
Future Generation Computer Systems 164 (2025) 107563

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Smart contract languages: A comparative analysis
Massimo Bartoletti a,∗, Lorenzo Benetollo b, Michele Bugliesi b, Silvia Crafa d, Giacomo Dal Sasso d,
Roberto Pettinau c, Andrea Pinna a, Mattia Piras a, Sabina Rossi b, Stefano Salis a, Alvise Spanò b,
Viacheslav Tkachenko a, Roberto Tonelli a, Roberto Zunino e

a Università degli Studi di Cagliari, Cagliari, Italy
b Università Ca’ Foscari Venezia, Venezia, Italy
c Technical University of Denmark, Copenhagen, Denmark
d Università di Padova, Padova, Italy
e Università degli Studi di Trento, Trento, Italy

A R T I C L E I N F O

Keywords:
Smart contracts
Blockchain
Decentralized applications
Cryptocurrencies
Programming languages

A B S T R A C T

Smart contracts have played a pivotal role in the evolution of blockchains and Decentralized Applications
(DApps). As DApps continue to gain widespread adoption, multiple smart contract languages have been and
are being made available to developers, each with its distinctive features, strengths, and weaknesses. In this
paper, we examine the smart contract languages used in major blockchain platforms, with the goal of providing
a comprehensive assessment of their main properties. Our analysis targets the programming languages rather
than the underlying architecture: as a result, while we do consider the interplay between language design and
blockchain model, our main focus remains on language-specific features such as usability, programming style,
safety and security. To conduct our assessment, we propose an original benchmark which encompasses a wide,
yet manageable, spectrum of key use cases that cut across all the smart contract languages under examination.
1. Introduction

Smart contracts have played a pivotal role in the evolution of
blockchain technology, paving the way for the emergence of the new
paradigm of Decentralized Applications (DApps). As the DApps con-
tinue to gain popularity and become pervasive, the complexity of
their business logic and the distributed, often open, nature of the
underlying platforms over which they execute make their development
an increasingly challenging task. In this article, we review the current
advances in smart contract languages and assess them to gain fresh
insights into their design principles and the impact on the programming
practices they convey. Our analysis targets the programming languages
rather than the underlying architectures, acknowledging that the design
of robust smart contract languages is a prerequisite for a principled
development of reliable and secure DApps.

Methodology We start with an analysis of the tiered structure of
blockchain platforms: our goal here is to single out the key architectural
choices that affect the design and implementation of smart contracts.
We then analyze and compare a selection of mainstream smart contract
languages, based on an original benchmark we have developed to
encompass a wide spectrum of key real-world DApp use cases [1].

∗ Correspondence to: Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, via Ospedale 72, 09124 Cagliari, Italy.
E-mail address: bart@unica.it (M. Bartoletti).

To carry out our comparative analysis, we isolate six paradigmatic
smart contract languages and their underlying blockchains – Solidity
on Ethereum, Rust on Solana, Aiken on Cardano, (Py)TEAL on Algo-
rand, Move on Aptos, and SmartPy on Tezos – as representatives of
the permissionless platforms that have become mainstream and have
gained widespread adoption in the development of DApps. While some
of these platforms exist in different incarnations – e.g. Vyper is an
alternative to Solidity on Ethereum, as Ligo is to SmartPy on Tezos
and Plutus to Aiken on Cardano – the results of our analysis remain
largely consistent across these alternatives. In fact, languages operating
on the same platform generally exhibit the same relevant properties
relative to the features we target in our assessment, namely security,
code readability, and usability.

The focus of our assessment is permissionless blockchains. Permis-
sioned blockchains, in turn, are out of our present interests, as they
usually come with general-purpose programming languages in which
all the blockchain-specific features are managed within ad-hoc libraries
that interact with the underlying blockchain consensus layer [2].

Main contributions Several analyses of blockchain platforms and smart
contract languages have appeared in the recent literature (cf. Sec-
tion 5). One of the distinctive features of our present endeavor, one
https://doi.org/10.1016/j.future.2024.107563
Received 18 April 2024; Received in revised form 6 October 2024; Accepted 12 Oc
vailable online 22 October 2024
167-739X/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
tober 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:bart@unica.it
https://doi.org/10.1016/j.future.2024.107563
https://doi.org/10.1016/j.future.2024.107563
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.107563&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Bartoletti et al.

o

c
q
(
c
t

l

u
a
e
o
b
a

s

v
t

(

t

k

u

r

a
t
p
g
o
f
t

b
t
g
w
a
(

(
a
t
r
b
c
o
t
o

s
b
c

(
t
t
l
b
e
c
C

Future Generation Computer Systems 164 (2025) 107563
which sets it apart from previous experiments, is the hands-on nature
f our experience with the use cases developed for benchmarking

smart contracts. The benchmark itself, ‘‘Rosetta Smart Contracts’’ [1],
constitutes a major contribution, in that it encompasses a representative
selection of common cases in DApp development that provides a smart
ontract chrestomathy, the initial core of a standard test bed for a
ualitative assessment of current and future smart contract languages
and platforms). Experimenting with the implementation of the use
ases across the different languages proves very effective to enhance
he understanding of the challenges in smart contract design, and of

how such design is influenced by the tiered structure of the under-
ying blockchain. Specifically, we identify the choices made at the

contract layer (as opposed to the lower, consensus layer) as the most
influential for the design and the relevant properties of the overlying
smart contract languages. At the contract layer, the blockchain is best
nderstood as an asset-exchange state machine, where transactions
ctivated by smart contract rules contribute to a state transition by
ither creating new assets or exchanging assets among users. Based
n this view, we propose a categorization of smart contract languages
ased on the distinction between the two main models incarnating an
sset-exchange state machine: the account-based model and the UTXO

model. This perspective sheds new light on the interplay between the
blockchain data and computational models on the one side, and the
design principles of smart contracts on the other side.

Our analysis also emphasizes the relevance of adequate language
upport for the key aspects of smart contract design: assets manage-

ment, contract-to-contract interactions, and costs. Specifically, tailored
type-level abstractions for creating, exchanging and operating with
assets are a fundamental ingredient in preventing common errors and
ulnerabilities such as asset loss, double spending, or unauthorized
ransfers. On a different, but related account, native support for cer-

tain functionalities of the underlying platform (e.g., custom tokens) is
pivotal for key properties in security as well as in efficiency.

Structure of the paper We start in Section 2 with an overview of
smart contract platforms. Besides serving to set a common terminology
for the analysis, this section also highlights how the basic choices
at the contract layer influence smart contracts development, security
and performance. We demonstrate this by discussing the (pseudo-code)
implementation of a common use case in the account-based model
both in its stateful and stateless incarnations) and for the UTXO

model. In Section 3 we take a brief tour of the six smart contract
languages in our selection, discussing their main features. The core of
he paper is Section 4, where we develop our hands-on comparative

analysis. In Section 5 we contextualize our contribution in the scientific
literature. Finally, in Section 6 we conclude with a discussion of the
ey insights derived by our analysis.

2. Smart contracts on blockchains

Blockchain smart contracts are best understood as collections of
executable rules that are triggered by user transactions to activate the
exchange of assets and other forms of interaction between users. The
nderlying architecture is a tiered structure comprising two main lay-

ers1 both of which influence the way smart contracts are programmed,
their efficiency and the security properties they convey. Below, we
outline the key aspects of the design of smart contract languages in
elation to the distinguishing features of this layered architecture.

1 Blockchains are typically described as comprising more layers, including,
from the bottom up, network, consensus, data and application [3]. The two-tier
representation we adopt allows us to isolate the aspects that are relevant to
our present focus on smart contracts and smart contract languages.
 d

2
Fig. 1. Life cycle of transactions. The blue, green and red boxes represent, respectively,
the users submitting transactions, the networking nodes and the consensus nodes of
 blockchain. In Section 1 of the figure, the users create transactions and transmit
hem to some networking node (NN); the networking nodes, in turn, run a gossiping
rotocol to share the knowledge of the received transactions. The mempool (dashed
reen container) is a distributed data structure that represents this shared knowledge
f transactions. In Section 2, we see the consensus nodes (CN) collect the transactions
rom the mempool, propose blocks of transactions (the yellow boxes), and gossip them
o the other consensus nodes. Section 3 shows the blockchain extended with the new

block selected by the consensus nodes.

2.1. The consensus layer

The consensus layer rests on the data and network services provided
y the underlying infrastructure and sets the rules for participation in
he blockchain platform. The rules vary from platform to platform, but
enerally include a protocol for propagating transactions across the net-
orking nodes, and a consensus protocol for ordering the transactions
nd grouping them into blocks. In the transaction gossiping protocol
part 1 of Fig. 1), the networking nodes broadcast the transactions they

received from users, collecting them into a distributed data structure
called mempool).2 In the consensus protocol (part 2), the nodes select
 set of transactions from the mempool, and order it into a block that
hey propose to the other consensus nodes. The consensus nodes then
un a protocol to choose, among the proposed blocks, which one will
e the next block in the sequence of blocks constructed so far — the so-
alled blockchain. Once the consensus nodes reach an agreement on one
f the proposed blocks, the chosen block is cryptographically linked to
he previous ones (e.g., the new block contains the hash of the previous
ne), effectively making it part of the blockchain (part 3).

At the consensus layer, the blockchain can be seen as a global
tate machine whose state (replicated at all consensus nodes) is the
lockchain, and the state transitions coincide with (the steps that
ontribute to) the additions of new blocks.

2.1.1. Key properties and incentives
The consensus layer must guarantee three key properties: safety

honest nodes have the same view of the blockchain), liveness (new
ransactions are regularly added to the blockchain), and finality (the
ransactions added to the blockchain are never reverted). In permission-
ess blockchains, our focus in the present paper, these properties must
e enforced without assuming any specific notion of trust among nodes,
xcept that the majority of resources (computational or financial) is
ontrolled by rational nodes that participate in the protocols for profit.
onsequently, the consensus protocols must be resistant to Sybil attacks,

2 A few blockchain platforms (e.g., Hedera and IOTA) deviate from this
esign pattern, avoiding the transaction mempool.

M. Bartoletti et al.

a
p
a

t
n
o
c

m

t
i
s
e
e

e
l
c
w
r
r
t
t
i
e

s

i

s
(
w

t

t
c
o
t

c

}

v
t
u
a

T

Future Generation Computer Systems 164 (2025) 107563
making sure that artificially crafting new nodes does not give more than
 negligible advantage to the adversary. Such attacks are mitigated by
roviding economic incentives to honest nodes that play by the rules. In
ddition to block rewards, these incentives come in the form of fees that

depend on various factors, e.g. the amount of work needed to execute
a transaction, the size of the allocated storage, and the pace at which a
ransaction is included in a block. To avoid incurring higher costs than
eeded, developers must adopt design patterns that reduce the amount
f on-line computations and on-chain storage in favor of their off-chain
ounterparts.

2.1.2. Transaction ordering
Most consensus protocols leave the participant nodes free to choose

which transactions from the mempool to include in a block, and in
which order. As a result, such protocols provide no guarantee of a
fair ordering [4] on how transactions are processed. This, in turn, may
open the door to attacks against contracts whose logic depends on the
order in which their triggering transactions are processed: e.g., a user

ay send a transaction to reveal the solution to a bounty contract,
while another user front-runs that transaction to win the bounty.
Some blockchain platforms are systematically targeted by these at-
tacks, which have detrimental effects on decentralization, transparency,
and trustworthiness [5,6]. From the point of view of developers,
ransaction-order dependence could be mitigated, in principle, by craft-
ng contracts so that any transaction can be executed in exactly one
tate. In practice, doing so would create an unacceptable congestion
ffect in high-bandwidth contracts, like e.g. those used in DeFi. More
ffective forms of mitigation are possible through ad-hoc protocols [7].

2.2. The contract layer

The contract layer sits on top of the consensus layer and hosts the
xecution environment for smart contracts. Whereas at the consensus
ayer we see the blockchain as a state machine whose state transitions
orrespond to the additions of new blocks, at the contract layer what
e observe is the execution of each transaction, i.e. the smart contract

ules it activates and their interaction with the environment. As a
esult, though smart contracts may be programmed to perform arbitrary
asks, especially in Turing-complete languages, at the contract layer
he blockchain is best understood as an asset-exchange state machine
n which the state keeps track of the asset balance for each user, and
very transaction contributes to a state transition by either creating new

assets or exchanging existing assets among users. Smart contracts and
mart contract languages may be classified accordingly, based on the

model they adopt for representing the balance state and the accounting
of assets.

2.2.1. Accounting models
Two main models have emerged so far: account-based and UTXO

models.3 The former was first introduced by Ethereum and then adopted
or revisited by other mainstream blockchains, including e.g. Solana,
Avalanche C–Chain, Aptos, Hedera, Algorand and Tezos. The latter was
ntroduced by Bitcoin, and then extended by Cardano and IOTA.

Account-based model In the account-based model, the blockchain state
tores the deployed contracts and keeps track of the asset balance
henceforth the balance state) as a map that associates each account
ith the amount of assets the account owns. Accounts come in two

3 Given that there appears to be, as yet, no standard terminology for
hese concepts, we adopt naming schemes that we believe are best suited to

render the underlying concepts and help grasp the key features of the existing
platforms.
 o

3
types: user accounts and contract accounts, each equipped with a
balance. Transactions update the balance state by either deploying a
new (user or contract) account or changing the account-balance map:
an asset-transfer transaction is enabled only if the sender account owns
all the assets to be transferred. In general, in the account-based model
a transaction specifies (i) the users who have signed the transaction, (ii
he receiver account (in case it is a contract account, the transaction in-
ludes the function to be invoked and its arguments), (iii) the amounts
f assets to be transferred from the signers to the receiver, and (iv) the
ransaction fee.

To illustrate, a Bank contract handling deposits and withdraws
would be structured as in the following pseudo-code:

ontract Bank {
var accounts // map (user => asset)
deposit () {

expect [k]= tx. signed // tx is signed by k
v = tx.from(k) // tokens sent to contract
accounts [k]+=v // trace transfer

}
withdraw (amnt) {

expect [k]= tx. signed
require accounts [k]>= amnt
send(amnt ,k) // transfer to k
accounts [k]-= amnt // trace transfer

}
getTotalBalance () {

return balance // contract balance
}

The contract uses the local (persistent) accounts variable, a key–
alue map that keeps track of the amounts deposited and withdrawn:
his map provides the code-level representation corresponding to the
nderlying cryptocurrency balances associated with the Bank contract
nd its users’ accounts. Once the contract is created, the deposit and

withdraw actions operate at two levels: on the accounts map and
on the underlying balances of the accounts involved in the transaction.
The accounts map is updated explicitly by the contract code, while
the underlying balances are updated implicitly by the runtime. A user
𝙰 willing to deposit cryptocurrency tokens may do so by signing a
transaction with receiver Bank that invokes deposit. Executing
the action checks that the amount is authorized by the signer, auto-
matically subtracts the specified amount of tokens from 𝙰’s account
(assuming that there are enough), and adds an equal amount to the
balance of the Bank account (noted balance in the pseudo-code).
The withdraw method, in turn, allows anyone to withdraw from the
Bank, provided that they have previously deposited enough tokens. If
so, send(amnt,k) removes amnt tokens from the contract balance and
adds them to the balance of the signer’s account, updating the accounts
map accordingly.

UTXO model Unlike the account-based model, the UTXO model makes
no reference to any explicit notion of account balance in its representa-
tion of the contract-level blockchain state. Instead, the balance for each
user is traced implicitly by the inputs and outputs carried along within
the executed transactions. Transaction outputs include an amount of
assets and a script that specifies the spending condition for these assets,
i.e. the condition stating how they can be redeemed by (i.e. unlocked
to be transferred to) another transaction. Transaction inputs, in turn,
are references to unspent (i.e. yet to be transferred) outputs of previous
transactions, and provide data and the witnesses to unlock (i.e. validate)
the spending conditions of the referenced output. In other words, each
new transaction spends outputs of previous transactions, and produces
new outputs that can be consumed by future transactions. Each unspent
output can only be consumed once, as a whole, by exactly one input.

hen, the blockchain state is encoded as the set of unspent transaction

utputs: the balance for each user is the sum of all the unspent outputs

M. Bartoletti et al.

d

t
t
a
𝖳

s
o
a

a

t

a

t

t
t
c
r
a
c

m
t
a

s

F

s
m
w
r
s

c
c

c
U

B

i
m
s
c

U
u

b
w
(
t

t

Future Generation Computer Systems 164 (2025) 107563
within the transactions that can be redeemed by the user (i.e. those
irected to the public keys the user controls).

To illustrate, the transaction below has a single unspent output hold-
ing one token, noted 1∶𝚃. Its script requires the redeeming transaction
(𝗋𝗍𝗑) to include 𝙰’s signature in its signers list:

𝖳1

⋯

out[0]:
𝗌𝖼𝗋𝗂𝗉𝗍 = 𝙰 𝚒𝚗 𝗋𝗍𝗑.𝗌𝗂𝗀𝗇𝖾𝖽
𝗏𝖺𝗅𝗎𝖾 = 1∶𝚃

To spend 𝖳1’s single output (noted 𝖳1.𝗈𝗎𝗍[0]), a redeeming transac-
tion must refer to 𝖳1 from its inputs and validate the script by having 𝙰

as (one of) its signers. This is accomplished by the transaction 𝖳2 below:
𝖳2

in[0]:
𝗈𝗎𝗍 = 𝖳1.𝗈𝗎𝗍[0]

𝗌𝗂𝗀𝗇𝖾𝖽 = [𝙰]
out[0]:
𝗌𝖼𝗋𝗂𝗉𝗍 = 𝚘𝚠𝚗𝚎𝚛 𝚒𝚗 𝗋𝗍𝗑.𝗌𝗂𝗀𝗇𝖾𝖽 𝚊𝚗𝚍 𝗋𝗍𝗑.𝗈𝗎𝗍[0].𝗌𝖼𝗋𝗂𝗉𝗍 == 𝗌𝖼𝗋𝗂𝗉𝗍 𝚊𝚗𝚍 𝗋𝗍𝗑.𝗈𝗎𝗍[0].𝗏𝖺𝗅𝗎𝖾 == 𝗏𝖺𝗅𝗎𝖾

𝖽𝖺𝗍𝖺 = {𝚘𝚠𝚗𝚎𝚛∶𝙰}
𝗏𝖺𝗅𝗎𝖾 = 1∶𝚃

𝖳2 is signed by 𝙰 and its script checks that (i) the redeeming
ransaction is signed by the user stored in the owner field of the current
ransaction; (ii) the script and the value in the redeeming transaction
re the same as in 𝖳2. Note that, although any transaction redeeming
2 must preserve its script and value, it can change the owner. In a
ense, the script implements a non-fungible token (NFT): to change the
wnership of the NFT, the current owner must spend the output with
 new transaction (signed by herself) that specifies the new owner.

Account-based vs. UTXO We can compare the two accounting models
long two main dimensions: (i) the design patterns induced by their

representation of the contract-level state, and (ii) their interaction with
he underlying consensus protocols.

At the design level, the account-based model is typically perceived
as more intuitive and friendly, as it rests on programming concepts that
re familiar to developers. Simply, contracts are standalone modules

collecting executable services to be invoked by the users via transac-
ions that operate on the assets kept in their accounts. In the UTXO

model, instead, assets and contracts are interdependent, the latter
acting as guards for the former, both embedded within transactions
with no explicit reference to any notion of user account. In the simplest
incarnations of the UTXO model (such as the one in the previous ex-
ample), each unspent output is managed by the associated script in the
ransaction. More complex scripts are also at the avail of programmer,
o express transactions that consume multiple unspent outputs and
reate multiple new outputs. Still, the resulting programming practice
emains somewhat cumbersome (cf. Section 2.3 for a comparison on
 concrete example, and Section 4.2 for a discussion of actual smart
ontract languages).

As to the interaction with the underlying consensus layer, the two
odels have trade-offs. On the one hand, UTXO models are exposed

o liveness failures, as triggering a transaction may get stuck because
ll the referenced UTXOs are spent by other transactions. The resulting

UTXO congestion effect, occurring when multiple transactions try to
pend the same output, represents a non-trivial challenge for develop-

ers, especially for high-bandwidth contracts such as, e.g., Decentralized
inance (DeFi) protocols [8,9]. On the other hand, the account-based

model appears weaker in that it is exposed to transaction-ordering
attacks. As we said earlier (cf. Section 2.1.2), given that the balance
tate is updated only when transactions are committed, account-based
odels leave transaction senders with no means to predict whether,
hen and in which balance state their transactions are executed. The

esulting effect, known as transaction-ordering dependence, is trouble-
ome as it opens the door to a variety of security attacks [10]. In

blockchains where the consensus protocol does not guarantee fair
transaction ordering, such attacks are carried out systematically by
olluding consensus nodes, which leverage the economic incentives of
ontracts to extract value from user transactions [5,6]. A further class
 t

4
of attacks exploit the dependency on transaction ordering to alter the
ontract execution flow and, consequently, the transaction fees. In the
TXO model, instead, a transaction can be executed in exactly one

state, given by the UTXOs in its inputs. As a result, UTXO scripts do
not have any dependency on transaction ordering, nor do they incur in
attacks exploiting transaction fees.

2.2.2. Contract storage models
While the choice of the accounting model is certainly the classifi-

cation dimension for contract languages, another aspect that is worth
emphasizing is the way that smart contract languages account for a
notion of persistent contract state. Smart contracts often require some
kind of memory to keep track of data and information that should
persist across multiple executions. In programming language jargon
that memory would be called state, but to avoid confusion with other
notions of blockchain state we refer to it as (contract) storage. Account-
based models typically encompass stateful contracts, which encapsulate
the storage directly with themselves as the accounts map in the
ank contract. Notable exceptions are Aptos and Solana, in which the

contract storage is held in separate data structures (e.g., accounts) and
referenced from the contract. In UTXO models, instead, contracts are by
default stateless scripts that are discarded once their associated output
is spent. A stateful form of UTXO contract may still be accounted for,
however, by using the transaction fields as storage, and requiring the
spending and redeeming transactions to contain the same contract with
updated data in transaction fields (cf. the UTXO version of the bet
contract in Section 2.3)

2.3. Exemplifying smart contracts at work: a bet contract

We conclude this overview with a more extensive example that
llustrates the different design patterns in the account-based and UTXO
odels. We use again pseudo-code to show the core concepts and

tay away from the specific features of the different blockchains and
ontract languages.

The contract involves two players who can join the bet by depositing
1 unit of token 𝚃 each. When the players join, they choose an oracle
who will determine the winner, and set a deadline to close the bet 1000
blocks after the one where the join occurred, at the latest. When the
oracle announces the winner, the winner can redeem the whole pot of
2∶𝚃; if instead the oracle does not choose the winner by the deadline,
then both players can redeem their bets, withdrawing 1∶𝚃 each.

Fig. 2 shows the stateful version of the account-based contract. The
stateless version in Fig. 3 follows the same design with the difference
that the contract variables must be stored in a separate account, owned
by the contract, and accessed from within the contract with a reference
to that account that is passed as an argument to all the contract
methods.

The UTXO contract, in Figs. 4 and 5, draws on very different
design principles. The 𝖳𝚒𝚗𝚒𝚝 transaction constructs the contract script
TXO_Bet, which is then passed unchanged to 𝖳𝚝𝚓𝚘𝚒𝚗 along with an
pdated data field. The transactions 𝖳𝚓𝚘𝚒𝚗, 𝖳𝚠𝚒𝚗 and 𝖳𝚝𝚒𝚖𝚎𝚘𝚞𝚝 in Fig. 4,

in turn. act as the activating actions for the contract rules corresponding
to the account-based methods. Finally, 𝖳𝙰 and 𝖳𝙱 represent the players’
ets. The script UTXO_Bet ensures that (i) the contract is preserved
hen spending 𝖳𝚒𝚗𝚒𝚝 with 𝖳𝚓𝚘𝚒𝚗, (ii) the storage is updated correctly,

iii) and the terminal transactions 𝖳𝚠𝚒𝚗 and 𝖳𝚝𝚒𝚖𝚎𝚘𝚞𝚝 correctly transfer
he funds from the contract to the players.

2.4. Cross-chain interactions

DApps can span across multiple blockchains, making it possible
he exchange of different native crypto-assets [11–13]. In general,

cross-chain interactions presuppose a communication layer (e.g., a
decentralized bridge systems), and a consensus-agnostic communica-
ion protocol (e.g., CCIP from Chainlink). Cross-chain interactions are

https://plutus-apps.readthedocs.io/en/stable/plutus/howtos/writing-a-scalable-app.html#utxo-congestion
https://aptos.dev/aptos-white-paper
https://github.com/solana-labs/whitepaper/blob/master/solana-whitepaper-en.pdf
https://chain.link/cross-chain

M. Bartoletti et al.

n

l
a
i

s
t

m
a
e
p

a
b
E
c

Future Generation Computer Systems 164 (2025) 107563
Fig. 2. Account-based contract: stateful code. The players start the contract by calling
join, which requires them to deposit 1∶𝚃 each and to set an oracle. The first condition
ensures that join is the first action triggered: the (system controlled) variable balance
is initialized to 0 and automatically updated by the transaction (referenced to by 𝚝𝚡)
invoking the join method. The expect clause requires that the transaction is signed
by exactly two keys, and binds them to k1 and k2. The next condition requires that
each player deposits 1∶𝚃 in the contract along with the call: namely, executing join
removes 1∶𝚃 from the accounts of both players, and adds 2∶𝚃 to the contract balance.
Finally, the players and the oracle identifiers are recorded in the contract storage
together with the deadline. The win action transfers 2∶𝚃 to the winner, chosen between
the two players by the oracle, who is the only possible caller. Both players can call
timeout after the deadline to redeem their bets.

Fig. 3. Account-based contract: stateless code. Each method takes an extra param-
eter 𝚜, that is an account to store the contract state: deploying an instance of
the contract requires to generate a new account to store its state. The condition
owns(STLESS_ACCT_Bet,s) ensures that the store is controlled by the contract: if
ot, it would be easy for an adversary to execute a contract action in an illegal state,

subverting the contract rules. Unlike in the stateful version of the contract, inbound
tokens are not passed along with the contract call, but are rendered as explicit send
actions. The owners of the accounts where these tokens are taken from must authorize
the transfer, by signing the transaction (as done in the join method).

important, but clearly out of scope for our comparison of smart contract
anguages. That said, a special mention is in order for native cross-chain
rchitectures, as they may be seen as an alternative to smart contracts
n the DApps paradigm. In fact, such architectures are designed to host
 b

5
Fig. 4. Transactions for the UTXO-based bet contract. 𝖳𝚒𝚗𝚒𝚝 creates the contract: the
script UTXO_Bet is specified in Fig. 5. Players join the contract by sending 𝖳𝚓𝚘𝚒𝚗, which
pends 𝖳𝚒𝚗𝚒𝚝 (preserving its script), and the two 1∶𝚃 bets provided by the players. Note
hat both players must sign 𝖳𝚓𝚘𝚒𝚗, and so they must agree on the values of the witnesses
𝚙𝟷, 𝚙𝟸 and 𝚘𝚛𝚊𝚌𝚕𝚎. 𝖳𝚓𝚘𝚒𝚗 records these witnesses in its storage, as well as the 𝚍𝚎𝚊𝚍𝚕𝚒𝚗𝚎.
𝖳𝚓𝚘𝚒𝚗 can be spent either by 𝖳𝚠𝚒𝚗 or 𝖳𝚝𝚒𝚖𝚎𝚘𝚞𝚝, which terminate the contract. 𝖳𝚠𝚒𝚗 must
be signed by the oracle, and can be spent only by the 𝚠𝚒𝚗𝚗𝚎𝚛 set in the witnesses. In
the figure, we assume that the winner is 𝙰, and accordingly the script of 𝖳𝚠𝚒𝚗 requires
that the redeeming transaction (𝗋𝗍𝗑) is signed by 𝙰. 𝖳𝚝𝚒𝚖𝚎𝚘𝚞𝚝 requires no signatures, and
it splits 2∶𝚃 in two outputs of 1∶𝚃 each, that can be spent by the two players. The
script 𝚄𝚃𝚇𝙾𝙱𝚎𝚝 in 𝖳𝚓𝚘𝚒𝚗 ensures that the transactions 𝖳𝚠𝚒𝚗 and 𝖳𝚝𝚒𝚖𝚎𝚘𝚞𝚝 are constructed
according to these rules.

multiple, application-specific blockchains, each tailored for a given use
case, and communicating through specific protocols. In other words,
having multiple blockchains each running a single contract is as an
alternative to deploying multiple contracts on a single blockchain.

Notable cases of native cross-chain architectures include Cosmos
and Polkadot. In Cosmos, application-specific blockchains are called
Appchains, and the interaction among different contracts is rendered
as inter-chain communication over the IBC protocol. The protocol

anages specific operations such as the transfer of tokens both between
ccounts in the same Appchain and across accounts operating on differ-
nt Appchains. Appchains may be programmed in GoLang (a general-
urpose programming language), and CosmWasm (a Rust derivative).

Communication with blockchains external to Cosmos relies on bridges
that support IBC (such as Gravity). In Polkadot, the application-specific
blockchains are called parachains, implemented through the Substrate
framework with its native smart contract language ink! (again a Rust
derivative). Parachains communicate via the Cross-Consensus Messaging
(XCM) language over the transport layer provided by the Polkadot
network. XCM is designed to be used outside of Polkadot as well, but
requires the implementation of a dedicated bridge.

3. A tour of smart contract languages

We overview in this section the main features of our selection of
smart contracts languages.

3.1. Solidity/Ethereum

Solidity is one of the first contract languages, dating back to 2014,
nd it is currently the main high-level contract language for the
lockchains that support the Ethereum Virtual Machine (EVM), i.e.
thereum, Avalanche C–Chain, and Hedera among the others. Solidity
ontracts must be compiled to EVM bytecode in order to be executed

y the consensus nodes of these blockchains.

https://cosmos.network/
https://polkadot.network/
https://github.com/CosmWasm/cosmwasm/
https://www.gravitybridge.net
https://substrate.io
https://use.ink/

M. Bartoletti et al.

t

s

p

m
a

t
e
a
t
p

o
w
e
c
c
o

d
n
t

Future Generation Computer Systems 164 (2025) 107563
Fig. 5. Pseudocode of a stateful UTXO-based bet contract. The spending condition is a
switch between three cases, corresponding to the transactions 𝖳𝚓𝚘𝚒𝚗, 𝖳𝚠𝚒𝚗 and 𝖳𝚝𝚒𝚖𝚎𝚘𝚞𝚝.
Note that only the first case requires the script to be preserved, while the others define
the scripts of the redeeming transactions as simple a signature verification, terminating
the contract and transferring the funds to the players (2∶𝚃 to the winner for 𝖳𝚠𝚒𝚗, and
1∶𝚃 each for 𝖳𝚝𝚒𝚖𝚎𝚘𝚞𝚝).

Solidity adheres to the account-based stateful model outlined in Sec-
ion 2.2.1. Accounts are partitioned into user accounts (a.k.a. Externally

Owned Accounts, or EOAs) and contract accounts, and are uniquely
identified by an address. Contracts, akin to classes in object-oriented
languages, have methods to access and update the storage, which
consists of the contract balance and variables. Contract variables can
record fixed-size data as well as dynamic data structures like arrays and
key–value maps. Transactions are signed by a single EOA and trigger
contract calls, possibly transferring units of the native cryptocurrency
(ETH) from the caller EOA to the contract. The called contract, in
turns, can trigger calls to other contracts. Transactions can deploy new
contracts; the same contract code can be deployed multiple times, each
instance having its own address and storage. Control structures include
unbounded loops and recursion, but in practice all computations are
bounded by the fee mechanism (see Section 4.8).

Solidity is statically typed, with types of variables and methods
pecified explicitly by the programmer. It features subtype polymor-

phism and ad-hoc polymorphism. Some types support type-safe implicit
conversions; type-unsafe explicit conversions lead to compile errors.
The language has some type-unsafe primitives (e.g., external func-
tion calls and inline assembly), which require special care from the
programmer [14–16]. Solidity supports multiple inheritance between
contracts. Each source file can define multiple contracts and import
code from external files. This allows the reuse of code components
(libraries, interfaces, and contracts).

Because of its familiar JavaScript-like syntax and its procedural
rogramming style, Solidity is usually considered an easy language
6
to learn. However, it has a few design quirks that, together with
the inherent complexity of current DApps, have deep implications on
the security of smart contracts. We will discuss some of them later
in Section 4.

3.2. Rust/Solana

Rust is a general-purpose programming language, which was adopted
as the main smart contract language for Solana. As for Solidity on
Ethereum, also Rust must be compiled to bytecode in order to be
executed by Solana nodes.

Solana follows a stateless account-based model: contracts take the
form of procedures, without an associated state. Therefore, any data
these procedures interact with is stored within separate accounts, sup-
plied as parameters. Accounts are partitioned into EOAs and contract
accounts, but unlike Ethereum, in Solana any EOA is owned by a
contract account and can store data associated to that contract ac-
count, which instead only stores executable code and it is the only
one with write permission. In general, state updates are regulated
by the principles of ownership and holdership: the entity who knows
the private key is considered as the holder of the account, while the
owner (always a contract account) is the only one that can modify
the account data. Special pre-defined contract accounts manage the
creation of accounts, the transfer of native currency, and the minting
of custom tokens. While this design mandates supplementary checks in
the contract to ensure security, it also enables the parallel processing
of transactions. To this purpose, transactions specify all the accounts
whose data will be read or written throughout their execution: in this
way, the runtime environment can detect when two transactions can be
executed concurrently: namely, if no transaction reads or writes parts
of the state that are written by the other transaction, then the two
transactions are parallelizable [17]. Whereas in Ethereum a transaction
represents a single contract call, in Solana a transaction can contain
several calls, each of which may be related to a distinct contract.
These calls are carried out sequentially, and the failure of any one of
them results in discarding the changes of the entire transaction. The

aximum size of transactions is limited to ∼1KB in order to bound the
mount of calls.

Rust is statically typed: notably, its type system can statically detect
bugs such as null-pointer dereference, which instead lead to run-time
errors in other programming languages like C++. To do that, the
ype system rigorously tracks data possession throughout the program,
nabling it to operate without a garbage collector by detecting memory
llocations and deallocations at compile time. The type system ensures
hat references do not outlive the data they point to causing dangling
ointers and that data is not mutated unexpectedly.

Writing contracts directly in Rust poses several challenges to devel-
pers, e.g.: (i) contracts must be encapsulated into a single procedure,
hich must switch to the right part of code depending on the param-
ters; (ii) the data structures exchanged between the contract and its
lients must be manually serialized/deserialized; (iii) contracts must
heck that the accounts passed as parameters carry the authorizations
f the legitimate holders and owners (see Section 4.4). To partially

relieve developers from this bureaucracy, the Anchor framework offers
higher-level abstractions atop the raw Rust layer [18]. Anchor allows
evelopers to write contracts as sets of methods, and it eliminates the
eed to manually encode data structures, specifying the contract in-
erface through an Interface Definition Language. Additionally, Anchor

automatically performs some of the above-mentioned security checks,
based on the types associated with the accounts. A downside is a
doubling of deployment fees compared to pure-Rust.

https://www.anchor-lang.com/

M. Bartoletti et al.

U
t

t
i
c
f

o

i
g
s
i

T
i
t
t
t
a
p

l
i
t
s
t
a
b

h ,
B
w
t
a
c
a
t
S

p

c

l
p
c

e

a
s
m
u
s

Future Generation Computer Systems 164 (2025) 107563
3.3. Aiken/Cardano

Cardano is currently the main smart contract platform following the
TXO model. Cardano extends the UTXO model of Bitcoin in two direc-

ions [19]: it follows a stateful storage model, allowing users to include
arbitrary data in transaction outputs, and it features a Turing-complete
script language, which overcomes the expressiveness limitations of
Bitcoin contracts [20]. Cardano consensus nodes execute scripts written
in Plutus Core, a low-level untyped lambda-calculus. Although this
language is Turing-complete, in practice computations are bounded by
he fee mechanism. There are a few high-level languages that compile
nto Plutus Core, both general-purpose and DSLs. The first high-level
ontract language for Cardano was Plutus Tx, a general-purpose typed
unctional language that is a subset of Haskell. This allows Cardano

developers to use Haskell to code both the on-chain and off-chain parts
f a decentralized application. A main advantage of this approach is

the guarantee of consistency between the two parts, e.g. a client will
never pass values with the wrong type to the contract. A disadvantage
s that, when one is only interested in the on-chain part, using this
eneral framework may be unnecessarily complex. Other languages
upported by Cardano are focussed just on the on-chain part: they
nclude Marlowe (a domain-specific language for financial contracts),

Opshin, and Aiken.
Aiken, in particular, is a high-level language with a minimal set of

features for programming the on-chain part [21], Similarly to Plutus
x, Aiken is a functional language compiling to Plutus Core. Aiken

s used to write the spending conditions of UTXO transactions, akin
o the pseudo-code in Fig. 5. This involves checking all the parts of
he transaction output that is being spent, and parts of the spending
ransaction, including its outputs, to ensure that the spending trans-
ction represents a valid update of the contract state. Consequently,
rogramming in Aiken (or any other Cardano languages) requires a

paradigm shift w.r.t. the other languages in our selection, which instead
support the procedural style. This has repercussions on code readability
and security (see Sections 4.2–4.4). Said that, the language is strongly
typed, featuring algebraic types and pattern matching, parametric poly-
morphism, and recursive types. Aiken features recursion, so preserving
the (theoretical) Turing-completeness of the underlying Plutus Core
language. Aiken also supports anonymous and higher-order functions.

3.4. (Py)TEAL/Algorand

Algorand is a blockchain platform launched in 2019, which over the
years has updated its smart contract capabilities several times, passing
from a simple model of stateless contracts to Turing-powerful stateful
contracts.

Algorand follows the stateful account-based model. Every account
(both user and contract) holds a balance of the native cryptocurrency
and of custom tokens, as well as data associated to contracts. Unlike
Ethereum, where the contract state is entirely stored in a contract
account, in Algorand it is distributed across different components:
a key–value storage associated to the contract account, a key–value
storage associated to user accounts, and further keyed storage segments
(called boxes), used to overcome the strict size limits of the contract
storage (just 8KB shared among a maximum of 64 key–value pairs).

The Algorand nodes execute a custom bytecode, which is the com-
pilation target of higher-level contract languages, using TEAL as an
intermediate assembly-like language. The TEAL instruction set is simi-
lar to that of a stack-based machine, with only a few abstractions over
ow-level details. E.g., function invocations are performed via a call
nstruction rather than a plain jump, and a separate call stack is used
o store function arguments and return values. Although this requires
ome stack manipulation to move arguments from the call stack to
he operand stack whenever needed, one can easily recover function
rguments at constant offsets in the call stack, rather than having them

uried deep in the operand stack. TEAL types are limited to byte arrays

7
and unsigned integers. The contract itself is also able, when called, to
generate so-called ‘‘inner’’ transactions, which can transfer assets, call
other contracts, and more.

To reduce the burden of directly writing TEAL bytecode, a few
igher-level languages and frameworks have been proposed, e.g. PyTeal
eaker, Tealish, TealScript, and PuyaPy. Among them, the most
idespread is the pairing PyTeal/Beaker, a library of Python bindings

hrough which one can write Python code that produces TEAL bytecode
t run-time. In this way, programmers can use familiar higher-level
onstructs, like logical/arithmetic expressions, control flow, variables
nd key–value maps, and functions. Overall, the resulting code is not
oo dissimilar from the procedural-style code one could obtain e.g. in
olidity. Still, some quirks remain about the handling of storage and of

inner transactions (see Section 4.2).

3.5. Move/Aptos

Move is a smart contract language inspired by Rust that has been
embedded into multiple blockchain platforms, including Libra/Diem,
Starcoin, Aptos and Sui. One of Move’s highlights is its static type sys-
tem based on linear types. Linear types enforce the so-called must-move
semantics, ensuring that tokens (and resources in general) are never
replicated or lost. This is a major constraint when writing programs and
has a number of implications on the safety properties of the compiled
code. Even though linear typing does not prevent a programmer from
writing a wrong program in one way or another, it surely helps in
crafting correct implementations where illicit replication or deletion of
tokens is statically rejected.

Another highlight of Move is allegedly being chain-agnostic. This
is not entirely true though: each embedding must deliver a porting of
the language tailored to the platform’s peculiarities, providing a custom
framework and a standard library, as well as applying a few tweaks to
the language. In this section we delve into Aptos, a direct successor of
Libra/Diem (now dismissed).

The Move/Aptos programming model revolves around a few key
rinciples. Contracts take the form of modules, containing struct defi-

nitions and functions. Structs are the basis for representing data struc-
tures, while functions establish the only interface for module clients to
create, access, or modify such data structures. Struct fields can be ac-
essed only from within the module code, granting information hiding

and comprehensive control over the operations involving the datatypes
therein defined. Once created by a module function, the type system
treats structs as first-class resources that cannot be copied or implicitly
discarded, only permitting either movement between program storage
ocations or passing around between function calls. This discipline takes
lace fully at compile time and is enforced by linear types. Linearity
hecks can be disabled through abilities: tagging a struct with the copy
ability renders it a value open to duplication, while the drop ability
nables destruction at the end of the scope.

Different Move variants offer distinct persistent storage represen-
tations, aligning with the peculiarities of the underlying platform.
Aptos defines the global storage as a map from account addresses to
resources encoded by a struct datatype. The creation of a resource in
the global storage is exclusive to the contract signer, performed through
a special language primitive. Accessing and modifying resources is less
restrictive: anyone can request (borrow) a reference to a resource via
the account address under which the resource is stored.

Move/Aptos follow a stateless account-based model. Global vari-
bles are not allowed unless constant, which implies that modules are
tateless at the language level. This affects how contracts are imple-
ented: all the relevant data, say the contract state, must be stored
sing user-defined datatypes and eventually retrieved from the global
torage.

Each time a contract is run, the address of the invoking user account
(the signer account) is passed as an argument with a special type signer
that guarantees that it is non-copiable and it cannot be put into a

https://marlowe.iohk.io/
https://github.com/OpShin/opshin/tree/main
https://aiken-lang.org/
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://starcoin.org/downloads/Starcoin_Whitepaper.pdf
https://aptos.dev/aptos-white-paper
https://blog.sui.io/why-we-created-sui-move/

M. Bartoletti et al.

p
t
f
t
a
v

e

c
i
l
m

a

c
t
t

e

c
e

t

Future Generation Computer Systems 164 (2025) 107563
Table 1
Features of the contract layer of some of the main smart contract platforms.

Platform Accounting model Contract storage Fees depend on . . . Main contract languages Programming style

Ethereum Account-based Stateful Tx computation Solidity Procedural
Solana Account-based Stateless Num. signers, Data size Rust Procedural
Cardano UTXO Stateful Tx size, Tx computation Plutus, Aiken Approval
Aptos Account-based Stateless Tx computation, Data size Move Procedural
Algorand Account-based Stateful Constant PyTeal Procedural
Tezos Account-based Stateful Tx computation, Data size SmartPy, Ligo Procedural
r
g
b
e

s
t

n
A

c

B
p

t
c
u
m
t
t
A
s

user-defined struct datatype or saved on the global storage. This design
revents a contract from performing actions on behalf of other users
han the current signer. Such security measures have some drawbacks:
or the same reason why only the signer can write a new record on
he global storage, any contract involving multiple participants (e.g.,
uctions, bets, games, etc..) must rely on explicit opt-in, implying a
oluntary choice to engage in a specific activity. This means that

each participant has to perform the first write operation; then any
participant can access data stored by other accounts through reference
borrowing.

3.6. SmartPy/Tezos

The Tezos blockchain features a few high-level contract languages,
including Liquidity, Archetype, LIGO, and SmartPy. Among them, the
last two seem the most actively supported: here we consider SmartPy,
since its Python-like style lends itself to a more direct comparison with
Algorand’s PyTeal.

Tezos follows the account-based stateful model. Its consensus nodes
xecute low-level code written in Michelson, a statically-typed, stack-

based and Turing-complete bytecode language. SmartPy, as the other
Tezos high-level languages, must be compiled into Michelson in order
to be executed.

SmartPy exploits meta-programming on top of Python: i.e., SmartPy
ontracts are just (decorated) Python programs, which are transformed
nto Michelson code by the SmartPy compiler. Meta-programming al-
ows developers to use the syntax and control structures of SmartPy
atch Python’s, as well as to use Python libraries. The language is

fully typed, with type inference performed after a transformation into
n intermediate OCaml code (see Section 4.5). When unable to infer

a datatype, the SmartPy compiler generates an error and requires an
explicit cast. Meta-programming decorators are used to specify the
contract interface, i.e. the set of its public functions, the contract
storage, and testing scenarios. Datatypes of the contract storage do not
orrespond to the native Python datatypes, but are defined through
he SmartPy library. The deployment of a SmartPy contract specifies
he initial contract storage, which is set via the contract constructor.

Unlike Ethereuum, this initial storage is statically incorporated in the
Michelson code, and the contract cannot use external data (e.g., the
caller’s address) to initialize its storage. Contract code cannot contain
xternally defined data, such as externally-defined contracts.

4. Comparative analysis

In this section we perform a comparative analysis of the smart
ontract languages presented in Section 3. We outline below the key
lements of our comparison. A first, high-level view is in Table 1,

which classifies languages/platforms according to the architectural
aspects discussed in Section 2. A more in-depth comparison is based on
our hands-on experience on developing a common benchmark of use
cases. We describe our benchmark in Section 4.1, and then in Sec-
ions 4.2–4.4 we exploit it to compare the programming styles of

contract languages, their verbosity and readability, and the security
implications of their design. Then, in Sections 4.5 and 4.6 we discuss
the role of the tool chain (compiler and static analyzers) in preventing
vulnerabilities and other loopholes. In Section 4.7 we analyze the
8
support for the integration of on-chain and off-chain components.
In Section 4.8 we compare the fee models of the blockchain platforms.
Finally, in Section 4.9 we reflect on our experience in develop-
ing the benchmark, by discussing how the availability of platform
functionalities affects the development of smart contracts.

Table 5 summarizes our assessment.

4.1. Smart contracts benchmark

The ‘‘Rosetta Smart Contracts’’ benchmark [1] is a specialization of
Rosetta Code to the realm of smart contracts. It showcases the contract
languages discussed in Section 3, using them to implement a diversified
class of use cases. Two main drivers have influenced our choice of
the use cases: first, to provide a representative selection of common
DApp use cases, such as those in the Openzeppelin library for Ethereum;
secondly, to serve as an adequate test-bed for a comparative analysis of
the functionalities supported by the different smart contract languages
and platforms.

The benchmark currently includes 21 use cases, whose implemen-
tations are distributed across 151 source code files, with a cumulative
size of ∼900KB and ∼18K LoC. Table 2 enumerates the use cases and
the functionalities required to implement them. These functionalities
epresent the basic features that are provided by smart contract lan-
uages, possibly exploiting the low-level primigtives made available
y the underlying blockchain platforms where the smart contracts are
xecuted. To illustrate, the Bet use case described in Section 4 requires

the following functionalities: (i) ‘‘native tokens’’: the contract involves
transfers of native cryptocurrency (from the players to the contract for
the join action, and for the contract to the players for the win and
timeout actions); (ii) ‘‘multisig transactions’’: the join action must be
imultaneously authorized by both players; (iii) ‘‘time constraints’’: the
imeout action must be enabled after a given deadline; (iv) ‘‘transaction

revert’’: some transactions must be reverted when some conditions are
ot satisfied (e.g., when the win action is not authorized by the oracle).
s shown later in Table 4, not all languages/platforms provide native

support for all the functionalities listed in Table 2. When that is the
ase, we resort to workarounds, possibly adapting the specification of

the use case (e.g., if multisig transactions are not available, in the
et contract we can split the join action in two actions, one for each
layer). See Section 4.9 for more details about these workarounds.

4.2. Comparison overview

Roughly, we can partition the smart contract languages presented
in Section 3 into two classes, according to the programming style
hey induce: the procedural style and the approval style. The former
lass includes languages where the contract reacts to transactions by
pdating its state and/or the ledger state (possibly distributed across
ultiple accounts): Solidity, Rust, Move and SmartPy all belong to

his class. The latter includes languages where the contract is expected
o approve or discard a single transaction or a group of transactions:
iken belongs to this class. TEAL/PyTeal follows a hybrid approach,
upporting both styles. As we will see in Section 4.4, the programming

style is one of the factors that contribute to the security of contracts,
and it is strictly related to the level of abstraction provided by the
language over the underlying blockchain platform.

https://liquidity-lang.org/
https://archetype-lang.org/docs/introduction/
https://ligolang.org/docs/intro/introduction/?lang=jsligo
https://smartpy.io/
https://rosettacode.org/wiki/Rosetta_Code
https://github.com/OpenZeppelin/openzeppelin-contracts

M. Bartoletti et al. Future Generation Computer Systems 164 (2025) 107563
Table 2
Functionalities required by the use cases in the benchmark. Entries marked with 𝑖 denote functionalities that can be used to implement workarounds in case the functionality
marked with ✓𝑖 is not natively available in the given language/platform.

Use case

Na
tiv

e to
ke

ns

Cu
sto

m
 tok

en
s

M
ul

tis
ig
 tra

ns
ac

tio
ns

Co
nt

ra
ct
 up

da
te

s

Tr
an

sa
ct

io
n b

at
ch

es

Ti
m

e co
ns

tra
in

ts

Ke
y–

va
lu

e m
ap

s

Dy
na

m
ic
 arr

ay
s

Bo
un

de
d lo

op
s

Ra
nd

om
ne

ss

Tr
an

sa
ct

io
n re

ve
rt

Co
nt

ra
ct

-to
-c

on
tra

ct
 ca

lls

De
le

ga
te
 co

nt
ra

ct
 ca

lls

In
-c

on
tra

ct
 de

pl
oy

m
en

t

Ha
sh
 on

 arb
itr

ar
y m

es
sa

ge
s

Ve
rs

ig
 on

 arb
itr

ar
y m

es
sa

ge
s

Bi
tst

rin
g o

pe
ra

tio
ns

Ar
bi

tra
ry

-p
re

ci
sio

n a
rit

h.

Ra
tio

na
l ar

ith
.

Bet ✓ ✓ ✓ ✓

Simple transfer ✓ ✓

Token transfer ✓1 1 ✓ 1

HTLC ✓ ✓ ✓ ✓

Escrow ✓ ✓

Auction ✓ ✓ ✓ ✓

Crowdfund ✓ ✓ ✓ ✓

Vault ✓ ✓ ✓

Vesting ✓ ✓ ✓

Storage ✓

Simple wallet ✓ ✓

Price bet ✓ ✓ ✓

Payment splitter ✓ ✓ ✓ ✓

Lottery ✓ ✓ ✓ ✓1 ✓ 1 1

Const. prod. AMM ✓1 1 ✓ 1 ✓ ✓

Upgradeable proxy ✓1 ✓ 1 1

Factory ✓ ✓ ✓ ✓

Decentralized identity ✓ ✓ ✓

Editable NFT ✓1 1 ✓ 1

Anonymous data ✓ ✓ ✓

Atomic transactions ✓1 1 1 1 1 1
p
B

c
t

o

Solidity and SmartPy are those that most closely follow the pro-
cedural style: contracts have code (a set of procedures) and a state
that can be updated in reaction to procedure calls. Despite the strong
similarity between these two languages, important differences exist. A
notable one lies in the interaction with other contracts. In Solidity,
a method f can call another contract’s method g at any point, in-
terrupting the execution of f to start that of g. In SmartPy, instead,
the execution of g takes place only after the caller f has completed.
This design choice has repercussions on the programming style and on
the security: on the one hand, Solidity’s design leads to more natural
implementations (e.g., f calls an oracle g to get some value, and then
uses that value in its continuation), but on the other hand it is a
cause of attacks (see Section 4.4). Programming the same behavior
in SmartPy requires g to callback the contract of f after it has finished
its execution, and store the return value in the caller’s storage (which
is somehow less natural).

Rust, either raw or using Anchor, while still adhering to the pro-
cedural style, substantially departs from Solidity and SmartPy. This is
only in part explained by the stateless nature of Solana, and by the
additional checks on the accounts passed as parameters that this model
requires. Programming in raw Rust, as discussed in Section 3.2, re-
quires a careful and often verbose approach, increasing error-proneness
due to the extensive use of boilerplate code. Although these issues are
partially mitigated by the Anchor framework, Solana contracts are more
verbose than those in other account-based platforms (see Section 4.3).

Move, although still based on the stateless account-based model,
induces a unique procedural programming style, centered around linear
types. Defining data types requires some care: assets cannot be mixed
with ordinary data within the same struct, since a different treatment
is needed. While integer values can be modified and updated like
in common programming languages, assets and resources in general
cannot be modified, copied or dropped and must be put into a non-
copiable and non-droppable wrapper type in order to be manipulated.
According to our experience, making a Move program compile and
work properly can require a substantial effort, all the more so when
dealing with asset transfers: its strict type system puts the developer on
rigid rails; escaping such rails would likely lead to compile-time errors.
Similarly to Move, Rust also supports ownership types (so enforcing the
same strict discipline over the copiability of datatypes). However the

programming model imposed by Solana does not fully exploit the Rust’s t

9
complex type system, sticking to a more conventional programming
practice. In particular, currency and assets are not represented by un-
copiable/undroppable datatypes in Rust/Solana, and so their linearity
is not statically guaranteed by Rust’s type system, but by run-time
checks.

Cardano substantially differs from all the other platforms discussed
in this paper, being the only representative of the UTXO model. First,
the current contract state is recorded in the current unspent trans-
actions that encode the contract. Then, performing a contract action
means spending that transaction with a new one that sets the new
contract state: therefore, the contract does not compute the new state
(as in account-based platforms), but it just verifies that the state in the
redeeming transaction is a correct update of the old one. This motivates
the paradigm switch from the procedural style to the approval style.
Aiken brings a purely functional flavor to the table, making code
overall robust thanks to strong types and data immutability, albeit
verbose and difficult to write for developers trained in procedural
rogramming paradigms. As noted in the pseudo-code of the UTXO
et contract in Fig. 5, the contract script must check several trans-

action fields, e.g. the data fields where the contract state is stored.
For instance, transferring a token from the contract to some address
requires checking that the spending transaction has some outputs with
suitable signature verification scripts. This workflow is more complex
and verbose than in the account-based model, where an explicit call to
some transfer primitive achieves the same goal. Admittedly, Aiken fea-
tures the typical arsenal of constructs provided by functional languages,
including the record update syntax, which somewhat reduces possible
errors when updating the state. However, when the contract logic is
omplex, correct state management turns out to be a cumbersome
ask and programmers may still introduce errors despite the robust

and type-safe design of Aiken. Unlike in account-based models, where
interactions between contracts can be rendered directly as contract
calls, in the UTXO model contract calls are not meaningful. Indeed,
calling a contract would require the caller to perform a sort of ‘‘inter-
nal’’ transaction to trigger a computation step of the callee. Although
these internal transactions are not featured by Cardano, some forms
of composability between contracts are possible, e.g. by multi-input
transactions that force dependencies between the scripts of the spent
utputs. More sophisticated interactions can be obtained by resorting
o layer-2 implementations of asynchronous message-passing [22].

M. Bartoletti et al.

i
o
p
a
t

c
s
t
p

t
o
a

c
a
o
t

w
r
l
i
s
i
i

n
r
t
c
m

w

s
t
R
i

t

p
s
s
c
i
t
C
o
a
a
m

s
t
c
b
a
a

t
t
a
i
o
B
a
p
i
t
i
a
o

Future Generation Computer Systems 164 (2025) 107563
Algorand, being the platform whose contract layer and languages
have changed the most during its lifespan, is also the one for which it
s most difficult to bring a definitive assessment. Originally, Algorand
nly supported smart signatures, i.e. simple stateless contracts whose
rimary purpose was that of deciding whether to approve the trans-
ctions coming from the smart signature’s address [23]. According
o our rough taxonomy, smart signatures follow the approval style.

After a number of updates, the contract layer was enriched with so-
called applications, a basic form of stateful smart contracts, but still
leveraging smart signatures for handling assets transfers. This contract
model was a hybrid between the approval style (needed to write the
smart signature part of the contract) and procedural style (needed for
the application, which handles the contract state). The introduction of
inner transactions and application accounts (see Section 3.4) to the
ontract layer has made it possible to eliminate the need for smart
ignatures in stateful contracts, allowing them to construct and submit
heir own transactions. Effectively, this makes the current programming
ractice of Algorand adhere to the procedural style.

4.3. Code verbosity and readability

As a rough comparison between contract languages, we measure
in Table 3 the LoC of the implementations in our benchmark (restrict-
ing to the use cases where all the implementations are available). As
expected after Section 2.3, the UTXO-based model, here represented
by Aiken, leads to more verbose implementations than account-based
models. Among the latter, Anchor for Rust is definitely the more
verbose. This is due in part to the language bureaucracy and in part due
o the need to handle data in multiple accounts, which is a consequence
f how Solana renders the stateless model. However, statelessness
lone does not cause verbosity: e.g., Move contracts are more concise

than Solana’s, which is penalized by the additional account validation
hecks. The other languages in the account-based model have, on
verage, similar verbosity: we just note that the slightly higher LoCs
f Move are counter-balanced by the increased robustness due to static
yping (cf. Section 4.5).

Regarding readability, in the absence of a widely accepted metric
e resort to a qualitative evaluation. In general, we have a poor

eadability when understanding the behavior of a contract requires a
ow-level knowledge of the structure of blockchain transactions. This
s the case e.g. of Aiken and PyTeal: in the first case the problem
eems inherent to the closeness of Aiken to the UTXO model, while
n the second case it seems related to the handling of storage and of
nner transactions. PyTeal is also a witness of the fact that a good

readability is not always implied by a low verbosity. The readability
of Move contracts is strictly related to the understanding of linear
types: developers unfamiliar with these concepts will find it quite
difficult to make some sense of a Move contract. In Anchor/Solana,
poor readability is caused by a combination of factors: unfamiliarity
with the Rust ownership model and the distribution of the state across
multiple accounts.

4.4. Security implications of language design

The design of a smart contract language and of the underlying
contract layer has deep implications on the security of the applica-
tions built on them. A paradigmatic example is the famous reentrancy
issue of Ethereum, which has been the basis of several real-world
attacks [24,25]. The issue arises from the combination of a few unfortu-
ate design choices at the EVM level: (i) called methods always have a
eference to the caller; (ii) any method can call any other method; (iii)
here are no bounds on the depth of nested calls; (iv) the most critical
ontract field, the ETH balance, is implicitly updated as a side effect of
ethod calls. Putting it all together, it may happen that when a contract

calls another contract, the callee might call back its caller in such a

ay as to modify its state variables, bringing it into an inconsistent

10
Table 3
Lines of code (LoC), excluding comments and empty lines, of a selection of use cases
implementations. For Solana we show LoC of Anchor code, since it is more succinct
than pure Rust.

Use case

So
lid

ity
Et

he
re

um

An
ch

or
So

la
na

Ai
ke

n
Ca

rd
an

o

Py
Te

al
Al

go
ra

nd

M
ov

e
Ap

to
s

Sm
ar

tP
y

Te
zo

s

Bet 39 137 158 110 62 53
Simple transfer 18 91 120 49 30 21
HTLC 25 123 115 60 49 31
Escrow 41 176 120 94 45 28
Auction 51 152 221 129 40 45
Crowdfund 31 182 129 103 49 33
Vault 40 166 171 103 57 38
Vesting 39 149 125 105 48 28
Storage 11 82 75 32 23 18
Simple wallet 47 183 169 87 108 47

Average 34 144 140 88 51 34

tate where it performs unwanted actions (e.g., double-sending tokens
o the adversary) that would not be possible in consistent states [26].
eentrancy attacks can be countered by using design patterns ensur-

ng that state updates are applied before potential reentrant calls, or
by making contract calls mutually exclusive. However, systematically
aking care of every call in a contract (including the pure transfers of

currency) is quite demanding and error-prone.
Reentrancy attacks are dealt with in various ways by the other

latforms considered in this survey. In Solana, reentrancy attacks are
till possible but limited by the fact that re-entry is possible only as
elf-recursion. In Cardano, reentrancy is ruled out by the absence of
ontract calls. The same goes with Aptos: invoking another contract
s not possible unless its module is known at compile-time, and mu-
ual recursive calls between modules are forbidden at compile-time.
ombined with the absence of callbacks or delegate calls, this rules
ut reentrancy by design. Algorand is not vulnerable to reentrancy
ttacks, because, even though contract-to-contract calls are possible,
 contract cannot call itself, even indirectly. In Tezos, as already
entioned in Section 4.2, reentrancy attacks are mitigated by the fact

that the caller function must complete, committing to its state, before
performing other calls.

Besides reentrancy, different smart contract languages/platforms
uffer from different security concerns. Solana, in particular, is prone
o weaknesses related to its stateless model, which requires contract
allers to provide the account containing the data to be read/written
y the contract. Omitting some proper validations on accounts passed
s input is a source of attacks: a notable example was the wormhole
ttack, which caused a loss of more than $320 million [27]. A specific

vulnerability of this kind is the absence of signer verification. Besides
checking that the provided account is valid for a specific operation,
the contract must ensure that the transaction is signed by the holder
of that account. Omitting this check can lead to vulnerabilities. For
instance, if the developer omits this check in the win method of
he Bet contract in Fig. 3, then a malicious player could provide
he oracle address without the corresponding signature, and set itself
s the winner (bypassing the oracle altogether). A related weakness
s the absence of ownership verification. For example, assume that the
wnership check is omitted in the timeout method of the stateless
et contract in Fig. 3. Then, an adversary could call timeout with
 specially-crafted account that allows him to withdraw the whole
ot. By confirming that only the contract itself can modify the stored
nformation, the data integrity remains protected. Finally, the ability
o invoke malicious or counterfeit contracts inside another contract
nvocation stems from the user’s capability to supply any contract
ccount, prompting the need for measures to verify the authenticity
f the invoked contracts.

https://docs.soliditylang.org/en/latest/security-considerations.html#reentrancy
https://arstechnica.com/information-technology/2022/02/how-323-million-in-crypto-was-stolen-from-a-blockchain-bridge-called-wormhole/
https://arstechnica.com/information-technology/2022/02/how-323-million-in-crypto-was-stolen-from-a-blockchain-bridge-called-wormhole/
https://arstechnica.com/information-technology/2022/02/how-323-million-in-crypto-was-stolen-from-a-blockchain-bridge-called-wormhole/

M. Bartoletti et al.

t
a
v
n
w

s
i
t
a
I
d
t

c

e
p
h
s
(
r
d

h
p
e
s
i
c
p
m
e
p
t
f
m
t
t
a
i
A
a
i
s
d

S
F
a
t
a
S

p
m
a
t
e

d

S
i
b

i

l
p

t
o

Future Generation Computer Systems 164 (2025) 107563
Aiken follows the approval style, in that the contract must check
he transaction fields to decide whether to approve an incoming trans-
ction or not. Forgetting even a single check may give rise to security
ulnerabilities, possibly allowing an adversary to set a data field of the
ew state to an arbitrary value. The same concerns apply to PyTeal,
hen used to write (approval-style) smart signatures.

Most of Algorand weaknesses revolve around its peculiar treatment
of memory. In order to disincentivise the abuse of on-chain storage,
every account must maintain a minimum balance that varies depending
on how much memory it is using in the blockchain (which, in turn,
depends on the number of distinct assets owned, contract data stored,
etc..). Managing this balance constraint is tricky: developers must make
ure that accounts the contract interacts with (and the contract account
tself) always satisfy the minimum balance. This can create problems as
ransactions may unexpectedly fail, as they may lead the contract (or
nother account) to hold a balance lower than the allowed minimum.
n particular, when emptying a contract account, it is essential to
istinguish the case in which assets are sent from the case in which
he contract account is closed.

Further security implications of the fee mechanism design are dis-
ussed later in Section 4.8.

4.5. Compile-time checks

With the exception of PyTeal/Algorand, all the languages consid-
red in this paper feature strong typing. Solidity supports subtype
olymorphism, allowing programmers to implement contracts by in-
eriting other contracts in an object-oriented fashion. It also features
tatic visibility modifiers for functions and state variables, and dynamic
programmable) modifiers to restrict access to functions depending on
un-time parameters. Extra static checks performed by the compiler
etect potential overflows/underflows and division by zero, stack size

limit vulnerabilities, and unwanted variable shadowing caused by in-
eritance. Rust supports object-orientation, subtyping and parametric
olymorphism. Its compiler also tracks references and data ownership,
nsuring memory safety and preventing data races. While Rust is a
afe language, Solana does not provide an interface of the same qual-
ty, imposing several weakly typed programming patterns for writing
ontracts. This renders the powerful checks performed by the Rust com-
iler irrelevant to some extent. Move’s resource-oriented programming
odel is inspired by Rust: ownership of data is explicitly defined and

nforced by the type system, and a borrow checker similar to Rust’s
revents multiple mutable references to the same resource. Linear
ypes further add to the number of static checks by preventing code
rom replicating or losing currency and assets in general, ultimately
itigating double spending through typing. Such features are similar

o Rust’s in principle, though in Move they are more integrated with
he language syntax and straightforward for the programmer. That is
ctually due to the fact that Move is a special-purpose language specif-
cally tailored for asset management in smart contract programming.
iken too is a special-purpose language that stands out of the pack,
s it delivers a purely functional style, with static typing and type
nference. Although this is fundamental to the safety of the validator
cript, static typing alone is not sufficient to rule out logic errors, as
iscussed in Section 4.4.
SmartPy and PyTeal, although both based on Python, are sub-

stantially different when it comes to static checks. PyTeal contracts
are just Python programs that produce TEAL bytecode when executed.
Instead, SmartPy contracts are compiled into Michelson, a typed byte-
code language. The static typing and type inference supported by
martPy are preserved by the compilation through type reconstruction.
urthermore, SmartPy contracts can carry type annotations, accessible
s structured values through an API. These are actually runtime enti-
ies for Python but are converted into type annotations in Michelson
t translation time. Such a hybrid approach improves the safety of

martPy while retaining the simplicity of the Python syntax. At the time

11
of writing, Algorand lacks a compelling high-level language with static
typing. Programming in TEAL is equivalent to coding in assembly, thus
with little to no static checks on the code. Although PyTeal features a
rudimentary type system, type errors are still possible when encoding
or decoding stored data, possibly leading to unpredictable errors and
mishandling of the required datatypes.

Overall, with the notable exception of Move linear types, which can
revent double-spending, the type systems of the other languages can
ostly prevent bad coding practices rather than some forms of vulner-

bility. As noted in Section 4.4, language design, when specifically
ailored to rule out certain kinds of attacks in the first place, is more
ffective than most common forms of typing.

4.6. Contract analysis and verification

While compile-time checks are useful to rule out vulnerabilities
ue to common programming errors, they cannot guarantee that a

contract respects some ideal behavior in the presence of adversaries.
everal tools have been developed to detect potential vulnerabilities
n contracts. This is especially true for Ethereum, where dozens of
ug detection tools with varying detection capabilities exist [28–30]. In
Solana, current security tools include VRust [18] and FuzzDelSol [27].
Both tools can detect Solana-specific vulnerabilities, like e.g. the ab-
sence of signer checks and owner checks discussed in Section 4.4, using
different techniques (inter-procedural data flow analysis for VRust,
coverage-guided fuzzing for FuzzDelSol). In Algorand, current tooling
ncludes Panda [31], which is based on symbolic execution of TEAL

code, and Tealer, which searches suspicious patterns in the control-flow
graph extracted from the TEAL code.

More sophisticated tools enable the verification of contract imple-
mentations against an ideal, abstract description of their behavior.
For Solidity, this kind of analysis is partially supported by the as-
sertion checker incorporated in the compiler, and by a few external
analysis tools [32,33]. However, due to the intricacies of the So-
idity/EVM semantics, these tools have several limitations in their
recision and expressiveness of target properties [32]. Move features

a property specification language that can be used by programmers to
annotate function invariants. Such invariants are verified at compile
time through by the Move Prover, which is bundled with the Aptos
toolchain. A bytecode verifier validates compiled contracts at deploy-
time, preventing maliciously crafted code from being uploaded to the
blockchain. Notably, the bytecode verifier enforces the same type-safety
properties (including linearity) that are enforced by the Move compiler
over the original source code. The work [34] applies the Move Prover to
he formal verification of relevant functional requirements of modules
f the Aptos Framework.

Verification tools for Tezos include MiChoCoq and ConCert, which
verify the functional correctness of contracts against a specification
based on pre- and post-conditions in the Coq proof assistant [35,36].
Other static analyzers exist, based on refinement types [37] and on
abstract interpretation [38,39].

4.7. On-chain/off-chain interactions

Off-chain systems are essential to extend blockchain features (e.g.
layer 2 and blockchain interoperability protocols) and provide users
with Web3 services and decentralized applications. Blockchain features
(both at the consensus and at the contract layers), contract languages,
and off-chain libraries all impact the development of off-chain sys-
tems. In particular, the interaction between off-chain and on-chain
systems depends on how data flows to/from contracts. In account-based
platforms, data can be fed to contracts through method invocations.
Some systems (Rust/Solana and Algorand) only allow base types as
parameters in calls to contract entry-point functions, whereas Solidity,
Anchor/Solana and Beaker/Algorand also support structured data. Out-
putting data from contracts is usually done through return values of

https://docs.soliditylang.org/en/latest/security-considerations.html#call-stack-depth
https://docs.soliditylang.org/en/latest/security-considerations.html#call-stack-depth
https://docs.soliditylang.org/en/latest/security-considerations.html#call-stack-depth
https://swcregistry.io/docs/SWC-119/#shadowinginfunctionssol
https://github.com/crytic/tealer

M. Bartoletti et al.

e

n
t

t
b
o
s
n
r

t
p
s
a

r
h

n
E

a
n

c
m
m
e

t

b

o

t
d

t
d
p

p
a
r
t
c
n
p

e

o

o
b
a
t
p
g

m
(

Future Generation Computer Systems 164 (2025) 107563
method calls. In the platforms where return values are not supported,
contract outputs can be either written in other accounts (Solana) or
mbedded in transaction data (e.g., Algorand, Tezos, Cardano).

Depending on where contract outputs are written, off-chain compo-
ents use different techniques to retrieve them. In Move and SmartPy,
he off-chain component can directly call methods because the

blockchain preserves the interface and types. In the other systems,
he off-chain components must first code the contract public interface
efore calling a method. The other output retrieval technique is based
n listening to events (or logs) emitted by the contract. This is fully
upported in Solidity, Move, and SmartPy. Contracts in PyTeal do
ot emit events but, as mentioned, rely mainly on the log to output
esults. The other languages considered in this survey do not support

events emissions. In Anchor and Aiken, low-level transaction logs can
be exploited instead.

Programming off-chain systems is facilitated by official or third-
party supported SDKs and libraries (namely Web3). Solidity has stable
support in a wide range of programming languages (including those for
embedded devices). There are different versions of web3-like libraries
and SDKs available for all of the other platforms examined. In par-
icular, JavaScript libraries exist for Rust, Aiken (in two independent
rojects: Lucid and Mesh), Move, and SmartPy. Python libraries provide
upport for Aiken, PyTeal, Move and SmartPy (Taquito). Rust libraries
re available for Rust and Algorand.

4.8. Fees

The fee model established by the contract layer has non-negligible
epercussions on the programming of smart contracts: developers must
ave a good understanding of the fee model in order to avoid paying

more fees than strictly needed or incurring in potentially insecure
programming patterns.

In Ethereum, fees depend on the sequence of EVM instructions
eeded for executing a transaction, and are paid by its sender. Each
VM instruction has a cost, specified in terms of gas units. The fee is the

total amount of gas units consumed to execute the transaction times the
price for gas unit. The number of gas units per transaction is bounded:
transactions exceeding such limit pay the fee, but have no other effects
on the blockchain state. So, although contracts can have unbounded
loops and recursion, in practice all computations are bounded. The gas
limit also bounds the contracts size, making it necessary to downsize
the contract code or distribute its logic across multiple contracts.
The gas mechanism is a notorious source of attacks. At the network
level, DoS attacks [40] exploit the discrepancy between the gas units
ssociated to EVM instructions and the actual computational resources
eeded for their execution [41]. Dealing with these attacks caused

several revisions of the gas costs (e.g., EIP150, EIP1559, EIP2929),
possibly breaking existing contracts that depend on gas costs. Fees
an also be the basis for attacks to contracts. E.g., a contract with a
ethod that iterates over a dynamic data structure, such as a key–value
ap, can be attacked by making the structure grow until the iteration

xceeds the maximum gas limit: in this way, the contract gets stuck,
and its funds frozen. By combining the fee mechanism with transaction-
ordering dependence, attacks based on the unpredictability of fees are
possible: e.g., an adversary might front-run a transaction to change the
contract state so to cause the transaction to be reverted or pay more fees
than expected. The gas mechanism adopted by Tezos is conceptually
similar to that of Ethereum, and therefore suffers from similar issues.

These attacks are not possible in the platforms where fees are
predictable, as in Solana, Cardano and Algorand. In Solana, transac-
ion fees are determined solely by the number of required signatures

for a transaction, rather than the amount of resources used. Besides
transaction fees, Solana imposes fees on the data stored in accounts,
to incentivize users not to waste on-chain space. If an account has
not enough balance to cover the rent, it faces removal. Accounts can

e exempted from paying fees by holding a balance that is at least

12
equivalent to two years’ worth of rent. Taking rent fees into account
influences contract development in Solana. E.g., in the stateless Bet
contract (Fig. 3), upon the completion of a final action the developer
should close the storage account s and return the remaining value,
used for rent, back to the initializer. This requires an explicit coding
f additional operations into the contract.

In Cardano, transaction fees depend on the transaction size and on
he number of CPU steps and memory needed for its execution. All these
ata are predictable before sending the transaction, since Cardano is

not subject to transaction-ordering dependencies, being based on the
UTXO model.

In Algorand, although contracts are executed after compilation to
low-level code as in Ethereum and Tezos, transaction fees are calculated
differently. Namely, while in Ethereum and Tezos the fees depend on
he sequence of executed low-level instructions, in Algorand they are
etermined only by the transaction size, with a lower bound set by the
latform.

The fee model in Aptos incorporates elements from the models
roposed by EVM, Algorand, and Solana, featuring a base minimum fee
long with computation costs (referred to as I/O costs) and ‘‘storage
ent’’ fees. Aptos transactions require a two-component fee structure
hat includes execution I/O costs and storage fees. The computation
osts are measured in gas units, with the price fluctuating based on the
etwork’s load. The storage component is priced at a fixed rate in the
latform’s principal cryptocurrency. The storage fee can be refunded

when the allocated space is deleted (as in Solana).

4.9. Native vs. programmable functionalities

Developing our smart contracts benchmark was instrumental in
understanding how different patterns are rendered in different lan-
guages/platforms. We detail in our repository [1] the workarounds
we adopted to implement the use cases in the various languages, and
summarize below our main findings. For a quick reference, Table 4
depicts a comprehensive recap of the functionalities discussed below,
plus a number of additional minor ones, for each language/platform
xplored in this paper.

Custom tokens All blockchain platforms come with a principal cryp-
tocurrency (e.g., ETH for Ethereum), which is minted under the control
f the consensus protocol and is exchangeable among users via direct

transfers or programmatically via smart contracts. Many real-world
contracts use tokens to represent custom assets (in our benchmark, the
Token transfer use case). Unlike the principal currency, the minting
f these custom tokens is not regulated by the consensus protocol,
ut rather by a user-defined policy. Solana, Cardano, Algorand, Tezos
nd Aptos support tokens natively, and allow contracts to define their
ransfers similarly to the native cryptocurrency. In Move, which sup-
orts parametric polymorphism, custom assets are implemented via the
eneric type Coin, whose type parameter CoinType specifies the fungible

asset type. Programmers can ensure that only assets of the same type
are exchanged: this is achieved through the combined action of static
typing and a dynamic lookup mechanism of resources driven by types.
In Ethereum, instead, tokens are not supported natively, and so they

ust be programmed as contracts, by implementing standard interfaces
e.g. ERC20/ERC721 for fungible/non-fungible assets). This comes at

a cost for developers, as it is their duty to prevent asset duplication,
unintended losses and other mishandling. Furthermore, malicious token
implementations could be an attacks vector to smart contracts [42].

Multisig transactions Another discriminating feature is given by multisig
transactions, i.e. transactions that can carry the signature of multiple
users. They are required e.g. in the Bet use case, where two players
must simultaneously deposit 1 token to join the game. The Cardano
and Solana implementations fully respect the specification, since the
underlying platforms support multisig transactions. Platforms such as
Tezos and Ethereum do not provide native support for this feature,

https://ethereum.org/en/developers/tutorials/downsizing-contracts-to-fight-the-contract-size-limit/
https://ethereum.org/en/developers/tutorials/downsizing-contracts-to-fight-the-contract-size-limit/
https://ethereum.org/en/developers/tutorials/downsizing-contracts-to-fight-the-contract-size-limit/
https://eips.ethereum.org/EIPS/eip-150
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-2929
https://docs.cardano.org/cardano-testnet/tools/plutus-fee-estimator
https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/token_transfer
https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/bet

M. Bartoletti et al.

g
T

Future Generation Computer Systems 164 (2025) 107563
Table 4
Functionalities supported by smart contract languages/platforms. The first group refers to the functionalities described in Section 4.9. Checkmarks ✓denote
functionalities that are available natively in the language or via the blockchain APIs. The symbol denotes functionalities that can be implemented in a smart
contract with some practical workaround (e.g., ERC20/ERC721 interfaces for custom tokens in Ethereum). An empty cell indicates that the functionality is not
supported by the platform. Further workarounds are implemented in our benchmark [1].

Functionalities

So
lid

ity
Et

he
re

um

Ru
st

/A
nc

ho
r

So
la

na

Ai
ke

n
Ca

rd
an

o

TE
AL

/P
yT

ea
l

Al
go

ra
nd

M
ov

e
Ap

to
s

Sm
ar

tP
y

Te
zo

s

Native tokens ✓ ✓ ✓ ✓ ✓ ✓

Custom tokens ✓ ✓ ✓ ✓ ✓

Multisig transactions ✓ ✓ ✓ ✓

Contract updates ✓ ✓

Transaction batches ✓ ✓

Time constraints ✓ ✓ ✓ ✓ ✓ ✓

Key–value maps & Dynamic arrays ✓ ✓ ✓ ✓ ✓ ✓

Bounded loops ✓ ✓ ✓ ✓ ✓

Randomness ✓ ✓

Transaction revert ✓ ✓ ✓ ✓ ✓ ✓

Contract-to-contract calls ✓ ✓ ✓ ✓

In-contract deployment ✓ ✓ ✓ ✓

Delegate contract calls ✓ ✓

Hash on arbitrary messages ✓ ✓ ✓ ✓ ✓

Versig on arbitrary messages ✓ ✓ ✓ ✓ ✓

Bitstring operations ✓ ✓ ✓ ✓ ✓

Arbitrary-precision arithmetic ✓ ✓

Rational arithmetic ✓ ✓
but a workaround exists, as illustrated in the implementation of the
Bet contract, where the effect of multisig transactions is captured by a
specific pattern that splits the join action into two steps. An alternative
workaround is to implement a multisig contract, which performs some
iven actions only if authorized by at least a given number of users. In
ezos, multisig contracts can be crafted by exploiting lambdas and the

ability to verify signatures on arbitrary messages (furthermore, they are
natively supported by the official client). Algorand supports multisig
through multi-signature accounts, that is special sender addresses that
have to be created by off-chain code and require a set of signatures to be
authorized to perform the transaction. Aptos offers a similar mechanism
based on off-chain code.

Contract updates Among the platforms considered in this paper, only
Solana and Algorand allow to update contracts once deployed. In the
other platforms, this feature can be simulated through an
UpgradeableProxy contract, which intermediates the interactions be-
tween callers and a callee, allowing the owner to update the callee
address (and so, the contract that processes function calls). The Solidity
implementation exploits delegate calls to ensure that the caller and
callee interact as there were no proxy intermediation. In Solana,
although contract updates are supported (at the cost of transferring ac-
count ownership to the new contract to remedy mutating restrictions),
implementing the proxy does not seem possible. Cardano does not
support contract calls, therefore the proxy cannot be implemented. Still,
contract updates are possible by making the validating script accept any
transaction signed by the owner, allowing them to effectively replace
the old script with the new one. Aptos does not support contract calls or
contract updates either. SmartPy allows for contracts updates through
lambda functions. Namely, the contract is represented as a mapping,
whose values are lambdas. A method call is then translated into calling
the corresponding lambda, while updating the contract is performed by
updating the mapping.

Transaction batches In some use cases (e.g., circular trades and group
payments) it is useful to batch transactions to ensure that either all
or none of the transactions in a batch are executed. Among the plat-
forms considered here, transaction batching is supported natively only
by Algorand (both client-side and contract-side) and by Solana (only

client-side). In the absence of native support, a similar effect can be

13
obtained by deploying a contract with a function that performs a
specific sequence of function calls. The atomic transactions use case
in our benchmark generalizes this by using a single contract that
can process arbitrary transaction batches. Our Solidity implementation
exploits delegate calls to ensure transparency of the caller contract. In
Cardano, batching is not rendered in the strict sense of the term, but
it is implicitly implemented by the UTXO mechanism. For instance, if
we want two payments, say 1∶𝚃 from 𝙰 to 𝙱 and 1∶𝚃′ from 𝙱 to 𝙲, to
happen atomically, we can obtain the same effect by a single transaction
with two inputs (one redeeming 1∶𝚃 with 𝙰’s signature and the other re-
deeming 1∶𝚃′ with 𝙱’s) and two outputs, controlling 1∶𝚃 and 1∶𝚃′ with
𝙱’s and 𝙲’s signatures, respectively. Although Aptos does not support
transaction batches natively, programmers can pack multiple actions in
a single Move script, i.e. a code block that can invoke functions defined
in contract modules and is executed atomically (similarly to Ethereum’s
workaround).

Time constraints Most platforms allow contracts to set time constraints
by making the current block number or transaction timestamp readable
by the contract. This is a common feature in real-world scenarios: in our
benchmark, it occurs e.g. in the Bet, Auction, Crowdfund, HTLC, Vault
and Vesting use cases. In Cardano, contracts cannot access the global
blockchain state (including the block number), but time constraints can
be implemented leveraging the validity interval field of transactions.
Knowing only a time interval rather than the exact time might intro-
duce some approximations w.r.t. the ideal behavior. E.g., in the Aiken
version of the Vesting contract, the beneficiary can receive slightly less
than the amount prescribed by the vesting function at the exact time
the transaction is processed. This discrepancy arises since the amount is
determined as a function of the (lower bound of) the validity interval.

Key–value maps, dynamic arrays, and bounded loops All the languages
considered in this paper support dynamic data structures such as key–
value maps and arrays. In the stateful account-based models, they are
stored in the contract account. In Solana, instead, values are stored in
accounts, whose addresses serve as keys for key–value maps. For this
specific purpose, Solana uses special addresses that are deterministi-
cally generated but lack corresponding private keys and are tailored
to be under the exclusive control of a designated smart contract.

In Aiken/Cardano, dealing with dynamic data structures raises some

https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/bet
https://gitlab.com/tezos/tezos/-/blob/master/michelson_test_scripts/mini_scenarios/generic_multisig.tz
https://tezos.gitlab.io/user/multisig.html
https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/upgradeableProxy
https://docs.soliditylang.org/en/v0.8.16/introduction-to-smart-contracts.html#delegatecall-callcode-and-libraries
https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/atomic_transactions
https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/bet
https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/auction
https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/crowdfund
https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/htlc
https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/vault
https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/vesting
https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/vesting

M. Bartoletti et al.

a
i
e
t
t
i
(
C
a
o
A
i
l
t
a
u
C
t

a

c
b
p

d

R
g

d

c
a
a

o

w

r
r

i

m
o
v

a

t

Future Generation Computer Systems 164 (2025) 107563
efficiency concerns, since updating the contract state requires sending
 transaction carrying the whole new state. In contracts whose state
nvolves arrays or key–value maps that can grow significantly during
xecution, these transactions may become larger and larger. This has
wo drawbacks, in that the transaction fees increase with the transac-
ion size, and in that there is a hard limit (16KB) on this size. These
ssues could be potentially mitigated by using cryptographic techniques
e.g., Merkle trees) to minimize the amount of data stored on-chain.
urrently, this has to be implemented manually by the programmer,
s Aiken does not feature constructs to automatize the management
f large data structures exploiting these cryptographic primitives. In
lgorand, dynamic data structures can be implemented by using boxes,

.e. pieces of memory that can be allocated at any time during the
ifetime of the contract, at the cost of an increased minimum balance for
he contract account. These boxes are, however, fairly expensive. When
 use case requires a key–value map indexed on account addresses, the
se of the local storage of these accounts is preferred to that of boxes.
onsider, for instance, a contract that receives deposits from users, and
hat needs to record the amounts transferred by each user (like e.g.

in the crowdfund use case in our benchmark). In Algorand this can
be achieved by distributing the map across the local storage of each
ccount depositing tokens to the contract. As a single call can only

read the content of a limited number of boxes (8 per call), it is not
possible to iterate over structures that span a large number of boxes.
This means that iterating over arrays is still feasible provided that the
array is encoded in a single box; instead, iterating over dynamic data
structures such as key–value maps is quite problematic. Furthermore,
working with multiple maps is tricky: since box storage maintains a
single key–value store, making it appear as multiple maps requires the
developer to manually handle the partitions. This issue, together with
the varying minimum balance on the insertion of new key–value pairs,
makes the use of key–value maps in Algorand quite burdensome.

Randomness Some use cases require randomly-generated values (e.g.,
in lotteries and other games to choose a winner or to draw a card).
Randomness has also proven effective in mitigating the threats posed by
riminal smart contracts [43]. Although some centralized randomness
eacons are available, their use is not considered secure, since dishonest
roviders can bias their outputs [44,45]. A secure alternative is given

by commit-reveal-punish schemes, which construct random values by
combining values independently provided by users. To ensure that no
one can observe the others’ values to craft their own (which would
easily lead to attacks), these schemes force users to commit the hashes
of the chosen values before revealing them and use collaterals to rule
out dishonest users who do not reveal (see e.g. the HTLC use case). A
rawback of these schemes is that they become quite complex when

many users are involved. A viable alternative is given by Verifiable
andom Functions [46], a cryptographic primitive that allows users to
enerate publicly verifiable random values. Among the platforms con-

sidered here, only Algorand offers this feature natively, by combining
a randomness seed beacon and a special opcode to verify the correct
generation of values. We note that the analysis and formal verification
of randomized smart contracts is currently an under-explored research
field, with limited tool support [47].

5. Related work

In recent years, there has been a surge in advancements within
ecentralized, permissionless blockchain technologies, with a partic-

ular emphasis on smart contracts. However, despite this remarkable
progress, there remains a substantial gap in our understanding of
the fundamental principles and programming paradigms that underpin
smart contracts. While numerous studies have examined specific appli-
ations and challenges associated with smart contracts, there has been
 glaring absence in the exploration of their programming principles

nd languages. o

14
Recent literature reviews, such as [48,49], aimed to provide sys-
tematic overviews of technical challenges in smart contract devel-
opment. Sharma et al. [48] delved into aspects such as consensus
algorithms, permission policies, Turing completeness, and data models.
They identified crucial challenges such as readability, code correctness,
execution efficiency, privacy concerns, and gas exceptions. Similarly,
Zheng et al. [49] performed a comparative analysis of platforms and
applications, examining essential aspects such as creation, readability,
execution efficiency, transaction ordering, deployment, and privacy-
preserving mechanisms. They also categorized applications and out-
lined common use cases across diverse domains. In contrast to [48,49],
which primarily rely on comparing results from existing literature on
smart contract languages, our comparisons is based on our practical
experience developing a benchmark of use cases, where we contrast
different platforms/languages by implementing a range of smart con-
tracts in each language. This benchmarking methodology enables us to
perform a comprehensive comparative analysis, offering insights into
programming styles, readability and usability, compile-time checks, on-
chain/off-chain interactions, as well as security considerations across
different platforms/languages.

The impact of smart contracts on industry has spurred a wealth
f research, see, e.g., [50,51]. Varela-Vaca et al.’ work [50] cate-

gorized smart contract languages from both academic and industrial
perspectives, with an emphasis on improving developer experiences
for creating more human-readable smart contracts. Similarly, Dhaiouir
et al.’ literature review [51] compared distributed platforms, aiming to
assist businesses in selecting suitable platforms for blockchain-based ap-
plications, thus facilitating informed decision-making. Vacca et al. [52]
reviewed methods, techniques, and tools for improving the design, con-
struction, testing, maintenance, and overall quality of smart contracts
and DApps. Similarly, Zou et al. [53] performed an empirical study on
developers’ challenges and practices in smart contract development,

ith a focus on Ethereum. They collected valuable insights into the
current state of the art through interviews and surveys with industry
practitioners.

A few works address smart contract languages for UTXO blockchains,
mainly focussing on Bitcoin and Cardano. Outside academic research,
Bitcoin is quite unattractive as a layer-1 smart contract platform,
because of the expressiveness limitations of its script language, its low
throughput and high transaction fees. Still, a small subset of the use
cases in our benchmark can be implemented also on Bitcoin [20], either
using Bitcoin script of higher-level languages such as BitML [54]. In
the Cardano literature, the work [55] draws an interesting comparison
between the account-based and the UTXO model based on the imple-
mentation of a token use case in Solidity and in Plutus. In this paper
we extend the comparison in [55], by implementing a large set of use
cases in six smart contract languages. The relation between transaction
edeem scripts and structured contracts in Cardano is explored in recent
esearch [56].

Several surveys address the challenges related to security vulnera-
bilities. Hu et al. [57] categorized schemes and tools aimed at improv-
ng secure smart contract development. Additionally, they addressed

challenges like privacy breaches, execution inefficiencies, and contract
complexity by categorizing extensions and alternative systems for con-
tract execution. Rouhani et al. [58] conducted an extensive review
focusing on smart contract platforms and domain-specific program-

ing languages, focussing on security vulnerabilities and performance
ptimization. Their study explored methods and tools for mitigating
ulnerabilities. Hewa et al. [59] undertook a comprehensive survey on

smart contracts, emphasizing aspects like security, privacy, gas cost,
nd concurrency. In particular, they explored the integration of smart

contracts with emerging technologies such as artificial intelligence and
game theory.

The works [60,61], which compare smart contract languages in
erms of usability and security, are the most closely aligned with
urs. In [60], Voloder et al. conducted a comparative analysis of

https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/crowdfund
https://github.com/blockchain-unica/smart-contracts-comparison/tree/main/contracts/htlc

M. Bartoletti et al.

i
t
e
c

g
d
i

c

c
m

t
l
d

h
c
e
s

w
d
e
c

n
l
i
c
l
t
c

Future Generation Computer Systems 164 (2025) 107563
Table 5
Strengths and weaknesses of smart contract languages.

Language Strengths Weaknesses

Solidity
Ethereum

Familiar procedural programming style
Extensive documentation
Rich ecosystem of analysis tools third-party libraries

EVM design induces vulnerabilities (e.g. reentrancy)
Low-level interferences with the semantics (e.g., fees)
Transaction-ordering dependencies

Rust/Anchor
Solana

Powerful strongly typed language
Good parallelization/transaction throughput
Rich ecosystem and community

Rust ownership system not really used
Verbose programming model
Need to serialize/deserialize data manually

Aiken
Cardano

Strongly-typed functional paradigm
No transaction-ordering dependencies (UTXO)
Arbitrary-precision arithmetic

Requires reasoning about the structure of transactions
No contract calls
Transactions must specify the whole contract state

TEAL/PyTeal
Algorand

Rich set of functionalities (transaction batches,
Verifiable Random Functions, contract updates)
Predictable transaction fees

Cumbersome handling of memory (local, global, boxes)
Cumbersome constraint on minimum accounts balance
Weaker typing guarantees w.r.t. other languages

Move
Aptos

Linear types prevent errors (e.g. double spending)
Static prover enforces semantic properties
Extensive stdlib and framework

Requires good understanding of linear types
Lack of community and third-party libraries

SmartPy
Tezos

Strong typing and type inference on top of Python
Queued method call to avoid reentrancy attacks
Allows Python meta-code

A strongly typed Python is a little awkward
Lack of dedicated third-party libraries and tools
o

h

f

w
e
s
A

five platforms focusing on developers’ perspectives. Their comparison
examines critical features such as documentation availability, ease of
nstallation, automated testing capabilities, implementation efforts, and
he required level of expertise for specific use cases and chains. Parizi
t al. [61] analyzed the usability and security aspects of three smart
ontract languages: Solidity, the Pact language for Kadena (which is

Turing-incomplete), and Liquidity for Tezos (a typed functional lan-
uage). The paper offers a comparative analysis of these languages,
emonstrating sample contract implementations and evaluating them
n terms of usability and security. In contrast to [61], we opt to exclude

Pact and Liquidity from our selection of smart contract language. This
hoice is based on our paper’s emphasis on Turing-complete languages

(which is also the reason why we neglect contract languages on Bit-
oin), as well as the recognition that Liquidity is no longer actively
aintained.

Differing from prior research, this paper offers a unique perspec-
ive by providing a detailed technical comparison of smart contract
anguages from the standpoint of programming language theory. We
elve into programming styles, language constructs, and typing con-

siderations, complemented by a qualitative assessment derived from
ands-on experience in crafting a standardized benchmark for smart
ontracts. Marking a pioneering effort, this work provides the first
xtensive hands-on evaluation, facilitating both comparison between
mart contract languages and analysis of development and execution

costs.

6. Conclusions

We have compared the smart contract languages of some of the most
idespread blockchains. The comparison, which was performed along
ifferent axes, is based both on the literature and on hands-on knowl-
dge derived from the construction of a common benchmark of smart
ontracts. Table 5 summarizes the main findings of our comparison: we

conclude by discussing the lessons learned in our work.

Lesson learned #1: language abstractions Our analysis highlights the
eed for high-level abstractions over the low-level details of the under-
ying blockchain. Clean abstractions are crucial to simplifying reason-
ng about the correctness and security of contracts. Not all languages
onsidered in this paper have such clean abstractions. For instance, the
ack of good abstractions for tokens and contract-to-contract interac-
ions is one of the main causes of vulnerabilities in Solidity/Ethereum
ontracts (see Section 4.4). The lack of good abstractions over the
 T

15
transactions level in Aiken/Cardano induces a burdensome program-
ming style for contracts in these languages, with potentially harmful
consequences on their security (see Sections 4.2 and 4.4). Furthermore,
the interference between the low-level fee mechanisms and the contract
semantics is not always hidden from programmers, who must have a
good understanding of these mechanisms to avoid writing inefficient
r vulnerable contracts (see Section 4.8).

Lesson learned #2: typing assets Assets deserve special treatment at
the type level in order to prevent programmers from making financial
mishaps when manipulating crypto-assets. This can be enforced to
varying degrees. The loosest form is to represent assets by means
of a custom datatype (distinct from the plain integer type), which
prevents programmers from performing unwanted arithmetic opera-
tions on assets. By limiting the number of possible operations for the
asset datatype, and providing only a minimal set of primitives for
transferring assets, account-based platforms can reduce error-proneness
when handling valuable tokens. Disciplining assets and transactions
in UTXO platforms is not as straightforward, though. In Aiken, for
instance, asset transfers are implemented as record field updates where
arithmetic operations are required to manipulate amounts. A special
asset datatype with its own set of functions would make things harder
and verbose for the programmer. The strictest form of control among
the languages reviewed in this paper is Move’s linear types, which push
the envelope by forbidding duplication and loss of assets at compile-
time (see Sections 4.2 and 4.5). Although such a strict type discipline is
ard to digest for a casual programmer, from our experience it does not

come without its own merits. Move contracts seem less susceptible to
asset-related issues (e.g. double spending and financial loss) compared
to other platforms, underlining that smart contract languages ought
to dare more than general-purpose languages when it comes to the
discipline imposed on types, especially on the type representing assets.

Lesson learned #3: native vs. programmable functionalities The smart
contract languages considered are characterized by different sets of
native functionalities, as displayed in Table 4. The absence of some
unctionality could be detrimental to the implementation of certain use

cases, making it either impossible, or possible only through complex
orkarounds and adaptations of the requirements. We have directly
xperienced the lack of native functionalities in our benchmark, where
ome implementations required such adaptations and workarounds.
lthough in principle all the languages considered in this paper are

uring-powerful (up-to computation bounds due e.g. to transaction

https://docs.kadena.io/pact/
https://liquidity-lang.org/

M. Bartoletti et al.

g

c
s
t
t
d
s
t

r
t
i
p

n
i
m
A
s
S
C
t

w

N
a
(
f

Future Generation Computer Systems 164 (2025) 107563
fees), some workarounds could be extremely impractical due to the
high costs of on-chain computation and storage, besides the computa-
tion bounds. For instance, implementing arbitrary-precision arithmetic
via Church encodings would make little sense. Improper workarounds
could affect security and decentralization. This is the case, e.g., of
enerating randomness via block timestamps or external oracles. In

general, the availability of specific native functionalities could be an
important factor in the decision-making process to choose a blockchain
platform, among others [62].

Lesson learned #4: procedural vs. approval style As we have seen
in Section 4.2, smart contract languages can be partitioned into two
lasses based on the programming style they support: the procedural
tyle, where contracts react to transactions by updating their state and
riggering effects (e.g., token transfers), and the approval style, where
ransactions already contain their effect, and the contract reacts by
eciding whether to approve a transaction or not, depending on its
tate and by the environment. In Sections 4.3 and 4.4 we have seen
hat the programming style has deep implications on the readability

of contracts and on their security: roughly, the approval style is less
eadable and more error-prone, since the programmer must ensure
hat the new state is a correct update of the old one, which might
nvolve multiple checks on the transactions fields. Based on the im-
lementation of our benchmark, we argue that the procedural style is

overall the most practical, even though in some of its incarnations we
ote that the produced code is burdened with boilerplate code (e.g.,
n Rust/Solana), or with type-based manipulations of resources that
ay look unfamiliar to average programmers (e.g., in Move/Aptos).
n open question is whether it is possible to reconcile the procedural
tyle with the UTXO-based model, so to program smart contracts à la
olidity while preserving the key strengths of UTXO blockchains like
ardano (e.g., the absence of transaction-ordering dependencies and
he parallelizability of transactions).

CRediT authorship contribution statement

Massimo Bartoletti: Writing – review & editing, Supervision, Soft-
are, Methodology, Conceptualization. Lorenzo Benetollo: Writing –

review & editing, Software, Methodology. Michele Bugliesi: Writing
– review & editing, Methodology, Conceptualization. Silvia Crafa:
Writing – review & editing, Methodology, Conceptualization. Giacomo
Dal Sasso: Software. Roberto Pettinau: Software. Andrea Pinna:
Writing – review & editing, Software, Methodology. Mattia Piras:
Software. Sabina Rossi: Writing – review & editing, Methodology,
Conceptualization. Stefano Salis: Writing – review & editing, Software.
Alvise Spanò: Writing – review & editing, Software, Methodology,
Conceptualization. Viacheslav Tkachenko: Writing – review & edit-
ing, Software. Roberto Tonelli: Writing – review & editing. Roberto
Zunino: Writing – review & editing, Methodology, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Massimo Bartoletti reports financial support was provided by European
Union. If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

Work partially supported by the Project PRIN 2020 ‘‘Nirvana -
oninterference and Reversibility Analysis in Private Blockchains’’
nd by projects PRIN 2022 DeLiCE (F53D23009130001) and SERICS
PE00000014) under the MUR National Recovery and Resilience Plan
unded by the European Union - NextGenerationEU. The authors de-

clare that they had no investment or advisory relationships with any of
the blockchain companies/foundations cited in this research.
16
Data availability

No data was used for the research described in the article.

References

[1] Rosetta Smart Contracts, 2024, https://github.com/blockchain-unica/rosetta-
smart-contracts.

[2] V. Capocasale, D. Gotta, G. Perboli, Comparative analysis of permissioned
blockchain frameworks for industrial applications, Blockchain: Res. Appl. 4 (1)
(2023) 100113, http://dx.doi.org/10.1016/j.bcra.2022.100113.

[3] T. Neudecker, H. Hartenstein, Network layer aspects of permissionless
blockchains, IEEE Commun. Surv. Tutor. 21 (1) (2019) 838–857, http://dx.doi.
org/10.1109/COMST.2018.2852480.

[4] M. Kelkar, S. Deb, S. Kannan, Order-fair consensus in the permissionless setting,
in: ACM on ASIA Public-Key Cryptography Workshop, ACM, 2022, pp. 3–14,
http://dx.doi.org/10.1145/3494105.3526239.

[5] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, A.
Juels, Flash boys 2.0: Frontrunning in decentralized exchanges, miner extractable
value, and consensus instability, in: IEEE Symp. on Security and Privacy, 2020,
pp. 910–927, http://dx.doi.org/10.1109/SP40000.2020.00040.

[6] K. Qin, L. Zhou, A. Gervais, Quantifying blockchain extractable value: How dark
is the forest? in: IEEE Symp. on Security and Privacy, IEEE, 2022, pp. 198–214,
http://dx.doi.org/10.1109/SP46214.2022.9833734.

[7] L. Heimbach, R. Wattenhofer, SoK: Preventing transaction reordering ma-
nipulations in decentralized finance, in: ACM Conference on Advances in
Financial Technologies, (AFT), 2022, pp. 47–60, http://dx.doi.org/10.1145/
3558535.3559784.

[8] IOHK, How to write a scalable Plutus app, 2022, https://plutus-apps.readthedocs.
io/en/stable/plutus/howtos/writing-a-scalable-app.html.

[9] Sundae Labs Team, Concurrency, state & cardano, 2021, https://sundae.fi/posts/
concurrency-state-cardano.

[10] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on Ethereum smart
contracts (SoK), in: Principles of Security and Trust (POST), in: LNCS, 10204,
Springer, 2017, pp. 164–186, http://dx.doi.org/10.1007/978-3-662-54455-6_8.

[11] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-Sanchez,
A. Kiayias, W.J. Knottenbelt, SoK: Communication across distributed ledgers, in:
Financial Cryptography and Data Security, in: LNCS, 12675, Springer, 2021, pp.
3–36, http://dx.doi.org/10.1007/978-3-662-64331-0_1.

[12] R. Belchior, A. Vasconcelos, S. Guerreiro, M. Correia, A survey on blockchain
interoperability: Past, present, and future trends, ACM Comput. Surv. 54 (8)
(2022) 168:1–168:41, http://dx.doi.org/10.1145/3471140.

[13] K. Ren, N. Ho, D. Loghin, T. Nguyen, B.C. Ooi, Q. Ta, F. Zhu, Interoperabil-
ity in blockchain: A survey, IEEE Trans. Knowl. Data Eng. 35 (12) (2023)
12750–12769, http://dx.doi.org/10.1109/TKDE.2023.3275220.

[14] S. Crafa, M. Di Pirro, E. Zucca, Is Solidity solid enough? in: Financial Cryptog-
raphy Workshops, in: LNCS, 11599, Springer, 2019, pp. 138–153, http://dx.doi.
org/10.1007/978-3-030-43725-1_11.

[15] S. Team, Solidity documentation – language description – function calls –
expressions and control structure – external function calls, 2024, https://docs.
soliditylang.org/en/v0.8.27/control-structures.html#external-function-calls.

[16] S. Team, Solidity documentation – language description – inline assembly
– memory safety, 2024, https://docs.soliditylang.org/en/latest/assembly.html#
memory-safety.

[17] M. Bartoletti, L. Galletta, M. Murgia, A theory of transaction parallelism in
blockchains, Log. Methods Comput. Sci. 17 (4) (2021) http://dx.doi.org/10.
46298/LMCS-17(4:10)2021.

[18] S. Cui, G. Zhao, Y. Gao, T. Tavu, J. Huang, VRust: Automated vulnerability
detection for Solana smart contracts, in: ACM SIGSAC Conference on Computer
and Communications Security (CCS), ACM, 2022, pp. 639–652, http://dx.doi.
org/10.1145/3548606.3560552.

[19] M.M.T. Chakravarty, J. Chapman, K. MacKenzie, O. Melkonian, M.P. Jones, P.
Wadler, The extended UTXO model, in: Financial Cryptography Workshops, in:
LNCS, 12063, Springer, 2020, pp. 525–539, http://dx.doi.org/10.1007/978-3-
030-54455-3_37.

[20] N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, R. Zunino, SoK: Unraveling Bitcoin
smart contracts, in: Principles of Security and Trust, in: LNCS, 10804, Springer,
2018, pp. 217–242, http://dx.doi.org/10.1007/978-3-319-89722-6_9.

[21] L. Rosa, 2023, https://cardanofoundation.org/en/news/aiken-the-future-of-
smart-contracts/.

[22] P. Vinogradova, O. Melkonian, Message-passing in the extended UTxO ledger
model, in: Financial Cryptography Workshops, 2024, To appear.

[23] M. Bartoletti, A. Bracciali, C. Lepore, A. Scalas, R. Zunino, A formal model
of Algorand smart contracts, in: Financial Cryptography and Data Security,
in: LNCS, 12674, Springer, 2021, pp. 93–114, http://dx.doi.org/10.1007/978-
3-662-64322-8_5.

[24] L. Luu, D. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart contracts smarter,
in: ACM SIGSAC Conference on Computer and Communications Security (CCS),
ACM, 2016, pp. 254–269, http://dx.doi.org/10.1145/2976749.2978309.

https://github.com/blockchain-unica/rosetta-smart-contracts
https://github.com/blockchain-unica/rosetta-smart-contracts
https://github.com/blockchain-unica/rosetta-smart-contracts
http://dx.doi.org/10.1016/j.bcra.2022.100113
http://dx.doi.org/10.1109/COMST.2018.2852480
http://dx.doi.org/10.1109/COMST.2018.2852480
http://dx.doi.org/10.1109/COMST.2018.2852480
http://dx.doi.org/10.1145/3494105.3526239
http://dx.doi.org/10.1109/SP40000.2020.00040
http://dx.doi.org/10.1109/SP46214.2022.9833734
http://dx.doi.org/10.1145/3558535.3559784
http://dx.doi.org/10.1145/3558535.3559784
http://dx.doi.org/10.1145/3558535.3559784
https://plutus-apps.readthedocs.io/en/stable/plutus/howtos/writing-a-scalable-app.html
https://plutus-apps.readthedocs.io/en/stable/plutus/howtos/writing-a-scalable-app.html
https://plutus-apps.readthedocs.io/en/stable/plutus/howtos/writing-a-scalable-app.html
https://sundae.fi/posts/concurrency-state-cardano
https://sundae.fi/posts/concurrency-state-cardano
https://sundae.fi/posts/concurrency-state-cardano
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-662-64331-0_1
http://dx.doi.org/10.1145/3471140
http://dx.doi.org/10.1109/TKDE.2023.3275220
http://dx.doi.org/10.1007/978-3-030-43725-1_11
http://dx.doi.org/10.1007/978-3-030-43725-1_11
http://dx.doi.org/10.1007/978-3-030-43725-1_11
https://docs.soliditylang.org/en/v0.8.27/control-structures.html#external-function-calls
https://docs.soliditylang.org/en/v0.8.27/control-structures.html#external-function-calls
https://docs.soliditylang.org/en/v0.8.27/control-structures.html#external-function-calls
https://docs.soliditylang.org/en/latest/assembly.html#memory-safety
https://docs.soliditylang.org/en/latest/assembly.html#memory-safety
https://docs.soliditylang.org/en/latest/assembly.html#memory-safety
http://dx.doi.org/10.46298/LMCS-17(4:10)2021
http://dx.doi.org/10.46298/LMCS-17(4:10)2021
http://dx.doi.org/10.46298/LMCS-17(4:10)2021
http://dx.doi.org/10.1145/3548606.3560552
http://dx.doi.org/10.1145/3548606.3560552
http://dx.doi.org/10.1145/3548606.3560552
http://dx.doi.org/10.1007/978-3-030-54455-3_37
http://dx.doi.org/10.1007/978-3-030-54455-3_37
http://dx.doi.org/10.1007/978-3-030-54455-3_37
http://dx.doi.org/10.1007/978-3-319-89722-6_9
https://cardanofoundation.org/en/news/aiken-the-future-of-smart-contracts/
https://cardanofoundation.org/en/news/aiken-the-future-of-smart-contracts/
https://cardanofoundation.org/en/news/aiken-the-future-of-smart-contracts/
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb22
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb22
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb22
http://dx.doi.org/10.1007/978-3-662-64322-8_5
http://dx.doi.org/10.1007/978-3-662-64322-8_5
http://dx.doi.org/10.1007/978-3-662-64322-8_5
http://dx.doi.org/10.1145/2976749.2978309

M. Bartoletti et al. Future Generation Computer Systems 164 (2025) 107563
[25] P. Caversaccio, A historical collection of reentrancy attacks, 2024, https://github.
com/pcaversaccio/reentrancy-attacks.

[26] D. Muhs, Smart contract security field guide – reentrancy, 2023, https://scsfg.
io/hackers/reentrancy/.

[27] S. Smolka, J. Giesen, P. Winkler, O. Draissi, L. Davi, G. Karame, K. Pohl, Fuzz on
the beach: Fuzzing Solana smart contracts, in: ACM CCS, 2023, pp. 1197–1211,
http://dx.doi.org/10.1145/3576915.3623178.

[28] S.S. Kushwaha, S. Joshi, D. Singh, M. Kaur, H.-N. Lee, Ethereum smart contract
analysis tools: A systematic review, IEEE Access 10 (2022) 57037–57062, http:
//dx.doi.org/10.1109/ACCESS.2022.3169902.

[29] N. Ivanov, C. Li, Q. Yan, Z. Sun, Z. Cao, X. Luo, Security threat mitigation for
smart contracts: A comprehensive survey, ACM Comput. Surv. 55 (14s) (2023)
326:1–326:37, http://dx.doi.org/10.1145/3593293.

[30] I. Garfatta, K. Klai, W. Gaaloul, M. Graiet, A survey on formal verification for
Solidity smart contracts, in: Australasian Computer Science Week, 3, ACM, 2021,
pp. 1–10, http://dx.doi.org/10.1145/3437378.3437879.

[31] Z. Sun, X. Luo, Y. Zhang, Panda: Security analysis of algorand smart contracts,
in: USENIX Security Symposium, 2023, pp. 1811–1828.

[32] M. Bartoletti, F. Fioravanti, G. Matricardi, R. Pettinau, F. Sainas, Towards
benchmarking of Solidity verification tools, in: Workshop on Formal Methods for
Blockchains, in: Open Access Series in Informatics (OASIcs), Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2024, To appear.

[33] S. Wesley, M. Christakis, J.A. Navas, R.J. Trefler, V. Wüstholz, A. Gurfinkel,
Verifying Solidity smart contracts via communication abstraction in SmartACE,
in: Verification, Model Checking, and Abstract Interpretation (VMCAI), in:
LNCS, 13182, Springer, 2022, pp. 425–449, http://dx.doi.org/10.1007/978-3-
030-94583-1_21.

[34] J. Park, T. Zhang, W. Grieskamp, M. Xu, G. Di Giacomo, K. Chen, Y. Lu, R. Chen,
Securing Aptos framework with formal verification, in: Workshop on Formal
Methods for Blockchains, in: Open Access Series in Informatics (OASIcs), Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024, To appear.

[35] B. Bernardo, R. Cauderlier, G. Claret, A. Jakobsson, B. Pesin, J. Tesson, Making
Tezos smart contracts more reliable with Coq, in: ISoLA, Springer, 2020, pp.
60–72.

[36] M. Milo, E.H. Nielsen, D. Annenkov, B. Spitters, Finding smart contract vul-
nerabilities with ConCert’s property-based testing framework, in: Workshop on
Formal Methods for Blockchains, in: Open Access Series in Informatics (OASIcs),
105, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 1–13, http:
//dx.doi.org/10.4230/OASIcs.FMBC.2022.2.

[37] Y. Nishida, H. Saito, R. Chen, A. Kawata, J. Furuse, K. Suenaga, A. Igarashi,
Helmholtz: A verifier for Tezos smart contracts based on refinement types,
New Gener. Comput. 40 (2022) 507–554, http://dx.doi.org/10.1007/s00354-
022-00167-1.

[38] L. Olivieri, L. Negrini, V. Arceri, T. Jensen, F. Spoto, Design and implementation
of static analyses for Tezos smart contracts, Distrib. Ledger Technol. (2024)
http://dx.doi.org/10.1145/3643567.

[39] G. Bau, A. Miné, V. Botbol, M. Bouaziz, Abstract interpretation of Michelson
smart-contracts, in: ACM SIGPLAN Workshop on the State of the Art in Program
Analysis, 2022, pp. 36–43, http://dx.doi.org/10.1145/3520313.3534660.

[40] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M.H. Au, X. Zhang, An adaptive
gas cost mechanism for Ethereum to defend against under-priced DoS attacks,
in: Information Security Practice and Experience, in: LNCS, Springer, 2017, pp.
3–24.

[41] D. Perez, B. Livshits, Broken metre: Attacking resource metering in EVM, in:
Network and Distributed System Security Symposium (NDSS), The Internet
Society, 2020.

[42] T. Chen, Y. Zhang, Z. Li, X. Luo, T. Wang, R. Cao, X. Xiao, X. Zhang,
TokenScope: Automatically detecting inconsistent behaviors of cryptocurrency
tokens in Ethereum, in: ACM CCS, 2019, pp. 1503–1520, http://dx.doi.org/10.
1145/3319535.3345664.

[43] Y. Wang, A. Bracciali, T. Li, F. Li, X. Cui, M. Zhao, Randomness invalidates
criminal smart contracts, Inform. Sci. 477 (2019) 291–301, http://dx.doi.org/
10.1016/J.INS.2018.10.057.

[44] G. Blaut, X. Ma, K. Wolter, Exploring randomness in blockchains, in: IEEE Int.
Conf. on Blockchain and Cryptocurrency, IEEE, 2023, pp. 1–5, http://dx.doi.org/
10.1109/ICBC56567.2023.10174962.

[45] P. Qian, J. He, L. Lu, S. Wu, Z. Lu, L. Wu, Y. Zhou, Q. He, Demystifying random
number in Ethereum smart contract: Taxonomy, vulnerability identification,
and attack detection, IEEE Trans. Softw. Eng. 49 (7) (2023) 3793–3810, http:
//dx.doi.org/10.1109/TSE.2023.3271417.

[46] S. Micali, M.O. Rabin, S.P. Vadhan, Verifiable random functions, in: Symposium
on Foundations of Computer Science, (FOCS), IEEE Computer Society, 1999, pp.
120–130, http://dx.doi.org/10.1109/SFFCS.1999.814584.

[47] L. Mazurek, EthVer: Formal verification of randomized ethereum smart contracts,
in: Financial Cryptography and Data Security Workshops, in: LNCS, 12676,
Springer, 2021, pp. 364–380, http://dx.doi.org/10.1007/978-3-662-63958-0_30.

[48] P. Sharma, R. Jindal, M.D. Borah, A review of smart contract-based platforms,
applications, and challenges, Clust. Comput. 26 (1) (2023) 395–421, http://dx.
doi.org/10.1007/S10586-021-03491-1.
17
[49] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, M. Imran, An overview
on smart contracts: Challenges, advances and platforms, Future Gener. Comput.
Syst. 105 (2020) 475–491, http://dx.doi.org/10.1016/j.future.2019.12.019.

[50] Á.J. Varela-Vaca, A.M.R. Quintero, Smart contract languages: A multivocal
mapping study, ACM Comput. Surv. 54 (1) (2021) 1–38, http://dx.doi.org/10.
1145/3423166.

[51] S. Dhaiouir, S. Assar, A systematic literature review of blockchain-enabled smart
contracts: platforms, languages, consensus, applications and choice criteria, in:
Research Challenges in Information Science (RCIS), Springer, 2020, pp. 249–266,
http://dx.doi.org/10.1007/978-3-030-50316-1_15.

[52] A. Vacca, A. Di Sorbo, C.A. Visaggio, G. Canfora, A systematic literature review
of blockchain and smart contract development: Techniques, tools, and open
challenges, J. Syst. Softw. 174 (2021) 110891, http://dx.doi.org/10.1016/j.jss.
2020.110891.

[53] W. Zou, D. Lo, P.S. Kochhar, X.D. Le, X. Xia, Y. Feng, Z. Chen, B. Xu, Smart
contract development: Challenges and opportunities, IEEE Trans. Softw. Eng. 47
(10) (2021) 2084–2106, http://dx.doi.org/10.1109/TSE.2019.2942301.

[54] N. Atzei, M. Bartoletti, S. Lande, N. Yoshida, R. Zunino, Developing secure
Bitcoin contracts with BitML, in: ACM ESEC/SIGSOFT FSE, ACM, 2019, pp.
1124–1128, http://dx.doi.org/10.1145/3338906.3341173.

[55] L. Brünjes, M.J. Gabbay, UTxO- vs account-based smart contract blockchain
programming paradigms, in: ISoLA, in: LNCS, 12478, Springer, 2020, pp. 73–88,
http://dx.doi.org/10.1007/978-3-030-61467-6_6.

[56] P. Vinogradova, O. Melkonian, P. Wadler, M. Chakravarty, J. Krijnen, M.P.
Jones, J. Chapman, T. Ferariu, Structured contracts in the EUTxO ledger model,
in: Workshop on Formal Methods for Blockchains, in: Open Access Series in
Informatics (OASIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024,
To appear.

[57] B. Hu, Z. Zhang, J. Liu, Y. Liu, J. Yin, R. Lu, X. Lin, A comprehensive survey
on smart contract construction and execution: paradigms, tools, and systems,
Patterns 2 (2) (2021) 1–51, http://dx.doi.org/10.1016/J.PATTER.2020.100179.

[58] S. Rouhani, R. Deters, Security, performance, and applications of smart contracts:
A systematic survey, IEEE Access 7 (2019) 50759–50779, http://dx.doi.org/10.
1109/ACCESS.2019.2911031.

[59] T.M. Hewa, Y. Hu, M. Liyanage, S.S. Kanhere, M. Ylianttila, Survey on
blockchain-based smart contracts: Technical aspects and future research,
IEEE Access 9 (2021) 87643–87662, http://dx.doi.org/10.1109/ACCESS.2021.
3068178.

[60] A. Voloder, M. Di Angelo, Comparison of smart contract platforms from the
perspective of developers, in: ICBC, in: LNCS, 14206, Springer, 2023, pp.
104–118, http://dx.doi.org/10.1007/978-3-031-44920-8_7.

[61] R.M. Parizi, Amritraj, A. Dehghantanha, Smart contract programming languages
on blockchains: An empirical evaluation of usability and security, in: Inter-
national Conference on Blockchain (ICBC), Springer, 2018, pp. 75–91, http:
//dx.doi.org/10.1007/978-3-319-94478-4_6.

[62] S. Farshidi, S. Jansen, S. España, J. Verkleij, Decision support for blockchain
platform selection: Three industry case studies, IEEE Trans. Eng. Manage. 67 (4)
(2020) 1109–1128, http://dx.doi.org/10.1109/TEM.2019.2956897.

Massimo Bartoletti leads the blockchain research group
at the University of Cagliari, Italy. His research activity
concerns the development of tools and techniques for the
specification, analysis and verification of smart contracts,
with a special emphasis on security and formal methods.
He is principal investigator of R&D projects on blockchain
technologies, and program committee member of top-tier
conferences on blockchain technologies, including ACM CCS
- blockchain track and Financial Cryptography. He is the
organizer of the DLT Workshop series, of the Scientific
School on Blockchain & DLT series, and of the Workshop
on Distributed Ledger Technologies and Formal Methods
series. Massimo Bartoletti has published over 40 scientific
papers on blockchain technologies since 2016, and it has
presented his research in top-tier conferences like ACM CCS,
Financial Cryptography, Computer Security Foundations,
IEEE Security and Privacy Europe, and ESEC/SIGSOFT FSE.

Lorenzo Benetollo is a Ph.D. student of the Italian Na-
tional Ph.D. Program in Blockchain and Distributed Ledger
Technology coordinated by the University of Camerino.
Previously, he got his Master’s Degree in Computer Science
at Ca’ Foscari University. He is interested in blockchain
technology, programming languages and security. Currently,
his research is focused on the security and safety of smart
contract programming languages for different blockchains.
He has experience programming Solidity smart contracts on
EVM blockchains and developing Web3 applications.

https://github.com/pcaversaccio/reentrancy-attacks
https://github.com/pcaversaccio/reentrancy-attacks
https://github.com/pcaversaccio/reentrancy-attacks
https://scsfg.io/hackers/reentrancy/
https://scsfg.io/hackers/reentrancy/
https://scsfg.io/hackers/reentrancy/
http://dx.doi.org/10.1145/3576915.3623178
http://dx.doi.org/10.1109/ACCESS.2022.3169902
http://dx.doi.org/10.1109/ACCESS.2022.3169902
http://dx.doi.org/10.1109/ACCESS.2022.3169902
http://dx.doi.org/10.1145/3593293
http://dx.doi.org/10.1145/3437378.3437879
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb31
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb31
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb31
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb32
http://dx.doi.org/10.1007/978-3-030-94583-1_21
http://dx.doi.org/10.1007/978-3-030-94583-1_21
http://dx.doi.org/10.1007/978-3-030-94583-1_21
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb35
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb35
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb35
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb35
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb35
http://dx.doi.org/10.4230/OASIcs.FMBC.2022.2
http://dx.doi.org/10.4230/OASIcs.FMBC.2022.2
http://dx.doi.org/10.4230/OASIcs.FMBC.2022.2
http://dx.doi.org/10.1007/s00354-022-00167-1
http://dx.doi.org/10.1007/s00354-022-00167-1
http://dx.doi.org/10.1007/s00354-022-00167-1
http://dx.doi.org/10.1145/3643567
http://dx.doi.org/10.1145/3520313.3534660
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb41
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb41
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb41
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb41
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb41
http://dx.doi.org/10.1145/3319535.3345664
http://dx.doi.org/10.1145/3319535.3345664
http://dx.doi.org/10.1145/3319535.3345664
http://dx.doi.org/10.1016/J.INS.2018.10.057
http://dx.doi.org/10.1016/J.INS.2018.10.057
http://dx.doi.org/10.1016/J.INS.2018.10.057
http://dx.doi.org/10.1109/ICBC56567.2023.10174962
http://dx.doi.org/10.1109/ICBC56567.2023.10174962
http://dx.doi.org/10.1109/ICBC56567.2023.10174962
http://dx.doi.org/10.1109/TSE.2023.3271417
http://dx.doi.org/10.1109/TSE.2023.3271417
http://dx.doi.org/10.1109/TSE.2023.3271417
http://dx.doi.org/10.1109/SFFCS.1999.814584
http://dx.doi.org/10.1007/978-3-662-63958-0_30
http://dx.doi.org/10.1007/S10586-021-03491-1
http://dx.doi.org/10.1007/S10586-021-03491-1
http://dx.doi.org/10.1007/S10586-021-03491-1
http://dx.doi.org/10.1016/j.future.2019.12.019
http://dx.doi.org/10.1145/3423166
http://dx.doi.org/10.1145/3423166
http://dx.doi.org/10.1145/3423166
http://dx.doi.org/10.1007/978-3-030-50316-1_15
http://dx.doi.org/10.1016/j.jss.2020.110891
http://dx.doi.org/10.1016/j.jss.2020.110891
http://dx.doi.org/10.1016/j.jss.2020.110891
http://dx.doi.org/10.1109/TSE.2019.2942301
http://dx.doi.org/10.1145/3338906.3341173
http://dx.doi.org/10.1007/978-3-030-61467-6_6
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb56
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb56
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb56
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb56
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb56
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb56
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb56
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb56
http://refhub.elsevier.com/S0167-739X(24)00527-2/sb56
http://dx.doi.org/10.1016/J.PATTER.2020.100179
http://dx.doi.org/10.1109/ACCESS.2019.2911031
http://dx.doi.org/10.1109/ACCESS.2019.2911031
http://dx.doi.org/10.1109/ACCESS.2019.2911031
http://dx.doi.org/10.1109/ACCESS.2021.3068178
http://dx.doi.org/10.1109/ACCESS.2021.3068178
http://dx.doi.org/10.1109/ACCESS.2021.3068178
http://dx.doi.org/10.1007/978-3-031-44920-8_7
http://dx.doi.org/10.1007/978-3-319-94478-4_6
http://dx.doi.org/10.1007/978-3-319-94478-4_6
http://dx.doi.org/10.1007/978-3-319-94478-4_6
http://dx.doi.org/10.1109/TEM.2019.2956897

M. Bartoletti et al. Future Generation Computer Systems 164 (2025) 107563
Michele Bugliesi is Professor of Computer Science at Ca
’Foscari University of Venice since 2006. At Ca’ Foscari
he has held several institutional roles, as Department
Head (2009-2014), Member of the Academic Senate (2006-
2009,2012-2014), Rector (2014 – 2020). Member of the
scientific committee of major international conferences, he
has coordinated several research projects at national and
European level. In 2013, he was the co-recipient of the
award for the Best EATCS Theory Paper at the European
Joint Conferences on Theory and Practice of Software
(ETAPS 2013). His academic research has always centered
on the foundational aspects of programming languages as
well as on the analysis and formal verification of software
and programming systems, with specific focus on safety and
security. He is the author of over 100 publications in top
international journals and refereed conference proceedings
on these topics.

Silvia Crafa is associate professor in mathematical logics
since 2021 and formerly researcher in computer science at
Universita’ di Padova, Italy (2005-2021). She is member
of IFIP Working Group n.1.8: Concurrency Theory since
September 2012. She has been visiting professor at the
University Paris Diderot in February 2013 and at University
Paris Est-Creteil in May 2017. In 2014 she collaborated
with a team of IBM Research, USA, to the study of
the formal semantics of the X10 programming language
for High-Performance Computing. She has been member
of the Working Group on Ethics of Informatics Europe,
ACM Europe Council and ACM Europe Policy Committee
to write the white paper ‘‘When Computers Decide: Eu-
ropean Recommendations on Machine-Learned Automated
Decision Making’’, presented to the European Commission
in March 2018. Silvia Crafa’s research is characterized by
three complementary lines: foundational aspects and formal
methods for distributed systems, type systems and theory
of programming languages and the interdisciplinar study of
epistemic aspects of computer science with applications in
computational law. Finally, she explores the social impact
of new digital technologies, both by means of research
collaborations and activities of knowledge transfer.

Giacomo Dal Sasso received the Master degree in computer
science in February 2024 with the thesis "Linear typing
for resource-aware programming" at Universita’ di Padova,
Italy. Formerly he received the degree in computer engi-
neering in 2020 at Universita’ di Padova, Italy. He has
long working experience in the field of embedded systems
programming.

Roberto Pettinau is a Master’s student in Computer Science
& Engineering at the Technical University of Denmark.
During his Bachelor studies at the University of Cagliari
he designed and developed AlgoML, a novel smart contract
language for building smart contracts that focuses on sim-
plicity and security. The project not only secured first place
at the Schelling Point Virtual Hackathon 2022 but has also
garnered the attention of the Algorand Foundation. Roberto
has later participated in multiple workshops and hackathons
including the Blockchain and Distributed Ledger Technology
School and International School on Algorand Smart Con-
tracts. After his bachelor studies, he has worked in the
industry as a Lead Blockchain Engineer at DeCash, in which
he developed and audited multiple secure in-production
smart contracts. Building upon his practical experiences, he
resumed his studies, and shifted his focus to Ethereum and
formal methods, studying techniques for the analysis and
formal verification of programs and smart contracts. Roberto
is currently writing his thesis on techniques for formally
reasoning about probabilistic programs.
18
Andrea Pinna received the M.S. degree in electronic en-
gineering from the University of Cagliari in 2012 and
the Ph.D. degree in computer engineering from the Uni-
versity of Cagliari in 2018. Since 2023, he has been an
assistant professor at the Department of Mathematics and
Computer Science of the University of Cagliari where he
teaches blockchain technology for master’s degree students
in computer science. He is the author of over 40 research
papers and his research interests concern the study of
blockchain technology and its applications. His topics of
interest include the study of smart contracts, the engineering
aspects of the development of decentralized applications
and their interoperability, and the enhancement of software
sustainability thanks to blockchain technology. He also dealt
with the study of data stored inside the blockchain, network
features, and users’ behaviors.

Mattia Piras graduated in 2023 from the University of
Cagliari with a bachelor’s degree in Computer Science.
He is currently a master’s student in Computer Science,
specializing in Cloud and Security. His research interests,
which began with his thesis, revolve around Blockchain
technology. In particular, he focuses on the Tezos ecosystem
with the goal of developing and executing reports on the
costs of smart contracts on the platform. He aims to unveil
all the functions and mechanisms of this platform using
high-level smart contract programming languages.

Sabina Rossi received the Ph.D. degree in computational
mathematics and informatics from the University of Padova,
in 1994. She has been a Visiting Professor with Universit‘e
Paris 7, in 2007, and a Research Fellow with the Universit‘e
Catholique de Louvain-la-Neuve, Belgium, in 1997. She is
currently a Full Professor in computer science with the
University Ca’ Foscari of Venice. Sabina Rossi is head of
the research unit of Venive for the PRIN Project, Call
2020: ‘‘Noninterference and Reversibility Analysis in Private
Blockchains (NiRvAna)’’ Prot. 20202FCJMH. Her research
interests lie primarily in the area of the analysis and verifi-
cation of programs and computer systems through the use
of formal methods and mathematical models. Her expertise
primarily focuses on utilizing theoretical models to ensure
the accuracy and assess the efficiency of various systems,
including ad hoc mobile wireless networks, systems incor-
porating fork-join constructs, distributed systems featuring
load balancing, and blockchain systems.

Stefano Salis is a Master’s student in Computer Science
at Università degli Studi di Cagliari, Italy. He earned
his bachelor’s degree in computer science in September
2020 with a thesis titled "An approach to the Application
of Business Intelligence" where he applied the business
intelligence and data science methodologies within the
blockchain environment, investigating some of the most
prominent cryptocurrency networks of that period. In addi-
tion to blockchain technology, he is particularly interested
in graphics engines (such as Unity and Unreal Engine).

Alvise Spanò is a Researcher in Computer Science at Ca’
Foscari University of Venice in Italy. He has a strong
interest in programming languages, with a particular fo-
cus on functional programming, compilers, type systems,
software validation, and correctness. Recently, he has been
exploring smart contract languages for the blockchain, with
a special emphasis on the implications of advanced type
systems on asset management and security. Besides these
research topics, he has experience in various areas of
software engineering, including IoT, library design, software
architectures, and type-disciplined programming methodolo-
gies. Prior to pursuing an academic career, he worked as
a senior software developer for over two decades in the
industry. Among his major open-source contributions, he is
the creator of the functional programming language Lw and
the text generator Polygen.

M. Bartoletti et al. Future Generation Computer Systems 164 (2025) 107563
Viacheslav Tkachenko is a Master’s student in Computer
Science at the University of Cagliari in Italy. After graduat-
ing in 2022 with a Bachelor’s degree in computer science,
he developed a background in public administration with an
emphasis on tenders and procurement. Currently, Viacheslav
works closely with a research team at his university, focused
on blockchain technology, cryptocurrencies, and smart con-
tracts. His particular interest orbits around the landscape of
smart contract development within the Solana blockchain
ecosystem. Cloud computing technology is another area
of interest for Viacheslav, which he is actively utilizing
in his current endeavors. His Master’s thesis delves into
the intricacies of blockchain distributed and decentralized
systems, with a focus on the Solana blockchain. Through his
research, he explores the development and functionalities of
smart contracts, conducting comprehensive analyses of de-
ployment costs, interactions, and vulnerabilities associated
with such contracts.

Roberto Tonelli is a Full Professor at the University of
Cagliari’s Department of Mathematics and Computer Sci-
ence, where he’s been Vice-Dean and Dean of the Ph.D.
school for about 6 years. He is specialized in Blockchain
Software Engineering. He has been awarded for his influ-
ential blockchain research (50 Topmost influential paper in
2018) by the Blockchain Connect Conference - SanFrancisco
Jan 2019, with the participation of Vitalik Buterin. He is
a leading author, recognized among the first six authors
in the world, on Blockchain Oriented Software Engineering
(BOSE), an acronym he coined in 2017 with other authors.
Besides running international conferences and workshops
19
co-located with ICSE and SANER, he founded the academic
spin-off "Agile By Chain", focusing on blockchain technolo-
gies and applications, and organizes an annual international
and well-recognized blockchain technology summer school.
As a National Appointee for MISE (former Italian Ministry
of Economical Development), he works on the European
Blockchain Partnership and manages nodes of the BESU
permissioned blockchain for the University of Cagliari’s
Italian Blockchain Service Infrastructure (IBSI). He has got
two Ph.D. titles, one in Physics and the other in Software
Engineering. He has been visiting researcher at the EECS of
Berkeley University, California, in 2000 and 2001 and later
on in 2006/07. He authored more than 150 papers.

Roberto Zunino is associate professor in computer sci-
ence at the University of Trento, Italy. His main research
line is the development of formal languages to model
and verify distributed systems, leveraging techniques from
programming languages theory and theoretical computer
science. In particular, he focused on how to achieve and
prove the security of systems working in distributed un-
trusted environments. He started his research on blockchain
technologies in 2017, focusing on protocols for the safe
and efficient execution of smart contracts in the UTXO
model. He has published over 70 papers in international
conferences and journals, including 14 papers on blockchain
technologies. He was awarded the first Smart Contract Re-
search Forum Impact Award in 2021 for the BitML language
to express smart contracts on top of Bitcoin. He is a core
member of the national DLT working group.

	Smart contract languages: A comparative analysis
	Introduction
	Smart contracts on blockchains
	The Consensus layer
	Key properties and incentives
	Transaction ordering

	The Contract layer
	Accounting models
	Contract storage models

	Exemplifying smart contracts at work: a bet contract
	Cross-chain interactions

	A tour of smart contract languages
	Solidity/Ethereum
	Rust/Solana
	Aiken/Cardano
	(Py)TEAL/Algorand
	Move/Aptos
	SmartPy/Tezos

	Comparative analysis
	Smart contracts benchmark
	Comparison overview
	Code verbosity and readability
	Security implications of language design
	Compile-time checks
	Contract analysis and verification
	On-chain/off-chain interactions
	Fees
	Native vs. programmable functionalities

	Related work
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

