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Abstract—This letter shows that trajectories of
continuous-time monotone systems (in the sense of
Kamke-Muller) converge to equilibrium points if their
vector field is continuously differentiable and if they are
nonexpansive w.r.t. a diagonally weighted infinity norm.
Differently from the current literature trend, the system is
not required to be contractive but merely nonexpansive,
thus allowing for multiple equilibrium points. Easy-to-check
conditions on the vector field to verify that the system
is both monotone and nonexpansive are provided. This
is done by showing that nonexpansiveness is implied by
subhomogeneity of the system, a generalization of the
translation invariance property. We apply the results in
the context of RNNs, thus providing sufficient conditions
for convergence of the state trajectories of nonexpansive
monotone neural networks that are not contractive.

Index Terms—Monotone systems, type-K monotone,
subhomogeneous, nonexpansive, neural networks.

I. INTRODUCTION

DYNAMICAL systems whose trajectories preserve a par-
tial order have sparked considerable interest in numerous

fields: such systems are usually called monotone [1], in the
sense of Müller [2] and Kamke [3] and are such that any
pair of ordered initial conditions give rise to ordered solutions.
Monotonicity appears naturally in real-world phenomena and
engineering applications, including chemical reactions [4], [5],
biological systems [6], flow networks [7], [8], phase-coupled
oscillators [9], [10], opinion dynamics [11], mechanical
systems [12], and so on. Within the systems and control
community, many authors are currently interested in monotone
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systems. Among them, Manfredi and Angeli have studied the
case of monotone networks with unilateral interactions [13].
Como and Lovisari have considered monotone dynamical flow
networks [7], [8], a topic of interest for Coogan and Arcak
as well [14]. In particular, Coogan has recently presented a
tutorial paper on mixed monotonicity, which extends the usual
notion of monotonicity [6]. Also worth mentioning is the
line of research on eventually monotone systems pursued by
Altafini and Sootla [11], [15], as well as the framework
of differentially positive systems drawn up by Forni and
Sepulchre [12]. For insights on new advances and applications
of monotone systems, we refer interested readers to the work
of Smith [1].

Contraction theory is becoming a popular frame-
work [16], [17], [18], providing powerful tools for
establishing stability properties of nonlinear dynamical
systems. In general, a dynamical system is contractive if
every two trajectories converge to one another, thus resulting
in systems with a unique equilibrium (for time-invariant
systems). On the other hand, convergence of trajectories
toward equilibrium points is still possible when the system
is not contractive but only nonexpansive, that is every
two trajectories do not diverge from one another. It is
clear that the class of nonexpansive systems is broader
than contractive systems, naturally allowing for multiple
equilibrium points. While classical approaches mostly focus
on contraction with respect to the Euclidean �2-norm,
recent works have shown that the stability of monotone
systems can be studied for contractive systems [19] and
nonexpansive systems [10], [20], [21] with respect to non-
Euclidean norms. For instance, it is known that for a monotone
system satisfying the translation invariance or the conservation
law, nonexpansiveness naturally arises with respect to the
supremum norm [22, Lemma 2.7.2] or the taxicab norm
[22, Proposition 2.8.1], respectively.

We have recently shown in [10] that smooth continuous-
time dynamical systems, i.e., systems with a continuously
differentiable vector field, which are also monotone, satisfy
a stricter notion of monotonicity called type-K monotonicity
recently exploited in [10], [20], [23] also in the context of
multi-agent systems. The main feature of type-K monotonic-
ity is that, for discrete-time systems, it prevents periodic
state trajectories with periods exceeding one, while simple
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monotonicity cannot. The main contribution of this letter is
leveraging type-K monotonicity to prove that:

• Trajectories of smooth monotone systems that are nonex-
pansive w.r.t. a diagonally weighted sup-norm converge
toward equilibrium points, if any exist (Propositions 1-2);

• Smooth monotone systems are nonexpansive if and only
if they are subhomogeneous (Theorem 1);

• Necessary and sufficient conditions for monotonicity and
subhomogeneity are given in terms of the Jacobian matrix
of their vector field (Lemmas 1-2).

We also apply our novel results to the convergence analysis
of recurrent neural networks (RNN), with a focus on Hopfield
and firing-rate dynamics. In particular, we prove that:

• Monotonicity and subhomogeneity of these neural
networks ensure convergence of their state trajectories
even if their dynamics are not contractive (Theorem 2).

Structure of this letter. Section II introduces the notation
and preliminaries on monotone and nonexpansive systems.
Section III contains our main results and a tutorial example.
In Section IV the results are applied to the analysis of nonex-
pansive RNNs. In Section V we give concluding remarks.

II. NOTATION AND PRELIMINARIES

The set of real and integer numbers are denoted by R and Z,
while their restriction to nonnegative values are denoted with
R≥0, N, respectively. Matrices M ∈ R

n×n are denoted by
uppercase letters, vectors v ∈ R

n by boldface bold letters,
scalars s ∈ R by lowercase letters, while sets and spaces S
are denoted by uppercase calligraphic letters. A matrix M is
Metzler if its off-diagonal elements mij ≥ 0 with i �= j are
nonnegative. The vectors of zeros and ones of dimension n
are denoted by 0n and 1n, respectively. A diagonal matrix
is written as [v] with diagonal elements v1, . . . , vn. In =
[1n] is the identity matrix of dimension n. The element-wise
product between vectors or matrices of appropriate dimensions
is denoted by the symbol �. We denote by ||·|| the vector norm
in R

n and corresponding induced norms on R
n×n. We will be

specifically interested in the diagonally weighted sup-norm,
defined by a positive vector η ∈ R

n+ as follows

||x||∞,[η]−1 = max
i=1,...,n

1

ηi
|xi|.

Any weighted norm is equivalent to the standard sup-norm:

min
i=1,...,n

1

ηi
||x||∞ ≤ ||x||∞,[η]−1 ≤ max

i=1,...,n

1

ηi
||x||∞

A. Dynamical Systems
We consider continuous-time autonomous dynamical

systems ẋ(t) = f (x(t)), with x(t) ∈ X denoting the state of
the system at time t ∈ R and X ⊆ R

n denotes the state
space.

Assumption 1: The vector field f : X → R
n is continuously

differentiable and the state space X ⊆ R
n is convex.

Under Assumption 1, the Jacobian of the vector field f is
denoted by Df (x). A dynamical system can be described in
terms of its flow ϕ(t, x0) denoting the state at time t as

x(t) = ϕ(t, x0), ∀t ≥ 0, with x(0) = x0.

The sequence of all values taken by the state vector is called
the trajectory of the system. A point xe ∈ X is called an
equilibrium point if f (xe) = 0, and the set of equilibrium
points is denoted by F(f ) = {xe ∈ X : f (xe) = 0}. A trajec-
tory starting at x0 is said to converge asymptotically toward an
equilibrium point xe if limt→∞ ϕ(t, x0) = xe. We conclude by
defining the properties of nonexpansiveness and Contractivity
for dynamical systems.

Definition 1 (Nonexpansiveness and Contractivity): Let
||·|| be a norm in R

n. A system on X ⊆ R
n is nonexpansive

if for all x0, y0 ∈ X it holds
∣
∣
∣
∣ϕ(t, x0) − ϕ

(

t, y0
)∣
∣
∣
∣ ≤ ∣

∣
∣
∣x0 − y0

∣
∣
∣
∣, t ≥ 0.

If the inequality holds strictly, the system is contractive.

B. Convergence of Nonexpansive Monotone Systems
Consider the Euclidean space Rn equipped with the standard

partial order ≤. Dynamical systems in (X ,≤), with X ⊆ R
n,

whose flow preserves such order w.r.t. initial conditions
are referred to as “order-preserving” [20], [22] or “mono-
tone” [4], [5]; this letter uses of the latter denomination. We
formally define the monotonicity property in Definition 2,
along with the special class termed “type-K monotonicity” in
Definition 3, introduced by us in [10], [20], [23].

Definition 2 (Monotonicity): A system on X ⊆ R
n is

“monotone” if for all x0, y0 ∈ X it holds:

x0 ≤ y0 ⇒ ϕ(t, x0) ≤ ϕ
(

t, y0
)

, ∀t ≥ 0.

Definition 3 (Type-K Monotonicity): A system on
X ⊆ R

n is “type-K monotone” if it is monotone and if for all
x0, y0 ∈ X and for all i = 1, . . . , n it holds:

x0 ≤ y0 ∧ x0,i < y0,i ⇒ ϕi(t, x0) < ϕi
(

t, y0
)

, ∀t ≥ 0.

We have recently shown in [10] that for continuous-time
smooth dynamical systems, monotonicity and type-K mono-
tonicity are equivalent properties, and they can be verified by
the sign structure of the Jacobian of the vector field.

Lemma 1: For a system ẋ(t) = f (x(t)) under Assumption 1,
the following statements are equivalent:

(a) The system is monotone;
(b) The system is type-K monotone;
(c) The Jacobian Df (x) is Metzler for all x ∈ X .
Proof: Under Assumption 1, (a) ⇔ (b) holds by [10, Th. 3]

and (a) ⇔ (c) holds by [10, Proposition 2]. Note that (a) ⇔
(c) was originally proved in [4].

A nice feature of type-K monotonicity is that it allows
to prove convergence toward equilibrium points for systems
that are nonexpansive w.r.t. the sup-norm ||·||∞ and admit
at least one equilibrium point. This result, which we
explicitly prove here for monotone systems with a continu-
ously differentiable vector field, was also exploited in [10,
Th. 1] to prove convergence toward equilibrium points for
K-subtopical systems – that is, systems that are type-K mono-
tone and 1-subhomogeneous as eq. (1), both in continuous-
and discrete-time.

Proposition 1: Consider a system ẋ(t) = f (x(t)) under
Assumption 1 satisfying the following:

• the system is monotone and nonexpansive w.r.t. ||·||∞;
• the set of equilibrium points F(f ) �= ∅ is not empty.
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Then all equilibrium points are stable and each trajectory
converges asymptotically to one of them.

Proof: Since the system is monotone and continuously dif-
ferentiable, then it is also type-K monotone by Lemma 1. Since
the system is nonexpansive w.r.t. ||·||∞, by [22, Lemma 2.7.2]
we know that the flow is such that

ϕ(t, x0 + α1) ≤ ϕ(t, x0) + α1, ∀α ≥ 0, ∀t ≥ 0. (1)

As it will be formalized in Section III, systems satis-
fying the above property are called “1-subhomogeneous”,
or “plus-subhomogeneous” (see [10, Definition 2]). Type-K
monotonicity and plus-subhomogeneity of the systems ensure
stability of equilibrium points [10, Lemma 4] and convergence
of all trajectories to equilibrium points [10, Th. 1].

We remark that the “monotonicity of a dynamical system”
is to be intended in the sense of Müller and Kamke [2], [3],
which must not be confused with the “monotonicity of an
operator” in functional analysis [24, Definition 12.1]. This
clarification is important in this letter as the notion of mono-
tonicity of an operator is used in the same context of our
application, that is recurrent neural networks. For instance,
in [25], [26] the notion of monotonicity of an operator is
generalized to Banach spaces by using weak pairings as a
substitute for inner products, which is then used to efficiently
compute equilibria of recurrent neural networks via fixed-point
iterations.

Example 1: We now provide two examples proving that the
two notions of monotonicity are different. First, recall that a
linear dynamical system, both in continuous-time ẋ(t) = Ax(t)
and in discrete-time x(k + 1) = Ax(k), is monotone in the
sense of Definition 2 if A is nonnegative [10, Proposition 2
and Th. 5]. Secondly, recall that a linear operator A:x �→ Ax
is monotone in the sense of [24, Definition 12.1] if and only
if it is positive semidefinite, i.e., x�Ax ≥ 0 for all x [24,
Example 12.2]. Let us define:

A1 =
⎡

⎣

1 1 0
1 1 0
1 0 1

⎤

⎦, A2 =
⎡

⎣

1 −1 0
−1 1 0
0 0 1

⎤

⎦

One can verify that: 1) a dynamical system ruled by A1
is monotone because A1 ≥ 0, but the operator A1 is not
monotone since for x = [−2, 2, 1]� it holds x�A1x = −1; 2) a
dynamical system ruled by A2 is not monotone because A2 �≥
0, but the operator A2 is monotone because it is symmetric
with nonnegative eigenvalues.

III. NOVEL CONVERGENCE RESULTS

We start this section by generalizing the stability and
convergence results in Proposition 1 to systems that are
nonexpansive w.r.t. a weighted sup-norm.

Proposition 2: Consider a system ẋ(t) = f (x(t)) under
Assumption 1 satisfying the following:

• the system is monotone nonexpansive w.r.t. ||·||∞,[η]−1 ;
• the set of equilibrium points F(f ) �= ∅ is not empty.

Then all equilibrium points are stable and each trajectory
converges asymptotically to one of them.

Proof: Consider the change of variable z(t) = [η]−1x(t)
with η ∈ R

n+, yielding the system ż(t) = g(z(t)). Let ϕ(t, ·)
and φ(t, ·) denote the flows of the system in the original and

new sets of coordinates, respectively. By Assumption 1, both
vector fields are continuously differentiable and related by:

φ(t, z) = [η]−1ϕ(t, [η]z) = [η]−1ϕ(t, x), (2)

∀x, z ∈ R
n s.t. z = [η]−1x. This means that any tra-

jectory (ϕ(t, x))t≥0 has the same behavior of the trajectory
(φ(t, z))t≥0. Thus, the proof reduces to show that Proposition 1
holds for the system in the new set of coordinates:

• F(g) �= ∅ if and only if F(f ) �= ∅, indeed, for any
xe ∈ F(f ) then ze = [η]−1xe ∈ F(g) and vice versa.

• One system is monotone if and only if the other one is,
due to Lemma 1 and the fact that [η]Dg(z) = Df ([η]z).

• The original system is nonexpansive w.r.t. ||·||∞,[η]−1 if
and only if the system in the new set of coordinates is
nonexpansive w.r.t. ||·||∞ due to eq. (2), which yields the
following (bidirectional) chain of inequalities, given z =
[η]−1x, v = [η]−1y:

||φ(t,z)−φ(t,v)||∞ ≤ ||z−v||∞,
∣
∣
∣

∣
∣
∣[η]−1ϕ(t,x)−[η]−1ϕ(t,y)

∣
∣
∣

∣
∣
∣∞ ≤

∣
∣
∣

∣
∣
∣[η]−1x−[η]−1y

∣
∣
∣

∣
∣
∣∞, (3)

||ϕ(t,x)−ϕ(t,y)||∞,[η]−1 ≤ ||x−y||∞,[η]−1 .�

Remark 1 (Comparison with [21, Th. 21]): Our
Proposition 2 has the advantage of not requiring piecewise
real analyticity of the vector field to prove convergence of the
trajectories to the set of equilibrium points. Another advantage
is the fact that Lemmas 1-2, together with Theorem 1, provide
easy-to-check conditions to apply Proposition 2, which can
be verified by looking at each row of the Jacobian matrix
independently. For instance, this is particularly useful in
the context of multi-agent systems where these conditions
translate into properties of the local interaction rules between
agents. On the other hand, [21, Th. 21] applies to general
systems, not necessarily monotone, which are nonexpan-
sive w.r.t. a norm ||·||p,Q where p∈{1,∞} and Q∈Rn×n is
invertible.

We are going to prove in Theorem 1 that monotone systems
are nonexpansive w.r.t. ||·||∞,[η]−1 if and only if they are
η-subhomogeneus, as defined next.

Definition 4 (Subhomogeneity): A dynamical system on
X∈Rn is “η-subhomogeneous”, where η∈Rn+ is a positive
vector, if for all initial conditions x0∈X it holds:

ϕ(t,x0+αη)≤ϕ(t,x0)+αη, ∀ α≥0,∀t≥0.

The system is η-homogeneous if the equality holds for α∈R.
Note that η-subhomogeneity encompasses properties like

plus-subhomogeneity, where η=1 [10], [22], and translation
invariance, corresponding to η-homogeneity [5], [18]. We now
state the main result of this section, which (together with the
following Lemma 2) provides an operative way to use the
stability and convergence results in Proposition 2.

Theorem 1: Consider a monotone system ẋ(t)=f (x(t))
under Assumption 1. Then, it is η-subhomogeneous if and only
if it is nonexpansive w.r.t. ||·||∞,[η]−1 .

Proof: Consider the same change of variable in the proof
of Proposition 2, i.e., z(t)=[η]−1x(t) with η∈Rn+. We first
prove that the system is η-subhomogeneous if and only if the
system in the new set of coordinates is 1-subhomogeneous by
the following (bidirectional) chain of inequalities,
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φ(t,z0+α1) ≤ φ(t,z0)+α1

[η]−1ϕ(t,[η]z0+α[η]1) ≤ [η]−1ϕ(t,[η]z0)+α1

[η]−1ϕ(t,x0+αη) ≤ [η]−1ϕ(t,x0)+α1

ϕ(t,x0+αη) ≤ ϕ(t,x0)+αη

Secondly, the system is monotone if and only if the
system in the new set of coordinates is monotone, as already
proven in the proof of Proposition 2. Under monotonicity,
1-subhomogeneity is equivalent to nonexpansiveness w.r.t.
||·||∞, because for any t≥0 [22, Lemma 2.7.2] holds for the
self-map φt(x):=φ(t,x) : X→X . In turn, it is equivalent to
nonexpansiveness w.r.t. ||·||∞,[η]−1 of the system by eq. (3).

We also provide two equivalent necessary and sufficient
conditions for η-subhomogeneity for monotone systems.

Lemma 2: For a monotone system ẋ(t)=f (x(t)) under
Assumption 1, the following statements are equivalent:

(a) the system is η-subhomogeneous;
(b) the vector field satisfies f (x+αη)≤f (x), ∀x∈X ,α≥0;
(c) the Jacobian satisfies Df (x)η≤0, ∀x∈X .
Proof: Under Assumption 1 we have that:
• (a)⇒(b) is logically equivalent to its contrapositive

¬(b)⇒¬(a), where “¬" denotes the “not” logical oper-
ation. If (b) does not hold, then there exist a point x∈X
and a component i∈{1,...,n} such that

fi(x+αη)>fi(x).

By the continuous differentiability of the vector field
(Assumption 1), there exists T>0 such that the distance
at time t=T between the i-th components of the flows is
greater than the initial distance at time t=0, namely,

ϕi(T,x+αη)−ϕi(T,x)>ϕi(0,x+αη)−ϕi(0,x)
︸ ︷︷ ︸

αηi

. (4)

Eq. (4) implies that the system is not η-subhomogeneous,
i.e., (a) does not hold.

• (b)⇒(a) is proven by contradiction. Consider any point
x∈Rn and, for the sake of contradiction, assume that there
exists a finite time T>0 after which condition (a) does
not hold and let T be the minimum such time. Namely,
there exists an arbitrary small ε>0 such that

ϕ(t,x+αη)≤ϕ(t,x)+αη, t∈[0,T], (5)

ϕ(t,x+αη)�≤ϕ(t,x)+αη t∈[,T+ε]. (6)

Let v≥0 be the nonnegative vector that fills the gap in
the inequality at time T , i.e.,

ϕ(T,x+αη)=ϕ(T,x)+αη−v. (7)

We now find a contradiction to eq. (6). Let t>T , then:

ϕ(t,x+αη)
(i)=ϕ(t−T,ϕ(T,x+αη))

(ii)=ϕ(t−T,ϕ(T,x)+αη−v)
(iii)≤ ϕ(t−T,ϕ(T,x)+αη)

∃δ	>0:
(iv)≤ ϕ(t−T,ϕ(T,x))+αη, ∀t∈[T,T+δ	]
(v)≤ϕ(t,x)+αη

where (i) and (v) hold by the group law, which
applies to continuously differentiable flows (cfr. [27,

Sec. 7.1]); (ii) holds by eq. (7); (iii) holds by
monotonicity; (iv) holds by assumption (b), which
implies f (ϕ(T,x)+αη)≤f (ϕ(T,x)), and by the contin-
uous differentiability of the flow (a consequence of
Assumption 1), which implies that ∃δ	>0 such that
ϕ(δ,ϕ(T,x)+αη)≤ϕ(δ,ϕ(T,x))+αη for all δ∈[0,δ	). This
contradicts the existence of ε>0 in eq. (6), i.e., there does
not exists a finite T such that eq. (6) holds. In turn, eq. (5)
holds for all T≥0, i.e., condition (a) holds.

• (b)⇒(c) is proven by the definition of the directional
derivative,

Df (x)η = lim
α→0+

f (x+αη)−f (x)

α
(b)≤ lim

α→0+
f (x)−f (x)

α
=0.

• (c)⇒(b) is proven by the Newton-Leibnitz formula for
vector-valued continuously-differentiable functions:

f (x+αη)−f (x)=
(
∫ 1

0
Df (x+sαη)ds

)

αη≤0

and therefore f (x+αη)≤f (x).
Remark 2: The results of Lemma 2 and Theorem 1 are

compatible with known results in the literature. In particular,
let the diagonally weighted logarithmic sup-norm of a matrix
M∈Rn×n be denoted by

μ∞,[η]−1(M)= max
i=1,...,n

(

mii+
n
∑

j=1,j �=i

ηj

ηi

∣
∣mij

∣
∣

)

. (8)

Statement (c) in Lemma 2 is equivalent to μ∞,[η]−1(Df (x))≤0,
∀x∈X according to [18, Lemma 4.17] and, in turn, it is equiv-
alent to nonexpansiveness w.r.t. ||·||∞,[η]−1 according to [28,
Th. 29]. In other words, systems satisfying the conditions
in [28, Th. 29] are subhomogeneous. This yields the following
open question: “Does Theorem 1 hold without Assumption 1?”.

Let us discuss an example of a monotone and subho-
mogeneous system, inspired from [19, Example 4.3], that
is not contractive w.r.t. any diagonally weighted norm but
nonexpansive w.r.t. ||·||∞,[η]−1 for some η>0, and whose
trajectories converge according to Proposition 1.

Example 2: Consider the class of dynamical systems on R
2

ẋ1(t) = −x1(t)+αx2(t)−γ g(x1)

ẋ2(t) = βx1(t)−x2(t)

where α,β,γ≥0 and g : R�→R≥0 is continuously differentiable
with g(0)=0 and positive derivative g′(x)≥0 for all x∈R. Thus,
the system is monotone because the Jacobian of the vector
field f :=[f1,f2]� is Metzler,

Df (x1,x2)=
[−1−γ d

dt g(x1) α

β −1

]

.

Subhomogeneity is verified for some vector η∈Rn+ by solving
the system of linear equations Df (x1,x2)η≤0,

{

−
(

1−γ d
dt g(x1)

)

η1+αη2≤0

βη1−η2≤0
⇒ η2∈

[

βη1,
1

α
η1

]

,

which is a set of admissible solutions that hold for all values of
γ≥0. Thus, the system is η-subhomogeneous if αβ≤1. Since



DEPLANO et al.: STABILITY OF NONEXPANSIVE MONOTONE SYSTEMS AND APPLICATION TO RNN 1797

the origin is an equilibrium point of the system, one can exploit
Proposition 1 and Theorem 1 to prove the convergence of all
trajectories toward some equilibrium point.

Now, consider the special case α=0.5, β=2, and γ=0, for
which the system becomes linear with dynamics

ẋ(t)=Ax(t), A=
[−1 0.5

2 −1

]

, λ1=0, λ2=−2.

Since the matrix has a null eigenvalue it is singular, then the
system admits infinitely many equilibrium points, which forms
the span of the eigenvector v1=[1,2]�. This implies that the
system cannot be contracting w.r.t. any diagonally weighted
norm. Indeed, the so-called logarithmic norm [18, Sec. II-D]
is lower bounded by the greatest eigenvalue for any p∈[1, ∞]
and any η∈Rn+, and thus it is surely nonnegative (see [29,
Lemma 1]). This implies that the system is non-contracting
according to [28, Th. 29]. In contrast, Proposition 1 ensures
the convergence of the system’s trajectories despite the fact it
is non-contracting but only nonexpansive.

IV. STABILITY OF NONEXPANSIVE MONOTONE RNNS

We consider two models of RNNs [29], [30], the Hopfield
and the firing-rate models, with dynamics

ẋ(t)=fH(x(t)):=−Cx(t)+A
(x(t))+b, (9)

ẋ(t)=fFR(x(t)):=−Cx(t)+
(Ax(t)+b), (10)

where C∈Rn×n is a positive diagonal matrix, A∈Rn×n is an
arbitrary matrix, b∈Rn is a constant input, and 
 : Rn �→R

n

is an activation function satisfying Assumption 2.
Assumption 2: Activation functions are diagonal,

i.e., 
(x)=[φ1(x1),...,φn(xn)]� where each φi : R�→R is
continuously differentiable and globally Lipschitz, i.e., there
exists finite d1≤d2 such that for all i=1,...,n it holds

d

dx
φi(x)∈[d1,d2], ∀x∈R,

and the Lipschitz constant is given by d=max{|d1|,|d2|}
We now study their convergence toward equilibrium points.

Theorem 2: Consider Hopfield and firing-rate neural
networks as in eqs. (9)–(10) with activation function satisfying
Assumption 2. Let1 A	=min{d1A,d2A} and A	=max{d1A,d2A}
satisfy the following conditions:

a) A	 is Metzler (monotonicity);
b) ∃η∈Rn+:(A	−C)η≤0 (η-subhomogeneity).

Then, all their trajectories converge to some equilibrium point,
if any exists.

Proof: Under Assumption 2, both Hopfield and firing-rate
neural networks are monotone if and only if condition a) holds.
In such case, The Jacobian matrix computed at a generic point
x∈R is lower bounded by

DfH(x) = AD
(x)−C≥min{d1A,d2A}−C=A	−C

DfFR(x) = D
(Ax+b)A−C≥min{d1A,d2A}−C=A	−C

where A	−C is Metzler if and only if A	 is Metzler, since
C is diagonal. By Lemma 1, the Jacobian is Metzler if and
only if the smooth system is monotone. Secondly, we prove

1Here the minimum between two matrices is intended component-wise.

that both Hopfield and firing-rate neural networks are η-
subhomogeneous if there is η∈Rn+ such that condition b)

holds. For both networks it holds:

DfH(x)η = (AD
(x)−C)η

≤ (max{d1A,d2A}−C)η=(A	−C
)

η

DfFR(x)η = (D
(Ax+b)A−C)η

≤ (max{d1A,d2A}−C)η=(A	−C
)

η.

Thus, if (A	−C)η≤0 then both Jacobians are non-positive and,
in turn, the system is subhomogeneous by Lemma 2.

We have proved that conditions a) and b) imply that both
neural networks are monotone and η-subhomogeneous. Thus
Theorem 1 ensures that they are also nonexpansive w.r.t.
||·||∞,[η]−1 and Proposition 1 ensures the convergence of all
trajectories toward equilibrium points, if any exists.

A. Comparison With Contractive Neural Networks
We compare our results with those provided in Section V

of the recent work of Davydov et al. [29], whose extended
version with all proofs and some additional results is [30]. Let
μ∞,[η]−1(·) denote the diagonally weighted logarithmic sup-
norm as in eq. (8). Then, [30, Th. 21] gives the following
condition for contraction of Hopfield neural networks

max

{

μ∞,[η]−1

(

dA−(d−d1)A�I−C
)

μ∞,[η]−1

(

dA−(d−d2)A�I−C
)

}

<0, (11)

where d is the Lipschitz constant of the activation functions
(Assumption 2), I is the identity matrix, and � denotes the
element-wise product. Reference [30, Th. 23] gives the follow-
ing condition for contraction of firing-rate neural networks,

max

{
μ∞,[η]−1(d1A−C)

μ∞,[η]−1(d2A−C)

}

<0. (12)

Under condition a) of Theorem 2, which implies that d1A and
d2A are Metzler, both conditions in eq. (11)–(12), reduce to

μ∞,[η]−1

(

A	−C
)

<0, (13)

which is a stricter than condition b) in Theorem 2, indeed,

μ∞,[η]−1

(

A	−C
)

<0⇔(

A	−C
)

η<0.

Thus the class of neural networks identified by Theorem 2
includes networks that are not considered in [29], [30].

Example 3 (Nonexpansive RNNs): Consider a Hopfield or
a firing-rate RNN with dynamics ruled by

C=I, A=
[

0 0.5
2 0

]

, φ(x)=tanh(x),

where Assumption 2 is satisfied with d1=0 and d2=1, and
thus d=1. Condition (13) reads as

μ∞,[η]−1(A−C)=max

{
η2

2η1
,
2η1

η2

}

−1<0

which has no feasible solution. Thus, the system is not
contracting w.r.t. to ||·||∞,[η]−1 , instead it is nonexpansive
w.r.t. to the ||·||∞,[η]−1 for η=v1 where v1=[1,2]� is the
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eigenvector of A associated with the eigenvalue λ1=1, because
all conditions of Theorem 1 hold:

• Assumption 1 is satisfied because the activation function
is the continuously differentiable hyperbolic tangent;

• The system is monotone since the Jacobian Df (x0)≥−C
is Metzler for any x0∈Rn according to Lemma 1, because
C is diagonal.

• The system is v1-subhomogeneous according to
Lemma 2, because the Jacobian satisfies Df (x0)v1≤
(A−C)η=Av1−Cv1=v1−v1=0

Nevertheless, the above derivations show that the neural
network satisfies conditions of Theorem 2, and thus all
trajectories converge to some equilibrium point.
Other examples of nonexpansive RNNs that are nonexpansive
but not contracting can be found for any nonnegative matrix
A≥0 and choosing:

1) C=λMAXI, where λMAX is the largest eigenvalue of A.
In this case, the system is nonexpansive w.r.t. ||·||∞,v−1

where v is the eigenvector associated with λMAX;
2) C=diag(A1). In this case, the system is nonexpansive

w.r.t. ||·||∞;
3) C=diag((Aη))[η]−1 for any η≥0. In this case, the

system is nonexpansive w.r.t. ||·||∞,η−1 .

V. CONCLUSION

It has been shown that smooth monotone systems that
are nonexpansive w.r.t. a diagonally weighted infinity norm
exhibit aperiodic state trajectories that converge to one of the
equilibrium points. Notably, this differs from prevailing trends
in the literature by not requiring the system to be contractive,
thus accommodating multiple equilibrium points. This nice
behavior is ensured thanks to the fact that smooth monotone
systems naturally enjoy a stricter notion of monotonicity
called type-K monotonicity [10], [20], [23], which prevents
periodic trajectories. These findings apply also to RNNs,
allowing us to provide sufficient convergence conditions for
nonexpansive monotone neural networks that lack contractive
properties.
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