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Abstract: As several studies demonstrate, good sleep quality is essential for individuals’ well-being,
as a lack of restoring sleep may disrupt different physical, mental, and social dimensions of health.
For this reason, there is increasing interest in tools for the monitoring of sleep based on personal
sensors. However, there are currently few context-aware methods to help individuals to improve their
sleep quality through behavior change tips. In order to tackle this challenge, in this paper, we propose
a system that couples machine learning algorithms and large language models to forecast the next
night’s sleep quality, and to provide context-aware behavior change tips to improve sleep. In order to
encourage adherence and to increase trust, our system includes the use of large language models
to describe the conditions that the machine learning algorithm finds harmful to sleep health, and to
explain why the behavior change tips are generated as a consequence. We develop a prototype of our
system, including a smartphone application, and perform experiments with a set of users. Results
show that our system’s forecast is correlated to the actual sleep quality. Moreover, a preliminary
user study suggests that the use of large language models in our system is useful in increasing trust
and engagement.

Keywords: pervasive healthcare; behavior change; sleep quality forecasting; machine learning; large
language models

1. Introduction

Several studies show that sleep is a fundamental biological requirement for human life,
and good sleep quality is crucial in maintaining physical, mental, and emotional health [1–3].
Indeed, adequate and restorative sleep contributes to enhanced cognitive function, including
improved memory consolidation, problem-solving abilities, and overall mental alertness [4].
Moreover, it supports emotional resilience by regulating mood and reducing stress, anxi-
ety, and irritability [5]. Good-quality sleep is also necessary in maintaining physical health,
promoting immune system function, and aiding in the repair and recovery of tissues and
organs [6]. Sleep plays a vital role in hormonal regulation, appetite, and metabolism [7].
Chronic sleep deprivation is associated with an increased risk of various health issues, in-
cluding cardiovascular, respiratory, gastrointestinal, endocrine, and reproductive diseases [8].
In addition to physical and mental benefits, good-quality sleep has a positive influence on
the quality and quantity of social relationships, as it contributes to emotional stability and
empathy [9,10].

Since good-quality sleep is essential for physical, mental, and emotional well-being,
there is increasing interest in innovative personal healthcare tools for the monitoring of
sleep [11]. Wearable fitness trackers and smartwatches use accelerometers and heart rate
monitors to recognize sleep patterns, including duration, efficiency, and sleep stages, such
as deep and rapid eye movement (REM) sleep. Dedicated sleep tracking devices, possibly
placed under the mattress and including microphones, provide additional data, including
snoring and interruptions. These tools provide useful insights to inspect various aspects of
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sleep. However, generally, they fall short in helping the user to improve their sleep quality,
since they do not explain the reasons for the detected sleep quality and do not provide
context-aware suggestions for improvement.

According to the scientific literature, several behavioral factors have an impact on
sleep [12], including the intensity and timing of physical activities, sleep schedules, night-
time environment, exposure to noise and electronic screens, and social relationships and
communication. Hence, a fine-grained analysis of the individual’s behavior may indicate
which specific factors may negatively influence sleep quality and enable the provision of
context-aware behavior change tips.

In [13], the authors used the random forest algorithm to predict the occurrence of an
apnea event according to polysomnography signal analysis. Next, they used a tool for
model interpretability to generate predictions’ explanations and create a graphic repre-
sentation of the specific airflow signal and important feature points. Chan-Hen et al. [14]
presented a long short-term memory (LSTM) model capable of predicting panic disorder-
related events and providing suggestions for improved sleep quality to decrease panic
attacks. The data analyzed were collected through the Diagnostic and Statistical Manual
of Mental Disorders 5th ed., the Mini International Neuropsychiatric Interview, various
clinical questionnaires, and smartwatch sensors capable of detecting information related to
sleep, physical activity, and heart rate. The study inferred general suggestions to improve
sleep considering parameters such as sleep duration, walking activity, and the duration of
different sleep states. In [15], the authors presented an extreme gradient boosting (XGBoost)
model capable of classifying the non-rapid eye movement (NREM) and REM sleep phases
through the analysis of electroencephalography (EEG) signals. The authors used a tool
for model interpretability to determine the most significant features and to explain the
predictions. However, the use of large language models (LLMs) in the analysis of factors
influencing sleep to provide suggestions is still limited. In this context, the work presented
by Mira et al. [16] demonstrates the potential of LLMs in assisting healthcare providers in
the diagnosis of obstructive sleep apnea (OSA) by comparing the responses of a generative
pre-trained Transformer and those of experienced otolaryngologists.

In this paper, we present a system to support individuals in improving their sleep
quality via the machine learning (ML)-based forecasting of future sleep quality and large
language model (LLM)-based provisioning of context-aware behavior change tips through
a smartphone application. In order to increase users’ trust, our system is supported by
an LLM-based algorithm to explain the reasons behind the predictions and tips; these
explanations are provided in natural language to the user through the app interface. In
fact, leveraging the language generation capabilities of LLM, our system can articulate the
underlying factors and reasoning behind each behavioral tip in a clear and understandable
manner, helping to bridge the gap between the complex ML models used by the system
and the user’s understanding and trust. The transparency provided by the cooperation of
ML and LLM in our system may also enhance users’ engagement, enabling them to make
informed decisions and take proactive steps toward enhancing their sleep health.

Technically, our system continuously collects data from the user’s smartphone about
activities (physical activities and conversations), usage modalities, location, and environ-
mental conditions (light level, noise, types of sound). The system integrates the raw data
and extracts features of interest on a daily basis. The feature vectors are used by a random
tree regressor to forecast the next night’s sleep quality. The model of the random tree
regressor is trained at the server side in order to avoid the disclosure of sensitive data to
third parties. Considering the decision path of the ML model, an LLM-based algorithm
is used to infer the contextual factors that lead to the prediction. If the system forecasts
poor sleep quality, the smartphone application provides context-aware behavior change
tips. Moreover, to increase the user’s trust and to enhance their adherence to the provided
recommendations, the LLM-based algorithm provides explanations for the predictions
and tips.
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We have developed a working prototype of our system and performed experiments
regarding both sleep quality forecasting and the utility of context-aware tips together with
their explanations. Experiments with real-world data show that the predictions of our
sleep quality forecasting algorithms are correlated with the ground truth. Moreover, a user
study indicates the potential utility of our system and the increase in trust given by the
LLM-based module.

The rest of the paper is structured as follows. Section 2 examines the state of the art in
pervasive healthcare systems for sleep. Section 3 presents the architecture and algorithms
used in our system. Section 4 illustrates our experimental evaluation, the user study, and
the achieved results. Section 5 discusses the results, limitations, and possible improvements
of our work. Finally, Section 6 concludes the paper.

2. Related Work

Artificial intelligence (AI) applied to healthcare aims to develop computer systems
capable of performing tasks that normally require human intelligence, allowing the extrac-
tion of deeply hidden information in medical big data that would otherwise be difficult to
find. It was first employed in the medical field in the early 1970s as a diagnostic support
tool [17]. Today, due to the increasing computing power of modern hardware architectures
and the vast amount of digital data available for research, AI is increasingly used to guide
clinical decisions [18], to detect or predict in advance a disease [19], and to support surgeons
during surgery and patients during rehabilitation [20]. ML has been widely used to predict
and diagnose mental disorders, monitor patients’ moods and mental health, and improve
communication between patients and mental health professionals [21].

An important means to prevent different mental disorders is to improve sleep quality.
In fact, people who suffer from sleep deficiencies are more prone to depression, anxiety,
stress, and other illnesses affecting the psyche. Furthermore, the study conducted by Scott
et al. [22] states that improved sleep quality can have positive effects on composite mental
health, depression, rumination, stress, and psychosis symptoms. For this reason, several
studies have been carried out concerning the prediction of sleep quality through the use of
sensors and ML algorithms. The problem of sleep quality prediction is mainly treated as a
classification problem rather than a regression problem [23].

In [24], the close correlation between physical activity and sleep quality is verified.
Specifically, sleep efficiency is predicted through the use of the wearable device ActiGraph
Gt3X+, capable of acquiring data on physical activity during awake time, and several deep
learning algorithms. Arora et al. [25] analyze data from commercial smartwatches and
clinical actigraphy for sleep quality estimation and prediction through a convolutional
neural network (CNN) and multilayer perceptron (MLP). In [26], the authors propose
to monitor the sleep quality of caregivers of people suffering from dementia to assess
their stress and support clinical decisions. The E4 wristband is used to capture heart rate
variability, electrodermal activity, body movement, and skin temperature. Subsequently,
several ML algorithms are tested.

Sound analysis can be beneficially used to monitor sleep quality. The iSleep system
presented by Chang et al. [27] uses the smartphone’s built-in microphone to detect events
that may influence sleep, such as body movement, coughing, and snoring, and provide
information on overall sleep efficiency on a daily basis in an unobtrusive manner. Sleep-
related events are detected by means of a decision tree-based classifier. In addition to
the microphone, other smartphone sensors employed to detect sleep information in the
literature are accelerometers, screen on/off events, light sensors, stationary modes, batteries,
and touch screen events [28]. For instance, the accelerometer can be used to measure body
movement and to understand sleep phases, and the time when the screen is switched off,
the touch screen is not used, or darkness is detected can be used as an indicator of the
sleep duration.

A few recent works propose to generate user-friendly textual explanations of AI
predictions using generative pre-trained Transformers (GPT) such as ChatGPT, the popular
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large language model (LLM)-based natural language processing (NLP) system developed
by Open AI [29]. In particular, Susnik [30] proposes a framework that takes advantage
of ML techniques to understand whether a student is at risk of leaving university, and
ChatGPT to convert candidate prescriptive feedback into a form of natural language that
students can understand. In this paper, we investigate a similar approach. To the best of
our knowledge, our work is the first attempt to provide a system to forecast sleep quality
and provide context-aware tips to improve sleep based on ML and LLM.

3. Methodology

Figure 1 illustrates our system architecture.

Figure 1. System architecture.

A large set of raw data is continuously acquired from smartphone sensors, including
current activity, location, movement data, sleep patterns, and other contextual information.
A data integration layer is responsible for preprocessing the raw data to represent them in
a common format, dealing with noisy and missing values. Then, the most relevant features
are extracted from the preprocessed data by the feature extraction module, which creates
the feature vectors used by the sleep quality forecasting module. The latter relies on a
random tree regressor model to predict the user’s sleep quality for the next night. Finally,
an LLM architecture is exploited to generate recommendations to improve sleep quality
based on the obtained predictions, and to provide detailed explanations of the reasons
behind the predictions. Recommendations and explanations are provided to the individual
through a user-friendly smartphone app.



Future Internet 2024, 16, 46 5 of 18

3.1. Raw Data Acquisition

Several heterogeneous data are continuously collected via the microphone, accelerom-
eter, light sensor, GPS, and Bluetooth of the smartphone to acquire a comprehensive view
of the user’s context, including physical activity, conversation, sleep patterns, location, and
co-location. In particular, the system acquires the following raw context data:

• The type of performed activity;
• The types of sounds recorded by the smartphone’s microphone.;
• The smartphone modality, i.e., locked or unlocked;
• Light information, i.e., whether the smartphone is in a dark or in an illuminated

environment;
• Conversation activities, e.g., detected through phone calls or messaging sessions;
• The distance covered by the user.

Each of the above pieces of information is annotated with the start and end timestamp
of occurrence.

For the sake of experimentation, and to train the random tree regressor model, ground
truth data about the number of slept hours and perceived sleep quality are acquired with
the help of ecological momentary assessment (EMA) questionnaires, i.e., short surveys
periodically administered to a selected set of volunteers.

3.2. Data Integration

Data cleaning and normalization are applied to the acquired raw data to make them
consistent and homogeneous.

• Data cleaning includes the detection of outliers, missing values, and noise reduction.
This step is particularly important when dealing with raw sensor data, since they are
typically characterized by uncertainty and the presence of noise. In this context, outlier
detection has the goal of recognizing noisy sensor data and removing them. Indeed,
these data may confuse the ML algorithm and damage the recognition performance.
Outlier detection is performed using a statistical method [31]. Missing data are
replaced by means of interpolation. Noise reduction is achieved by applying low-pass
filters to inertial sensor data to eliminate high-frequency noise.

• Data provided by different smartphone sensors may use different reference scales.
Data normalization is applied to ensure that all the acquired data have the same scale.
For this reason, data acquired from sound and light sensors are normalized in a [0, 1]
range, while the reported distance is represented in a metric scale.

3.3. Feature Extraction

Extracting representative features from sensor data is essential to improve the pre-
diction capabilities of the ML algorithm. In this work, we use a sliding-window-based
technique to extract statistical features from preprocessed data provided by the data inte-
gration module. We partition each day into 12 time slots of two hours each. For each time
slot, we compute the following features.

• The time duration spent performing each activity type, i.e., stationary, walking, running,
or unknown.

• The time duration of each detected sound type, i.e., silence, voice, noise, or unknown.
• The time duration during which the smartphone was locked.
• The time duration during which the smartphone was in a dark environment.
• The time duration during which the user was engaged in a conversation.

In the above features, all the time durations are measured in minutes. We also collect
the number of hours slept during the previous night, as well as features regarding the
distance traveled during the morning (7 a.m.–1 p.m.), afternoon (1 p.m.–8 p.m.), and
night (8 p.m.–7 a.m.), respectively. In these features, the traveled distance is measured in
kilometers.
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The above features represent the context information extracted during the day from
the smartphone user’s activities. Hence, a user’s day is characterized by 135 contextual
features.

Finally, the ground truth regarding sleep quality is represented by a real number in
[1, 4], where 1 represents very good sleep quality, and 4 represents very bad sleep quality.
As explained before, the ground truth is collected from a selected set of users by means of
questionnaires.

3.4. Sleep Quality Forecasting

This module is executed on a daily basis. It is responsible for processing the feature
vectors received during the day to forecast the sleep quality that the user will experience
in the next night. The forecast is obtained by executing a random tree regressor model.
As explained in Section 3.1, the model is trained thanks to a set of labeled data obtained
from volunteers.

The model of the random tree regressor corresponds to a decision tree, where the
feature space is progressively split into subsets based on certain features. Each internal
node of the tree, including the root, represents a decision based on the value of a particular
feature, and each leaf node represents a possible forecast value. In order to provide context-
aware tips to improve sleep, we are interested in understanding the reasons for which the
ML algorithm predicts a given value. To this aim, we need to inspect the decision path of the
decision tree, i.e., the sequence of feature conditions evaluated along the branches from the
root to the specific leaf node that led to the actual forecast. We derive the decision path by
leveraging the machine learning library employed in the experimental evaluation of our
work, namely scikit-learn https://scikit-learn.org/ (accessed on 29 January 2024).

Figure 2 shows a sample of the random tree model. As exemplified in the figure,
the green nodes represent the decision path for a certain feature vector. In our case, the
decision path provides insights into how the algorithm arrived at a specific sleep quality
forecast based on a subset of the user’s feature vector values, which encode information
about the user’s past behavior and contextual conditions. The listing reported in the box
below the tree in Figure 2 shows the notation that we use to represent the decision path
illustrated by the green nodes. Note that, in our notation, we represent the true conditions
that determined the path from the root to the decision leaf. For instance, since the condition
of the root node (‘previous day sleep duration ≤ 10.5′) was evaluated as false in the
example, in our notation, we report the corresponding true condition, ‘previous day sleep
duration > 10.5′. We use this notation to communicate the decision path to the LLM-based
modules. Indeed, as explained in Section 3.5, we do not craft the prompt given to the
LLM modules using the feature vector; instead, we use the decision path, since it precisely
describes the reasons and conditions that determine the forecast for a given individual.
Otherwise, the whole feature vector would contain several pieces of irrelevant information,
i.e., features that did not contribute to the actual forecast.

The random tree regressor predicts a real number r between negative infinity and
positive infinity, while we are interested in providing the user with a qualitative forecast
of his/her future sleep quality. For the sake of this work, we consider four levels of sleep
quality, ranging from very good sleep quality (level 1) to very bad sleep quality (level 4).
Hence, we approximate the predicted number r to the nearest integer in [1, 4] to compute
the corresponding qualitative sleep quality level. In particular,

• values of r in (−∞, 1.5) are approximated to 1, which represents very good sleep quality;
• values of r in [1.5, 2.5) are approximated to 2, which represents fairly good sleep quality;
• values of r in [2.5, 3.5) are approximated to 3, which represents fairly bad sleep quality;
• values of r in [3.5, ∞) are approximated to 4, which represents very bad sleep quality.

https://scikit-learn.org/
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Decision path from the root to the decision leaf:
-> Previous day sleep duration > 10.50 hours

-> Duration of walking activity ≤ 15 minutes
-> Duration of Conversation in the time range 18-20 ≤ 1 minute

Figure 2. A sample of the random tree model. Considering the feature vector values, the decision
tree follows a path from the root node to a leaf node that represents the model’s forecast. The decision
path is the sequence of feature conditions evaluated along the branches from the root to the specific
leaf node, determining the prediction for a particular feature vector. Consider, as an example, a
feature vector including the following values: ‘Previous Day Sleep Duration′ = 11 h; ‘Duration of
Noise in 20–22′ = 10 min; ′ Duration of Walking′ = 5 min; ′ Duration of Locked in 18–20′ = 40 min;
′ Duration of Dark in 22–24′ = 85 min; ′ Duration of Conversation in 18–20′ = 0 min. In this case,
the decision path is composed of the nodes highlighted in green, and the random tree sleep quality
forecast value is 3.81. In each node, samples represents the number of instances of the training set that
match the conditions of the node, the value represents the most probable value, and mse represents
the corresponding mean squared error. The listing in the box below the tree shows the notation that
we use to represent the decision path. We use this notation to communicate the decision path to the
LLM-based modules.

The sleep quality forecasting module communicates its approximated forecast, to-
gether with the corresponding decision path, to the module for LLM-based behavior change
tip generation and to the LLM-based context-aware explainer module.

3.5. LLM-Based Behavior Change Tip Generation

The objective of this module is to produce context-aware natural language tips to help
users to improve their sleep quality through healthier behaviors. Indeed, several behaviors,
such as inconsistent sleep schedules, inadequate physical activity, and the use of electronic
devices, may disrupt the natural sleep–wake cycle and hinder the ability to achieve restful
and deep sleep. However, the provision of generic tips may have little effect on behavior
change, since they cannot capture the exact situation of the individual and the reasons for
his/her poor sleep quality.

In order to provide context-aware tips, the behavior change tip generation module
considers the decision path that leads to the forecast of poor sleep quality. The module
dynamically creates a prompt to ask a generative pre-trained Transformer (GPT) model
to provide suggestions to improve the user’s sleep quality considering the decision path
conditions. A sample of the prompt is shown in Figure 3.
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We used a decision tree to forecast the sleep quality of a person based on his/her
past behavior. The resulting decision path is the following:

Decision path from the root to the decision leaf:
-> Previous day sleep duration ≤ 6.50 hours ,

-> Duration of noise in the time range 20-22 > 29 minutes ,
-> Time spent in a dark room in the time range 22-24 ≤ 38 minutes

-> Rating of sleep quality of the previous day > 3

The resulting sleep forecast is: Fairly bad sleep quality

Considering the decision path and the decision tree prediction , please provide
personalized natural language suggestions for the person to improve sleep quality.

Figure 3. A sample of the prompt issued to the generative pre-trained Transformer.

For the sake of this study, we used GPT 3.5 to generate context-aware tips according
to the prompt request. Figure 4 shows the response generated to the sample prompt shown
in Figure 3.

Based on the decision tree analysis and the identified factors influencing sleep
quality , here are personalized suggestions to improve your sleep:

Increase Sleep Duration:
Ensure you get at least 6.50 hours of sleep each night. Consider adjusting your

bedtime or creating a relaxing pre -sleep routine to help you wind down.

Manage Noise Exposure:
Limit noise in the evening , especially between 20:00 and 22:00. This might involve

using earplugs , closing windows , or finding a quieter environment during this
time.

Enhance Sleep Environment Darkness:
Spend more time in a dark room between 22:00 and 24:00. Consider using blackout

curtains or an eye mask to create a conducive sleep environment.

Improve Sleep Quality Ratings:
Work on activities or habits that contribute to a better sleep quality rating.

This could include establishing a relaxing bedtime routine , practicing
mindfulness or relaxation exercises , and addressing any stressors that may
impact your sleep.

Figure 4. The generative pre-trained Transformer response to the prompt shown in Figure 3.

The provided tips strongly depend on the person’s behavior, which determines his/her
feature vectors and, consequently, the decision path. Figures 5 and 6 show the prompt and
the corresponding response, respectively, in a different use case, which corresponds to the
scenario illustrated in Figure 2.

We used a decision tree to forecast the sleep quality of a person based on his/her
past behavior. The resulting decision path is the following:

Decision path from the root to the decision leaf:
-> Previous day sleep duration > 10.50 hours

-> Duration of walking activity ≤ 15 minutes
-> Duration of Conversation in the time range 18-20 ≤ 1 minute

The resulting sleep forecast is: Very bad sleep quality

Considering the decision path and the decision tree prediction , please provide
personalized natural language suggestions for the person to improve sleep quality.

Figure 5. A different sample of the prompt issued to the generative pre-trained Transformer.
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Based on the decision tree analysis and the identified factors influencing sleep
quality , here are personalized suggestions to improve your sleep:

Optimize Sleep Duration:
While it ’s important to get enough sleep , sleeping more than 10.50 hours might be

excessive and could contribute to feelings of grogginess. Aim for a more
balanced sleep duration , typically between 7 to 9 hours per night.

Increase Physical Activity:
Since the decision tree indicates a low duration of walking activity , consider

incorporating more physical activity into your daily routine. Regular exercise
has been shown to improve sleep quality. Aim for at least 30 minutes of

moderate -intensity exercise most days of the week.

Extend Conversation Time in the Evening:
Increase the duration of your social interactions during the early evening hours

(18:00 to 20:00). Meaningful conversations can help relax your mind and
promote a sense of connection , which may positively impact your sleep.

Figure 6. The generative pre-trained Transformer response to the prompt shown in Figure 5.

Considering the above examples, it is evident that the provided suggestions are
contextualized considering the past behavior of the individual. In the first example
(Figures 3 and 4), the individual slept for less than 6.50 h, was exposed to noise for more
than 29 min in the time range 20–22, spent less than 38 min in a dark place from 22 to 24,
and experienced poor sleep quality during the previous day. Hence, the module suggests
sleeping longer, limiting noise exposure in the evening, enhancing the darkness of the
sleep environment at night, and improving sleep through healthy routines. In the second
example (Figures 5 and 6), a different individual slept for more than 10.50 h, walked for
less than 15 min, and had no conversation from 18 to 20. In this case, the module provides
different suggestions, i.e., sleeping for less time, increasing physical activity, and engaging
in meaningful social interactions in the evening. We believe that such context-aware sug-
gestions are likely to be more effective than generic ones that do not take into account the
user’s actual behavior.

3.6. LLM-Based Context-Aware Explainer

For applications related to health and well-being, it is fundamental to provide the
user with explanations about the suggestions received by the ML algorithm. Hence, our
system includes a dedicated module that dynamically produces a prompt asking the GPT
to explain the reasons underlying the generated behavior change tips.

Of course, the explanations of the behavioral change tips must be linked closely to the
individual’s specific past behavior. This tight coupling leverages the individual’s historical
actions, making the explanations directly relevant to his/her habits. In contrast, generic
explanations would lack this contextual connection, diminishing their impact and applica-
bility to the user’s unique lifestyle and routines. For this reason, we considered different
prompts to enable the GPT to produce explanations that are both easily understandable
and tightly coupled to the individual’s unique context.

As a result of our tests, our choice was to ask the GPT to produce explanations
considering the decision path of the decision tree. Indeed, the decision path includes the
specific conditions that determined the sleep quality forecast (e.g., too long or too short
sleep time, social interactions, exposure to noise, etc.). The chosen prompt, together with
the generated response, is shown in Figure 7 considering the use case of Figures 5 and 6.
Note that, since the prompt of the “LLM-based context-aware explainer” module is issued
in the same context as the “LLM-based behavior change tip generation” one, we do not
need to explicitly report the decision path in the former prompt.
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Prompt: Explain the reasons why you provided those suggestions considering the
decision path of the decision tree.

Response:
Certainly! Let ’s break down the personalized suggestions based on the decision path of

the decision tree:

Optimize Sleep Duration:
Decision Path: Previous day sleep duration > 10.50 hours.
Reasoning: Sleeping more than 10.50 hours may lead to feelings of grogginess and

can negatively impact sleep quality. The suggestion is to aim for a more
balanced sleep duration , typically between 7 to 9 hours , which is considered
optimal for most adults.

Increase Physical Activity:
Decision Path: Duration of walking activity < 15 minutes.
Reasoning: The decision tree suggests that the individual has a low duration of

walking activity. Regular physical activity is associated with improved sleep
quality. Therefore , increasing the duration of daily walking can contribute to
better overall sleep.

Extend Conversation Time in the Evening:
Decision Path: Duration of Conversation in the time range 18-20 < 1 minute.
Reasoning: The limited duration of evening social interactions might contribute to

a lack of relaxation and social connection before bedtime. Increasing the
time spent in meaningful conversations during the early evening hours can
positively impact mood and potentially improve sleep quality.

Figure 7. LLM-based explanations of the use case illustrated in Figures 5 and 6.

3.7. Smartphone Application

On a daily basis, a custom smartphone application receives behavior change tips and
corresponding explanations, parses them, and displays them in a user-friendly manner to the
user. Samples of the app tips and explanations are shown in Figures 8 and 9, respectively.

Figure 8. Smartphone app prediction.
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Figure 9. Smartphone app explanation.

4. Experimental Evaluation

We conducted an extensive experimental evaluation of our system to assess both its
predictive capabilities and the user experience.

4.1. Dataset

In order to evaluate the prediction performance of our system, we used the Stu-
dentLife [32] dataset. The StudentLife dataset was collected by a research team from
Dartmouth College within the activities of the StudentLife project, a research initiative
aimed at understanding the daily activities, behaviors, and well-being of college students.
This dataset incorporates information obtained from smartphone sensors and wearable
devices, encompassing data on physical activity, location, sleep patterns, modalities, and
communication. Additionally, it includes survey responses addressing different health
parameters, including sleep quality.

Approval of all ethical and experimental procedures and protocols of the StudentLife
dataset was granted by the Institutional Review Board at Dartmouth College [32]. The data
collection lasted 10 weeks and was carried out with 48 individuals (30 undergraduates and
18 graduate students; 10 females and 38 males) using Android smartphones. Smartphone
data were automatically gathered without user input and sent to the StudentLife project
cloud infrastructure. The app automatically inferred participants’ physical activity, sleep
duration, and sociability, including the number and duration of conversations. The sleep
recognition algorithm achieved 95% accuracy in correctly recognizing bedtime, with an
error ±25 min. The app also gathered data from different sensors, including inertial
sensors, location/co-location/proximity, and audio and light sensor readings. Moreover,
participants were prompted to respond to various Ecological Momentary Assessment
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(EMA) questions related to different health dimensions, including perceived sleep quality.
The EMA reports, supplied by a medical doctor and psychologists from the research team,
were administered multiple times a day, with an average of 8 EMAs per day. Different
incentives were provided to participants to promote compliance and ensure data quality.
The acquired data were fully anonymized to enforce data privacy and were stored on
secure servers. Overall, the total size of the dataset is 52.6 GB. The dataset is represented in
tabular format, where each row corresponds to a sensor event. The dataset encompasses a
comprehensive array of information, comprising approximately 23 million accelerometer
events, 99 million audio-related events, 79 thousand conversation events, 7 thousand events
associated with light levels, and 9 thousand events related to phone usage. The dataset is
publicly available at https://studentlife.cs.dartmouth.edu/ (accessed on 29 January 2024).

4.2. Sleep Quality Forecasting

To evaluate the effectiveness of our system in forecasting the individual’s sleep quality
in the following night based on past smartphone data, we used a leave-one-person-out
cross-validation approach, i.e., the data of one person were used for testing, while the
data of the remaining people were used for training, and testing was iteratively executed
with all subjects. The code to run the experiments was implemented in Python, using its
machine learning libraries.

As explained before, we treat sleep quality forecasting as a regression problem, where
the target value (i.e., the quality of sleep of the next night) is represented by a real number
ranging from 1 (very bad sleep quality) to 4 (very good sleep quality). We performed the
experiments with two well-known algorithms: the random forest regressor and the random
tree regressor. We chose these algorithms because they achieved good performance in
similar tasks even when the dimension of the available training set was relatively small [33].

We measured the effectiveness of prediction using the Pearson correlation coefficient
r [34]. The results, shown in Table 1, indicate that the random tree regressor and the random
forest regressor have similar performance on this task. Indeed, the former achieves an r
value of 0.33, while the latter achieves r = 0.22. However, the logic behind the predictions
is more understandable when using the random tree because it consists of a series of binary
decisions based on input features. Instead, the logic behind the predictions in a random
forest is more complex to interpret because it consists of the aggregation of predictions
from several trees. Hence, in order to provide the LLM with clear and simple information
about the model prediction to generate suggestions and explanations, for the rest of our
experiments, we used the random tree regressor to implement the sleep quality forecasting
module.

Table 1. Sleep quality forecasting results.

Regressor r

Random Forest 0.22

Random Tree 0.33

The achieved results indicate that there is a statistical correlation between the forecast
of our system and the actual sleep quality perceived by the individual. In particular,
a correlation value r between 0.2 and 0.5 indicates a moderate correlation between the
predicted score and the ground truth. We point out that, in our experiments, the models
were trained with data acquired from a relatively small number of individuals. We expect
to obtain higher correlation scores using a larger training set.

4.3. User Study

In order to evaluate the utility of the behavior change tips of our system, we conducted
a usability test with a group of students from the University of Cagliari, Italy. The study
was conducted in June 2023. Participants were recruited through personal contacts and

https://studentlife.cs.dartmouth.edu/
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networking. The participants of our study consisted of 10 students (7 males and 3 females)
aged 21 through 26. The average age was 23. All of them had experience in the usage of
smartphones and electronic interfaces.

In our study, we employed the assessment framework introduced by Mohseni et al. [35].
The evaluation process involved administering questionnaires and conducting interviews with
participants after presenting them with an overview of the system and the related application.
To measure agreement with the statements in the questionnaire, we utilized the Likert scale
method [36].

The questionnaire is presented in Table 2. Each participant had an individual meeting
during which we provided a high-level explanation of the system’s functionality. Subse-
quently, we demonstrated a customized version of our smartphone application without
explanations, allowing participants to familiarize themselves with the interface. Afterward,
we introduced the original application with explanations and observed the participants’
interactions for a period. We then instructed the participants to independently use both
versions of the application until they felt confident about the system’s functionality and
potential utility. Finally, the participants completed the questionnaire online through a
form.

Table 2. Questionnaire for the user study.

# Statement

Q1 I have the feeling of trust in the system without explanations regarding its prediction of the sleep quality.

Q2 I have the feeling of trust in the system with explanations regarding its prediction of the sleep quality.

Q3 The system without explanations can assist me in improving my sleep quality.

Q4 The system with explanations can assist me in improving my sleep quality.

Q5 The explanations would help me decide whether the forecast of the system is correct.

Q6 Explanations are easily understandable.

Q7 Explanations are detailed enough.

Q8 Explanations are not lengthy.

Q9 Explanations are useful to understand the reason for the system’s forecast.

Q10 Explanations help reduce the learning time on the system.

Q11 In general, I am satisfied with the explanations provided by the system.

The questions primarily focused on the application’s utility, both with and without ex-
planations for the obtained forecast, and whether the explanations were easy to understand.
The participation of potential users, particularly students, was crucial in obtaining diverse
perspectives and evaluating the application’s suitability within its user base. Their re-
sponses contributed to a comprehensive assessment of the application’s utility, highlighting
its strengths and areas that required further attention.

The results, illustrated in Figure 10, are visualized using a horizontal bar chart. The
chart displays the percentage of responses for each question. This type of chart provides a
clear and immediate representation of the emerging trends in the questionnaire, identifying
the predominant trends and differences in user responses to the various questions.

The average results for the questions regarding the system without explanations (Q1
and Q3) reached a mean value of 2.7 and 2.8, respectively. In contrast, the average results for
the questions regarding the system with explanations (Q2 and Q4) were close to the value of
4 (mean value of 4.1 and 3.8, respectively). These average values highlight an improvement
in the trust, usefulness, and understanding of the system when explanations are provided
regarding the prediction of sleep quality. The responses suggest that users perceive practical
value in the system with explanations and consider them helpful in assessing the system’s
reliability and making informed decisions. According to the results, the explanations
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provided by the system are considered easily understandable and sufficiently detailed.
Moreover, users appreciate the clarity and accessibility of the explanations.

Figure 10. Results of the questionnaire.

Furthermore, users believe that the explanations are useful in understanding the
system’s reasoning (Q9, average score 4.1) and reducing the time required to learn how the
system functions. This suggests that the explanations provide valuable insights into the
system’s decision-making process, helping users to grasp its functioning more efficiently.
However, it is worth noting that the average score for the question about the length of
explanations (Q8) is 2.4. This suggests that users generally would like the explanations to
be more concise, aiming for greater efficiency.

Overall, the system with explanations appears to have a positive impact on the user
experience compared to the system without explanations. Users find the explanations
easily understandable, appreciate their level of detail, and perceive them as helpful in
understanding the system’s reasoning and reducing the learning time.

5. Discussion and Limitations

The difficulty of acquiring large training sets of accurately labeled data is a challenging
issue in computing and behavior recognition, due to problems of labeling costs and privacy
issues [37]. Hence, the experimental evaluation of our work is relatively limited by the
dimensions of the available dataset. Our results are, however, in line with those found
in the literature. In [38], the authors presented a system to predict sleep quality through
the analysis of EEG signals and health and lifestyle information such as ethnicity, gender,
education, marital status, age, height, hip and waist circumference, body mass index,
weight, and caffeine or alcohol intake. The model is composed of a recurrent neural network
that analyzes and extracts information from EEG signals and a regression algorithm that,
by analyzing the inferred information from EEG and the most traditional features, predicts
sleep quality. The results were evaluated using the coefficient of determination r2, which is
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equal to the square of the Pearson correlation coefficient r [39]. The algorithms chosen by
the authors were the random forest, AdaBoost, gradient boosting regression, support vector
machine, and multilayer perceptron. The best results were obtained in the prediction of the
self-reported sleep duration, while, for the prediction of the depth of sleep, the prediction
of sleep restfulness, and the prediction of sleep quality compared to the usual, the r2 values
obtained were all less than 0.2, corresponding to r ∼ 0.44. Furthermore, since massive data
about users’ behavior and sleep quality are not currently available, we could not apply
deep learning algorithms, which are known to perform well in this kind of task [24,40] but
require very large training sets [41]. As a consequence, we adopted classical ML algorithms
that may provide good recognition rates even with few examples [42]. In particular, the
random tree algorithm has proven to be effective in sleep monitoring systems [27]. Indeed,
based on the achieved results, we can observe a statistical correlation between the forecast
of our system and the actual sleep quality perceived by the individual. However, the
achieved Pearson correlation value indicates only a moderate correlation. We believe that
training the model with more instances would lead to a relevant increase in the recognition
performance; however, this should be confirmed by experiments.

As anticipated, with a larger dataset size, predictions of sleep quality could be im-
proved using deep learning methods. The use of deep learning techniques, on the other
hand, would make it more difficult to provide easily understandable explanations, due to
the extreme complexity of deep learning models [43]. Another limitation of our system
is the type of sensors used, which is limited to smartphone sensors. Indeed, integrating
other sensors in our system, such as wearables and environmental sensors, would provide
additional information to improve sleep forecasting.

The most innovative contribution of our work is the use of LLM to explain the factors
influencing the sleep quality forecasts of the ML reasoner, and to provide transparent,
context-aware suggestions aimed at enhancing sleep quality. The objective is to foster trust
and encourage users’ involvement, empowering them to take an active part in improving
their sleep. Concerning this aspect of the system, an initial user study indicated that
providing explanations on sleep quality forecasts and suggestions to improve it increases
the trust, usefulness, and understanding of the system. However, these results should be
confirmed through a larger study involving a vast number of volunteers. A longer user
study would also allow us to assess the users’ adherence to the system’s suggestions and to
quantitatively assess improvements in sleep quality.

An intrinsic problem of our approach is that, due to its non-deterministic nature, the
GPT would likely generate different outputs given the same prompt. This fact introduces
uncertainty in the tip generation process. Another limitation of the current work is that the
tips are not personalized based on an extensive user profile, since the LLM-based modules
only consider the contextual features represented in the feature vectors. Our system should
be extended to consider additional profile information that may impact sleep, such as age
and occupation. Furthermore, practitioners should be enrolled to validate the correctness
of the suggestions provided by our system in order to fine-tune the GPT model and further
improve the behavior change tips. Finally, our system could be improved by including
domain-specific theoretical knowledge of sleep behavior to refine the ML models for the
addressed tasks.

6. Conclusions and Future Work

In this paper, we addressed the challenging issue of providing context-aware and
transparent behavior change tips to improve sleep quality considering the user’s past
behavior and the sleep forecast. Differently from previous works in this field, our system
couples ML algorithms and LLM to fine-tune the tips and explanations to the past behavior
and context of the user. Experiments with real-world data showed the effectiveness of
the sleep forecast module, and a user study suggests that our system may increase users’
trust and adherence. Several research directions should be investigated in the future. The
performance of the system could be improved through the use of a larger dataset. This
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would allow us to test additional ML algorithms that require very large training sets,
such as deep learning algorithms. Furthermore, having a dataset acquired over a long
period of time from a large number of subjects would allow us to evaluate additional
characteristics of the system, including the user’s adherence to the system’s suggestions,
and the effectiveness of the system in improving sleep quality in the long term. The
performance of the system could also be improved by using different types of sensors, such
as wearable sensors, capable of acquiring additional information about the user’s body
and everyday life. Our system could be further improved by fine-tuning the GPT model to
obtain more effective tips. Fine-tuning will require the cooperation of medical personnel to
validate and possibly correct the tips produced by the GPT based on the detected context
and past behaviors.
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