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A B S T R A C T

Recently a new relativistic model of polyatomic gases has been proposed, by Arima-Carrisi-
Pennisi-Ruggeri (2022), in the context of Rational Extended Thermodynamics. It is based on a
hierarchy of 15 moments of the Boltzmann–Chernikov equation that appropriately takes into
account the non-linear contribution of the microscopic total energy of the molecule (the sum of
the rest energy and of the energy of the molecular internal modes). In this paper, in the singular
limit, under initial conditions compatible with monatomic gases, we prove that the 15-moments
model for polyatomic gases leads, to the well-known 14-moments model of monatomic gases.

. Introduction

The dynamics of relativistic gases are integral to understanding a wide range of physical phenomena, from astrophysical
vents to high-energy particle collisions. Theoretical frameworks for describing these dynamics have been proposed using causal
hermodynamic theories or kinetic theories. A pivotal development in this field is Rational Extended Thermodynamics (RET) [1,2],
hich has undergone significant advancements in recent years. RET serves as a bridge between the kinetic description of gases and

he macroscopic fluid-dynamical description. Importantly, this theory provides a hyperbolic system of differential field equations,
nd, in the coarse-graining limit, converges to the well-established Eckart theory (or the Navier–Stokes–Fourier theory in the classical
on-relativistic framework).

The theoretical foundation of the RET model for relativistic gases was formulated by Liu, Müller and Ruggeri [3]. In the paper,
he theory of field equations for 14 fields (RET𝑅,𝑀14 , with the superscript 𝑅 signifying a theory for relativistic gases and 𝑀 denoting

theory for monatomic gases) was derived in closed form through a phenomenological approach using the following universal
rinciples: the objectivity principle, the entropy principle, and the principle of causality and stability. The 14 fields are the number
ensity, four-velocity, energy density, dynamic pressure (nonequilibrium part of pressure), shear stress and heat flux. This model is
upported by the moment equations based on the Boltzmann–Chernikov relativistic equation [4–6] and the closure is determined by
sing the maximum entropy principle (MEP) [7] (see, for example, [1]). The MEP was introduced first for moments by Kogan [8]
nd later in [9,10] in the classical framework. In paper [11], it is proved that, in the limit to classical gases, RET𝑅,𝑀14 converges to
he classical theory with 14 moments for rarefied monatomic gases [12] (RET𝐶,𝑀14 where the superscript 𝐶 represents a theory for
lassical gases).
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For many years, RET has been applied to monatomic gases, and several attempts to extend its validity to polyatomic gases have
een made. A new sophisticated model in the classical framework has been constructed for the description of polyatomic gases
ith 14 variables (RET𝐶14) based on the binary hierarchy structures of the field equations [13] that differ from the single hierarchy

tructure for monatomic gases [1]. From the microscopic viewpoint, this model takes into account the internal structure such as
olecular rotational and vibrational modes which manifest macroscopically as bulk viscosity and dynamic pressure that underlies

he origin of the bulk viscosity. The RET𝐶14 model has, as a singular limit to monatomic gases [14], the RET theory with 13 variables
without the dynamic pressure (RET𝐶,𝑀13 ) which is equivalent to the well-known Grad’s 13 moments system [15]. This new model
leads to satisfactory results in many fields like the study of wave propagation such as sound waves [16], shock waves [17], heat
conduction [18], nozzle flow [19] and oscillating gas bubbles [20], or the study of biological problems [21], and can be hopefully
applied in many other fields that involve highly non-equilibrium processes like astrophysics or nuclear physics. It is also worth
mentioning that RET𝐶14 includes the simplest nonequilibrium hyperbolic system, namely, the 6-moments model (RET𝐶6 ) [22] as a
principal subsystem in the sense of the definition of paper [23]. Although the RET𝐶6 model ignores the shear stress and heat flux, it
s the simplest model able to describe the nonequilibrium process due to the dynamic pressure [24].

In the relativistic regime, in 2017, Pennisi and Ruggeri [25] first constructed a relativistic theory of polyatomic gases in the
ontext of RET (see also [26,27]). They achieved this by incorporating the microscopic internal structure into the Boltzmann–
hernikov equation through the distribution function, and as a result, accounted for the dynamic pressure. The physical background

or considering relativistic polyatomic gases lies in scenarios with temperatures high enough for relativistic effects to be significant,
et not disruptive to the formation and stability of polyatomic molecules. Therefore, the RET model is crucial for understanding
elativistic gas dynamics, such as those observed in heavy-ion collisions. Additionally, when dealing with large length-scale gas
ynamics such as in cosmological problems [28,29], the model accommodates small length-scale structure manifesting as non-zero
ulk viscosity.

In spite of the successful development of the relativistic RET model of polyatomic gases, an issue remains that the definition of
oments incorporates quantities that lack clear physical interpretation. A recent proposal by Arima, Carrisi, Pennisi and Ruggeri [30]
as addressed this issue based on a model of moments that incorporates physically appropriate moments with respect to microscopic
nergy [31,32]. As its particular case, the model predicts the 15 fields equations (RET𝑅15) with an additional scalar nonequilibrium
ariable which plays a role in characterizing the polyatomic gases although it is absent in the previous study [25]. In [30], by
sing the technique of MEP, it was proved that the closure gives a symmetric hyperbolic system; the authors have been able
o express all the tensors appearing in the system in terms of 15 independent variables, near the equilibrium state. Moreover,
he authors determined, in [26], the expression of the production tensor by adopting a variant of the BGK model appropriate for
olyatomic gases [31] and, by using Maxwellian iteration [33], they obtained explicit values of the phenomenological coefficients
heat conductivity, shear viscosity and bulk viscosity) [27,30]. It is noteworthy to mention the principal subsystem of RET𝑅15. There
xist two principal subsystems: the 14-moment model (RET𝑅14), which differs from the system proposed in [25], and the 6-moment
odel (RET𝑅6 ). It is also confirmed in [30] that, in the classical limit, RET𝑅15 converges to the corresponding model with 15 moments

RET𝐶15) [34] which includes RET𝐶14 as a principal subsystem. The classical limit of RET𝑅14 also converges to RET𝐶14, and the one of
ET𝑅6 converges to RET𝐶6 .

Similar to the classical case, in the relativistic case, there are structural differences between the theories of monatomic and
olyatomic gases. The points that until now have not been completely clarified in the new relativistic RET theory are the limiting
rocess from polyatomic to monatomic gases and which polyatomic models correspond to which monatomic models in their
imits. The aim of this paper is to elucidate these points. Through this analysis, as shown in Fig. 1, it is possible to clarify the
nterrelationships among the models derived from RET𝑅15 categorizing gases into four types depending on whether they are in the
elativistic or classical regime, and whether the gases under consideration are polyatomic or monatomic.

Specifically, this paper seeks to demonstrate how the additional scalar field of RET𝑅15 vanishes for compatible initial data in the
limit of monatomic gases and to prove the convergence of RET𝑅15 to RET𝑅,𝑀14 , as already shown in Fig. 1. Furthermore, it aims to
prove that RET𝑅,𝑀14 and the monatomic Euler theory emerge as the monatomic limits of RET𝑅14 and RET𝑅6 . The limits of RET𝑅15 and
RET𝑅6 are singular in the sense that the system for rarefied polyatomic gases with 15 and 6 independent variables, respectively,
converge to the system with only 14 and 5 independent variables for monatomic gases.

The organization of the present paper is as follows. In Section 2, we introduce the moment equations for monatomic and
polyatomic gases, which are discussed above, particularly focusing on the difference of the microscopic energy included as internal
variable in the definition of the moments. In Section 3, we provide a brief but necessary introduction to the relativistic model for
polyatomic gases. Then, in Section 4, we calculate the monatomic limit of the polyatomic model, particularly investigating how the
system of field equations transforms under a condition compatible with monatomic gases. We remark that, in the present paper, we
focus on considering polytropic polyatomic gases. In Section 5, we also examine the monatomic limit of two principal subsystems
of RET𝑅15.

2. Relativistic moment equations of polyatomic gases

As discussed in the Introduction, the definitions of moments for monatomic and polyatomic gases differ. In this section, we will
xplicitly present these definitions.

The first tentative of the RET model for relativistic monatomic gases, proposed by Liu, Müller and Ruggeri [3], i.e., RET𝑅,𝑀14 ,
consists in the following set of balance equations

𝜕 𝐴𝛼 = 0, 𝜕 𝐴𝛼𝛽 = 0, 𝜕 𝐴𝛼𝛽𝛾 = 𝐼𝛽𝛾 ,
(

𝛼, 𝛽, 𝛾 = 0, 1, 2, 3
)

. (1)
2

𝛼 𝛼 𝛼
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Fig. 1. Relation among hyperbolic theories in relativistic or classical regimes for monatomic or polyatomic gases. The subscript in RET indicates the number
of variables, while the superscript indicates whether the theory is relativistic (𝑅) or classical (𝐶), and/or monatomic gases (𝑀). The hollow arrow represents
he correspondence of theories in the non-relativistic limit (𝛾 → ∞ where 𝛾 is the relativistic coldness defined in (11)) proved in [30] for polyatomic gases and
n [11] for monatomic gases. The filled arrow represents the monatomic limit when 𝐷 → 3 where 𝐷 is the degrees of freedom of a molecule introduced in
25). The limit in the relativistic regime is proved in the present paper and the one in the classical regime is proved in [30] for RET𝐶15 and in [14] for RET𝐶14
nd RET𝐶6 . The nested structure indicates principal subsystems. For example, the (relativistic) Euler theory for polyatomic gases [35] is included as a principal
ubsystem of both RET𝑅6 and RET𝑅14.

he tensors 𝐴𝛼 ≡ 𝑉 𝛼 and 𝐴𝛼𝛽 ≡ 𝑇 𝛼𝛽 represent, respectively, the particle number vector and the energy–momentum tensor, 𝜕𝛼 = 𝜕∕𝜕𝑥𝛼
where 𝑥𝛼 are the space–time coordinates. 𝐴𝛼𝛽𝛾 is a symmetric third-order tensor of fluxes whose explicit expression is shown below.
The right-hand sides are the production terms which are zero in the first two equations because they represent the conservation
laws of the particle number and of the energy–momentum.

Such equations, as usual in RET, have been justified by the moment equations associated with the Boltzmann–Chernikov equation:
𝑝𝛼𝜕𝛼𝑓 = 𝑄. The distribution function 𝑓 depends on (𝑥𝛼 , 𝑝𝛽 ), where 𝑝𝛼 is the four-momentum and 𝑄 is the collisional term. The
moments

𝐴𝛼𝛼1⋯𝛼𝑛 = 𝑐
𝑚𝑛−1 ∫R3

𝑓 𝑝𝛼𝑝𝛼1 ⋯ 𝑝𝛼𝑛 𝑑𝑷 , 𝐼𝛼1⋯𝛼𝑛 = 𝑐
𝑚𝑛−1 ∫R3

𝑄𝑝𝛼1 ⋯ 𝑝𝛼𝑛 𝑑𝑷 , (2)

satisfy the infinite hierarchy of balance laws

𝜕𝛼𝐴
𝛼𝛼1⋯𝛼𝑛 = 𝐼𝛼1⋯𝛼𝑛 with 𝑛 = 0 , 1 , … , (3)

where 𝑐 denotes the light speed, 𝑚 is the particle mass in the rest frame and 𝑑𝑷 = 𝑑𝑝1 𝑑𝑝2 𝑑𝑝3

𝑝0
.

System (1) is a particular case of (3), truncated at 𝑛 = 2. Because of the definition (2) of the moments, the following trace
onditions hold

𝐴𝛼𝛽𝛽 = 𝐴𝛼𝛽𝛾𝑔𝛽𝛾 = 𝑐2 𝑉 𝛼 , 𝐼𝛽𝛽 = 𝐼𝛽𝛾𝑔𝛽𝛾 = 0 , (4)

here 𝑔𝛼𝛽 = diag(1 , −1 , −1 , −1) is the metric tensor. Therefore, the scalar equation 𝜕𝛼𝐴
𝛼𝛽
𝛽 = 0 in (1) is not independent from the

ther equations and the system (1) has 14 independent equations for 14 variables. The closed system of RET𝑅,𝑀14 was obtained in [3].
The tentative model of the relativistic polyatomic gases by Pennisi and Ruggeri [25] considers the following moment equations

or 14 fields:

𝜕𝛼𝐴
𝛼 = 0, 𝜕𝛼𝐴

𝛼𝛽 = 0, 𝜕𝛼𝐴
𝛼⟨𝛽𝛾⟩ = 𝐼 ⟨𝛽𝛾⟩, (5)

where ⟨⋯⟩ denotes the traceless part of a tensor. In this theory, the moments are defined in a different way by taking into account
the contribution of the energy due to the internal structure of a molecule. By analogy with the non-relativistic kinetic model
of polyatomic gases, that is, the Borgnakke–Larsen model [36,37], the distribution function of polyatomic gases 𝑓 (𝑥𝛼 , 𝑝𝛽 ,) also
depends on the microscopic internal energy  as an extra variable, and the moments of the distribution function are defined as
follows:

𝐴𝛼𝛼1⋯𝛼𝑛 = 1
𝑚𝑛𝑐 ∫R3 ∫

+∞

0
𝑓 𝑝𝛼𝑝𝛼1 ⋯ 𝑝𝛼𝑛

(

𝑚𝑐2 + 𝑛
)

𝜙() 𝑑 𝑑𝑷 ,

𝐼𝛼1⋯𝛼𝑛 = 1 +∞
𝑄𝑝𝛼1 ⋯ 𝑝𝛼𝑛

(

𝑚𝑐2 + 𝑛
)

𝜙() 𝑑 𝑑𝑷 ,
(6)
3

𝑚𝑛𝑐 ∫R3 ∫0
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where 𝜙() is the state density of the internal mode, and the collision integral 𝑄 takes into account the influence of the internal
degrees of freedom through the collisional cross-section. With this definition, the moments do not satisfy the trace conditions (4)
which characterize the model for monatomic gases. Although the definitions of moments of RET theories for monatomic gases and
for polyatomic gases are different due to the existence of the microscopic energy , it has been shown in [38] that the system (5)
with (6) contains the system of RET𝑅,𝑀14 in the monatomic limit.

The refined model of relativistic polyatomic gases, proposed by Arima, Carrisi, Pennisi and Ruggeri, is RET𝑅15 [30]. In this model,
instead of the moments (6) with an unphysical element in their definition, i.e., the quantity 𝑛 of which 𝑛 was necessary to recover
the RET𝐶14 model in the classical limit, a more physical definition of moments is considered

𝐴𝛼𝛼1⋯𝛼𝑛 =
( 1
𝑚𝑐

)2𝑛−1

∫R3 ∫

+∞

0
𝑓 𝑝𝛼𝑝𝛼1 ⋯ 𝑝𝛼𝑛

(

𝑚𝑐2 + 
)𝑛
𝜙() 𝑑 𝑑𝑷 ,

𝐼𝛼1⋯𝛼𝑛 =
( 1
𝑚𝑐

)2𝑛−1

∫R3 ∫

+∞

0
𝑄𝑝𝛼1 ⋯ 𝑝𝛼𝑛

(

𝑚𝑐2 + 
)𝑛
𝜙() 𝑑 𝑑𝑷 ,

(7)

which preserves the microscopic full energy (the sum of the rest frame energy and the energy of internal modes). This definition of
moments includes the non-linear contribution of the energy of internal mode by increasing tensorial order 𝑛 whereas the expressions
(6) only take into account up to first-order terms with respect to  in the binomial expansion of (7). The moments (7) satisfy the
system (3). The system with 𝑛 = 0, 1, 2, i.e., the system (1) with the third-order tensor including the trace part, which differs from
the case represented by (5), incorporates 15 independent fields because the trace conditions are not satisfied also in this case. The
result of the closure for this RET𝑅15 model is shown in the subsequent section.

3. Brief summary of relativistic RET of polyatomic gases

Before discussing the monatomic limit of RET theory, a brief survey on the RET𝑅15 model based on (1) with (7) is exhibited.
As usual in RET, the system of balance equations that constitutes the model has more variables than equations, so it is necessary

to close it by choosing which fields are the independent variables and expressing the remaining tensors in terms of them. For RET𝑅15,
in paper [30], the 15 independent quantities have been identified with the traditional 14 physical variables:

• 𝜌 = 𝑛𝑚 (mass density, with the particle number density 𝑛),
• 𝑇 (absolute temperature),
• 𝑈𝛼 (4-velocity in the Eckart frame),
• 𝛱 (dynamic pressure),
• 𝑞𝛼 = −ℎ𝛼𝜇𝑈𝜈𝑇

𝜇𝜈 (heat flux), where ℎ𝛼𝛽 = 𝑈𝛼𝑈𝛽

𝑐2
− 𝑔𝛼𝛽 is the projector tensor,

• 𝑡⟨𝛼𝛽⟩3 = 𝑇 𝜇𝜈
(

ℎ𝛼𝜇ℎ
𝛽
𝜈 −

1
3ℎ

𝛼𝛽ℎ𝜇𝜈
)

(deviatoric shear viscous stress tensor),

and an additional scalar field:

• 𝛥 = 4
𝑐2
𝑈𝛼𝑈𝛽𝑈𝛾

(

𝐴𝛼𝛽𝛾 − 𝐴𝛼𝛽𝛾 |𝐸
)

, where the index 𝐸 represents the value of the tensor calculated at thermodynamic
equilibrium.

he above quantities are subjected to the following constraints:

𝑈𝛼𝑈𝛼 = 𝑐2, 𝑞𝛼𝑈𝛼 = 0, 𝑡⟨𝛼𝛽⟩3𝑈𝛼 = 0, 𝑡⟨𝛼𝛼⟩3 = 0.

With these choices and by using the MEP technique, the expression of the tensors appearing in system (1) has been determined in
terms of the 15 independent variables [30], as follows

𝑉 𝛼 = 𝜌𝑈𝛼 , 𝑇 𝛼𝛽 = 𝑒
𝑐2
𝑈𝛼𝑈𝛽 + (𝑝 + 𝛱)ℎ𝛼𝛽 + 1

𝑐2
(𝑈𝛼𝑞𝛽 + 𝑈𝛽𝑞𝛼) + 𝑡⟨𝛼𝛽⟩3 ,

𝐴𝛼𝛽𝛾 =
(

𝜌 𝜃0,2 +
1
4𝑐4

𝛥
)

𝑈𝛼𝑈𝛽𝑈 𝛾 +
(

𝜌 𝑐2 𝜃1,2 −
3
4𝑐2

𝑁𝛥

𝐷4
𝛥 − 3 𝑁

𝛱

𝐷4
𝛱
)

ℎ(𝛼𝛽𝑈 𝛾) + 3
𝑐2
𝑁3
𝐷3

𝑞(𝛼𝑈𝛽𝑈 𝛾) + 3
5
𝑁31
𝐷3

ℎ(𝛼𝛽𝑞𝛾)

+ 3𝐶5𝑡
(⟨𝛼𝛽⟩3𝑈 𝛾) ,

(8)

here the pressure 𝑝 and the energy 𝑒 appearing in the expression of 𝑇 𝛼𝛽 are functions of (𝜌, 𝑇 )

𝑝 =
𝑘𝐵
𝑚
𝜌𝑇 , 𝑒 = 𝜌𝑐2 𝜔(𝛾) with 𝜔(𝛾) = 𝜃0,1 (9)

being 𝑘𝐵 the Boltzmann constant. The coefficients 𝜃𝑖,𝑗 including 𝜃0,1, 𝜃0,2 and 𝜃1,2 are given by

𝜃𝑘,𝑗 =
1

2𝑘 + 1

(

𝑗 + 1
2𝑘

) ∫ +∞
0 𝐽 ∗

2𝑘+2,𝑗+1−2𝑘

(

1 + 
𝑚𝑐2

)𝑗
𝜙() 𝑑 

∫ +∞
0 𝐽 ∗

2,1 𝜙() 𝑑 
, (10)

and are dimensionless functions depending only on

𝛾 = 𝑚𝑐2 . (11)
4

𝑘𝐵𝑇
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Here, we have introduced the following quantities:

𝛾∗ = 𝛾
(

1 + 
𝑚𝑐2

)

, 𝐽 ∗
𝑚,𝑛 = 𝐽𝑚,𝑛(𝛾∗), 𝐽𝑚,𝑛(𝛾) = ∫

+∞

0
𝑒−𝛾 cosh 𝑠 sinh𝑚 𝑠 cosh𝑛 𝑠 𝑑 𝑠 .

egarding 𝐽𝑚,𝑛, we have the following recurrence relation [3,25]:

𝐽𝑚+2,𝑛(𝛾) = 𝐽𝑚,𝑛+2(𝛾) − 𝐽𝑚,𝑛(𝛾) , (12)

valid also for 𝐽 ∗
𝑚,𝑛. The other coefficients present in the expression (8) of 𝐴𝛼𝛽𝛾 , whose explicit forms are needed in the proof of the

monatomic limit in the subsequent section, are defined only by using 𝜃𝑖,𝑗 in [30] as follows:

𝐷4 =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝜃0,0 𝜃0,1 𝜃0,2
1
3 𝜃1,2

𝜃0,1 𝜃0,2 𝜃0,3
1
6 𝜃1,3

𝜃0,2 𝜃0,3 𝜃0,4
1
10 𝜃1,4

𝜃1,1
1
3 𝜃1,2

1
6 𝜃1,3

5
9 𝜃2,3

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝑁𝛱 = −

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝜃0,0 𝜃0,1 𝜃0,2
1
3 𝜃1,2

𝜃0,1 𝜃0,2 𝜃0,3
1
6 𝜃1,3

𝜃0,2 𝜃0,3 𝜃0,4
1
10 𝜃1,4

1
3 𝜃1,2

1
6 𝜃1,3

1
10 𝜃1,4

1
9 𝜃2,4

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

,

𝑁𝛥 =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝜃0,0 𝜃0,1 𝜃0,2
1
3 𝜃1,2

𝜃0,1 𝜃0,2 𝜃0,3
1
6 𝜃1,3

𝜃1,1
1
3 𝜃1,2

1
6 𝜃1,3

5
9 𝜃2,3

1
3 𝜃1,2

1
6 𝜃1,3

1
10 𝜃1,4

1
9 𝜃2,4

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

, (13)

𝐷3 =
|

|

|

|

|

|

|

𝜃1,1 𝜃1,2

𝜃1,2
3
2 𝜃1,3

|

|

|

|

|

|

|

, 𝑁3 =
1
2

|

|

|

|

|

|

|

𝜃1,1 𝜃1,2

𝜃1,3
9
5 𝜃1,4

|

|

|

|

|

|

|

, 𝑁31 =
|

|

|

|

|

|

|

𝜃1,1 𝜃1,2

5 𝜃2,3 3 𝜃2,4

|

|

|

|

|

|

|

𝐶5 =
1
5
𝜃2,4
𝜃2,3

. (14)

By adopting a variant of the BGK model with a relaxation time 𝜏 appropriate for polyatomic gases [31], in paper [30], the following

explicit expression of the production term was also obtained:

𝐼𝛽𝛾 = 𝐵𝛥1 𝛥𝑈
𝛽𝑈 𝛾 + (𝐵𝛥2 𝛥 + 𝐵𝛱2 𝛱)ℎ𝛽𝛾 + 𝐵𝑞 𝑈 (𝛽 𝑞𝛾) + 𝐵𝑡 𝑡⟨𝛽𝛾⟩3 , (15)

with

𝐵𝛥1 = − 1
4𝑐4𝜏

, 𝐵𝛥2 = 1
4𝑐2𝜏

𝑁𝛥

𝐷4
, 𝐵𝛱2 = 1

𝜏
𝑁𝛱

𝐷4
𝐵𝑞 = 1

𝑐2𝜏

( 𝜃1,3
𝜃1,2

− 2
𝑁3
𝐷3

)

, 𝐵𝑡 = − 1
𝜏
𝐶5 . (16)

With these fields, we can write explicitly the closed system of differential equations that models the thermodynamics of a

relativistic polyatomic gas. Let us introduce the relativistic material derivative of a generic tensor 𝜓𝛼𝛼1⋯𝛼𝑛 , i.e., the derivative with

espect to the proper time 𝜏 along the path of the particle, denoted by a dot on a quantity, as follows:

𝜓̇𝛼𝛼1⋯𝛼𝑛 =
𝑑𝜓𝛼𝛼1⋯𝛼𝑛

𝑑𝜏
=
𝑑𝜓𝛼𝛼1⋯𝛼𝑛

𝑑𝑡
𝑑𝑡
𝑑𝜏

= 𝛤 (𝜕𝑡𝜓𝛼𝛼1⋯𝛼𝑛 + 𝑣𝑗𝜕𝑗𝜓𝛼𝛼1⋯𝛼𝑛 ) = 𝑈𝛽𝜕𝛽𝜓
𝛼𝛼1⋯𝛼𝑛 , (17)

where 𝛤 is the Lorentz factor, 𝑈𝛼 = 𝑑𝑥𝛼

𝑑𝜏 ≡ (𝛤𝑐, 𝛤𝑣𝑗 ) and 𝑣𝑗 is the velocity. Since we can observe that any balance laws can be

written with the material derivative as follows:

𝐼𝛼1⋯𝛼𝑛 = 𝜕 𝐴𝛼𝛼1⋯𝛼𝑛 = 𝑔𝛽 𝜕 𝐴𝛼𝛼1⋯𝛼𝑛 =
(

−ℎ𝛽 +
𝑈𝛽𝑈𝛼 ) 𝜕 𝐴𝛼𝛼1⋯𝛼𝑛 =

𝑈𝛼 𝐴̇𝛼𝛼1⋯𝛼𝑛 − ℎ𝛽 𝜕 𝐴𝛼𝛼1⋯𝛼𝑛 , (18)
5

𝛼 𝛼 𝛽 𝛼 𝑐2 𝛽 𝑐2 𝛼 𝛽
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the closed set of equations for 15 fields; {𝜌, 𝑈𝛿 , 𝑇 ,𝛱, 𝑡⟨𝛼𝛽⟩3 , 𝑞𝛿 , 𝛥} are evaluated in [30]1:

𝜌̇ + 𝜌 𝜕𝛼 𝑈𝛼 = 0 ,

−
𝑒 + 𝑝 +𝛱

𝑐2
𝑈̇ 𝛿 + 1

𝑐2
ℎ𝛿𝛽 𝑞̇

𝛽 + 1
𝑐2
𝑡⟨𝛼𝛿⟩3 𝑈̇𝛼 − ℎ𝛿𝜇 𝜕𝜇(𝑝 +𝛱) − 1

𝑐2
𝑞𝜇 𝜕𝜇𝑈

𝛿

− 1
𝑐2
𝑞𝛿 𝜕𝛼𝑈

𝛼 − ℎ𝛿𝛽 ℎ
𝜇
𝛼 𝜕𝜇 𝑡

⟨𝛼𝛽⟩3 = 0 ,

𝑒̇ + 2
𝑈𝛼
𝑐2

𝑞̇𝛼 + (𝑒 + 𝑝 +𝛱) 𝜕𝛼𝑈𝛼 − ℎ𝜇𝛼 𝜕𝜇𝑞
𝛼 − 𝑡⟨𝛼𝛽⟩3 𝜕𝛼𝑈𝛽 = 0 ,

−
(

𝜌𝑐2𝜃1,2 − 3
4 𝑐2

𝑁𝛥

𝐷4
𝛥 − 3𝑁

𝛱

𝐷4
𝛱
)∙

+ 1
𝑐2

(

2
𝑁3
𝐷3

+
𝑁31
𝐷3

)

𝑞𝛾 𝑈̇
𝛾

+ 5
(

− 1
3
𝜌𝑐2𝜃1,2 + 1

4 𝑐2
𝑁𝛥

𝐷4
𝛥 + 𝑁𝛱

𝐷4
𝛱
)

𝜕𝛼 𝑈
𝛼 − 𝑞𝜇𝜕𝜇

(𝑁31
𝐷3

)

+
𝑁31
𝐷3

ℎ𝜇𝛼 𝜕𝜇 𝑞
𝛼 + 2𝐶5 𝑡

⟨𝜇
𝛾⟩3
𝜕𝜇 𝑈

𝛾 = −3
𝜏

( 1
4𝑐2

𝑁𝛥

𝐷4
𝛥 + 𝑁𝛱

𝐷4
𝛱
)

,

𝐶5 ℎ𝛾⟨𝛿 ℎ𝛽⟩3𝜃 𝑡̇
⟨𝛾𝜃⟩3 + 𝑡

⟨𝛿𝛽⟩3 𝐶̇5 + 2
𝑐2

(

𝑁3
𝐷3

+ 1
5
𝑁31
𝐷3

)

𝑞
⟨𝛿 𝑈̇𝛽⟩3

+ 2
(

− 1
3
𝜌 𝑐2𝜃1,2 + 1

4 𝑐2
𝑁𝛥

𝐷4
𝛥 + 𝑁𝜋

𝐷4
𝜋
)

ℎ𝛾⟨𝛿 ℎ
𝜇
𝛽⟩3

𝜕𝜇 𝑈
𝛾

+ 2
5

(

𝑞
⟨𝛿ℎ

𝜇
𝛽⟩3

)

𝜕𝜇

(

𝑁31
𝐷3

)

− 2
5
𝑁31
𝐷3

(

ℎ𝛾⟨𝛿ℎ
𝜇
𝛽⟩3

𝜕𝜇 𝑞
𝛾
)

+

+ 𝐶5

[

𝑡
⟨𝛿𝛽⟩3 𝜕𝛼 𝑈

𝛼 + 2 𝑡⟨𝜇𝛾⟩3ℎ𝛾<𝛽 ℎ𝛿>3𝜈 𝜕𝜇 𝑈
𝜈
]

= − 1
𝜏
𝐶5 𝑡⟨𝛿𝛽⟩3 ,

ℎ𝛽𝛿 𝑈̇
𝛽
(

𝜌𝜃0,2𝑐
2 + 2

3
𝜌𝑐2𝜃1,2 +

1
4 𝑐2

𝛥 − 1
2 𝑐2

𝑁𝛥

𝐷4
𝛥 − 2 𝑁

𝛱

𝐷4
𝛱
)

+ ℎ𝛽𝛿
𝑁3
𝐷3

𝑞̇𝛽 − 𝑞𝛿
(𝑁3
𝐷3

)∙
+

+ 2𝐶5 𝑡⟨𝛿𝛾⟩3 𝑈̇
𝛾 − ℎ𝜇𝛿 𝜕𝜇

( 1
3
𝜌𝑐4𝜃1,2 −

1
4
𝑁𝛥

𝐷4
𝛥 − 𝑁𝛱

𝐷4
𝑐2𝛱

)

−
(𝑁3
𝐷3

+ 1
5
𝑁31
𝐷3

)(

𝑞𝜇 𝜕𝜇 𝑈𝛿 + 𝑞𝛿 𝜕𝛼 𝑈𝛼
)

+ 1
5
𝑁31
𝐷3

ℎ𝜇𝛿 𝑞
𝛾 𝜕𝜇 𝑈𝛾 + ℎ𝜇𝛼 ℎ𝛿𝛽 𝜕𝜇

(

𝐶5 𝑐
2 𝑡⟨𝛼𝛽⟩3

)

= 1
𝜏

(𝑁3
𝐷3

−
𝜃1,3
2 𝜃1,2

)

𝑞𝛿 ,

(

𝜌𝜃0,2𝑐
4 + 1

4
𝛥
)∙

+ 𝜕𝛼 𝑈𝛼 ⋅
(

𝜌𝜃0,2𝑐
4 + 2

3
𝜌𝑐4𝜃1,2 +

1
4
𝛥 − 1

2
𝑁𝛥

𝐷4
𝛥 − 2 𝑁

𝛱

𝐷4
𝛱 𝑐2

)

− 3
𝑁3
𝐷3

𝑞𝛼 𝑈̇𝛼 − ℎ𝜇𝛼 𝜕𝜇
(𝑁3
𝐷3

𝑐2 𝑞𝛼
)

− 2𝐶5𝑐
2 𝑡⟨𝜇𝛾⟩3 𝜕𝜇𝑈𝛾 = − 1

4 𝜏
𝛥 .

(19)

In [30], it has been also shown that, as the result of the first iteration of the Maxwellian iteration procedure [33], the closed set
f the 15 field equations include, as its parabolic limit, the Eckart theory for 5 fields in which the closed field equations are given
y the conservation laws (19)1,2,3 and the remaining equations reduce to

𝑞𝛽 = −𝜒 ℎ𝛼𝛽

[

𝜕𝛼𝑇 − 𝑇
𝑐2
𝑈𝜇𝜕𝜇𝑈𝛼

]

,

𝛱 = −𝜈 𝜕𝛼𝑈𝛼 ,

𝑡
⟨𝛽𝛿⟩3 = 2𝜇 ℎ𝛼𝛽 ℎ

𝜇
𝛿 𝜕⟨𝛼𝑈𝜇⟩.

(20)

s the result of this iterative procedure, it is possible to find the relationship between the phenomenological coefficients, that are,
he heat conductivity 𝜒 , the shear viscosity 𝜇 and the bulk viscosity 𝜈, and the relaxation time 𝜏 as follows:

𝜒 = −
2𝜌𝑐2

3𝐵𝑞𝑇
[

3𝜃0,2 + 𝜃1,2(1 − 𝜔 𝛾)
]

,

𝜈 = −
𝜌𝑐2

3𝐵𝛱2

{

2
3
𝜃1,2 −

𝜃′1,2
𝛾𝜔′ + 3𝑁

𝛥

𝐷4

( 2
3
𝜃1,2 −

𝜃′0,2
𝛾𝜔′

)

}

,

𝜇 = −
𝜌𝑐2

3𝐵𝑡
𝜃1,2 ,

(21)

where 𝜃′𝑘,𝑗 =
𝑑𝜃𝑘,𝑗
𝑑𝛾 and, as it has been proved in [32], we have

𝜃′𝑘,𝑗 = 𝜔𝜃𝑘,𝑗 −
𝑗 + 2 − 2𝑘
𝑗 + 2

𝜃𝑘,𝑗+1. (22)

1 Some typos in the expression of the closed field equations are corrected comparing to the ones shown in [30]
6
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Furthermore, although 𝛥 does not appear in the closed field equations of the Eckart theory, we obtain its expression in the parabolic
imit as follows:

𝛥 = 𝜎 𝜕𝛼𝑈
𝛼 with 𝜎 =

𝜌
𝐵𝛥1

( 2
3
𝜃1,2 −

𝜃′0,2
𝛾𝜔′

)

. (23)

4. Singular limit to monatomic gas

The monatomic limit of the relativistic model for polyatomic gases presented in the previous section is delicate. This is because
the relativistic monatomic gases can be modeled by using 14 independent variables, as described by the RET𝑅,𝑀14 model [3] while the
corresponding model for polyatomic gases, RET𝑅15, instead, has 15 independent variables. Consequently, at the monatomic limit under
an appropriate initial condition compatible with the monatomic gases, one of the independent variables is no longer independent
from the other fields.

To study the limit to monatomic gases, we introduce a particular expression of the function 𝜙() which appears in the definition
f the moments (7). In paper [25], the following expression has been found:

𝜙() = 𝑎, (24)

here 𝑎 = 𝐷−5
2 is constant and 𝐷 = 3 + 𝑓𝑖 is related to the degrees of freedom of the molecule, given by the sum of the space

dimensions 3 for the translational motion and the contribution of the internal degrees of freedom 𝑓𝑖 ≥ 0 related to molecular
rotation and vibration. This expression is introduced in order to recover the polytropic caloric equation of state in the classical limit
𝛾 → ∞. In fact, by taking into account 𝑒 = 𝜌𝑐2 + 𝜌𝜀, where 𝜀 is the internal energy, the expression of the measure (24) ensures the
following caloric equation of state for polytropic gases holds

lim
𝛾→∞

𝜀 = 𝐷
2
𝑘𝐵
𝑚
𝑇 . (25)

Monatomic gases, having only translational modes, are characterized by the number of degrees of freedom 𝐷 = 3, which means
𝑎 = −1. For the proof, the limit is considered by taking that 𝑎 is continuous and reduces to −1 as in the case of classical gases [14,39].

For this value of 𝑎 for monatomic gases, the integral of moments is not convergent, so we have to calculate the limit and, thanks
to the above mentioned expression of 𝜙(), it is possible to use some of the Lemmas proved in paper [38], where the monatomic
limit of the theory with previous moments (6) has been studied. However, compared to [38], due to the exponent in the moments
(7), we now need to take into account the non-linear contributions of .

For completeness, we report here the properties demonstrated in [38] we use in the sequel:

Lemma 1. We have:

∫

+∞

0
𝐽 ∗
𝑚,𝑛 

𝑎 𝑑  = 1
𝑎 + 1

𝛾
𝑚𝑐2 ∫

+∞

0
𝐽 ∗
𝑚,𝑛+1 

𝑎+1 𝑑  (26)

and

lim
𝑎→−1

∫ +∞
0 𝐽 ∗

𝑚,𝑛 
𝑎 𝑑 

∫ +∞
0 𝐽 ∗

2,1 
𝑎 𝑑 

=
𝐽𝑚,𝑛(𝛾)
𝐽2,1(𝛾)

,

lim
𝑎→−1

∫ +∞
0 𝐽 ∗

𝑚,𝑛 
𝑎+1 𝑑 

∫ +∞
0 𝐽 ∗

2,1 
𝑎 𝑑 

= 0,

lim
𝑎→−1

∫ +∞
0 𝐽 ∗

𝑚,𝑛 
𝑎+𝑛 𝑑 

∫ +∞
0 𝐽 ∗

2,1 
𝑎 𝑑 

= 0.

(27)

The convergence of the energy and pressure is the same of [38]. For completeness, we summarize these results. The energy of
olyatomic gas (9)2 converges, in the limit 𝑎→ −1, to the corresponding monatomic expression, i.e., 𝑒 = 1

3𝜌𝑐
2 𝐽2,2
𝐽2,1

. We may recognize
t as the Synge energy

𝑒 = 𝜌𝑐2𝜔𝑀𝑜𝑛𝑜(𝛾) with 𝜔𝑀𝑜𝑛𝑜(𝛾) = 𝐺 − 1
𝛾
,

where 𝐺 = 𝐾3(𝛾)∕𝐾2(𝛾) being 𝐾𝑛 the modified Bessel function.
Similarly, the pressure of polyatomic gas (9)1 converges, in the limit 𝑎 → −1, to the corresponding monatomic expression,

i.e., 𝑝 = 1
3𝜌𝑐

2 𝐽4,0
𝐽2,1

. As the proof was not explicitly shown in the previous study [38], we report it here for completeness. By using
q. (11), we have that 𝑝 = 𝜌𝑐2 1

𝛾 . Moreover, thanks to eq. (7.4)6 of paper [30], we obtain

𝑝 = 𝜌𝑐2𝜃1,1 = 𝜌𝑐2 1
3

∫ +∞
0 𝐽 ∗

4,0

(

1 + 
𝑚𝑐2

)

𝛼 𝑑 

∫ +∞
0 𝐽 ∗

2,1 
𝛼 𝑑 

.

7

By using (27)1,2, we have that the above expression converts into the corresponding one for monatomic gases.
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4.1. Monatomic limit of equilibrium variables

Due to the existence of the 15th variable 𝛥 and of the non-linear contribution of  in the definition of the moments, the
coefficients of the closed system are different from the ones analyzed in [38]. Therefore, we study the monatomic limit of the
coefficients present in the closure of system (1) with (7), given by Eqs. (8), (9) and (15).

We have the following theorem:

Theorem 1. The following limits hold:

lim
𝑎→−1

𝜌 𝜃0,2 =
1
2

(

𝐶0
1 + 𝑛𝑚2

)

,

lim
𝑎→−1

𝜌 𝑐2 𝜃1,2 =
𝑐2

2

(

𝐶0
1 − 𝑛𝑚2

)

,

lim
𝑎→−1

3𝐶5 = 3𝐶𝑀𝑜𝑛𝑜
5 ,

lim
𝑎→−1

𝑁3
𝐷3

= −5𝐶3,

lim
𝑎→−1

𝑁31
𝐷3

= −5𝐶3,

lim
𝑎→−1

(

− 6
𝑐2

𝑁𝛱

𝐷4 + 3𝑁𝛥

)

= 𝐶𝛱1 . (28)

In the right-hand sides of the above equalities we use the notation of RET𝑅,𝑀14 [3], in particular, we refer to eqs. (7.4) and (7.7).2

The proof of the theorem is shown in Appendix A.

Corollary 1. As a consequence of the above Theorem we have:

lim
𝑎→−1

𝑁3
𝐷3

= lim
𝑎→−1

𝑁31
𝐷3

lim
𝑎→−1

(

𝜃0,2 − 𝜃1,2
)

= 1, lim
𝑎→−1

(

𝜃′0,2 − 𝜃
′
1,2

)

= 0. (29)

roof. The first two relations derives immediately from the results of Theorem 1, while the third one can be proved with the
ollowing procedure. From (22), we obtain

𝜃′0,2 − 𝜃
′
1,2 = 𝜔

(

𝜃0,2 − 𝜃1,2
)

−
(

𝜃0,3 −
1
2
𝜃1,3

)

.

ith (27)2,3 and (26), by taking into account (12), we can prove that

lim
𝑎→−1

𝜔(𝜃0,2 − 𝜃1,2) = 𝜔𝑀𝑜𝑛𝑜, lim
𝑎→−1

(

𝜃0,3 −
1
2
𝜃1,3

)

= 𝜔𝑀𝑜𝑛𝑜.

hen, the relation (29)3 is satisfied.

.2. Monatomic limit of RET𝑅15

Let us now investigate the monatomic limit (𝑎→ −1) of the system (19). By using the results of Theorem 1, we find a system of
5 equations of monatomic gas. However, we need to recall that monatomic gases must satisfy the trace conditions (4) according
o the kinetic theory. To prove that the trace conditions hold in the monatomic limit, we introduce the following balance equation

𝜕𝛼
(

𝐴𝛼𝛽𝛾𝑔𝛽𝛾 − 𝑐2 𝑉 𝛼) = 𝐼𝛽𝛾𝑔𝛽𝛾 , (30)

hat is an identity if and only if the trace conditions (4) are satisfied.
Recalling (18), the above Eq. (30) can be rewritten with the material derivative as

𝐼𝛽𝛾𝑔𝛽𝛾 = 𝑔𝛽𝛾𝜕𝛼𝐴
𝛼𝛽𝛾 − 𝑐2𝜕𝛼𝑉 𝛼 = 𝑔𝛽𝛾

(

𝑈𝛼
𝑐2

𝐴̇𝛼𝛽𝛾 − ℎ𝜇𝛼 𝜕𝜇 𝐴
𝛼𝛽𝛾

)

− 𝑐2𝜕𝛼𝑉 𝛼

=
(

−ℎ𝛽𝛾 +
𝑈𝛽𝑈𝛾
𝑐2

)

(

𝑈𝛼
𝑐2

𝐴̇𝛼𝛽𝛾 − ℎ𝜇𝛼 𝜕𝜇 𝐴
𝛼𝛽𝛾

)

− 𝑐2𝜕𝛼𝑉 𝛼

= ℎ𝛽𝜃ℎ𝛾𝛿𝑔
𝜃𝛿
(

𝑈𝛼
𝑐2

𝐴̇𝛼𝛽𝛾 − ℎ𝜇𝛼 𝜕𝜇 𝐴
𝛼𝛽𝛾

)

+
𝑈𝛽𝑈𝛾
𝑐2

(

𝑈𝛼
𝑐2

𝐴̇𝛼𝛽𝛾 − ℎ𝜇𝛼 𝜕𝜇 𝐴
𝛼𝛽𝛾

)

− 𝑐2𝜕𝛼𝑉 𝛼 . (31)

e note that the above equation is the sum of (19)4, (19)7 divided by 𝑐2 and (19)1 multiplied by −𝑐2. By introducing the variable

𝑌 (𝐱, 𝑡) =
(

𝐴𝛼𝛽𝛽 − 𝐴
𝛼𝛽
𝛽 |𝐸

) 𝑈𝛼
𝑐2

= 1
4𝑐2

𝐷4 + 3𝑁𝛥

𝐷4
𝛥 + 3𝑁

𝛱

𝐷4
𝛱, (32)

2 The dimension of 𝐴𝛼𝛽𝛾 defined in [3] is same with the one defined in (7) divided by 𝑚. For this reason, here and hereafter, we refer to the coefficients of
8

monatomic case in [3] divided by 𝑚.
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we obtain that, in the limit of monatomic gas, i.e., 𝑎→ −1, Eq. (31) becomes

𝑌̇𝑀𝑜𝑛𝑜 + 𝑌𝑀𝑜𝑛𝑜 𝜕𝛼𝑈
𝛼 = −1

𝜏
𝑌𝑀𝑜𝑛𝑜, (33)

where 𝑌𝑀𝑜𝑛𝑜 = lim𝑎→−1 𝑌 . Recalling (29)2, we have that lim𝑎→−1 𝐴
𝛼𝛽
𝛽 |𝐸 = 𝑐2𝑉 𝛼 and therefore

𝑌𝑀𝑜𝑛𝑜 = lim
𝑎→−1

(

𝐴𝛼𝛽𝛽 − 𝑐
2𝑉 𝛼

) 𝑈𝛼
𝑐2
. (34)

In the limit from polyatomic gases to monatomic gases, it is natural to impose an initial condition compatible with the monatomic
ases in which the trace conditions are satisfied. Therefore, in this limit, we assume that 𝐴𝛼𝛽𝛽 = 𝑐2𝑉 𝛼 , which is equivalent to 𝐼𝛽𝛽 = 0,
s satisfied at the initial state, i.e.,

𝑌𝑀𝑜𝑛𝑜(𝐱, 0) = 0. (35)

ith this initial condition and assuming the uniqueness of the solutions, we have that the only solution of (33) is

𝑌𝑀𝑜𝑛𝑜(𝐱, 𝑡) = 0 for any 𝑡. (36)

herefore, under the initial condition (35), 𝑌𝑀𝑜𝑛𝑜 vanishes and moreover Eq. (30) is identically zero, then the trace conditions are
atisfied for any time.

We emphasize that we can interpret that 𝑌 is the part of 𝛥 that characterizes polyatomic gases. In fact, from (32), we have

𝛥 = 4𝑐2
𝐷4

𝐷4 + 3𝑁𝛥

(

𝑌 − 3𝑁
𝛱

𝐷4
𝛱
)

, (37)

nd, the remaining part of 𝛥, represented by 𝛱 , persists in the monatomic limit. This indicates that the initial condition (35) implies
etting the part of the polyatomic gas effect in 𝛥 to zero at the initial state. In the monatomic limit, since 𝑌𝑀𝑜𝑛𝑜 is identically zero,
is expressed as

𝛥 = lim
𝑎→−1

(

−12𝑐2 𝑁𝛱

𝐷4 + 3𝑁𝛥𝛱
)

= 2 𝑐4𝐶𝛱1 𝛱 , (38)

where we used Eq. (28)6. In this way, in the monatomic limit, 𝛥 is expressed by 𝛱 and the number of independent fields is now 14.
With this singular limit, we can prove the convergence of the closure for 𝐴𝛼𝛽𝛾 .

Theorem 2. The triple tensor 𝐴𝛼𝛽𝛾 converges to the corresponding tensor of RET𝑅,𝑀14 when 𝑎→ −1.

Proof. It is sufficient to use the results of Theorem 1 and Eq. (38) on Eq. (8) to prove that the triple tensor converges to that present
in eq. (4.3)2 of paper [3].

We show now that the 15 equations of RET𝑅15 coincide with the 14 equations for {𝜌, 𝑈𝛼 , 𝑒, 𝛱 , 𝑡⟨𝛼𝛽⟩3 , 𝑞𝛼} of RET𝑅,𝑀14 . By inserting
36), or (38), into system (19) it converts into

𝜌̇ + 𝜌 𝜕𝛼 𝑈𝛼 = 0 ,

−
𝑒 + 𝑝 +𝛱

𝑐2
𝑈̇ 𝛿 + 1

𝑐2
ℎ𝛿𝛽 𝑞̇

𝛽 + 1
𝑐2
𝑡⟨𝛼𝛿⟩3 𝑈̇𝛼 − ℎ𝛿𝜇 𝜕𝜇(𝑝 +𝛱) − 1

𝑐2
𝑞𝜇 𝜕𝜇𝑈

𝛿 − 1
𝑐2
𝑞𝛿 𝜕𝛼𝑈

𝛼 − ℎ𝛿𝛽 ℎ
𝜇
𝛼 𝜕𝜇 𝑡

⟨𝛼𝛽⟩3 = 0 ,

𝑒̇ + 2
𝑈𝛼
𝑐2

𝑞̇𝛼 + (𝑒 + 𝑝 +𝛱) 𝜕𝛼𝑈𝛼 − ℎ𝜇𝛼 𝜕𝜇𝑞
𝛼 − 𝑡⟨𝛼𝛽⟩3 𝜕𝛼𝑈𝛽 = 0 ,

𝑐2

2

(

𝐶0
1 − 𝑛𝑚2 + 𝐶𝛱1 𝛱

)∙
+

15𝐶3

𝑐2
𝑞𝛾 𝑈̇

𝛾 + 5 𝑐
2

6

(

𝐶0
1 − 𝑛𝑚2 + 𝐶𝛱1 𝛱

)

𝜕𝛼 𝑈
𝛼

− 5 𝑞𝜇𝜕𝜇 𝐶3 + 5𝐶3 ℎ
𝜇
𝛼 𝜕𝜇 𝑞

𝛼 − 2𝐶𝑀𝑜𝑛𝑜
5 𝑡⟨𝜇𝛾⟩3𝜕𝜇 𝑈

𝛾 = − 𝑐2

2 𝜏
𝐶𝛱1 𝛱 ,

𝐶𝑀𝑜𝑛𝑜
5 ℎ𝛾⟨𝛿 ℎ𝛽⟩3𝜃 𝑡̇

⟨𝛾𝜃⟩3 + 𝑡
⟨𝛿𝛽⟩3 𝐶̇

𝑀𝑜𝑛𝑜
5 −

12𝐶3

𝑐2
𝑞
⟨𝛿 𝑈̇𝛽⟩3 −

𝑐2

3
(

𝐶0
1 − 𝑛𝑚2 + 𝐶𝛱1 𝛱

)

ℎ𝛾⟨𝛿 ℎ
𝜇
𝛽⟩3

𝜕𝜇 𝑈
𝛾

− 2
(

𝑞
⟨𝛿ℎ

𝜇
𝛽⟩3

)

𝜕𝜇 𝐶3 + 2𝐶3

(

ℎ𝛾⟨𝛿ℎ
𝜇
𝛽⟩3

𝜕𝜇 𝑞
𝛾
)

+ 𝐶𝑀𝑜𝑛𝑜
5

[

𝑡
⟨𝛿𝛽⟩3 𝜕𝛼 𝑈

𝛼 + 2 𝑡⟨𝜇𝛾⟩3ℎ𝛾⟨𝛽 ℎ𝛿⟩3𝜈 𝜕𝜇 𝑈
𝜈
]

= − 1
𝜏
𝐶𝑀𝑜𝑛𝑜
5 𝑡

⟨𝛿𝛽⟩3 ,

ℎ𝛽𝛿 𝑈̇
𝛽
( 𝑐2

6
(

5𝐶0
1 + 𝑛𝑚2) + 5

6
𝑐2𝐶𝛱1 𝛱

)

− ℎ𝛽𝛿 5𝐶3 𝑞̇
𝛽 + 𝑞𝛿

(

5𝐶3

)∙
+ 2𝐶𝑀𝑜𝑛𝑜

5 𝑡
⟨𝛿𝛾⟩3 𝑈̇

𝛾

− ℎ𝜇𝛿 𝜕𝜇
( 𝑐4

6
(

𝐶0
1 − 𝑛𝑚2) + 𝑐4

6
𝐶𝛱1 𝛱

)

+ 6𝐶3

(

𝑞𝜇 𝜕𝜇 𝑈𝛿 + 𝑞𝛿 𝜕𝛼 𝑈𝛼
)

− 𝐶3 ℎ
𝜇
𝛿 𝑞

𝛾 𝜕𝜇 𝑈𝛾 + ℎ𝜇𝛼 𝜕𝜇
(

𝐶𝑀𝑜𝑛𝑜
5 𝑐2 𝑡⟨𝛼 𝛿⟩3

)

= 1
𝜏

(

−5𝐶3 −
𝜃1,3
2 𝜃1,2

)

𝑞𝛿 , (39)

hat is exactly the system of RET𝑅,𝑀14 , i.e. eqs. (7.16) of [3] (where we used the values found in paper [38] for the coefficients in
9

he right-hands sides because they were not explicitly present in [3]).
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4.3. The phenomenological coefficients

Concerning the limit of the production term 𝐼𝛽𝜇 , the values of the coefficients appearing in (15) are strictly related to the heat
onductivity and viscosities via Maxwellian iteration, in particular through Eqs. (21). The explicit expression of such coefficients in
onatomic gases appeared for the first time in paper [27] and we refer to those results to make a comparison. Then, we have the

ollowing theorem.

heorem 3. The phenomenological coefficients, presented in Eqs. (21), converge to the corresponding one of the monatomic theory when
→ −1.

The proof of the theorem is shown in Appendix B.
As we have seen in the previous section, the variable 𝑌 is the part of 𝛥 characterizing polyatomic gases. In this sense, we may

dopt 𝑌 as an independent field instead of 𝛥. Then, in the parabolic limit by conducting the Maxwellian iteration, we can obtain
he expression of 𝑌 by inserting (20)2, (21)2 and (23) into (32) as follows:

𝑌 = 𝜎𝑌 𝜕𝛼𝑈
𝛼 ,

here

𝜎𝑌 = 𝜏
𝑐2𝜌
𝛾𝜔′

(

𝜃′0,2 − 𝜃
′
1,2

)

. (40)

In the monatomic limit, recalling (29)3, we obtain

𝜎𝑌 = 0. (41)

5. Monatomic limit of the principal subsystems

In RET the principal subsystems are models with fewer moments than the original system but that retain the properties of
convexity of the entropy and positivity of the entropy production. These subsystems can be obtained by eliminating some of the
balance equations and this procedure corresponds to considering some components of the main field as constant (see [23] for details).

In this section, we consider the monatomic limit of RET𝑅14 and RET𝑅6 which are obtained as principle subsystems RET𝑅15.

5.1. Monatomic limit of RET𝑅14

As proved in paper [30], the principal subsystem with 14 moments is characterized by the following condition:

𝛥(14) = 4
𝑁𝑎
𝐷𝑎

𝑐2𝛱 with
𝑁𝑎
𝐷𝑎

=
𝐷44

4 +𝐷43
4

𝐷34
4 +𝐷33

4

that reduces the number of independent variables to 14. The symbol 𝐷𝑖𝑗
4 represents the determinant of the matrix obtained by

eliminating the 𝑖th row and the 𝑗th column of 𝐷4 defined in Eq. (13)1.
The closure of this principal subsystem is given by

𝐴𝛼𝛽𝛾 =

(

𝜌 𝜃0,2 −
3
𝑐2

𝑁𝜋
1

𝐷𝜋
1
𝛱

)

𝑈𝛼𝑈𝛽𝑈 𝛾 +

(

𝜌 𝑐2𝜃1,2 − 3
𝑁𝜋

11
𝐷𝜋

1
𝛱

)

𝑈 (𝛼ℎ𝛽𝛾) + (42)

+ 3
𝑐2

𝑁3
𝐷3

𝑞(𝛼𝑈𝛽𝑈 𝛾) + 3
5
𝑁31
𝐷3

𝑞(𝛼ℎ𝛽𝛾) + 3𝐶5 𝑡
(⟨𝛼𝛽⟩3𝑈 𝛾) ,

nd by the production term

𝐼 ⟨𝛽𝛾⟩ = − 1
𝑐2𝜏

3𝑁𝜋
1 +𝑁𝜋

11
𝐷𝜋

1
𝛱 𝑈 ⟨𝛽𝑈 𝛾⟩ + 1

𝑐2𝜏

( 𝜃1,3
𝜃1,2

− 2
𝑁3
𝐷3

)

𝑞(𝛽𝑈 𝛾) − 1
𝜏
𝐶5 𝑡

⟨𝛽𝛾⟩3 , (43)

ith
𝑁𝜋

1
𝐷𝜋

1
= −1

3
𝑁𝑎
𝐷𝑎

,
𝑁𝜋

11
𝐷𝜋

1
= 1
𝐷4

(

𝑁𝑎
𝐷𝑎

𝑁𝛥 +𝑁𝛱
)

= −
𝑁𝑏
𝐷𝑎

, 𝑁𝑏 = 𝑁𝛥34 +𝑁𝛥33,

and the other symbols defined in Eqs. (13) and (14). The notation 𝑁𝛥𝑖𝑗 represents the determinant of the matrix obtained by
eliminating the 𝑖th row and the 𝑗th column of 𝑁𝛥. By using the same technique adopted in Theorem 1, it is possible to prove that

lim
𝑎→−1

𝑁𝑎
𝐷𝑎

= 𝑐2

2
𝐶𝛱1 , lim

𝑎→−1

𝑁𝑏
𝐷𝑎

= 𝑐2

6
𝐶𝛱1 ,

nd, as a consequence, the monatomic limit of Eq. (42) corresponds to eq. (4.3)2 of paper [3] and the monatomic limit of Eq. (43)
ives the expression of the production term for monatomic gases obtained in paper [26].

The above results show that the present subsystem RET𝑅 has the same monatomic limit of the system of RET𝑅 , that is, RET𝑅,𝑀
10

14 15 14 .
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5.2. Monatomic limit of RET𝑅6

The principal subsystem RET𝑅6 is characterized by the following conditions [30]

𝑞𝜇 = 0, 𝑡
⟨𝜇𝜈⟩3 = 0, 𝛥(6) = 4𝑐2

𝐷44
4 − 3𝐷43

4

𝐷34
4 − 3𝐷33

4

𝛱.

The relation between 𝛥 and 𝛱 is different from the subsystem with 14 moments.
The closure of the principal subsystem with 6 moments is given by the following expressions of the tensors 𝑇 𝛼𝛽 , 𝐴𝛼𝛽𝛽 and 𝐼𝛽𝛽 :

𝑇 𝛼𝛽 = 𝑒
𝑐2
𝑈𝛼𝑈𝛽 +

(

𝑝 + 𝛱
)

ℎ𝛼𝛽 , 𝐴𝛼𝛽𝛽 =
{

𝜌𝑐2(𝜃0,2 − 𝜃1,2) + 𝐴1𝛱
}

𝑈𝛼 , 𝐼𝛽𝛽 = −
𝐴1
𝜏
𝛱, (44)

with

𝐴1 =
𝐷44

4 − 3𝐷43
4 − 3𝑁𝛥34 + 9𝑁𝛥33

𝐷34
4 − 3𝐷33

4

, (45)

where all the elements of the matrices involved in the definition of 𝐴1 are functions of 𝜔(𝛾) (see [30] for details). We see that the
closure is determined in terms of 𝜃0,2, 𝜃1,2 and 𝐴1. The field equation of 𝛱 is given by

(

𝐴1𝛱
)∙ + 𝜌𝑐2

(

𝜃′0,2 − 𝜃
′
1,2

)

𝛾̇ + 𝐴1𝛱 𝜕𝛼𝑈
𝛼 = −1

𝜏
𝐴1𝛱. (46)

It is important to note that the bulk viscosity, derived through Maxwellian iteration, is obtained as shown in [30], and, by employing
𝜎𝑌 , as defined in (40), the bulk viscosity can be represented in a more compact form:

𝜈6 = −𝜎
𝑌

𝐴1
. (47)

e remark that the expression of the bulk viscosity is different from the ones of RET𝑅15, (21)2, and of RET𝑅14 [30].
In the monatomic limit, recalling (29)2, the field equation of 𝛱 (46) is expressed as follows

(

𝐴𝑀𝑜𝑛𝑜
1 𝛱

)∙ + 𝐴𝑀𝑜𝑛𝑜
1 𝛱 𝜕𝛼𝑈

𝛼 = −1
𝜏
𝐴𝑀𝑜𝑛𝑜
1 𝛱, (48)

where 𝐴𝑀𝑜𝑛𝑜
1 = lim𝑎→−1 𝐴1. Utilizing (27)1,2, it is determined that 𝐴𝑀𝑜𝑛𝑜

1 results in the indeterminate form
[

0
0

]

. This form cannot be
esolved using the method employed in proving the last point of Theorem 1, as it leads to the same indeterminate form. Additionally,
ubstituting 𝜔𝑀𝑜𝑛𝑜 into Eq. (45) does not offer a solution. It is observed that the 𝜔 value for polyatomic gases differs from that of
onatomic gases, represented as 𝜔(𝛾) = 𝜔𝑀𝑜𝑛𝑜(𝛾) + 𝛿. To derive the monatomic value of 𝜔, we calculate the limit as 𝛿 approaches

0. Through this limiting process and cumbersome calculations, it is shown that both the numerator and denominator of 𝐴1 vary
linearly with 𝛿, resulting in

𝐴𝑀𝑜𝑛𝑜
1 = lim

𝛿→0
𝐴1 = 3

{

−1
𝛾
+

3[𝛾 + 𝐺(5 − 𝐺𝛾)]
5 + 2𝛾[−5𝐺 + 𝛾(−1 + 𝐺2)]

}

≠ 0. (49)

Similar to (33), (48) is a first-order partial differential equation in the variable 𝐴𝑀𝑜𝑛𝑜
1 𝛱 . As an initial condition compatible with

onatomic gases, we assume that the trace conditions (4), 𝐴𝛼𝛽𝛽 = 𝑐2𝑉 𝛼 , is satisfied at the initial time. In other words, since we
ave, from (44)2,

lim
𝑎→−1

𝐴𝛼𝛽𝛽 =
(

𝜌𝑐2 + 𝐴𝑀𝑜𝑛𝑜
1 𝛱

)

𝑈𝛼 = 𝑐2𝑉 𝛼 + 𝐴𝑀𝑜𝑛𝑜
1 𝛱 𝑈𝛼 , (50)

nd therefore

𝐴𝑀𝑜𝑛𝑜
1 𝛱 =

𝑈𝛼
𝑐2

lim
𝑎→−1

(

𝐴𝛼𝛽𝛽 − 𝑐
2𝑉 𝛼

)

, (51)

we consider as an initial data that

(𝐴𝑀𝑜𝑛𝑜
1 𝛱)(𝐱, 0) = 0. (52)

This condition also indicates that 𝐼𝛽𝛽 = − 1
𝜏𝐴

𝑀𝑜𝑛𝑜
1 𝛱 = 0 is satisfied at the initial state. Then, the unique solution of (48) is

(𝐴𝑀𝑜𝑛𝑜
1 𝛱)(𝐱, 𝑡) = 0, (53)

and the trace conditions are satisfied for any time in the monatomic limit. Since 𝐴𝑀𝑜𝑛𝑜
1 ≠ 0 (see Eq. (49)), the dynamic pressure

anishes.
We note that, in the present subsystem, different from the case of RET𝑅15, the characteristic features of polyatomic gases are

captured by 𝛱 , which tends to zero in the monatomic limit. Therefore, the initial condition (52) indicates that the gases initially
demonstrate monatomic gas behavior.

The system now comprises five independent fields, {𝜌, 𝑈𝛼 , 𝛾}, with their closed field equations converging to those of the Euler
ystem for a non-dissipative fluid. As indicated by (41) and (47), we observe that 𝜈 = 0 in this limit.
11
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6. Summary and concluding remarks

The present study demonstrated that the system of RET𝑅15 converges to the system of RET𝑅,𝑀14 under the singular limit of 𝐷
approaching 3. Furthermore, it was shown that RET𝑅14, which is a principal subsystem of RET𝑅15, also aligns with the same monatomic
theory, i.e., RET𝑅,𝑀14 . On the other hand, RET𝑅6 converges to the relativistic Euler theory for monatomic gases. As already shown in
Fig. 1, these findings have clarified the relationships between various RET theories for relativistic polyatomic and monatomic gases
that were previously unclear.

Finally, this paper has dealt with polytropic gases; however, the monatomic limit in non-polytropic gases remains an issue for
future work. Additionally, while beyond the scope of this paper, the following topics remain as open questions: (i) As seen in
Fig. 1, in the 14-variable model, the results differ depending on whether the monatomic limit or the classical limit is taken first.
However, the results obtained are tied to the principal subsystem. The difference is due to the dynamic pressure existing even
in relativistic monatomic gases, but a more detailed study is necessary. (ii) The phenomenological coefficients differ in RET𝑅15,
RET𝑅14 and RET𝑅6 (see [30] for details), while in the classical case, such differences do not appear. It is important to note that
the form of the phenomenological coefficients’ expression strongly depends on the collisional term. Further study is needed to
understand these differences, considering the general study of Maxwellian iteration [40]. Furthermore, although the dependence
of these coefficients on 𝛾 is discussed in [30], to compare these coefficients with experimental data, it is necessary to evaluate
the undetermined relaxation time using different microscopic or mesoscopic theories. (iii) As argued in [41], including higher-
order moments allows for the construction of more detailed models. Although the classical case is discussed in [42], the model for
relativistic gases is not revealed.
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Appendix A. Proof of Theorem 1

The convergence of the coefficients in Theorem 1 is proved as follows.

• From Eq. (10) we have that

𝜃0,2 =
∫ +∞
0 𝐽 ∗

2,3 
𝑎 𝑑  + 2

𝑚𝑐2
∫ +∞
0 𝐽 ∗

2,3 
𝑎+1 𝑑  + 1

(𝑚𝑐2)2 ∫
+∞
0 𝐽 ∗

2,3 
𝑎+2 𝑑 

∫ +∞
0 𝐽 ∗

2,1 
𝑎 𝑑 

.

By using (27), we deduce that

lim
𝑎→−1

𝜃0,2 =
𝐽2,3(𝛾)
𝐽2,1(𝛾)

.

By using the recurrence relation (12) and eqs. (7.4) of [3], we prove the first point of the Theorem.
12
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• From Eqs. (10) we have that

𝜃1,2 =
∫ +∞
0 𝐽 ∗

4,1 
𝑎 𝑑  + 2

𝑚𝑐2
∫ +∞
0 𝐽 ∗

4,1 
𝑎+1 𝑑  + 1

(𝑚𝑐2)2 ∫
+∞
0 𝐽 ∗

4,1 
𝑎+2 𝑑 

∫ +∞
0 𝐽 ∗

2,1 
𝑎 𝑑 

.

By using (27)1,2, we deduce that

lim
𝑎→−1

𝜃1,2 =
𝐽4,1(𝛾)
𝐽2,1(𝛾)

.

By using eqs. (7.4)1,4 of [3] we prove the second point of the Theorem.
• From Eq. (14)4 and (10), we have

lim
𝑎→−1

𝐶5 = lim
𝑎→−1

𝜃2,4
5 𝜃2,3

= lim
𝑎→−1

∫ +∞
0 𝐽∗6,1

(

1+ 
𝑚𝑐2

)4
𝑎 𝑑 

∫ +∞
0 𝐽∗2,1 

𝑎 𝑑 

∫ +∞
0 𝐽∗6,0

(

1+ 
𝑚𝑐2

)3
𝑎 𝑑 

∫ +∞
0 𝐽∗2,1 

𝑎 𝑑 

=
𝐽6,1(𝛾)
𝐽6,0(𝛾)

,

where (27)1,2 have been used in the last passage.
• From Eq. (14)1,2, (10) and by using (27)1,2 we have

lim
𝑎→−1

𝐷3 = lim
𝑎→−1

(

𝜃1,1 ⋅
3
2
𝜃1,3 − 𝜃1,2 ⋅ 𝜃1,2

)

= 1
(

𝐽2,1(𝛾)
)2

|

|

|

|

|

𝐽4,0(𝛾) 𝐽4,1(𝛾)

𝐽4,1(𝛾) 𝐽4,2(𝛾)

|

|

|

|

|

,

lim
𝑎→−1

𝑁3 = lim
𝑎→−1

1
2

[

𝜃1,1 ⋅
9
5
𝜃1,4 − 𝜃1,2 ⋅ 𝜃1,3

]

= 1
(

𝐽2,1(𝛾)
)2

|

|

|

|

|

𝐽4,0(𝛾) 𝐽4,1(𝛾)

𝐽4,2(𝛾) 𝐽4,3(𝛾)

|

|

|

|

|

.

Hence lim
𝑎→−1

𝑁3
𝐷3

=

|

|

|

|

|

𝐽4,0(𝛾) 𝐽4,1(𝛾)

𝐽4,2(𝛾) 𝐽4,3(𝛾)

|

|

|

|

|

|

|

|

|

|

𝐽4,0(𝛾) 𝐽4,1(𝛾)

𝐽4,1(𝛾) 𝐽4,2(𝛾)

|

|

|

|

|

as in [3].

• From Eq. (14)3, (10), by using (27)1,2 and the recurrence relation (12), we have

lim
𝑎→−1

𝑁31 = lim
𝑎→−1

(

𝜃1,1 ⋅ 3𝜃2,4 − 𝜃1,2 ⋅ 5𝜃2,3
)

= 1
(

𝐽2,1(𝛾)
)2

|

|

|

|

|

𝐽4,0(𝛾) 𝐽4,1(𝛾)

𝐽4,2(𝛾) 𝐽4,3(𝛾)

|

|

|

|

|

.

Hence lim
𝑎→−1

𝑁31
𝐷3

=

|

|

|

|

|

𝐽4,0(𝛾) 𝐽4,1(𝛾)

𝐽4,2(𝛾) 𝐽4,3(𝛾)

|

|

|

|

|

|

|

|

|

|

𝐽4,0(𝛾) 𝐽4,1(𝛾)

𝐽4,1(𝛾) 𝐽4,2(𝛾)

|

|

|

|

|

as in [3].

• Let us recall (13). By using the definition (10), we see that the determinants 𝐷4, 𝑁𝛥 and 𝑁𝛱 are made of terms on which it is
possible to apply directly (27)1,2, and calculate the limit of the individual elements. As a result, we obtain matrices in which
the fourth column is a combination of the third and of the first ones by means of the recurrence relation (12) and so they have
0 determinant, giving

lim
𝑎→−1

− 6
𝑐2

𝑁𝛱

𝐷4 + 3𝑁𝛥 =
[0
0

]

.

In order to solve such an indeterminate form, we proceed by observing that with the previous approach (the use of (27)1,2)
we involve only the terms of order 𝑎 with respect to , so we use now (26), in order to have higher order terms. By applying
(26) recursively, and with the use of (11), we obtain

∫

+∞

0
𝐽 ∗
𝑚,𝑛+𝑘 

𝑎+𝑘 𝑑  = (𝑎 + 1)(𝑎 + 2)⋯ (𝑎 + 𝑘)(𝑘𝐵𝑇 )𝑘 ∫

+∞

0
𝐽 ∗
𝑚,𝑛 

𝑎 𝑑 . (A.1)

Let us transform the determinants 𝐷4, 𝑁𝛥 and 𝑁𝛱 in the limit that 𝑎→ −1. We replace the fourth column of the determinant
with the result of subtracting the third column from the fourth column and then adding the first column. With the use of (12),
13
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(A.1) and finally (27)1, we obtain

lim
𝑎→−1

𝐷4
𝑎 + 1

= 1

9
(

𝐽2,1(𝛾)
)4

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐽2,1(𝛾) 𝐽2,2(𝛾) 𝐽2,3(𝛾) − 2
𝛾 𝐽2,0 −

1
𝛾2
𝐽2,−1

𝐽2,2(𝛾) 𝐽2,3(𝛾) 𝐽2,4(𝛾) − 2
𝛾 𝐽2,1 −

3
𝛾2
𝐽2,0 −

2
𝛾3
𝐽2,−1

𝐽2,3(𝛾) 𝐽2,4(𝛾) 𝐽2,5(𝛾) − 2
𝛾 𝐽2,2 −

5
𝛾2
𝐽2,1 −

8
𝛾3
𝐽2,0 −

6
𝛾4
𝐽2,−1

𝐽4,0(𝛾) 𝐽4,1(𝛾) 𝐽4,2(𝛾) − 2
𝛾 𝐽4,−1 −

3
𝛾2
𝐽4,−2 −

2
𝛾3
𝐽4,−3

|

|

|

|

|

|

|

|

|

|

|

|

|

, (A.2)

lim
𝑎→−1

𝑁𝛥

𝑎 + 1
= − 1

27
(

𝐽2,1(𝛾)
)4

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐽2,1(𝛾) 𝐽2,2(𝛾) 𝐽2,3(𝛾) − 2
𝛾 𝐽2,0 −

1
𝛾2
𝐽2,−1

𝐽2,2(𝛾) 𝐽2,3(𝛾) 𝐽2,4(𝛾) − 2
𝛾 𝐽2,1 −

3
𝛾2
𝐽2,0 −

2
𝛾3
𝐽2,−1

𝐽4,0(𝛾) 𝐽4,1(𝛾) 𝐽4,2(𝛾) − 2
𝛾 𝐽4,−1 −

3
𝛾2
𝐽4,−2 −

2
𝛾3
𝐽4,−3

𝐽4,1(𝛾) 𝐽4,2(𝛾) 𝐽4,3(𝛾) − 2
𝛾 𝐽4,0 −

5
𝛾2
𝐽4,−1 −

8
𝛾3
𝐽4,−2 −

6
𝛾4
𝐽4,−3

|

|

|

|

|

|

|

|

|

|

|

|

|

,

lim
𝑎→−1

𝑁𝛱

𝑎 + 1
= − 1

9
(

𝐽2,1(𝛾)
)4

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐽2,1(𝛾) 𝐽2,2(𝛾) 𝐽2,3(𝛾) − 2
𝛾 𝐽2,0 −

1
𝛾2
𝐽2,−1

𝐽2,2(𝛾) 𝐽2,3(𝛾) 𝐽2,4(𝛾) − 2
𝛾 𝐽2,1 −

3
𝛾2
𝐽2,0 −

2
𝛾3
𝐽2,−1

𝐽2,3(𝛾) 𝐽2,4(𝛾) 𝐽2,5(𝛾) − 2
𝛾 𝐽2,2 −

5
𝛾2
𝐽2,1 −

8
𝛾3
𝐽2,0 −

6
𝛾4
𝐽2,−1

𝐽4,1(𝛾) 𝐽4,2(𝛾) 𝐽4,3(𝛾) − 2
𝛾 𝐽4,0 −

5
𝛾2
𝐽4,−1 −

8
𝛾3
𝐽4,−2 −

6
𝛾4
𝐽4,−3

|

|

|

|

|

|

|

|

|

|

|

|

|

.

For the last equation, by replacing the fourth row of the determinant with the result of subtracting the third row from the
fourth column, and then adding the first row, and by using again the recurrence relation (12), we obtain

lim
𝑎→−1

𝑁𝛱

𝑎 + 1
= − 1

9
(

𝐽2,1(𝛾)
)4

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐽2,1(𝛾) 𝐽2,2(𝛾) 𝐽2,3(𝛾) − 2
𝛾 𝐽2,0 −

1
𝛾2
𝐽2,−1

𝐽2,2(𝛾) 𝐽2,3(𝛾) 𝐽2,4(𝛾) − 2
𝛾 𝐽2,1 −

3
𝛾2
𝐽2,0 −

2
𝛾3
𝐽2,−1

𝐽2,3(𝛾) 𝐽2,4(𝛾) 𝐽2,5(𝛾) − 2
𝛾 𝐽2,2 −

5
𝛾2
𝐽2,1 −

8
𝛾3
𝐽2,0 −

6
𝛾4
𝐽2,−1

0 0 0 − 4
𝛾2
𝐽2,−1 −

8
𝛾3
𝐽2,−2 −

6
𝛾4
𝐽2,−3

|

|

|

|

|

|

|

|

|

|

|

|

|

. (A.3)

In order to calculate

lim
𝑎→−1

𝐷4 + 3𝑁𝛥

𝑎 + 1
,

we observe that the matrices of 𝐷4 and 𝑁𝛥 have the first two rows in common and the third row of 𝐷4 is the fourth row of
𝑁𝛥. We can change the sign of the third row of 𝐷4 and then exchange its last two rows obtaining the same determinant

lim
𝑎→−1

𝐷4 + 3𝑁𝛥

𝑎 + 1
= 1

9
(

𝐽2,1(𝛾)
)4

⋅

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐽2,1(𝛾) 𝐽2,2(𝛾) 𝐽2,3(𝛾) − 2
𝛾 𝐽2,0 −

1
𝛾2
𝐽2,−1

𝐽2,2(𝛾) 𝐽2,3(𝛾) 𝐽2,4(𝛾) − 2
𝛾 𝐽2,1 −

3
𝛾2
𝐽2,0 −

2
𝛾3
𝐽2,−1

𝐽4,0(𝛾) 𝐽4,1(𝛾) 𝐽4,2(𝛾) − 2
𝛾 𝐽4,−1 −

3
𝛾2
𝐽4,−2 −

2
𝛾3
𝐽4,−3

−𝐽2,3(𝛾) + 𝐽4,1(𝛾) −𝐽2,4(𝛾) + 𝐽4,2(𝛾) −𝐽2,5(𝛾) + 𝐽4,3(𝛾)
2
𝛾 𝐽2,2 +

5
𝛾2
𝐽2,1 +

8
𝛾3
𝐽2,0

+ 6
𝛾4
𝐽2,−1 −

2
𝛾 𝐽4,0 −

5
𝛾2
𝐽4,−1

− 8
𝛾3
𝐽4,−2 −

6
𝛾4
𝐽4,−3

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

.

By using the same procedure already used for 𝑁𝛱 , we obtain

lim
𝑎→−1

𝐷4 + 3𝑁𝛥

𝑎 + 1
= 1

9
(

𝐽2,1(𝛾)
)4

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐽2,1(𝛾) 𝐽2,2(𝛾) 𝐽2,3(𝛾) − 2
𝛾 𝐽2,0 −

1
𝛾2
𝐽2,−1

𝐽2,2(𝛾) 𝐽2,3(𝛾) 𝐽2,4(𝛾) − 2
𝛾 𝐽2,1 −

3
𝛾2
𝐽2,0 −

2
𝛾3
𝐽2,−1

𝐽4,0(𝛾) 𝐽4,1(𝛾) 𝐽4,2(𝛾) − 2
𝛾 𝐽4,−1 −

3
𝛾2
𝐽4,−2 −

2
𝛾3
𝐽4,−3

0 0 0 4
𝛾2
𝐽2,−1 +

8
𝛾3
𝐽2,−2 +

6
𝛾4
𝐽2,−3

|

|

|

|

|

|

|

|

|

|

|

|

|

. (A.4)

In such way, we conclude that

lim
𝑎→−1

− 6
𝑐2

𝑁𝛱

𝐷4 + 3𝑁𝛥 = lim
𝑎→−1

− 6
𝑐2

𝑁𝛱

𝑎 + 1
𝑎 + 1

𝐷4 + 3𝑁𝛥 = − 6
𝑐2

|

|

|

|

|

|

|

|

𝐽2,1(𝛾) 𝐽2,2(𝛾) 𝐽2,3(𝛾)

𝐽2,2(𝛾) 𝐽2,3(𝛾) 𝐽2,4(𝛾)

𝐽2,3(𝛾) 𝐽2,4(𝛾) 𝐽2,5(𝛾)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐽2,1(𝛾) 𝐽2,2(𝛾) 𝐽2,3(𝛾)

𝐽2,2(𝛾) 𝐽2,3(𝛾) 𝐽2,4(𝛾)

|

|

|

|

|

|

|

.

14

|

𝐽4,0(𝛾) 𝐽4,1(𝛾) 𝐽4,2(𝛾) |
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R

Using the recurrence relation on the last row of the denominator, changing the sign to the last row, and shifting the rows
down we obtain

lim
𝑎→−1

− 6
𝑐2

𝑁𝛱

𝐷4 + 3𝑁𝛥 = − 6
𝑐2

|

|

|

|

|

|

|

|

𝐽2,1(𝛾) 𝐽2,2(𝛾) 𝐽2,3(𝛾)

𝐽2,2(𝛾) 𝐽2,3(𝛾) 𝐽2,4(𝛾)

𝐽2,3(𝛾) 𝐽2,4(𝛾) 𝐽2,5(𝛾)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐽2,0(𝛾) 𝐽2,1(𝛾) 𝐽2,2(𝛾)

𝐽2,1(𝛾) 𝐽2,2(𝛾) 𝐽2,3(𝛾)

𝐽2,2(𝛾) 𝐽2,3(𝛾) 𝐽2,4(𝛾)

|

|

|

|

|

|

|

|

,

and the Theorem is proved.

Appendix B. Proof of Theorem 3

The convergence of the phenomenological coefficients in Theorem 3 is proved as follows.

• By using Eq. (21), (16) and Theorem 1, we prove that

lim
𝑎→−1

𝜇 = lim
𝑎→−1

−
𝑛𝑚𝑐2𝜃1,2

3𝐵𝑡
= 𝜏

3𝐶𝑀𝑜𝑛𝑜
5

𝑛𝑚𝑐2
𝐽4,1
𝐽2,1

,

as in paper [27].
• By using Eq. (21), (9), (10), (16) and Theorem 1 we prove that

lim
𝑎→−1

𝜒 = lim
𝑎→−1

− 2
3𝐵𝑞

𝑛𝑚𝑐2

𝑇

[

3𝜃0,2 + 𝜃1,2
𝑝 − 𝑒
𝑝

]

= − 𝑛𝑚𝑐4 𝜏

𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐽4,2
𝐽4,1

−

|

|

|

|

|

|

|

𝐽4,0(𝛾) 𝐽4,1(𝛾)

𝐽4,2(𝛾) 𝐽4,3(𝛾)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐽4,0(𝛾) 𝐽4,1(𝛾)

𝐽4,1(𝛾) 𝐽4,2(𝛾)

|

|

|

|

|

|

|

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(𝐽2,3
𝐽2,1

+
𝑝 − 𝑒
𝑝

𝐽4,1
3 𝐽2,1

)

,

as in paper [27].
• By using Eq. (21), (9), (10), (16), (A.2), (A.3), (A.4), (29)3 and Theorem 1, we prove that

lim
𝑎→−1

𝜈 = lim
𝑎→−1

− 𝑛𝑚𝑐
2

3𝐵𝛱2

{

2
3
𝜃1,2 −

𝜃′1,2
𝛾𝜔′ + 3𝑁

𝛥

𝐷4

( 2
3
𝜃1,2 −

𝜃′0,2
𝛾𝜔′

)

}

= −𝜏 𝑛𝑚𝑐
2

3

(

lim
𝑎→−1

𝐷4
𝑁𝛱

)(

lim
𝑎→−1

𝐷4 + 3𝑁𝛥

𝐷4

)

lim
𝑎→−1

(

2
3
𝜃1,2 −

𝜃′1,2
𝛾𝜔′

)

= −𝜏𝜌𝑐2
⎛

⎜

⎜

⎝

lim
𝑎→−1

𝐷4
𝑎+1
𝑁𝛱
𝑎+1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

lim
𝑎→−1

𝐷4+3𝑁𝛥

𝑎+1
𝐷4
𝑎+1

⎞

⎟

⎟

⎠

[

2
9
𝐽4,1
𝐽2,1

− 1
3
𝑝
𝜕𝛾𝑒

𝜕𝛾

(𝐽4,1
𝐽2,1

)]

= −𝜏 𝑛𝑚𝑐2

|

|

|

|

|

|

|

|

𝐽2,0(𝛾) 𝐽2,1(𝛾) 𝐽2,2(𝛾)

𝐽2,1(𝛾) 𝐽2,2(𝛾) 𝐽2,3(𝛾)

𝐽2,2(𝛾) 𝐽2,3(𝛾) 𝐽2,4(𝛾)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐽2,1(𝛾) 𝐽2,2(𝛾) 𝐽2,3(𝛾)

𝐽2,2(𝛾) 𝐽2,3(𝛾) 𝐽2,4(𝛾)

𝐽2,3(𝛾) 𝐽2,4(𝛾) 𝐽2,5(𝛾)

|

|

|

|

|

|

|

|

[

−1
4
𝑝
𝜕𝑇 𝑒

𝜕𝑇
(𝐽2,3
𝐽2,1

+
𝐽4,1
3 𝐽2,1

)

+
2 𝐽4,1
9 𝐽2,1

]

as in paper [27].
In the second step, the equality 𝛾 𝜔′ = 𝜕𝛾 𝑒

𝑝 is used, derived from Eqs. (9) and (11).
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