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Abstract: The sense of smell plays an important role in influencing the eating habits of individuals
and consequently, their body weight, and its impairment has been associated with modified eating
behaviors and malnutrition problems. The inter-individual variability of olfactory function depends
on several factors, including genetic and physiological ones. In this study, we evaluated the role of the
Kv1.3 channel genotype and age, as well as their mutual relationships, on the olfactory function and
BMI of individuals divided into young, adult and elderly groups. We assessed olfactory performance
in 112 healthy individuals (young n = 39, adult n = 36, elderly n = 37) based on their TDI olfactory
score obtained through the Sniffin’ Sticks test and their BMI. Participants were genotyped for the
rs2821557 polymorphism of the human gene encoding Kv1.3 channels, the minor C allele of which
was associated with a decreased sense of smell and higher BMIs compared to the major T allele.
The results show that TT homozygous subjects obtained higher TDI olfactory scores and showed
lower BMIs than CC homozygous subjects, in all age groups considered. Furthermore, the positive
effect of the T allele on olfactory function and BMI decreased with increasing age. The contribution
of the genetic factor is less evident with advancing age, while the importance of the age factor is
compensated for by genetics. These results show that genetic and physiological factors such as age
act to balance each other.
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1. Introduction

The sense of smell is a rapid and important system for early signaling of the presence
of environmental dangers, such as smoke, chemicals, natural gases and spoiled foods [1],
and its decline can increase risk to the health and safety of individuals [2–4]. An impair-
ment in olfactory function can also impact the eating behavior and nutritional status of
individuals [5–7]: people with smell disorders report having changed their eating habits by
preferring more palatable and high-energy foods, such as fats and sugars, and spices and
salt, compared to foods such as fruits and vegetables, with a consequent increase in body
weight [8–13].

Among humans there is great inter-individual variability in olfactory function: from
normosmia (normal olfactory function) to anosmia (general olfactory blindness or specific
blindness to some odors), passing through hyposmia (reduced sense of smell) [14–20]. This
variability can be determined by genetic factors, such as the different expression and/or
functionality of olfactory receptors and/or odorant binding proteins (OBPs) [21–26]; metabolic
factors, such as circulating levels of peptides, such as leptin, insulin and ghrelin [27–31]; and
environmental factors, such as lifestyle or the presence of air pollution [32–37]. Loss of smell is
also related to Parkinson’s and Alzheimer’s diseases, depression, autoimmune/inflammatory
diseases, hypertension, diabetes and obesity [38–52]. Finally, physiological factors such as
sex [53,54] and age [55–59] seem to be responsible for alterations in olfactory function.
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Recent studies on vertebrates, from mammals to humans, have shown that Kv1.3
voltage-gated potassium channels are not only abundantly expressed in the olfactory
epithelium and olfactory bulb and in insulin-sensitive tissues, such as adipose tissue, liver
and skeletal muscle tissue, but they also play an important role in olfactory function and
energy metabolism [60,61]. In fact, on the one hand, the expression and functionality of
Kv1.3 channels regulates potassium flux across the membrane, contributing to the resting
membrane potential, determining the firing rate of action potentials and influencing the
interspike interval; on the other hand, they can influence olfactory acuity, plasma glucose
levels and body weight [60–68].

With advancing age, a progressive decline in olfactory function is observed and the
percentage of individuals who experience olfactory disorders increases with age [55,57,69–73].
In addition to this, the rs2821557 (T/C) polymorphism of the human gene encoding Kv1.3
channels has been shown to influence the olfactory function of adult individuals of both sexes,
their body weight and plasma glucose levels [61,62]. For these reasons, our first objective
was to study the effect of this polymorphism on the olfactory function of healthy individuals
belonging to different age groups (classified as young, adult or elderly). The aim was to
evaluate whether the major T allele, associated with better olfactory performance than the
minor C allele, can lead to a lower decline in olfactory function associated with the age of
individuals. In particular, we will evaluate, on the one hand, the role played by genetic and
physiological factors on the olfactory function of healthy individuals and, on the other hand,
whether there is an interaction between them.

In addition, given the role that the olfactory system plays in the eating habits and food
choices of individuals and considering the existing relationship between olfactory function
and body weight, the second objective was to study the effect of the genotype of the Kv1.3
channels on the BMI of individuals belonging to the different age groups considered. We
evaluated whether the association of the T allele with a lower body weight, compared to
the C allele, is also present with advancing age. In fact, elderly individuals, characterized
by a reduced sense of smell, could have a poorer quality of diet [74], trying to compensate
for the lack of gratification linked to reduced olfactory stimulation with foods richer in fats,
sugars, salt and spices [9–12,16,75–77].

2. Materials and Methods
2.1. Subjects

One hundred and twelve Caucasian volunteers (63 F, 49 M; age 45.79 ± 1.74 years;
BMI 24.89 ± 0.41 kg/m2) were recruited in the metropolitan area of Cagliari (Sardinia,
Italy) by means of a public announcement at the local university. Participants were divided
into three different age groups: young group (n = 39; age of subjects 16–35 years), adult
group (n = 36; age of subjects 36–55 years) and elderly group (n = 37; age of subjects
>55 years). This subdivision was chosen according to the age groups reported in Hummel
and co-workers [78]; in fact, as specified in the following paragraph, the classification
into individuals with normosmia or hyposmia was carried out using the olfactory scores
reported in that study as cut-offs.

Individuals who had been previously diagnosed with neurological or psychiatric
diseases, lactation or pregnancy, a history of cancer, head trauma, sinusitis or nasal septum
disorders were discarded. Subjects who declared having had allergic reactions or nasal
congestion before the olfactory tests were excluded from participation in the study. Indi-
viduals who declared being smokers or had stopped smoking less than one year ago were
also discarded. Each participant was asked to present themselves after fasting for at least
two hours and without the addition of perfumes.

The ratio of weight to the square of height (kg/m2) was used to calculate BMI and its
value was subsequently used to classify each individual as normal weight (18.5–24.99 kg/m2)
or overweight (≥25.00 kg/m2) [79].

The study protocol, drawn up in accordance with the Declaration of Helsinki, was
approved by the local Ethics Committee. Before the tests, the experimental protocol was
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explained to each participant and they were subsequently asked to sign an informed
consent form.

2.2. Olfactory Sensitivity Screening

Olfactory threshold (T-test), olfactory discrimination (D-test) and olfactory identifi-
cation (I-test) tests, components of the “Sniffin’ Sticks” battery test, were used to evaluate
participants’ orthonasal olfactory function [80]. During both the T-test and D-test, 16 triplets
are used. In the first case, the target pen of each triplet is soaked in n-butanol at increasing
concentrations, while in the second, the target pen of each triplet is soaked with a different
odor from that of the other two pens. The olfactory threshold score is given by the average
of the last four out of seven reversals: every time the participant misses the target pen,
the order of presentation of the n-butanol concentration is reversed, from increasing to
decreasing and vice versa. The olfactory discrimination score is given by the number of
target pens correctly discriminated. Finally, for the I-test, 16 pens filled with odors familiar
to the participants are used and the olfactory identification score is given by the number of
correct identifications.

The sum of the scores with the T-test, D-test and I-test allows the total TDI olfactory
score to be obtained. By means of the total and specific olfactory scores obtained for
threshold, discrimination and identification tests, each participant can be classified as
hyposmic or normosmic [78].

2.3. Subject Genotyping Analysis

DNA was extracted from saliva samples by means of the “QIAamp® DNA” Mini
Kit (Qiagen srl, Milan, Italy), in line with the instructions provided by the manufacturer.
The concentration of purified DNA was estimated by measuring the optical density at
260 nm with a NanoDrop™ One/OneC Microvolume UV-Vis Spectrophotometer (Thermo
Scientific™, Life-Technologies Italia, Europe BV, Segrate, Italy). The TaqMan® SNP Geno-
typing Assay technique by means of the assay with the code C_16121408_10 Assay, specific
for the rs2821557 (T/C) polymorphism of the human Kv1.3 gene (Applied Biosystems by
Life-Technologies Italia, Europe BV), was used for genotyping. The plates were read using
a StepOne™ Real-Time PCR System in accordance with the manufacturer’s instructions
(Applied Biosystems by Life Technologies Milano Italia, Europe BV, Monza, Italy). Ninety-
six-well plates with fast thermal cycling conditions were used to conduct the reactions
and the reagent concentrations were 1X TaqMan® genotyping master mix (code: 4371355),
1X TaqMan® genotyping assays (C_16121408_10 assay), 10 ng of DNA and nuclease-free
water. The reactions included three positive controls (one for each genotype), two neg-
ative controls and two replicates. The results were analyzed by allelic discrimination
using sequence detector software (Genotyping—Applied Biosystems, version v2.3; by
Life-Technologies Italia, Europe BV, Monza, Italy).

2.4. Data Analysis

A generalized linear model was used to determine the relative contribution of BMI,
Kv1.3 genotype and age as variables on the TDI olfactory score.

A two-way ANOVA was used to check for: (a) a significant interaction between age
group × Kv1.3 genotype on the score obtained with the T-test, D-test and I-test and their
TDI sum and on the BMI of subjects; (b) a significant interaction between age group × BMI
status of subjects on their TDI, T, D and I olfactory scores.

Post-hoc comparisons were made using Fisher’s least significant difference (LSD) test;
if the assumption of homogeneity of variance was violated, Duncan’s test was applied. STA-
TISTICA for WINDOWS was used to conduct statistical analysis (version 7.0; StatSoft Inc.,
Tulsa, OK, USA). p values < 0.05 were considered significant.

Fisher’s method (Genepop software version 4.2; http://genepop.curtin.edu.au/genepop_
op3.html, accessed on 6 December 2023) [81] was used to analyze differences of genotype
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distribution and allele frequencies at the Kv1.3 locus between subjects classified as normosmic
or hyposmic for TDI olfactory status according to their age group.

The relationship between BMI vs. olfactory scores was evaluated individually for each
age group and each Kv1.3 genotype using Pearson’s correlation coefficient. Statistical anal-
yses were performed using GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA).
p values < 0.05 were considered significant.

3. Results
3.1. Kv1.3 Genotype and Olfactory Scores

The 112 participants were genotyped for the rs2821557 (T/C) SNP of the human gene
encoding Kv1.3 channels. Molecular results show that 47 individuals were TT homozy-
gotes (19 aged 16–35 years; 14 aged 36–55 years; 14 aged > 55 years), 43 were heterozygous
(14 aged 16–35 years; 15 aged 36–55 years; 14 aged >55 years) and 22 were CC homozygous
(6 aged 16–35 years; 7 aged 36–55 years; 9 aged > 55 years). Mean (± SEM) values of the
total TDI olfactory score reached by the participants belonging to the different age groups
(young = 16–35 years; adults = 36–55 years; elderly > 55 years) according to the Kv1.3 geno-
type are shown in Figure 1. For young and adult groups, post-hoc comparisons subsequent
to two-way ANOVAs (F4,103 = 2.35; p = 0.059) showed that individuals with a CC genotype
obtain significantly lower TDI olfactory scores compared to heterozygous or TT homozy-
gous individuals belonging to the same age group (young: p ≤ 0.017; adults: p < 0.001;
Fisher’s LSD test). In the case of the elderly group, we found significant differences between
all three genotypes: heterozygous individuals also differ from TT homozygous individuals
(p = 0.021) and not only from CC ones (p < 0.001). The results also showed that participants
belonging to the young and adult groups with a TC genotype do not differ from each other,
and that both achieve higher TDI olfactory scores than elderly individuals with the same
genotype (young–elderly: p < 0.001; adults–elderly: p = 0.014; Fisher’s LSD test). In the
case of CC homozygous individuals, young individuals differ not only from elderly people
(p < 0.001; Fisher’s LSD test) but also from adult ones (p = 0.015; Fisher’s LSD test). Finally,
no differences were found among young, adult and elderly groups with a TT genotype
(p > 0.05; Fisher’s LSD test).

Figure 1. Significant effect of age and Kv1.3 genotype on TDI olfactory score. Mean (±SEM) values
of the total TDI olfactory score reached by the participants belonging to the different age groups
(young = 16–35 years; adults = 36–55 years; elderly > 55 years) according to the polymorphism
rs2821557 (T/C) of the Kv1.3 gene. Different letters indicate significant differences between different
genotypes within the same age group (young: a, b; adults: ai, bi; elderly: aii–cii) (p < 0.05; Fisher’s LSD
test subsequent to two-way ANOVA). Asterisks indicate significant differences between individuals
with the same genotype but belonging to different age groups (p < 0.05; Fisher’s LSD test subsequent
to two-way ANOVA).
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Table 1 shows how olfactory function, assessed through the olfactory score, varies
in individuals belonging to the same age group as a result of the Kv1.3 genotype. In
particular, for participants belonging to the young and adult groups, the decreasing order
is: TT = TC > CC; for subjects belonging to the elderly group, the decreasing order is:
TT > TC > CC. Table 2 shows how the olfactory function of individuals with the same
Kv1.3 genotype varies with increasing age. No age-related variation was observed among
individuals with a TT genotype; the decreasing order observed for individuals with a TC
genotype is: young = adults > elderly and that for individuals with a CC genotype is:
young > adults = elderly.

Table 1. Role of the rs2821557 (T/C) polymorphism on the olfactory function of young, adult and
elderly subjects.

Age Group Olfactory Function
Based on Genotype

Young (16–35 years) TT = TC > CC
Adults (36–55 years) TT = TC > CC
Elderly (>55 years) TT > TC > CC

Table 2. Effect of age on the olfactory function of the subjects with different Kv1.3 genotypes.

Genotype Olfactory Function
Based on Age

TT Young = Adults = Elderly
TC Young = Adults > Elderly
CC Young > Adults = Elderly

Genotype distributions and allele frequencies for the rs2821557 (T/C) polymorphism
of the Kv1.3 gene according to TDI olfactory status are shown in Table 3. Subjects classified
as normosmic and hyposmic differ both for genotype distribution (age group 16–35 years:
χ2 = 7.032, p = 0.029; age group 36–55 years: χ2 = 8.672, p = 0.013; age group > 55 years:
χ2 = 9.023, p = 0.011; Fisher’s method) and allelic frequencies (age group 16–35 years:
χ2 = 7.975, p = 0.019; age group 36–55 years: χ2 = 9.489, p = 0.009; age group > 55 years:
χ2 = 10.439, p = 0.005; Fisher’s method).

Table 3. Genotype distribution and allele frequencies of the rs2821557 (T/C) polymorphism of the
Kv1.3 gene in subjects belonging to different age groups classified as normosmic or hyposmic based
on their TDI olfactory score.

Age Group 16–35 years Normosmic
n (%)

Hyposmic
n (%) p-Value a

Genotype 0.029
TT 11 (61.11) 8 (38.10)
TC 7 (38.89) 7 (33.33)
CC 0 (0) 6 (28.57)

Allele 0.019
T 29 (80.56) 23 (54.76)
C 7 (19.44) 19 (45.24)

a p-value derived from Fisher’s Exact Test. Genotypes: TT n = 19; TC n = 14; CC n = 6.
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Table 3. Cont.

Age Group 36–55 years Normosmic
n (%)

Hyposmic
n (%) p-Value a

Genotype 0.013
TT 9 (52.94) 5 (26.32)
TC 8 (47.06) 7 (36.84)
CC 0 (0) 7 (36.84)

Allele 0.009
T 26 (76.47) 17 (44.74)
C 8 (23.53) 21 (55.26)

a p-value derived from Fisher’s Exact Test. Genotypes: TT n = 14; TC n = 15; CC n = 7.

Age Group >55 years Normosmic
n (%)

Hyposmic
n (%) p-Value a

Genotype 0.011
TT 7 (63.64) 7 (26.92)
TC 4 (36.36) 10 (38.46)
CC 0 (0) 9 (34.62)

Allele 0.005
T 18 (81.82) 24 (46.15)
C 4 (18.18) 28 (53.85)

a p-value derived from Fisher’s Exact Test. Genotypes: TT n = 14; TC n = 14; CC n = 9.

3.2. Olfactory Scores and BMI Status

Figure 2 shows that overweight individuals belonging to the three age groups consid-
ered reach lower TDI olfactory scores than normal weight individuals (p < 0.001; Fisher’s
LSD test subsequent to two-way ANOVA). In the case of overweight individuals, those
in the elderly group obtain lower TDI olfactory scores than those belonging to young and
adult age groups (p ≤ 0.014; Fisher’s LSD test); for normal weight individuals, significant
differences are observed only between young and elderly individuals (p = 0.023; Fisher’s
LSD test).

Figure 2. Significant effect of BMI and age on TDI olfactory score. Mean (±SEM) values of TDI
olfactory scores obtained from normal weight (NW; n = 62) and overweight (OW = 50) subjects
according to their age group (young = 16–35 years; adults = 36–55 years; elderly > 55 years). Different
letters indicate significant differences between the same BMI status but different age group (NW: a, b;
OW: ai, bi) (p < 0.03; Fisher’s LSD test subsequent to two-way ANOVA). Asterisks indicate significant
differences between individuals belonging to the same age group but with a different BMI status
(p < 0.05; Fisher’s LSD test subsequent to two-way ANOVA).

To check for a correlation between TDI olfactory score and BMI shown by each individ-
ual based on the age group, we used Pearson’s correlation test. As shown in Figure 3, we
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found a significant negative correlation between the BMI of subjects and their TDI olfactory
score (young: Pearson’s r = −0.59, p < 0.0001; adults: Pearson’s r = −0.70, p < 0.0001; elderly:
Pearson’s r = −0.72, p < 0.0001). Figure 4 shows the same negative correlation between BMI
and TDI olfactory score according to Kv1.3 genotype in young (TT: Pearson’s r = −0.64,
p = 0.003; TC: Pearson’s r = −0.68, p = 0.0074; CC: Pearson’s r = −0.90, p = 0.0154), adult (TT:
Pearson’s r = −0.81, p = 0.0005; TC: Pearson’s r = −0.59, p = 0.0198; CC: Pearson’s r = −0.94,
p = 0.0017) and elderly people (TT: Pearson’s r = −0.61, p = 0.0049; TC: Pearson’s r = −0.79,
p = 0.0005; CC: Pearson’s r = −0.87, p = 0.0021).

Figure 3. Negative correlation between BMI and TDI olfactory score according to age group. Correla-
tion analysis between BMI and TDI olfactory score obtained by each individual according to their age
groups. Young: age group 16–35 years; adult: age group 36–55 years; elderly: age group > 55 years.

Figure 4. Negative correlation between BMI and TDI olfactory score according to Kv1.3 genotype for
each age group. Correlation analysis between BMI and TDI olfactory score obtained by each individ-
ual according to their age group and Kv1.3 genotype. (A): TT homozygous; (B): TC heterozygous;
(C): CC homozygous. Young: age group 16–35 years; adult: age group 36–55 years; elderly: age
group > 55 years.
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The relative contribution of each variable considered in this study to the TDI olfactory
score and their mutual relationship, analyzed by means of a generalized linear model, are
shown in Table 4. In detail, based on the chi-square value, the analyses revealed that the
major contributor to the TDI olfactory score is BMI, followed by Kv1.3 genotype and finally
by the age of individuals. Furthermore, we found a significant relationship between age
and Kv1.3 genotype.

Table 4. Contribution of Kv1.3 genotype, age and BMI to TDI olfactory score.

Variable x2 p-Value

BMI 46.72 <0.0001
Kv1.3 genotype 26.04 <0.0001

Age 20.40 <0.0001
Age—Kv1.3 genotype 16.77 0.0021

3.3. Kv1.3 Genotype and BMI

Figure 5 shows the mean values ± SEM of BMI obtained for subjects according to
their Kv1.3 genotype and age group. Post-hoc analysis subsequent to a two-way ANOVA
highlight that the BMI of CC homozygous subjects is significantly higher than that of
heterozygous or TT homozygous subjects in all age groups (young: p ≤ 0.002; adult:
p ≤ 0.001; elderly: p ≤ 0.01; Fisher’s test LSD). Again, pairwise comparison shows that
the BMI of heterozygous individuals belonging to the young group is significantly lower
than that of heterozygous individuals of the adult and elderly groups (p < 0.03; Fisher’s
test LSD).

Figure 5. Significant effect of age and Kv1.3 genotype on BMI. Mean (± SEM) values of the BMI
determined in individuals belonging to the different age groups (young = 16–35 years; adults = 36–55 years;
elderly > 55 years) according to the polymorphism rs2821557 (T/C) of the Kv1.3 gene. Different letters
indicate significant differences between different genotypes within the same age group (young: a, b; adults:
ai, bi; elderly: aii, bii) (p< 0.01; Fisher’s LSD test subsequent to two-way ANOVA). Asterisks indicate
significant differences between individuals with the same genotype but belonging to different age groups
(p < 0.03; Fisher’s LSD test subsequent to two-way ANOVA).

Table 5 shows that individuals belonging to different age groups classified as nor-
mal weight or overweight according to their BMI differ for their genotype distribution
(age group 16–35 years: χ2 = 11.943, p = 0.003; age group 36–55 years: χ2 = 10.742, p = 0.005;
age group > 55 years: χ2 = 9.224, p = 0.009; Fisher’s method) and allele frequencies
(age group 16–35 years: χ2 = 13.276, p = 0.001; age group 36–55 years: χ2 = 11.458, p = 0.003;
age group >55 years: χ2 = 10.499, p = 0.005; Fisher’s method) of the rs2821557 (T/C) SNP of
the Kv1.3 gene.
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Table 5. Genotype distribution and allele frequencies of the rs2821557 (T/C) polymorphism of
the Kv1.3 gene in subjects belonging to different age groups classified as normal weight (NW) or
overweight (OW) based on their BMI.

Age Group 16–35 years NW
n (%)

OW
n (%) p-Value a

Genotype 0.003
TT 16 (57.14) 3 (27.27)
TC 12 (42.86) 2 (18.18)
CC 0 (0) 6 (54.55)

Allele 0.001
T 44 (78.57) 8 (36.36)
C 12 (21.43) 14 (63.64)

a p-value derived from Fisher’s Exact Test. Genotypes: TT n = 19; TC n = 14; CC n = 6.

Age Group 36–55 years NW
n (%)

OW
n (%) p-Value a

Genotype 0.005
TT 9 (64.29) 5 (22.73)
TC 5 (35.71) 10 (45.45)
CC 0 (0) 7 (31.82)

Allele 0.003
T
C

23 (82.14)
5 (17.86)

20 (45.45)
24 (54.55)

a p-value derived from Fisher’s Exact Test. Genotypes: TT n = 14; TC n = 15; CC n = 7.

Age Group >55 years Normosmic
n (%)

Hyposmic
n (%) p-Value a

Genotype 0.009
TT 8 (53.33) 6 (27.27)
TC 7 (46.67) 7 (31.82)
CC 0 (0) 9 (40.91)

Allele 0.005
T 23 (76.67) 19 (43.18)
C 7 (23.33) 25 (56.82)

a p-value derived from Fisher’s Exact Test. Genotypes: TT n = 14; TC n = 14; CC n = 9.

4. Discussion

It is known that, with advancing age, there is a physiological decline in all functions
of individuals, including both the central and peripheral nervous system [82,83]. Several
studies have highlighted a reduced ability to perceive, discriminate and identify odors
in older adults, with a percentage ranging from 50% for individuals aged 65–80 years up
to 80% for elderly people over 80 years old [55,57,59,84]. Among the proposed causes,
cognitive abilities have been identified, such as that of memorizing smells, episodic memory
and perceptual speed, and environmental/behavioral factors such as an active exercise and
non-exercise lifestyle [1,34,35,85–87].

Since genetic factors are among those that can influence the olfactory function of
individuals, the first aim of this study was to evaluate the effect of the genotype of the
Kv1.3 channels on the olfactory scores obtained by subjects, according to their age group:
young, adult and elderly groups. The results we obtained show that elderly participants
with a TT genotype, i.e., homozygous for the allele associated with better olfactory per-
formance [61,62], obtain TDI olfactory scores significantly higher than their peers who
are TC heterozygous or CC homozygous, i.e., with at least one allele associated with a
decreased olfactory function [61,62]. In agreement, we found significant differences in
genotype distribution and allele frequency between individuals classified as normosmic
or hyposmic based on their TDI score. In particular, for all age groups considered, a TT
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genotype and T allele appear to be associated with normosmia, while a CC genotype and
C allele appear to be associated with hyposmia. Regarding young and adult participants,
the results showed that one T allele is sufficient to protect against a decline in olfactory
function; in fact, heterozygous individuals obtained olfactory scores that were not different
from those with a TT genotype. The results also show that the olfactory scores obtained by
elderly participants with a TT genotype were not statistically lower than those obtained by
either adult or young participants, suggesting the importance and role of genetic factors in
counteracting the decline in olfactory function linked to age. These results are confirmed by
the significant relationship found between age and Kv1.3 genotype using generalized linear
model analyses. Regarding heterozygous individuals, the data show that adult participants
obtained higher olfactory scores than elderly participants, while no difference was found
with young participants. Regarding individuals with a CC genotype, adult participants
obtained lower olfactory scores than young people, while no difference was observed with
elderly participants.

Overall, the results show that as the aging effect increases, the protection of the T allele
decreases; in fact, the differences become significant between TT homozygous and TC
heterozygous individuals only in elderly participants. In addition, in adults, the positive
effects of genetics clearly decrease as the number of C alleles increases; in fact, heterozygous
adults differ from the elderly but not from the young, while adults with a CC genotype
differ from the young but not from the elderly. This suggests that the contribution of the
genetic factor decreases with increasing age and that the importance of the age factor is
reduced as a result of genetics. Specifically, the number of T alleles needed to protect against
age-related olfactory dysfunction increases with increasing age: elderly individuals require
two T alleles to have an olfactory function comparable to that of both adult and young
individuals, while adults need only one T allele so as not to differ from young subjects.
Furthermore, for young and adult individuals, participants with a TC genotype show an
olfactory function comparable to that of participants with a TT genotype because their
age-related physiological decline is lower, allowing only one T allele to compensate for the
reduction effects of the sense of smell linked to the C allele. However, in the case of the
elderly, a single T allele is no longer sufficient to compensate for a greater effect of age, so
both T alleles associated with a better olfactory performance are necessary [61,62].

It is known that there is a relationship between the eating habits of individuals and their
olfactory function [8–13], and recent studies in our laboratories have highlighted an inverse
relationship between the sense of smell and the body weight of individuals [13,34,35,79];
therefore, we evaluated whether this inverse relationship is maintained regardless of the
age group considered. The results we obtained show that overweight individuals achieved
significantly lower TDI olfactory scores than their normal weight peers (i.e., belonging to the
same age group). We also found that among normal weight individuals, the age-related decline
in olfactory function was observed only between young and elderly participants, while no
difference was found between the elderly and adults. Regarding overweight individuals, we
observed that the elderly obtained lower olfactory scores even compared to adults, suggesting
that a body weight increase accentuates age-related differences. These observations are
confirmed by correlation analyses showing an inverse relationship between olfactory function
and BMI in both young, adult and elderly people. Interestingly, the same negative correlation
is observed across all age groups even when individuals are subdivided according to their
Kv1.3 genotype. Furthermore, the results obtained with the generalized linear model show
that BMI is the main contributor to the TDI olfactory score, followed by the Kv1.3 genotype and
finally by age. Overall, our results confirm the relationship between smell and eating behavior.
On the one hand, a high BMI contributes to a reduced olfactory function of individuals,
while on the other hand, decreased olfactory function negatively changes the eating habits
of individuals, resulting in further weight gain. A weaker input from the periphery could
reduce the ability in higher centers to process information relating to the quality and hedonic
properties of food, as already highlighted in the relationship between taste and obesity in both
humans and animal models [28,77,88–96].
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Given the relationship between the sense of smell and body weight and considering
the effect of the Kv1.3 channel genotype on olfactory function, the second objective of
the study was to evaluate the effect of the rs2821557 SNP on the BMI of young, adult
and elderly individuals. The results show that among homozygous individuals, both
with TT and CC genotypes, no differences were observed in the BMI of young, adult and
elderly people. However, regarding heterozygous individuals, it was observed that the
BMI of young participants is significantly lower than that of adult and elderly participants,
suggesting that one T allele is sufficient to mask the increase in body weight linked to the
C allele (associated with weight gain) in young individuals only. In addition, for each
age group considered, it was found that the BMI of individuals with the CC genotype is
significantly higher than that of individuals with the TT or TC genotype. In agreement,
in all age groups, we found that the T allele and the TT genotype are associated with a
normal weight condition, while the C allele and the CC genotype are associated with an
overweight condition.

5. Conclusions

Based on these results, we can hypothesize that the TT genotype protects individuals
from a reduction in their olfactory function associated with age progression and that
this effect is greater in earlier adulthood. In fact, elderly individuals need two T alleles,
while adult individuals only need one T allele to have an olfactory function comparable
to that of young individuals. Given the inverse relationship between olfactory function
and BMI and considering that the C allele has been associated not only with reduced
olfactory function but also with diet-induced weight gain [64,66,67], and considering the
role of smell in individuals’ food choices, it follows that not only do individuals with the
CC genotype obtain lower olfactory scores, but they also show a higher BMI. The effect
of the C allele is more evident with the age increase of individuals: adult and elderly
heterozygous people show a higher BMI than young heterozygous people for whom a
single T allele seems to be sufficient to counteract the negative effects linked to the C allele.
Finally, although it is known that age is strongly associated with olfactory dysfunction, our
findings highlight the fact that other variables, such as body weight and genetic factors, are
important contributors to olfactory performance and are significantly associated with age,
thus mitigating its effects.

Further studies aimed at evaluating other environmental and genetic aspects known
to act on olfactory function and body weight, as well as a larger sample, are desirable to
better understand the effects of age and how to counteract them.
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