T̂ ◦ ψ2. This lifts to a rigid
transformation T̃ : M(N , c) −→ M(N , c) given by T̃ (p, s) = (T̂ (p), s). Therefore we get
an immersion ϕ̂2 := T̃ ◦ϕ2 : M −→ M(N , c) defined as ϕ̂2(x, t) = (T̂ ◦ψ2(x), f2(x, t)) =
(ψ1(x), f2(x, t)).

Now, the fact that the immersions ϕ1 and ϕ2 are Sasakian yields fi (x, t) = t + ai for
i = 1, 2. Let a = a1 − a2 and denote by Ta : M(N , c) −→ M(N , c) the translation
Ta(p, s) = (p, s + a). Then the Sasakian immersions ϕ1 and ϕ2 are related by ϕ1 = T ◦ ϕ2

where T is the rigid transformation given by T = Ta ◦ T̃ .
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Notice that the transformation T is unique when the immersion is full, that is, when its
image is not contained in a totally geodesic submanifold of M(N , c). This follows from the
uniqueness of the rigid transformation T̂ , see the proof of [18, Theorem 2.1.4]. Now let M
be an arbitrary Sasakian manifold and ϕ1, ϕ2 two immersions of M into a Sasakian space
form M(N , c). By restricting the target to a totally geodesic submanifold of M(N , c), we
can assume that ϕ1, ϕ2 are full. Each point p ∈ M has a Darboux neighbourhoodUp that can
be regarded as a trivial Sasakian fibration over a open disc in Cn (where dim(M) = 2n + 1).
The restrictions of ϕ1, ϕ2 to Up define Sasakian immersions of Up into M(N , c) which, by
the first part of this proof, satisfy ϕ1|Up = Tp ◦ ϕ2|Up for a unique rigid transformation Tp

of M(N , c). This defines a map p �→ Tp from M to the group of rigid transformations of
M(N , c). This map is constant because it is locally constant and M is connected. Therefore
there exists a unique Sasakian transformation T of M(N , c) such that ϕ1 = T ◦ ϕ2 globally.

�
Now, using Theorem 1.1, we are able to prove Theorem 1.2 by a classical argument

Proof of Theorem 1.2 Consider, for each p ∈ M , a geodesically convex Darboux chartWp ⊂
Up such that the collection {Wp}p∈M is still an open covering of M . Now fix a point p0 ∈ M .
For any point p ∈ M there exists a path γ from p0 to p. By compactness there exist a finite
number of chartsWp0 , . . . ,Wpk that cover the image of γ . Moreover, we can order theWpi ’s
so that the intersectionsWpi ∩Wpi+1 ∩γ are nonempty for all i = 0, . . . , k−1. Denote by γi
the intersection ofWpi with γ . Now the setWp0 ∩Wp1 admits two Sasakian immersions into
M(N , c). By Theorem 1.1 there exists a unique Sasakian transformation T1 of M(N , c) such
that T1 ◦ ϕp1 = ϕp0 when restricted to Wp0 ∩ Wp1 . Thus, by taking T1 ◦ ϕp1 in place of ϕp1 ,
we can extend the Sasakian immersion to γ0 ∪ γ1. By repeating this process a finite number
of times we extend the immersion to the entire path γ and, since M is path connected, to the
whole manifold M . Moreover, this extension is well defined because M is simply connected.
The last statement follows directly from Theorem 1.1. �

4 Sasakian immersions of homogeneous Sasakianmanifolds into
Sasakian space forms with c ≤ −3

In this section we investigate immersions into Sasakian space forms in the special case of
homogeneous or, more generally, locally homogeneous Sasakian manifolds. This is inspired
by the parallel with Kähler geometry. In particular, we seek a Sasakian analogue of the
following result.

Theorem 4.1 [6] Let (X , ω) be a complex n-dimensional homogeneous Kähler manifold and
suppose that X admits a Kähler embedding into F(N , b) with N ≤ ∞.

(1) If b < 0 then X = F(n, b).
(2) If b = 0 then X = F(k, 0) × F(n1, b1) × · · · × F(nr , br ) where k + n1 + · · · + nr = n

and bi < 0 for all i = 1, . . . , r .

Theorem 4.1 will be crucial in the following proof of its Sasakian analogue.

Proof of Theorem 1.3 (1) Assume c < −3 and consider the universal cover π̃ : M̃ −→ M of
M . Since M is complete and locally homogeneous its universal cover M̃ is a homogeneous
Sasakian manifold. Notice that M̃ admits a local Sasakian immersion in M(N , c) at any
point in the preimage π̃−1(U ). Therefore, M̃ admits an embedding at any point because its
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group of Sasakian transformation acts transitively. Now, by Theorem 1.2, there exists a global
Sasakian immersion ϕ̃ : M̃ −→ M(N , c).

Recall that M̃ is regular and it is a fibration over a homogeneous Kähler manifold (X̃ , ω)

whose fibre is either R or S1, cf. [3, Theorem 8.3.5]. Therefore ϕ̃ covers a Kähler immersion
ψ̃ : X̃ −→ F(N , b)with 4b = c+3.ByTheorem4.1 this implies that X̃ is biholomorphically
isometric to the complex space form F(n, b) and therefore the fibre of the bundle M̃ −→ X̃
must be R because X̃ is simply connected. From the fact that ϕ̃ is Sasakian we conclude that
the bundle π̃ : M̃ −→ M is nothing but the pullback under ψ̃ of the bundle M(N , c) −→
F(N , b). In particular, M̃ is Sasaki equivalent to M(n, c). Namely, we get the following
commutative diagramwhere horizontal maps are Kähler or Sasakian immersions and vertical
maps are the standard fibrations

M̃ = M(n, c) M(N , c)

X̃ = F(n, b) F(N , b)

ϕ̃

ψ̃

We conclude that M is Sasaki equivalent to M(n, c)/� where � = π1(M) acts by Sasakian
transformations.
(2) The line of argument in the case where c = −3 is similar to the one followed in the
previous point so we only point out the differences.

In this case, by Theorem 4.1, the homogeneous Kähler manifold X̃ is holomorphically
isometric to F(k, 0) × F(n1, b1) × · · · × F(nr , br ) where k + n1 + · · · + nr = n and
bi < 0 for all i = 1, . . . , r . Therefore the manifold M̃ is Sasaki equivalent to the standard
Sasakian manifold over it. In other words, M̃ is the pullback under the immersion ψ̃ of the
bundle M(N , c) −→ F(N , b). One can also regard M̃ as the Sasakian manifold obtained
by identifying the fibres of the standard Sasakian manifolds on the factors of X̃ , that is, the
Sasakian space forms M(k,−3) and M(ni , 4bi −3) for i = 1, . . . , r , which yields the thesis.

�

Remark 4.2 In the case whereU = M , the immersion is in fact very explicit. This is because
M is Sasaki equivalent to M(n, c) and the immersion ϕ̃ covers the Kähler immersion ψ̃ :
X̃ −→ F(N , b), cf [18, Theorem 1–2]. Namely, up to a rigid transformation of M(N , c),
when c < −3 the immersion ϕ̃ is given by the linear inclusion of M(n, c) = R × CHn into
M(N , c) = R×CHN .When c = −3wehaveM = R×F(k, 0)×F(n1, b1)×· · ·×F(nr , br ).
In this case the immersion is given by ( f0, f1, . . . , fr ) where f0 is the linear inclusion of the
first two factors and, for all i = 1, . . . , r ,

fi (z1, . . . , zni ) = −1

2
√
bi

(

. . . ,

√
(| j | − 1)!

j ! z j11 · · · z jnini , . . .

)

with | j | = j1+· · ·+ jni and j ! = j1! · · · jni !. In particular this implies that, if N < ∞ and
U = M in part (2) of Theorem 1.3, then only the first two factors appear, i.e.,M = M(n,−3).

Remark 4.3 By [3, Theorem 8.3.5] M as in Theorem 1.3 is regular and it is a fibration over a
homogeneous Kähler manifold X whose fibre is either R or S1. The universal cover of X is
exactly themanifold X̃ in the proof of Theorem 1.3.When the fibre of the bundleM −→ X is
R, the group� is a group of transverse Kähler transformations as it is exactly the fundamental
group of X = X̃/�. If instead the fibre is S1, then � is a central Z-extension of the group
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π1(X) of Kähler isometries of X̃ . In particular, when c = −3, we have

X = F(k, 0)

�
× F(n1, b1)

�1
× · · · × F(nr , br )

�r

where � (resp. �i ) is a discrete group of Kähler transformations of F(k, 0) (resp. F(ni , bi )
for all i). Namely, π1(X) splits as the direct product � × �1 × · · · × �r .

5 CR immersions of regular and complete Sasakianmanifolds into
spheres

In the remainder of the paper we will study sufficient conditions for the existence of Sasakian
embeddings or immersions of homogeneous Sasakian manifolds into the standard Sasakian
sphere. In all the cases we consider, such embeddings are obtained via the same general
method. Namely, we use the algebraic geometry of the space of leaves of the Reeb foliation,
that is, a Kähler manifold, to produce an embedding into a standard Sasakian sphere. This
section is devoted to the presentation of such CR embeddings for compact and noncompact
regular Sasakian manifolds which are, in all respects, the Sasakian analogues of the Kodaira
embedding.Notice that CR embeddings of Sasakianmanifolds into spheres have been studied
also in [20]. Nevertheless, here we discuss an explicit expression of the induced structure.

Let M be a compact regular Sasakian manifold. By the Structure Theorem, M is a U (1)-
principal bundle π : M −→ X over a compact Kähler manifold (X , ω) with 2π∗ω = dη.
Furthermore, M is the unitary bundle associated to the line bundle L−1 where c1(L) = [ω].
This last condition implies that L is ample. In other terms, (X , L) is a polarised Kähler
manifold. Therefore, for k ∈ N large enough, the bundle L⊗k = Lk is very ample, and we
can define the Kodaira embedding ψk : X −→ CPNk where dim(H0(L)) = Nk + 1.

We want to construct a CR embedding ϕk : M −→ S2Nk+1 of M into the standard
sphere covering the Kodaira embeddingψk . Equivalently, by Definition 3.1 we can construct
a holomorphic embedding of ϕk : Y −→ C

Nk+1\{0} of the Kähler cone Y = M × R
+ into

the Kähler cone S2Nk+1 × R
+.

Let h be a hermitian metric on L whose Ricci curvature form is ω and such that the
dual metric h−1 on L−1 induces the coordinate on M × R

+ = L−1\{0} as in (2). This
induces metrics hk and h−k on the line bundles Lk and L−k = (L∗)k respectively. Choose an
orthonormal basis (s0, . . . , sNk ) for the space of sections H

0(Lk) with respect to the scalar
product 〈·, ·〉k defined by

〈s, t〉k =
∫

X
hk (s(x), t(x))

ωn

n! (6)

where s, t ∈ H0(Lk). Fix an open setU ⊂ X and a local trivialisation σ : U −→ Lk so that
we have s j = f jσ for a holomorphic function f j : U −→ C. Then the Kodaira embedding
is given locally by

ψk|U : U −→ CPNk

x �→
[
s0(x)

σ (x)
: · · · : sNk (x)

σ (x)

]

.

We have ψ∗
kO(1) = Lk , that is, L−k is the restriction of the tautological bundle O(−1) to

ψk(X). Now σ defines a trivialisation of L−k over U so that a vector v ∈ L−k
x for x ∈ U

can be written as αv = v(σ (x)) with αv ∈ C. Denote by ψ̃k the holomorphic embedding
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L−k\{0} −→ C
Nk+1\{0} induced by the Kodaira embedding. From the identities αv = v(σ )

and s j = σ f j yield the following local expression of ψ̃k .

U × C
∗ −→ C

Nk+1\{0}
(x, αv) �→ (αv f0(x), . . . , αv fN (x)) = (v(s0(x)), . . . , v(sN (x))) .

Recall that taking the k-th power defines a holomorphic k-fold covering pk : L−1\{0} −→
L−k\{0}. Thus we can define a holomorphic immersion

ϕk = ψ̃k ◦ pk : L−1\{0} −→ C
Nk+1\{0} = O(−1)\{0}. (7)

The coordinate free description of this embedding reads

ϕk : L−1 −→ H0(L)∗

v �→
(

s �→ v(s)

|s|
)

where the norm |s| is the one induced by (6). Moreover, the pullback via ϕk of the Fubini-
Study hermitian metric h−1

FS on O(−1) is computed as

ϕ∗
k (h

−1
FS)x (w,w) =

Nk∑

j=0

∣
∣αwk f j (x)

∣
∣2 =

Nk∑

j=0

∣
∣
∣wk(s j (x))

∣
∣
∣
2 =

Nk∑

j=0

h−1(wk , wk)hk
(
s j (x), s j (x)

)

= h−k(w,w)

Nk∑

j=0

hk
(
s j (x), s j (x)

) = Bk(x)h
−k(w,w)

where Bk(x) = ∑Nk
j=0 h

k
(
s j (x), s j (x)

)
is the Bergman kernel of (X , Lk),w ∈ L−1\{0} and

pk(w) = wk ∈ L−k . We summarise the discussion above in the following

Proposition 5.1 Let M be the compact regular Sasakian manifold determined by the Hermi-
tian bundle (L, h) over a compact projective manifold X. For every integer k >> 0 there
exists a holomorphic embedding ϕk : M × R

+ −→ S2Nk+1 × R
+ such that ϕ∗

k (τ ) = Bktk

where Bk is the Bergman kernel of Lk , τ and t are the coordinates on the second factor of
S2Nk+1 × R

+ and M × R
+ respectively.

The same construction can be performedwhen the SasakianmanifoldM is the unitary bundle
associated to the positive Hermitian bundle (L, h) on a noncompact Kähler manifold (X , ω)

with ω = −i∂∂ log h. Since the construction is similar we only highlight the necessary
adjustments, see [22] for details in the Kähler case. Firstly, we have to replace the vector
space H0(Lk) with the Hilbert space of holomorphic sections of Lk with finite norm

Hk,h = {s ∈ Hol(L) | 〈s, s〉k < ∞} . (8)

Now the construction makes sense only if we assume that the ε-function

εk(x) =
N∑

j=0

hk
(
s j (x), s j (x)

)
(9)

ofHk,h with N ≤ ∞ is a strictly positive function. Under this assumption the map ϕk is well
defined but the target space is generally �2(C)\{0} because the space of sections need not
be finite dimensional. In light of this, the map is now just a holomorphic immersion and the
function Bk is replaced by the ε-function εk . We sum up this discussion of the noncompact
case in the following
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Proposition 5.2 Let M be the regular Sasakianmanifold determined by the Hermitian bundle
(L, h) over a noncompact Kähler manifold X and assume the spaceHk,h is nontrivial. Then
there exists a holomorphic immersion ϕk : M × R

+ −→ S∞ × R
+ such that ϕ∗

k (τ ) = εk tk

where εk is the ε-function ofHk,h, τ and t are the coordinates on the second factor of S∞×R
+

and M × R
+ respectively.

Remark 5.3 Although ϕ∗
k (h

−1
FS) is not a hermitian metric on the line bundle L−1 (it does not

scale correctly under theC∗-action), it defines a change of coordinate (p, t) �→ (p, Bktk) (or
(p, t) �→ (p, εk tk) in the noncompact case) on M × R

+ corresponding to the composition
of the Dk-homothetic transformation with a transverse Kähler deformation.

6 Sasakian immersions of homogeneous Sasakianmanifolds into
Sasakian space forms with c > −3

Given the discussion of the previous section we are now ready to characterise embedding of
homogeneous Sasakian manifolds into spheres.

Proof of Theorem 1.4 Let M be a compact homogeneous Sasakian manifold. Then M is the
total space of the unit bundle associated to a holomorphic line bundle π : L−1 −→ X over a
generalised flag manifold (X , ω). After possibly performing aD-homothety, we can assume
that 2π∗ω = dη is the transverse Kähler structure on D so that c1(L) = [ω] where L is the
dual to L−1. In particular, L is an ample line bundle on a generalised flagmanifold, hence very
ample. Thus, choosing a Hermitian metric h on L whose Ricci curvature form isω and whose
dualmetric h−1 on L−1 induces the coordinate onM×R

+, we can apply Proposition 5.1with
k = 1. In particular, we get a a holomorphic embedding ϕ = ϕ1 : M×R

+ −→ S2N+1×R
+

such that ϕ∗(τ ) = Bt where B is the Bergman kernel of L , τ and t are the coordinates on
the second factor of S2N+1 × R

+ and M × R
+ respectively. Moreover, since (X , ω) is a

generalised flag manifold, the Bergman kernel B is a positive constant, see [1, Theorem 4.3].
Now to get an isometry, i.e. to have ϕ∗(τ ) = t , it suffices to define the map ϕ with

respect to a rescaled orthogonal basis of H0(L). Namely, we consider a new orthogonal

basis (̃s0, . . . , s̃N ) of H0(L) by setting s̃ j = s j√
B

for j = 0, . . . , N . It is immediate to

compute the pullback of the Fubini-Study metric h−1
FS on O(−1) = C

2N+1 as

ϕ∗(h−1
FS) =

N∑

j=0

∣
∣αv f̃ j (x)

∣
∣2 =

N∑

j=0

∣
∣v(̃s j (x))

∣
∣2 = 1

B

N∑

j=0

h−1(v, v)h
(
s j (x), s j (x)

)

= h−1(v, v)

∑N
j=0 h

(
s j (x), s j (x)

)

B
= h−1

where we used the notation from Sect. 5.
Thus we have constructed a Kähler embedding ϕ : M × R

+ −→ S2N+1 × R
+ of the

Kähler cone of M into the Kähler cone CN+1\{0} of the standard Sasakian sphere. That is,
a Sasakian embedding of M into S2N+1.

Finally, let ϕ1, ϕ2 be two Kähler embeddings of M × R
+ into C

N+1 such that ϕ∗
1 (τ ) =

ϕ∗
2 (τ ) = t where τ is the Euclidean norm of CN+1. By Calabi’s rigidity there exists a rigid

transformation T of CN+1 such that ϕ1 = T ◦ ϕ2. Moreover, T is unitary because ϕ∗
1 (τ ) =

ϕ∗
2 (τ ) = t . We conclude that the embedding ϕ is unique up to unitary transformations of

C
N+1. �
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Remark 6.1 A compact homogeneous Sasakian manifold M cannot admit an immersion at a
point in any other Sasakian space form M(n, c) for c ≤ −3. This is because the generalised
flag manifold X over which M fibres cannot be (locally) immersed in F(N , b) when b ≤ 0.

We can now focus on the infinite dimensional case and classify homogeneous Sasakian
manifolds which admit an immersion in S∞.

Proof of Theorem 1.5 Let us first show that the fundamental group of a (not necessarily com-
pact) homogeneous Sasakian manifold M admitting an immersion in S∞ is cyclic. Such a
manifold M fibres over a homogeneous Kähler manifold X with fibre R or S1. Moreover,
the Sasakian immersion M −→ S∞ induces a Kähler immersion X −→ CP∞. Hence X is
simply connected by [6, Theorem 3] and the long exact sequence of the fibration yields the
claim.

Viceversa, let M be a homogeneous Sasakian manifold with cyclic fundamental group.
If M is compact, then the claim follows directly from Theorem 1.4. So we can restrict to
the case where M is noncompact. By Proposition 2.8, M fibres over a noncompact homoge-
neous Kähler manifold (X , ω). By a classical result of Dorfmeister and Nakajima [7], such
a manifold X is a complex (but not necessarily Kähler) product Cd × T × F ×
 where T is
a complex torus, F is a generalised flag manifold, and 
 a homogeneous bounded domain.
From the long exact sequence of the fibration we deduce that the factor T cannot appear
because π1(X) = π1(T ) must be the quotient of the cyclic group π1(M). Therefore X is
simply connected.

Let us first treat the case where the fibre of the bundle M −→ X is S1 and deal later with
the case in which the fibre is R. Although M is noncompact, the Sasakian structure on M is
regular and the fibre is S1 so that, analogously to the compact case, M is the unit bundle of
a line bundle π : L−1 −→ X . Moreover, after possibly performing a D-homothety, we can
assume that 2π∗ω = dη is the transverse Kähler structure onD so that c1(L) = [ω] where L
is the dual to L−1. Choose a hermitian metric h on L whose Ricci curvature form is ω. Now
there exists a suitable real k > 0 such that the spaceHk,h defined in Sect. 5 is nontrivial, see
[24]. Moreover, Hk,h �= {0} if and only if its ε-function εk is in fact a positive constant, cf.
[16, Lemma 2.2]. Thus, for such a k, the hypotheses of Proposition 5.2 are satisfied. We then
get a holomorphic immersion ϕk : M × R

+ −→ S∞ × R
+ such that ϕ∗

k (τ ) = εk tk where
εk is constant, τ and t are the coordinates on the second factor of S∞ × R

+ and M × R
+

respectively. Similarly to the proof of Theorem 1.4, by rescaling the orthogonal basis used
in the construction of the immersion ϕk , we can modify the immersion so that ϕ∗

k (τ ) = tk .
Recall now that replacing t by tk is equivalent to taking aDk-homothety (cf. Remark 5.3 and
Definition2.2) so that we have proven the statement when the fibre is S1.

We are left now with the case where the fibre of the fibration M −→ X is R. By
Proposition 2.8, M fibres over a contractible homogeneous Kähler manifold (X , ω), that
is, M = X × R. Moreover, X is a homogeneous Kähler manifold with cyclic, hence trivial,
fundamental group. Notice that Z ⊂ R acts on X × R by Sasakian isometries via the flow
of the Reeb vector field. The quotient is the Sasakian manifold N = X × S1 and the uni-
versal covering map π̃ : M −→ N is a Sasakian immersion (it is simply the exponential
map on the second factor). Now N is a Sasakian manifold fibring over a simply connected
homogeneous Kähler manifold X . By the previous case, there exists a Sasakian immersion
ϕ : N −→ S∞ of a suitable D-homothety of N into S∞. The pullback of this structure to
M under π̃ is a D-homothetic transformation of the homogeneous structure we began with.
Finally, the composition π̃ ◦ ϕ : M −→ S∞ is a Sasakian immersion of M (endowed with
such a D-homothetic structure) into S∞. �
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Remark 6.2 The assumption on the D-homothetic transformation is necessary because there
exist simply connected homogeneous Sasakian manifolds which do not admit an immersion
into S∞ unless a transverse homothety is performed. Such an example is given by a homo-
geneous Sasakian structure on M = 
×Rwhere the transverse Kähler structure is given by
a suitable multiple cωB of the Bergman metric on a bounded symmetric domain 
. In fact,
a Sasakian immersion M −→ S∞ covers a Kähler immersion 
 −→ CP∞ and this exists
if and only if cγ belongs to the Wallach set of 
 (see [17, Theorem 2]), where γ denotes
the genus of 
. Therefore, any bounded symmetric domain 
 (other than CHn) and small
enough c provide such an instance.

Remark 6.3 A homogeneous Sasakian manifold M which admits a Sasakian immersion in
S2N+1 with N < ∞ is necessarily compact. In fact it fibres over a homogeneous Kähler
manifold X which admits a Kähler immersion in CPN . By [25] X is forced to be compact
and the fibre of M −→ X is forced to be S1. This implies that the immersion in Theorem 1.5
is full, i.e. its image is not contained in a proper totally geodesic submanifold, if and only if
themanifoldM is noncompact. This is no longer true if we drop the homogeneity assumption,
even if the metric is complete and N < ∞. Such an immersion is given in the following
example.

Example 6.4 Let T ⊂ CPn be a complex 2-dimensional abelian variety and choose a copy of
Cdense inT . Restrict theFubini-Studymetric ofCPn toT and toCdenoting themwith gT and
g respectively. Thus (C, g) is a noncompact Kähler manifold isometrically immersed inCPn .
Now the Hopf bundle S2n+1 −→ CPn restricts to a circle bundle M −→ C. The manifold M
is a noncompact regular Sasakian manifold which admits an injective Sasakian immersion
into S2n+1, hence S∞. Moreover, the Sasakian metric on M is complete because the Kähler
metric g on C is. In fact, by compactness, the Kähler metric gT satisfies ag0 < gT < bg0
where g0 is the flat metric and a, b are suitable constants. Therefore, the same inequalities
hold on C, i.e. ag0 < g < bg0, forcing g to be complete.
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