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Abstract: A discrete event system (DES) is said to be opaque if a predefined secret can never
be exposed to an intruder who can observe its evolution. In this paper we consider a problem
of joint current-state opacity for a system modeled by a Petri net and monitored by multiple
local intruders, each of which can partially observe the behavior of the system. The intruders
can synchronously communicate to a coordinator the state estimate they have computed, but
not their observations. We demonstrate that the verification of this property can be efficiently
addressed by using a compact representation of the reachability graph, called basis reachability
graph (BRG), as it avoids the need for exhaustive enumeration of the reachability space. A joint
BRG-observer is constructed to analyze joint current-state opacity under such a coordinated
decentralized architecture.
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1. INTRODUCTION

Over the past few decades, various critical notions about
system security and privacy have been proposed, such
as anonymity (Schneider and Sidiropoulos, 1996), nonin-
terference (Focardi and Gorrieri, 1994), non-deductibility
(Hadj-Alouane et al., 2005), and opacity (Alur et al.,
2006) to ensure that only authorized people in relevant
fields have access to secret information. In this work, we
are interested in the opacity property, which characterizes
whether secret information in the system’s behavior is hid-
den or not from unauthorized persons (called intruders).
Since the secret can be a subset of the state space or the
generated language of a discrete event system (DES), the
opacity can be classified accordingly as state-based opacity
or language-based opacity. Research based on opacity is
well developed. A comprehensive review on the opacity in
DESs is found in (Mazaré, 2004), (Bryans et al., 2005) and
(Lafortune et al., 2018).

In this work, we study the verification of joint current-state
opacity in DESs modeled by bounded Petri nets. We con-
sider current-state opacity in a coordinated decentralized
architecture, as proposed by Wu and Lafortune (2013). A
system is observed by multiple local intruders that share
their local state estimates through a single coordinator,
called joint current-state opacity. Each local intruder, who
is viewed as an external observer of a system, is assumed to
have full knowledge of the system’s structure but generally
⋆ This work was partially supported by the Science and Tech-
nology Development Funding of Macau SAR, China, under Grant
0064/2021/A2 and the China Scholarship Council under Grant
202106960060.

only a partial observation of the system’s behavior. Given
a secret described by a subset of the reachability set,
the system is said to be jointly current-state opaque if
intruders and the coordinator are never able to infer that
the current state of the system is within the secret.

Since the development of network technology has led to the
increasingly widespread deployment of distributed or de-
centralized systems, numerous researchers have proposed
methods for joint diagnosis or state estimation in the field
of DESs. Barrett and Lafortune (2000) propose a novel
information structure model to deal with the decentralized
control problem for DESs by developing several commu-
nicating supervisory controllers so as to achieve a given
legal sublanguage of the uncontrolled system’s language
model, where each controller is with different information.
Cabasino et al. (2013) show that, similar to the case with
automata, diagnosability is strictly related to the existence
of failure ambiguous strings, and propose a method to the
diagnosis of Petri nets in a decentralized setting. Ran et al.
(2018) report a novel approach to perform codiagnosability
analysis of bounded LPNs with a set of sites that observe
the system evolution.

Badouel et al. (2007) consider secrecy under multiple ob-
servers, however, each observer has an individual secret
set. Paoli and Lin (2012) also consider the opacity of
languages in two cases with and without coordination
in a decentralized framework with several agents. Basile
et al. (2015) have considered the decentralized constraints
formulated with respect to net transitions, where each
local supervisor detects and disables transitions of its own
control site only. In contrast to the off-line construction
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of an observer for the verification of opacity, based on
generalized mutual exclusion constraints (GMECs), a com-
pact and maximally permissive decentralized supervisor
for Petri nets is designed in (Cong et al., 2018). To our
knowledge, Wu and Lafortune (2013) is the first to extend
the notion of current-state opacity to a new coordinated
architecture with two intruders, and provide the concept
of joint current-state opacity. However, the computation
of the observer has a complexity of O(23n) with n being
the number of states of the plant.

Petri nets have a richer modeling power than finite au-
tomata. One standard analysis technique for bounded
Petri nets relies on the construction of the reachability
graph (RG), which requires an exhaustive enumeration of
all reachable markings (i.e., states). This is quite inefficient
and can be circumvented by constructing a so-called basis
reachability graph (BRG). This approach entails enumer-
ating only a subset of reachable markings, i.e., the ba-
sis markings, while linear equations represent the other
markings that are reachable from these basis markings.
In practical situations, as shown by Ma et al. (2017), the
BRG can be order of magnitude smaller in size than the
RG.

Motivated by this, we propose a approach to verify the
joint current-state opacity in a system with multiple local
intruders modeled by bounded labeled Petri nets (LPNs)
under a coordinated decentralized architecture. The idea
consists in constructing a joint BRG-observer by using
basis markings rather than markings. We show that the
proposed BRG-based approach is practically more efficient
than the one based on reachability analysis as was the
case in (Wu and Lafortune, 2013). However, our approach
requires that the unobservable subnets of the intruders
systems G1, G2 be acyclic.

In this paper we study joint current-state opacity problems
in Petri nets. The main contributions of this work can be
summarized as follows:

1) We define a formal structure, called a joint BRG-
observer, that allows one to verify joint current-state
opacity in a system modeled by a bounded LPN.

2) Necessary and sufficient conditions for joint current-
state opacity with respect to an arbitrary secret and
two local intruders are provided based on the analysis
of the joint BRG-observer.

2. PRELIMINARIES AND BACKGROUND

This section reviews the formalism used in the paper and
some results on reachability analysis of Petri nets, which
underpin the entire work of this paper.

2.1 Automata

A nondeterministic finite automaton (NFA) is a four-tuple
A = (X,E,∆, x0), where X is the finite set of states,
E = {a, b, · · · } is the alphabet of finite events, ∆ ⊆ X ×
Eε ×X is the transition relation with Eε = E ∪ {ε} and ε
being the empty word associated to unobservable events,
x0 ∈ X is the initial state.

The Kleene-closure of E, denoted by E∗, defines the set
of all finite sequences of symbols in E, including the

empty sequence ε. The transition relation specifies the
dynamics of the NFA: if (x, e, x′) ∈ ∆, then from state
x the occurrence of event e ∈ Eε yields state x′. The
transition relation can be extended to ∆∗ ⊆ X ×E∗ ×X:
(xj0, ω, xjk) ∈ ∆∗ if there exist a sequence of events and
states xj0ej1xj1 · · ·xjk−1ejkxjk such that σ = ej1 . . . ejk
generates the word ω ∈ E∗, xji ∈ X for i = 0, 1, . . . , k
and eji ∈ Eε, (xji−1, eji, xji) ∈ ∆ for i = 1, 2, . . . , k. Event
e ∈ E is said to be defined at state xi if there exists a state
xj ∈ X such that (xi, e, xj) ∈ ∆. Generally, write ∆(x, σ)!
if ∆(x, σ) is defined.

The behavior of a system modeled by an automaton A
can be characterized by the language that A generates.
The generated language of A = (X,E,∆, x0) is defined as
L(A) = {ω ∈ E∗ | ∃x ∈ X : (x0, ω, x) ∈ ∆∗}.
Let A1 = (X1, E1,∆1, x1,0) and A2 = (X2, E2,∆2, x2,0)
be two NFAs. The synchronous (or parallel) composition
is defined as

A = A1∥A2 = (X1 ×X2, E1 ∪ E2,∆, x1,0 × x2,0)

where the transition function ∆ satisfies

∆((x1, x2), e) =

{
(∆1(x1, e),∆2(x2, e)) if ∆1(x1, e)!&∆2(x2, e)!
(∆1(x1, e), x2) if ∆1(x1, e)!&e /∈ E2

(x1,∆2(x2, e)) if ∆2(x2, e)!&e /∈ E1

2.2 Petri Nets

A Petri net is a four-tuple N = (P, T, Pre, Post), where
P is a set of m places represented by circles, T is a set
of n transitions represented by bars, Pre : P × T → N
and Post : P × T → N are the pre- and post- incidence
functions, specifying the arcs from places to transitions,
and vice versa. The incidence matrix of a net is represented
by C = Post− Pre.

A marking is a mapping M : P → N that assigns to a
place a non-negative integer number of tokens, represented
by black dots. The marking of place p at a marking
M is denoted by M(p), which indicates the number of
tokens in place p at M . A marking is also denoted as
M =

∑
p∈P M(p) · p. A net N with an initial marking

M0 is called a Petri net system, denoted by ⟨N,M0⟩.
A transition t is enabled at marking M if M ≥ Pre(·, t)
and may fire yielding a markingM ′ withM ′ = M+C(·, t).
We write M [σ⟩ to denote that the sequence of transitions
σ = tj1 · · · tjk is enabled atM , andM [σ⟩M ′ to denote that
firing σ at M yields a marking M ′. The set of all transition
sequences firable from M0 is denoted as L(N,M0), i.e.,
L(N,M0) = {σ ∈ T ∗ | M0[σ⟩}. Given a sequence σ ∈ T ∗,
the function π : T ∗ → Nn associates with σ the Parikh
vector y = π(σ) ∈ Nn, i.e., y(t) = k if transition t appears
k times in σ.

A marking M is reachable in ⟨N,M0⟩ if there exists a
firing sequence σ such that M0[σ⟩M . The reachability set
of ⟨N,M0⟩ is the set of all markings reachable from M0,
denoted by R (N,M0). A Petri net system is bounded if
there exists a non-negative integer k ∈ N such that for any
place p ∈ P and any reachable marking M ∈ R (N,M0),
M(p) ≤ k holds.
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of an observer for the verification of opacity, based on
generalized mutual exclusion constraints (GMECs), a com-
pact and maximally permissive decentralized supervisor
for Petri nets is designed in (Cong et al., 2018). To our
knowledge, Wu and Lafortune (2013) is the first to extend
the notion of current-state opacity to a new coordinated
architecture with two intruders, and provide the concept
of joint current-state opacity. However, the computation
of the observer has a complexity of O(23n) with n being
the number of states of the plant.
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Petri nets relies on the construction of the reachability
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reachability graph (BRG). This approach entails enumer-
ating only a subset of reachable markings, i.e., the ba-
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markings that are reachable from these basis markings.
In practical situations, as shown by Ma et al. (2017), the
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RG.

Motivated by this, we propose a approach to verify the
joint current-state opacity in a system with multiple local
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case in (Wu and Lafortune, 2013). However, our approach
requires that the unobservable subnets of the intruders
systems G1, G2 be acyclic.

In this paper we study joint current-state opacity problems
in Petri nets. The main contributions of this work can be
summarized as follows:

1) We define a formal structure, called a joint BRG-
observer, that allows one to verify joint current-state
opacity in a system modeled by a bounded LPN.

2) Necessary and sufficient conditions for joint current-
state opacity with respect to an arbitrary secret and
two local intruders are provided based on the analysis
of the joint BRG-observer.

2. PRELIMINARIES AND BACKGROUND

This section reviews the formalism used in the paper and
some results on reachability analysis of Petri nets, which
underpin the entire work of this paper.

2.1 Automata

A nondeterministic finite automaton (NFA) is a four-tuple
A = (X,E,∆, x0), where X is the finite set of states,
E = {a, b, · · · } is the alphabet of finite events, ∆ ⊆ X ×
Eε ×X is the transition relation with Eε = E ∪ {ε} and ε
being the empty word associated to unobservable events,
x0 ∈ X is the initial state.

The Kleene-closure of E, denoted by E∗, defines the set
of all finite sequences of symbols in E, including the

empty sequence ε. The transition relation specifies the
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2.2 Petri Nets

A Petri net is a four-tuple N = (P, T, Pre, Post), where
P is a set of m places represented by circles, T is a set
of n transitions represented by bars, Pre : P × T → N
and Post : P × T → N are the pre- and post- incidence
functions, specifying the arcs from places to transitions,
and vice versa. The incidence matrix of a net is represented
by C = Post− Pre.

A marking is a mapping M : P → N that assigns to a
place a non-negative integer number of tokens, represented
by black dots. The marking of place p at a marking
M is denoted by M(p), which indicates the number of
tokens in place p at M . A marking is also denoted as
M =

∑
p∈P M(p) · p. A net N with an initial marking

M0 is called a Petri net system, denoted by ⟨N,M0⟩.
A transition t is enabled at marking M if M ≥ Pre(·, t)
and may fire yielding a markingM ′ withM ′ = M+C(·, t).
We write M [σ⟩ to denote that the sequence of transitions
σ = tj1 · · · tjk is enabled atM , andM [σ⟩M ′ to denote that
firing σ at M yields a marking M ′. The set of all transition
sequences firable from M0 is denoted as L(N,M0), i.e.,
L(N,M0) = {σ ∈ T ∗ | M0[σ⟩}. Given a sequence σ ∈ T ∗,
the function π : T ∗ → Nn associates with σ the Parikh
vector y = π(σ) ∈ Nn, i.e., y(t) = k if transition t appears
k times in σ.

A marking M is reachable in ⟨N,M0⟩ if there exists a
firing sequence σ such that M0[σ⟩M . The reachability set
of ⟨N,M0⟩ is the set of all markings reachable from M0,
denoted by R (N,M0). A Petri net system is bounded if
there exists a non-negative integer k ∈ N such that for any
place p ∈ P and any reachable marking M ∈ R (N,M0),
M(p) ≤ k holds.

A labeled Petri net (LPN) is a four-tupleG = (N,M0, E, ℓ),
where ⟨N,M0⟩ is a Petri net system, E is the alphabet (a
finite set of labels) and ℓ : T → E ∪ {ε} is the labeling
function that assigns a transition t ∈ T either a symbol
from E or the empty word ε. This leads to a partition
T = To∪̇Tu, where To = {t ∈ T | ℓ(t) ∈ E} is the set of
observable transitions and Tu = T\To = {t ∈ T | ℓ(t) = ε}
is the set of unobservable transitions. In a recursive man-
ner, the labeling function can be extended to ℓ : T ∗ → E∗,
which is defined according to: ℓ(ε) = ε; ℓ(t) = ε if t ∈ Tu;
ℓ(t) = e if t ∈ To, e ∈ E; and ℓ(σt) = ℓ(σ)ℓ(t) if σ ∈ T ∗,
t ∈ T .

Given an LPN G = (N,M0, E, ℓ), we define its generated
language as L(G) = {ω ∈ E∗ | ∃σ ∈ T ∗ : M0[σ⟩, ℓ(σ) = ω} .
A string ω ∈ L (G) is called an observation. The set of
markings consistent with ω is denoted as C(ω) = {M ∈
Nm | ∃σ ∈ T ∗: M0[σ⟩M, ℓ(σ) = ω}. Since observation ω is
generated by the system, set C(ω) must be non-empty.

Given two alphabets E′ and E with E′ ⊆ E, the natural
projection on E′, Pr : E∗ → (E′)∗ is defined according to:
Pr(ε) = ε; Pr(e) = ε if e /∈ E′; Pr(e) = e if e ∈ E′; and
Pr(σe) = Pr(σ)Pr(e) for σ ∈ E∗, e ∈ E.

The inverse projection of Pr denoted by Pr−1 : (E′)∗ →
2E

∗
is defined as Pr−1({s}) = {σ ∈ E∗ | Pr(σ) = s},

where s ∈ (E′)∗.

Given an LPN G = (N,M0, E, ℓ) and the set of unob-
servable transitions Tu, the unobservable subnet N ′ =
(P, T ′ , P re′, Post ′) of G is the net resulting by removing
all transitions in T\Tu from N , where Pre′ and Post′ are
the restrictions of Pre and Post to Tu, respectively. The
incidence matrix of the unobservable subnet is defined by
Cu = Post′ − Pre′.

2.3 Some Results on Reachability in Petri Nets

In this subsection, let us recall some key notions of basis
markings and the construction of basis reachability graph
(BRG) proposed by (Cabasino et al., 2011) and (Ma et al.,
2017).

Given an LPN G = (N,M0, E, ℓ), we denote its BRG as an
NFA B = (MB , E,∆,M0), where the set of states MB is
the set of basis markings of the LPN, the alphabet E is the
set of labels of observable transitions. ∆ ⊆ MB×E×MB

is the transition relation between basis markings, and M0

is the initial state.

A marking M is reachable in an LPN from the inital
marking M0 with a sequence σ that produces observation
ω if and only if the sequence ω in the BRG yields basis
marking Mb and M belongs to the unobservable reach of
Mb. The unobservable reach of a marking M , denoted by
U(M), is the set of markings reachable from M by firing
only unobservable transitions. We use Mb(ω) = C(ω) ∩
MB to denote the set of basis markings consistent with ω.

For the convenience of reading, other related definitions
can be found in the appendix.

For all observations ω, Mb(ω) can be computed by con-
verting an obtained BRG into its equivalent DFA by a
standard determinization procedure in (Cassandras and
Lafortune, 2008). To verify current-state opacity, Tong

et al. (2017) have defined the BRG for current-state

opacity as Bc = (M̃B , E,∆, (M0, α(M0))), where M̃B ⊆
MB × {0, 1}, and defined the current-state basis observer
of the BRG Bc as Obs(Bc) = (Xc, Ec,∆c, xc,0), where each

state is a subset of M̃B consistent with an observation, the
set of events Ec is a set of all observable events, ∆c is the
transition relation between states in Xc, and xc,0 is the
initial state.

3. JOINT CURRENT-STATE OPACITY AND
PROBLEM FORMULATION

In this section, we review the relevant definitions of
current-state opacity and elaborate upon the setting of
the problem studied in this work.

Definition 1. An LPN G = (N,M0, E, ℓ) is said to be
current-state opaque wrt a secret S ⊆ R(N,M0) if for all
observations ω ∈ L(G), C(ω) ⊈ S holds.

If an LPN is current-state opaque, it implies that an in-
truder cannot determine whether the current state belongs
to the secret based on all possible observations.

In this paper, we will consider joint current-state opacity
properties in the framework of coordinated decentralized
architecture where multiple intruders work as a team to
infer the secret. Specifically, we consider a simplified co-
ordinated architecture with two local intruders communi-
cating with a single coordinator, as shown in Fig. 1. The
system is modeled as a bounded LPN G = (N,M0, E, ℓ)
and it is assumed to be monitored by two local intrud-
ers. The local system observed by each local intruder is
defined as Gi = (N,M0, Ei, ℓi) , i = 1, 2, where ⟨N,M0⟩
is a net system, the alphabet of events Ei is a subset of
E, associated with two labeling functions ℓi(t) = ℓ(t) if
ℓ(t) ∈ Ei else ℓi(t) = ε. Each local intruder observes the
system behavior via their individual labeling function and
communicates with the coordinator by sending the results
of local state estimates. Finally, the coordinator computes
the intersection of the local state estimates it receives: this
is called the coordinated estimate. We assume that (1) each
local intruder knows the structure and the initial marking
of the system, but they can only observe the firing of
transitions whose label belongs to their own alphabet, (2)
the local intruders only communicate with the coordinator
and have no knowledge of one another, and there is no
delay in communication, and (3) the coordinator does not
know the structure of the system.

A system is said to be jointly opaque if no coordinated
estimate ever reveals the secret information. The notion
of joint current-state opacity has originally been defined
in automata (Wu and Lafortune, 2013). In this work a set
of states is defined as the secret, an automaton is jointly
current-state opaque under the coordinated architecture
if for each string, neither of the two local intruders can
ensure whether it ends at a secret state based on their
observations. This notion can be naturally rewritten for
Petri nets as follows.

Definition 2. An LPN G = (N,M0, E, ℓ) is said to be
jointly current-state opaque wrt a secret S ⊆ R(N,M0)
and two local intruders if for all transition sequences
σ ∈ L(N,M0), there exists other two sequences σ1, σ2 ∈
L(N,M0) such that ℓ1(σ) = ℓ1(σ1) = ω1 with ω1 ∈
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Fig. 1. The coordinated decentralized architecture.

L1(N,M0), ℓ2(σ) = ℓ2(σ2) = ω2 with ω2 ∈ L2(N,M0)
and C1(ω1) ∩ C2(ω2) ⊈ S holds 1 .

An LPN system that is jointly current-state opaque means
that for each transition sequence σ, there exist two other
transition sequences σ1 and σ2 that leads to some common
markings which are not contained in the secret, and two
transition sequences are observationally equivalent with σ
to intruders 1 and 2, respectively. Note that, if a system
is jointly current-state opaque, it must be current-state
opaque for each intruder. However, the reverse is not true
in general.

Before formalizing the issues involved in the rest of the
work, we begin by introducing the following assumptions:

A1) The LPN G is bounded.
A2) The unobservable subnets of G1 and G2 are acyclic.

These assumptions will allow the problem under investi-
gation to have some properties on the basis of which we
can verify joint current-state opacity of a system. Assump-
tion A1 guarantees that the number of basis markings is
finite; thus the algorithm for calculating BRG can halt.
Assumption A2 allows us to iteratively compute the basis
markings by using the state equation to describe the set of
markings reached from the basis markings by firing unob-
servable transitions. Therefore, the firing of unobservable
transitions in a system can be abstracted by using the
minimal explanations and the basis markings. This avoids
the problem of state explosion and makes it easier to find
valid information related to secret states in subsystems.

Problem Statement: Consider a bounded LPN G =
(N,M0, E, ℓ) with a secret S ⊆ R(N,M0) monitored by
two local intruders satisfying Assumptions A1 and A2.
The local system observed by each local intruder is Gi =
(N,M0, Ei, ℓi) , i = 1, 2. Determine the joint current-state
opacity property of G.

Example. Consider the LPN system G = (N,M0, E, ℓ)
in Fig. 2 monitored by two local intruders. The lo-

1 Herein, the subscripts are added to distinguish between languages
observed by different local intruders due to different labeling func-
tions.

Fig. 2. An LPN G whose unobservable subnet is acyclic.

Fig. 3. The reachability graph of G under the coordinated
architecture in example.

cal system observed by each local intruder i is Gi =
(N,M0, Ei, ℓi) , i = 1, 2, where E1 = {a} and E2 = {b}.
The reachability graph of G under the coordinated archi-
tecture, is shown in Fig. 3.

4. VERIFICATION OF JOINT CURRENT-STATE
OPACITY

4.1 Joint BRG-Observer

In this section, we define a formal structure, called a joint
BRG-observer, that allows one to verify joint current-state
opacity in a system modeled by bounded LPN under a
coordinated decentralized architecture more efficiently. For
the sake of simplicity, we assume that there are two local
intruders. The steps are as follows.

Step 1. Define a fictitious global intruder. In our setting
there is no global intruder since the coordination among
local intruders is restricted. However, for reasons that will
be clear in the following, to verify opacity we need to
consider a fictitious intruder that can observe all events
that are observed by each local intruder, which is called a
global intruder. We assume that the LPN system known to
the global intruder is Gg = (N,M0, Eg, ℓg), where ⟨N,M0⟩
is a net system, the alphabet is Eg = E1∪E2, the labeling
function ℓg : T → Eg is such that ℓg(t) = ℓ1(t) if ℓ1(t) ∈ E1

else ℓg(t) = ℓ2(t). To facilitate the understanding of the
work in this step, we develop two equivalent ways of
describing local observations in a decentralized setting in
Fig. 4.

Step 2. Construct a BRG for each intruder. Basis
reachability graphs (BRGs) are compact representation
of reachability graphs (RGs), which is detailed in the
appendix. For a large-size Petri net, constructing its RG
will inevitably suffer from the state explosion. Tong et al.
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In this section, we define a formal structure, called a joint
BRG-observer, that allows one to verify joint current-state
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the sake of simplicity, we assume that there are two local
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Step 1. Define a fictitious global intruder. In our setting
there is no global intruder since the coordination among
local intruders is restricted. However, for reasons that will
be clear in the following, to verify opacity we need to
consider a fictitious intruder that can observe all events
that are observed by each local intruder, which is called a
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will inevitably suffer from the state explosion. Tong et al.

Fig. 4. Two equivalent ways of describing local observa-
tions in a decentralized setting.

(2017) shows that current-state opacity can be verified by
constructing the BRG (with appropriate modifications)
that enables one to avoid RG analysis. The proposed
approach exhibits heightened efficiency, as the size of the
BRG never surpasses that of the RG, and it becomes even
more compact in the presence of unobservable transitions.
Note that, since that it is possible to have more than
one transition with the same label in system, the BRG is
possibly nondeterministic. After this step, we obtain B1,B2

and Bg, which represent, respectively, the BRG for G1, G2

and Gg.

Step 3. Construct the observer for each BRG. In this
work, we use the current-state basis observer to model the
knowledge gained by the local intruder i and the global
intruder. The current-state basis observer of local intruder
i is represented by Obs(Bi) := (Yi, Ei,∆i, yi,0), i = 1, 2. A
state in the set of states Yi is a set of basis markings of the
system Gi. The set of events Ei is a set of all observable
events to local intruder i. ∆i is the transition relation
between the states in Yi. The initial state yi,0 is the initial
basis markings {M0}.
The current-state basis observer of the fictitious global
intruder is defined as Obs(Bg) := (Yg, Eg,∆g, yg,0). The
interest of this observer is of generating all words in
Prg(L(G)).

Step 4. Construct the joint BRG-observer. We de-
fine a joint BRG-observer as the concurrent composition
Obs(B1)||Obs(B2)||Obs(Bg). This automaton, denoted as
J = (Y,E,∆, y0), has set of states Y ⊆ Y1 × Y2 × Yg,
where each state is denoted by a triple y = (y1, y2, yg).
E is the alphabet of events. The initial state is y0 =
({M0}, {M0}, {M0}). The transition relation ∆ is defined
as follows:

∆((y1, y2, yg), e) =

{
(∆1(y1, e),∆2(y2, e),∆g(yg, e)) if ∆1(y1, e)!&∆2(y2, e)!
(∆1(y1, e), y2,∆g(yg, e)) if ∆1(y1, e)!&e /∈ E2

(y1,∆2(y2, e),∆g(yg, e)) if ∆2(y2, e)!&e /∈ E1

where e ∈ E, ∆i is the transition relation of Obs(Bi), i =
1, 2, and ∆g is the transition relation of Obs(Bg). By
concurrent composition with Obs(Bg), the behavior of J
is restricted within system’s observable behavior:

L(J) : = Pr−1
1 (L(Obs(B1))) ∩ Pr−1

2 (L(Obs(B2))) ∩
L(Obs(Bg))

=L(Obs(Bg)) = Prg(L(G))

where the inverse projection is defined as Pr−1
i : E∗

i →
2E

∗
, for i = 1, 2. Consider a word ω ∈ L(J). It means

that there exists a state y = (y1, y2, yg) in Y such that
(y0, ω, y) ∈ ∆∗, where y1 = C1(ω1) and y2 = C2(ω2). Note
that the state estimates depend only on (y1, y2). However,
to ensure that in the language of the joint BRG-observer
there are no spurious words, i.e., words on Eg that do not
correspond to observations produced by the system, we
also need to compose the local intruders’ observers with
Obs(Bg).

Step 5. Coordinated estimate. Given a joint BRG-
observer J , we need to associate with each state y ∈ Y
the coordinated estimate of J . To this end, we define the
coordinate estimate function fce : Y → 2|R(N,M0)| as

fce(y) : = fce(y1, y2, yg)

= U1(y1) ∩ U2(y2) ⊆ R(N,M0)

where y ∈ Y satisfying (y0, ω, y) ∈ ∆∗ and ω ∈ L(J). Such
a function computes the intersection of two sets where,
for i = 1, 2, set Ui(yi) represents the union for all basis
markings Mb ∈ yi and the markings reachable from Mb by
firing only unobservable transitions in net Gi. Note that,
the same basis marking may have different unobservable
reaches in different net systems, as shown in Table 1.

Table 1. Unobservable reaches of basis mark-
ings in G1 and G2

LPN system Basis Marking U(M)

G1

M0 {M0,M2}
M1 {M1,M3}
M4 {M4}
M5 {M5}

G2
M0 {M0,M1}
M2 {M0,M1,M2,M3,M4,M5}

Let us consider the number of states of the joint BRG-
observer in the maximum case as 2|MB,1|+|MB,2|+|MB,g| −
3. Consequently, the space complexity of the proposed
method is O(2|MB,1|+|MB,2|+|MB,g|) with |MB | being the
number of basis markings of G1, G2 and Gg, respectively.
However, considering that RG-based methods has a space
complexity of O(2|R(N,M0)1|+|R(N,M0)2|+|R(N,M0)g|) with
|R(N,M0)| being the total number of reachable markings
of G1, G2 and Gg, respectively, and |MB | is typically
smaller than |R(N,M0)|, we can briefly conclude that
BRG-based methods are more efficient compared with the
automata based approach by Wu and Lafortune (2013).

Example. Consider the LPN system G = (N,M0, E, ℓ)
in Fig. 2 that is monitored by two local intruders with
E1 = {a} and E2 = {b}. By Step 2, we construct the
BRG for each intruder in Fig. 5. By Step 3, we construct
the current-state basis observer to model the knowledge
gained by local intruder i and single system intruder which
is not real, as shown in Figs. 6 and 7. By Steps 4 and 5, we
construct the joint BRG-observer J and associate it with
the function fce, as shown in Fig. 8.

4.2 Verifying Joint Current-state Opacity

The following proposition shows that the coordinated
current-state estimate wrt an observation ω ∈ L(G) such
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Fig. 5. The BRG of local systems Gi, i = 1, 2.

Fig. 6. Current-state basis observer of Bi, i = 1, 2.

Fig. 7. Current-state basis observer of Bg.

Fig. 8. The joint BRG-observer J in example.

that ω = ℓ(σ) and σ ∈ L(N,M0), denoted as X̂0,coor(ω),
is the coordinated estimate associated to a state y ∈ Y
such that (y0, ω, y) ∈ ∆∗ by using fce. We will show later
how to use J with the coordinate estimate function fce to
verify the joint current-state opacity property.

Proposition 3. Let G = (N,M0, E, ℓ) be an LPN whose
unobservable subnet is acyclic, while is monitored by two
local intruders. For all observation ω ∈ L(G) such that
ω = ℓ(σ) and σ ∈ L(N,M0), the coordinated current-

state estimate X̂0,coor(ω) is equivalent to the coordinate
estimate fce(y) associated to a state y ∈ Y such that
(y0, ω, y) ∈ ∆∗.

Proof. Consider an observation ω ∈ L(G) such that ω =
ℓ(σ) and σ ∈ L(N,M0), Pri(ω) = ωi, for i = 1, 2, and the
current-state estimate on an observation ωi for each local
intruder i, denoted as X̂0,i(ωi) = Ui(∆i(yi,0, ωi)). Thus,

the coordinated current-state estimate is X̂0,coor(ω) =

X̂0,1(ω1) ∩ X̂0,2(ω2) = U1(∆1(y1,0, ω1)) ∩ U2(∆2(y2,0, ω2).
On the other hand, the coordinated estimate associate
with a state y ∈ Y reaches by ω in J is

fce(y) : = fce(y1, y2, yg)

= U1(y1) ∩ U2(y2)

= U1(∆1(y1,0, ω1)) ∩ U2(∆2(y2,0, ω2))

where the set Ui(∆i(yi,0, ωi)) also represents the union for
all basis markings Mb ∈ y with (yi,0, ωi, y) ∈ ∆∗

i and the
markings reachable from Mb by firing only unobservable
transitions in local net Gi. Therefore, for an observation
ω ∈ L(G), X̂0,coor(ω) = fce(y), where (y0, ω, y) ∈ ∆∗

holds.

Based on Proposition 3, we drive the following necessary
and sufficient condition for joint current-state opacity.

Theorem 4. Let G = (N,M0, E, ℓ) be an LPN with a
secret S ⊆ R(N,M0), monitored by two local intruders. G
is jointly current-state opaque wrt a secret S ⊆ R(N,M0)
and two local intruders if and only if for all y ∈ Y in J ,
fce(y) ⊈ S holds.

Proof. G is jointly current-state opaque wrt a secret S ⊆
L(N,M0) and two local intruders if and only if X̂0,coor(·)
always contains a non-secret state whenever it contains
a secret state. By Proposition 3, X̂0,coor(·) = U1(y1) ∩
U2(y2) = fce(y), where is the intersection of two sets
where, for i = 1, 2, set Ui(yi) represents the union for
all basis markings Mb ∈ yi and the markings reachable
from Mb by firing only unobservable transitions in net
Gi. Since J is deterministic and L(J) = Prg(L(G)),
every coordinated estimate that is associated with a state
reachable in J , corresponds to a valid X̂0,coor(·), and vice-
versa. Therefore, the joint current-state opacity property
can be verified by examining the coordinated estimate that
is associated with each reachable state in J .

Example. Let us go back to the previous Example and
take the secret to be S = {M1}. The system G is current-
state opaque to each local intruder because no state in
Obs(B1) or Obs(B2) contains only the secret marking
without any unobservable reach in the state. However, the
system G is not jointly current-state opaque. Due to the
collaboration under the coordinated architecture, the team
of intruders obtain a coordinated estimate {M1} when
ℓ(σ) = a has occurred, as shown in Fig. 8.

5. CONCLUSION AND FUTURE WORK

This paper, proposes a novel approach to address the ver-
ification of joint current-state opacity in the coordinated
architecture of discrete event systems by constructing a
joint BRG-observer wrt a function to compute the coor-
dinated estimate. In future work, we will focus on sim-
plifying the computation steps and study the verification
of other state-based opacity properties in this framework.
The approach we have proposed could be combined with
integer linear programming tools to avoid exhaustively
enumerating the unobservable reach of basis markings.



 Wenjie Zhao  et al. / IFAC PapersOnLine 56-2 (2023) 7899–7905 7905

Fig. 5. The BRG of local systems Gi, i = 1, 2.

Fig. 6. Current-state basis observer of Bi, i = 1, 2.

Fig. 7. Current-state basis observer of Bg.

Fig. 8. The joint BRG-observer J in example.

that ω = ℓ(σ) and σ ∈ L(N,M0), denoted as X̂0,coor(ω),
is the coordinated estimate associated to a state y ∈ Y
such that (y0, ω, y) ∈ ∆∗ by using fce. We will show later
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where, for i = 1, 2, set Ui(yi) represents the union for
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Gi. Since J is deterministic and L(J) = Prg(L(G)),
every coordinated estimate that is associated with a state
reachable in J , corresponds to a valid X̂0,coor(·), and vice-
versa. Therefore, the joint current-state opacity property
can be verified by examining the coordinated estimate that
is associated with each reachable state in J .

Example. Let us go back to the previous Example and
take the secret to be S = {M1}. The system G is current-
state opaque to each local intruder because no state in
Obs(B1) or Obs(B2) contains only the secret marking
without any unobservable reach in the state. However, the
system G is not jointly current-state opaque. Due to the
collaboration under the coordinated architecture, the team
of intruders obtain a coordinated estimate {M1} when
ℓ(σ) = a has occurred, as shown in Fig. 8.

5. CONCLUSION AND FUTURE WORK

This paper, proposes a novel approach to address the ver-
ification of joint current-state opacity in the coordinated
architecture of discrete event systems by constructing a
joint BRG-observer wrt a function to compute the coor-
dinated estimate. In future work, we will focus on sim-
plifying the computation steps and study the verification
of other state-based opacity properties in this framework.
The approach we have proposed could be combined with
integer linear programming tools to avoid exhaustively
enumerating the unobservable reach of basis markings.
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Appendix A. SOME NOTION OF BASIS
REACHABILITY GRAPH (BRG)

Definition 5. Given a marking M and an observable tran-
sition t ∈ To, we define

Σ(M, t) = {σ ∈ T ∗
u | M [σ⟩M ′,M ′ ≥ Pre(·, t)}

as the set of explanations of t at M , and we define

Y (M, t) =
{
yu ∈ N|Tu| | ∃σ ∈ Σ(M, t) : yu = π(σ)

}

as the set of explanations vectors; meanwhile, we define

Σmin(M, t) = {σ ∈ Σ(M, t) |̸ ∃σ′ ∈ Σ(M, t) : π(σ) > π(σ′)}
as the set of minimal explanations of t at M , and

Ymin(M, t) =
{
yu ∈ N|Tu| | ∃σ ∈ Σmin(M, t) : yu = π(σ)

}

as the corresponding set ofminimal explanations vectors.

Definition 6. Given an LPN G = (N,M0, E, ℓ), its set of
basis markings MB is a subset of R(N,M0) such that:

a) M0 ∈ MB

b) ∀M ∈ MB , ∀t ∈ To, ∀yu ∈ Ymin(M, t), it holds
M ′ ∈ MB , where M ′ = M + C(·, t) + Cu · yu.

Definition 7. Given an LPN G = (N,M0, E, ℓ), its BRG
is a deterministic finite state automaton B. The BRG B is
a quadruple (MB , E,∆,M0), where

• the state set MB is the set of basis markings;
• all events in the event set E are observable;
• ∆ ⊆ MB×E×MB is the transition relation between

basis markings;
• the initial state is the initial marking M0.

Algorithm 1 Construction of the BRG

Input: A bounded labeled Petri net G = (N,M0, E, ℓ)
whose unobservable subset is acyclic.
Output: The BRG B = (MB , E,∆,M0)

MB := {M0} and assign no tag to M0;
while states with no tag exists do

for all t ∈ To and Ymin(M, t) ̸= ∅ do
for all yu ∈ Ymin(M, t) do

M ′ := M + Cu · yu + C(·, t);
if M ′ /∈ MB then

MB := MB ∪ {M ′};
assign no tag to M ′;

end if
∆ := ∆ ∪ {(M, ℓ(t),M ′)};

end for
end for
tag node M “old”;

end while
Remove all tags.

Definition 8. Given an LPN G = (N,M0, E, ℓ) and a
marking M ∈ R(N,M0), the unobservable reach of M is
defined as U(M) = {M ′ ∈ Nm | ∃σu ∈ T ∗

u : M [σu⟩M ′}.


