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Abstract 22 

Despite the increasing interest in mangroves as one of the most carbon rich ecosystem, arid 23 

mangroves are still poorly investigated. We aimed to improve the knowledge of biomass and soil 24 

carbon sequestration for an arid mangrove forest located at the Azini creek, Sirik, Hormozgan 25 

Province (Iran). We investigated the biomass and organic carbon stored in the above and 26 

belowground biomass for three different regions selected based on the composition of the principal 27 

species: 1) Avicennia marina, 2) mixed forest of A. marina and Rhizophora mucronata, and 3) R. 28 

mucronata. Topsoil organic carbon storage was also estimated for each analysed area, considering 29 

0-30 cm of soil depth. Biomass carbon storage, considering both aboveground (AGB) and 30 

belowground biomass (BGB), was significantly different between the cover areas. Overall, the 31 

mean forest biomass (MFB) was 283.1 ± 89 Mg C ha-1 with a mean C stored in the biomass of 32 

128.9 ± 59 Mg C ha-1.  Although pure Rhizophora stand showed the lowest value of above and 33 

below tree carbon (AGC+BGC); 17.6±1.9 Mg C ha-1), soil organic carbon stock in sites under 34 

Rhizophora spp. was significantly higher than in the site with pure stand of Avicennia spp.. Overall, 35 

forest soil stored the highest proportion of Sirik mangrove ecosystem organic carbon (59 %), with 36 

a mean value of 188.3 ±27 Mg C ha-1. These results will contribute to broaden the knowledge and 37 

the dataset available, reducing the uncertainties related to estimates and modelling of carbon pools 38 

in arid mangrove ecosystem, which also represent an important climatic threshold of mangrove 39 

worldwide distribution. 40 

 41 
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 45 

 46 

1. Introduction 47 

Mangroves are typically distributed within the tropics, but they are also extended into the 48 

subtropical and warm temperate regions in the tidal zones, coastal rivers, estuaries and bays of the 49 

world (Hamilton &Casey 2016, Naidoo 2009, Zeinali et al. 2017). Although a relatively small part 50 

of the world's forests are mangrove, they are among the most productive and biologically important 51 

ecosystems, providing a wide range of services to human society (Giri et al. 2011). Mangrove trees 52 

reduce coastal erosion caused by natural phenomena and increase the aesthetic value of the coast 53 

(Hashim et al. 2010, Zeinali et al. 2018). They also offer a physical habitat for a wide range of 54 

marine animals (Nagelkerken et al. 2008) and convey ecosystem services that span their natural 55 

range limits (Ewel et al. 1998).  56 

Mangroves play an important role in absorbing atmospheric CO2, being able to stabilize significant 57 

levels of atmospheric carbon dioxide in their biomass and soils (Donato et al. 2011, Wang et al. 58 

2014). Their high primary productivity and the high amount of carbon stored in their soil 59 

(Castaneda 2010), leads mangroves to be among the most carbon-rich forests in the tropics, 60 

containing on average 1,023 Mg carbon per hectare (Komiyama et al. 2005b; Donato et al. 2011). 61 

The potential of coastal ecosystems as carbon sinks is also due to their autochthonous and 62 

allochthonous sources of organic carbon (OC) input (Andreetta et al. 2016, Bouillon et al. 2003).  63 

Mangroves are now threatened by human activities: projects that divert river water from coastal 64 

regions can increase salinity and cause mangrove degradation (Parida &Jha 2010). Furthermore, 65 

deforestation can transform mangrove ecosystem from an important sink to a source of carbon, 66 

with negative repercussions on climate (Hamilton &Friess 2018, Hashim et al. 2010). The need to 67 
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reduce deforestation in countries that are expanding carbon consumption was considered by the 68 

United Nations Framework Convention on Climate Change (UNFCCC) with a focus on tropical 69 

forests (Motel et al. 2009). 70 

In the Middle East mangrove forests are found in Iran, along the shores of the Persian Gulf and 71 

the Gulf of Oman, as well as around Bahrain, Qatar, Saudi Arabia and the United Arab Emirates 72 

(Danehkar 1996). In the southern coasts of Iran, the Hara forest, which is the local name for 73 

mangrove forests, is dominated by Avicennia marina species, while Rhizophora mucronata growth 74 

is limited to Sirik Azini Creek (Giri et al. 2011).  This ecosystem offers a series of services to the 75 

local communities: mangrove branches and leaves are important fodder for camels and cattle; A. 76 

marina wood is used in the construction of buildings and in the production of charcoal. Medicinal 77 

substances are obtained from A. marina leaves and branches (Zahed et al. 2010). Recently, global 78 

changes, combined with local constraints, threaten the Hara forest ecosystem (Zahed et al. 2010). 79 

Mangrove stands have deteriorated, among the others, by camel grazing, oil pollution due to fuel 80 

smuggling, the introduction of invasive species such as the black rat, and unregulated fishing 81 

(Mashayekhi et al. 2016). For these reasons, national programs are quantifying the economic 82 

opportunity costs of conservation for local stakeholders in order to reduce tree harvesting and 83 

deforestation activities in the Hara forest (Mashayekhi et al. 2016). 84 

In this context a thorough understanding of the Iranian mangrove ecosystem in relation to one of 85 

the key ecosystem services, such as the capacity to store organic carbon, is assuming a particular 86 

importance.  87 

The Hara forest is an arid mangrove ecosystem, characterized by severe temperatures, sparse and 88 

sporadic rainfall, and high salinity. Despite the increasing research on mangroves worldwide, 89 

mangroves from arid regions are still poorly investigated and only in the last years, the estimates 90 
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of organic carbon pools for mangrove in arid regions have experienced increasing interest. New 91 

data are available especially for Saudi Arabia (Almahasheer et al. 2017, Eid et al. 2019, Shaltout 92 

et al. 2020), Qatar (Chatting et al. 2020), Mexico (Ochoa-Gómez et al. 2019), United Arab 93 

Emirates (Schile et al. 2017), Iran (Etemadi et al. 2018) and Egypt (Eid &Shaltout 2016). 94 

Mangroves in arid regions may represent different dynamics as compared to wetter climates, since 95 

they could be more susceptible to climate change than other areas (Etemadi et al. 2018). Etemadi 96 

et al. (2016) observed a 3.14°C increase in minimum temperatures for the 1968-2011 period in the 97 

south of Iran, and reported the associated potential negative effects on salinity and sea level rise. 98 

Despite Avicennia being recognized as having high salinity tolerance and being adapted to survive 99 

in extreme climatic conditions (Schile et al. 2017), a climate and environmental change might 100 

inhibit plant growth. Iranian mangroves are among the most northerly distributed mangroves in 101 

the north hemisphere in severe climatic condition and they should then be placed as a climatic 102 

threshold. Due to the scarcity of data concerning carbon sequestration considering both biomass 103 

and soils in arid mangrove in a vulnerable area, further investigation is thus needed. Most of the 104 

above-mentioned studies in the region have been carried out in mono specific A. marina stands.  105 

The purpose of this study was to investigate biomass and soil carbon storage in mangrove forests 106 

of Sirik Azini Creek considering mixed stands as well as Rhizophora sp. stands, aiming to answer 107 

the following question: How might different forest stands affect carbon stocks in an arid mangrove 108 

ecosystem? 109 

The obtained results will contribute to the improvement of global modeling, offering new 110 

empirical data on an understudied and fragile ecosystem, which represent an important threshold 111 

of mangrove worldwide distribution. The estimate of Hara forest carbon storage will also support 112 
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the local policy to promote management activities acting to protect this small and fragile forest 113 

immerged in an arid environment.   114 

2. Materials and methods 115 

2.1 Study area 116 

This study was conducted in the Azini creek of the Sirik mangrove forest, which covers an area of 117 

773 ha in southern Iran in the Oman Sea (26°19′ N, 057° 05′ E; Fig. 1). The Sirik mangrove forest 118 

is an arid environment with low mean annual rainfall, ranging between 100 and 300 mm, and high 119 

annual mean temperature (25.8 °C), with extremely high summer temperatures that exceed 40°C 120 

(Parvaresh et al. 2011, Taghizadeh 2007). The coasts of Sirik are exposed to diurnal tides one high 121 

and one low tide evry lunar day). Lithological facies upstream of the area are gypsiferous shale, 122 

sandstone conglomerate, polymictic piedmont conglomerate and sandstone, and sedimentary 123 

melange. The soil texture of the study area is sand 22%, silt 58% and clay 20% (Parvaresh et al. 124 

2011, Taghizadeh 2007). Annual sediment yield is high: approximately 5,350 t km-2 y-1 of this 125 

sediment is transported by the Gaz River and discharged into the Sirik mangrove forest and trapped 126 

by Avicennia marina trees (Parvaresh et al. 2011, Taghizadeh 2007). There are farm lands and 127 

traditional ranching upstream. Mangrove forests in Sirik spread in several creeks and Azini creek 128 

is a major breeding and wintering ground for many waterbirds.   129 

 130 

2.2. Sampling scheme  131 

Nine plots with dimensions of 10 m x10 m were randomly defined within Sirik Azini creek during 132 

the month of July, and distributed from the shore to the sea (Fig. 1). The study area was divided in 133 

three regions based on vegetation cover: 1) three plots were selected in the monospecific A. marina 134 
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forest, 2) three plots in the mixed A. marina and R. mucronata forest, 3) three plots in the 135 

monospecific R. mucronata forest.  136 

 137 

2.3 Forest structure and carbon stocks in the aboveground biomass 138 

In each plot, mangroves were counted, and their trunk diameters were measured using a caliper. 139 

For A. marina species, trunk diameter at breast height (DBH) should be measured at a height of 140 

130 cm above the ground, but since the trunks of the trees in this region were often branched into 141 

two or more branches before this height, the diameter of tree trunk was measured at ground level 142 

D0 (Komiyama et al. 2005a). In R. mucronata species, 30 cm above the highest prop root, the trunk 143 

diameter DR0.3 was measure (Wang et al. 2014). 144 

Tree wood was sampled in the plots to estimate the wood density of the two species. Three trees 145 

were selected in each plot and a sample was taken from each of them. For this purpose, a piece of 146 

each tree was separated from one of the sub-branches with a length of approximately 25-30 cm 147 

and to prevent the samples from drying out, they were wrapped in straw paper, placed in separate 148 

plastic bags, and transferred to the laboratory. 149 

Wood density was determined following the methods of (Osazuwa-Peters &Zanne 2011a).  First 150 

the wood samples were placed in the oven at 105°C for 72 hours, then the mass of the pieces was 151 

measured using a digital scale and the wood density (P) of the two species was calculated using 152 

the following equation (Osazuwa-Peters &Zanne 2011b):  153 

P=m/v (g/cm3)   154 

Where m is the mass and v is the volume of the piece of wood. 155 
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The above ground biomass (AGB), below ground biomass (BGB) and the total forest biomass 156 

were calculated using the following allometric equations (Komiyama et al. 2005b, Wang et al. 157 

2014).  158 

 2.46pD0.251=AGB      159 

           2.22D0.899p0.199= BGB 160 

where D  is the trunk diameter and p  is wood density. 161 

TFB=AGB+BGB   162 

where TFB is the total forest biomass., Based on the number of plots and the area of the study 163 

area, the amount of biomass in Mg ha-1 in vegetative regions was calculated. Above (AGC) and 164 

belowground tree carbon (BGC), were converted from the biomass (AGB and BGB) by using 165 

conversion factors of 0.48 and 0.39, respectively (Kauffman and Donato, 2012).  166 

 167 

2.4 Soil sampling and analysis 168 

At each plot, five soil cores were collected using a cylindric corer with a diameter of 5 cm and a 169 

length of 30 cm. The samples were packed in plastic bags and transferred to the laboratory in 170 

order to determine dry weight, bulk density (BD), organic matter (OM) and soil organic carbon 171 

(SOC). In order to obtain the dry weight, the soil samples were placed in aluminum containers in 172 

an oven at 105°C for 72 hours. In order to determine bulk density (BD), the mass of the samples 173 

was measured. The volume of the samples is equal to the volume of the corer cylinder.  174 

Loss-on-ignition method was applied to measure soil organic carbon. (Castaneda 2010, Davies 175 

1974). To make the results comparable and to get homogeneous soil samples, a mineral soil 176 

fraction smaller than 2 mm was used for soil analysis, thus all living macroscopic roots, plant and 177 

animal residues with a diameter larger than 2 mm were removed from the soil samples by dry 178 



9 
 

sieving (ISO, 2006). The soil samples of each vegetative region were pounded separately into a 179 

porcelain mortar, sieved and homogenized. 5 g of soil samples were placed in a furnace for 2 hours 180 

at 550 °C. They were weighed and the reduction of soil weight indicates the amount of organic 181 

matter. The percentage of organic carbon (OC %) was calculated by dividing the percentage of 182 

organic matter (OM %) by the van Bemmelen factor (1.724).  183 

 To estimate the amount of soil organic carbon (SOC) for the first 30 cm of soil depth, the 184 

following equation (Batjes 1996) was applied: 185 

𝑆𝑂𝐶𝑖 = 𝐵𝐷𝑖 × 𝑂𝐶𝑖 × 𝐷𝑖 186 

SOCi is the content of soil organic C per surface unit, BD is bulk density, OC is the amount of 187 

organic carbon in the layer i and Di is the thickness of the soil layer. For each sampling point, a 188 

unique layer (Di) from 0 to 30 cm depth was sampled, so the value of OC was representative of 189 

the whole thickness of the topsoil, which is the most carbon-rich part of a soil profile. Coarse 190 

fragments were not present in the studied soils. 191 

 192 

 193 

 194 

 195 

2.7 Statistical analysis 196 

The analysis of variance (one way-ANOVA) was applied to identify the influence of vegetation 197 

stands on each variable: diameter, wood density, forest biomass and forest carbon. These data were 198 

previously tested for normality by using One-Sample Kolmogorov-Smirnov Test. Statistical 199 

analyzes were performed using IBM SPSS Statistics 19 software. Further, for each considered soil 200 

parameter (bulk density, organic carbon and soil organic carbon stock) the non-parametric 201 



10 
 

Kruskal-Wallis test was used, within the R-environment (R Core Team, 2021), to test the influence 202 

of vegetation cover (as independent variable) on soil variables: bulk density, organic carbon 203 

content and soil organic carbon stock. The aim was to identify significant differences in these 204 

parameters between A. marina and mixed A. marina and R. mucronata forest, between A. marina 205 

and R. mucronata forest, and between the monospecific R. mucronata forest and mixed forest.  206 

 207 

3. Results and discussion 208 

3.1 Carbon stock in the biomass 209 

The value of A. marina wood density (0.75 ± 0.05 g cm-³) was higher than the wood density that 210 

was estimated for other countries, such as South America, Australia and Southeast Asia, while the 211 

value of R. mucronata wood density (0.83 ± 0.06 g cm-³) was intermediate (Table 1; Zanne et al. 212 

2009). Wood density also differed significantly (p < 0.001; Fig 2) between the two species. The 213 

diameters of R. mucronata were significantly lower than those for the other two forest covers (Fig 214 

2). In the mixed stands the wide range of the values shown by the boxplot (Fig 2A) is due to large 215 

diameters of A. marina trees with a mean value of 27.9 cm, higher than mean diameter of pure A. 216 

marina stands. 217 

The above ground (AGB), below ground (BGB) and the total biomass of mangroves (TFB) in the 218 

three regions are reported in Table 2. The TFB was significantly different between A. marina, A. 219 

marina and R. mucronata, and R. mucronata, being 253.9, 556.1 and 39.2Mg ha-1, respectively. 220 

The mean AGB of mangrove forest at Siriki Azini creek was 205.9±79 Mg ha-1, the mean BGB 221 

was 77.9±45 Mg ha-1, and the mean TFB of the site was 283.1 Mg ha-1. Although the mean biomass 222 

of mangrove forest of Sirik is lower than many studied mangrove forests (Table 3), it is sizable. 223 

Inconsistent with previous studies that have stated that A. marina biomass is lower than other 224 
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mangrove species (Zhila et al. 2014), in this study A. marina biomass was higher than R. 225 

mucronata. We compared our results with ABG and BGB values reported a by Komiyama et al.  226 

(2008) for different worldwide distributed mangrove forests (Table 3). The highest TFB was 227 

estimated for a  Rhizophora forest located in Panama (585.4 Mg ha-1), about twice the value found 228 

for Sirik forest in this study, while the lowest TFB was found in a mixed mangrove forest located 229 

in southern Pang Nga region of Thailand (90.2 Mg ha-1). The biomass of mangrove forest in Sirik 230 

(283.1 Mg ha-1; this study) is comparable with the biomass of R. apiculata forest in Halmahra 231 

Indonesia and the biomass of Rhizophora spp. forest Thailand (Ranong Southern).  232 

3.2 Soil organic carbon storage 233 

Bulk densities for A. marina, A. marina and R. mucronata, and R. mucronata regions were 234 

1.43±0.09, 1.22±0.09 and 0.92±0.12 g cm-3, respectively, with significant differences between 235 

different areas (Fig. 3). However, OC (%) for R. mucronata plot was significantly higher than OC 236 

content in the other two regions (Fig. 3 and Table 4). The SOC storage showed significant 237 

differences between the Avicennia site and the other two areas (Fig. 3).  238 

In A. marina region BD was significantly the highest and the OC was the lowest (2.7 ± 0.5 %; Fig. 239 

3), while R. mucronata region showed the opposite behavior with the lowest BD value and the 240 

highest OC content (8.1±0.8 %) for the first 30 cm of the soil depth. Values of OC concentration 241 

(%) were lower than those reported by Donato et al. (2011) while soil bulk densities are 242 

significantly higher. The mean soil organic carbon storage in the whole Hara Forest was 188.3 ± 243 

27 Mg ha-1 (Table 4), which is about 59 % of the forest stored carbon. 244 

Soil carbon storage was higher than values reported for other countries, as southeastern Australia 245 

(57.3-94.2 Mg ha-1; (Howe et al. 2009), Okinawa, Japan (57.3 Mg ha-1; (Khan et al. 2007)), North 246 

Vietnam (68.5 Mg ha-1; (Cuc et al. 2009) and Palawan, Philippines (173.7 Mg ha-1; (Abino et al. 247 
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2014) and lower than SOC storage in northern Sulawesi, Indonesia (822.1 Mg ha-1; (Murdiyarso 248 

et al. 2009) and Yanglu Bay in southern China (275 Mg ha-1; (Wang et al. 2014). 249 

Focusing on the comparison with other studies on carbon pools in arid regions (Table 5), we 250 

observed high SOC stock values. This was due to higher OC content, compared to other studies, 251 

rather than BD values. The high soil carbon storage can be due to high annual sediment yield: 252 

approximately 5,350 t km-2 y-1 of sediments are transported by the Gaz River and discharged into 253 

the Sirik mangrove forest (Taghizadeh 2007); this is a likely transport mechanism of organic 254 

matter in this river-dominated coastline (Twilley et al. 2018), where SOC stocks are partly 255 

composed of allochthonous material (Andreetta et al. 2016). Considerable SOC stocks can also 256 

originate from in situ BGB production (Krauss et al. 2014) that in our sites is the highest for the 257 

mixed site (Avicennia and Rhizophora). This is likely due to the large diameters of the A. marina 258 

trees, that in the mixed stands are higher than those for pure stands. This kind of detritus contains 259 

lignocellulose that is resistant to enzymatic breakdown and especially the lignin component is less 260 

depolymerized. Detritus therefore becomes lignin enriched (Cragg et al. 2020) and particularly in 261 

costal environment where anoxic conditions can be maintained by prolonged floods, 262 

decomposition of OM is slow down and accumulation of OC forms a major carbon sink in blue 263 

carbon ecosystems (Cerón-Bretón et al. 2011, Cragg et al. 2020). Furthermore, most of the studies 264 

on mangrove soils in the Middle East coasts have been carried out on Avicennia sites, while in the 265 

present study two of the three investigated areas were influenced by Rhizophora spp forests with 266 

values of SOC stocks comparable with those reported for the Rhizophora site in the Gulf of 267 

California (Mexico; Ochoa-Gómez et al., 2019; Table 5). Our results showed that differences in 268 

vegetation cover play a key role in soil carbon storage. However, further investigation is needed 269 

to better understand the processes, the source and fate of organic carbon in arid mangrove 270 



13 
 

considering a wide range of environmental variables such us for example the impact of 271 

bioturbation on SOC storage (Andreetta et al. 2014). 272 

 273 

3.3. Total forest and soil carbon storage 274 

Considering both forest and soil carbon storage, significant differences were found between 275 

different vegetation regions (Fig 4), with the highest values observed for the mixed forests and the 276 

lowest for R. mucronata. The mean Hara Forest carbon stored in the above and below ground 277 

(roots) biomass was 98.5 Mg ha-1 and 30.4 Mg ha-1, respectively   with a total carbon in mangrove 278 

biomass of 128.9 ±59 Mg ha-1, equivalent to about 41% of the total carbon storage of the forest 279 

ecosystem (317.2 ±86 Mg ha-1). Indeed, we found that a large amount of organic carbon of the 280 

Sirik mangrove ecosystem is stored in the soil (188.3 ±27 Mg ha-1). Carbon storage of mangrove 281 

ecosystem in Sirik region was estimated 317.2 ±86 Mg ha-1, which is significant and can play an 282 

important role in reducing global climate changes by carbon capture and storage. Our results are 283 

in agreement with Eid et al. (2019), that highlighted how the capacity to stored OC in arid areas is 284 

not as low as previously presented, therefore increasing the available data will be of interest in 285 

drawing a more reliable picture of this peculiar ecosystem. 286 

Conclusion  287 

This study represents a first step for deepening the understanding of the Iranian mangrove forests 288 

as representative of arid ecosystem and their role in capturing organic carbon considering both the 289 

biomass and the soil component. The importance of soil as a carbon sink is particularly significant, 290 

being about 59% of the total mangrove ecosystem estimate, while 31% is allocated in the above 291 

ground biomass. Soil carbon storage was significantly higher in the Rhizophora and in the mixed 292 

area, maintaining a high capacity of the entire forest system to stored carbon even when the carbon 293 
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stored in the biomass is low, as for the R. mucronata in this study. However, the Hara Forest is not 294 

a really extensive and it is directly delimited by a very arid region, thus climate change and 295 

anthropogenic impact can easily perturbate the fragile balance of this ecosystem. Our results will 296 

likely support research programs that aim to work in the framework of climate change and policy 297 

that act to better manage mangrove from a local to a global point of view. 298 
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 464 

Table 1. Comparison of the study results and the density of wood of A. marina and R. mucronata 465 

species studied in different parts of the world as reported by (Zane 2009) 466 

 467 

Species ) 3-Wood density (g cm Region 

A. marina 0.520 South America (tropical) 

A. marina 0.689 Australia/PNG (tropical) 

A. marina 0.650 South-East Asia (tropical) 

A. marina 0.732 Australia/PNG (tropical) 

A. marina 0.751 

Iran/Sirik 

(this study) 

R. mucronata 0.740 South-East Asia (tropical) 

R. mucronata 0.771 Australia/PNG (tropical) 

R. mucronata 0.820 South-East Asia (tropical) 

R. mucronata 0.825 

Iran/Sirik 

(this study) 

R. mucronata 0.835 Australia/PNG (tropical) 

R. mucronata 0.904 South-East Asia (tropical) 

 468 

 469 

 470 

 471 

 472 

 473 
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 475 

Table 2. Estimation of above (AGB) and below ground biomass (BGB), and total biomass (TFB) 476 

in the 3 vegetation regions.  477 

 478 

Species AGB (kg) BGB (kg) TFB (kg) 

A. marina 2810.89 1152.28 3963.17 

A. marina & 

R. mucronata 

12285.36 4398.47 16683.83 

R. mucronata 464.78 248.39 713.17 

Total 15561.03 5799.14 21360.17 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 
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 490 
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 493 

Table 3. Comparison of biomass estimation results of mangrove forests in Sirik Azini creek 494 

region in this study and mangrove forests biomass in other part of the world as reported by 495 

Komiyama et al (Komiyama et al. 2008). 496 

Region )1-(t haAGB 

-(t ha BGB

)1 

)1-(t ha TFB Species 

 

Panama 279.2 306.2 585.4 Rhizophora forest 2 

Thailand (Ranong 

Southern) 

298.5 272.9 571.4 Rhizophora SPP. forest 3 

Indonesia (Halmahera) 356.8 196.1 552.9 R.apiculata forest 4 

Indonesia (Halmahera) 299.1 177.2 476.3 R.apiculata forest 6 

Australia 341.0 121.0 462 A.marina forest 7 

Indonesia (Halmahera) 216.8 98.8 315.6 R.apiculata forest 10 

Iran (Sirik; this study) 

205.9 77.9 283.1 A.marina & 

R.mucronata 

11 

Thailand (Ranong 

Southern) 

281.2 11.7 292..9 Rhizophora SPP. forest 12 

Australia 144.5 147.3 291.8 A.marina forest 13 

Australia 112.3 160.3 272.6 A.marina forest 14 

Indonesia (Halmahera) 178.2 94.0 272.2 R.stylosa forest 15 

Thailand (Trat Eastern) 142.2 50.3 192.5 Mixed forest 16 

Puerto-rico 62.9 64.4 127.3 R.mangle 18 

Thailand (Southern 

pang-nga) 

62.2 28.0 90.2 Mixed forest 19 

 497 
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 499 

 500 

Table 4. Mean ±SD: bulk density (BD), organic carbon (C), soil organic carbon storage (SOC), aboveground biomass (AGB), 501 

belowground biomass (BGB), total forest biomass (TFB=AGB+BGB), total forest carbon (TFC=AGC+BGC), Mangrove ecosystem 502 

carbon storage in Sirik Azini creek region.  503 

Species BD 

)3g/cm( 

C 

%)) 

SOC 

)1-ha C Mg) 

AGB 

)1-Mg ha ) 

BGB 

)1-Mg ha ) 

TFB 

)1-Mg ha ) 

TFC 

)1-ha C Mg ) 

Ecosystem 

 C-stocks 

)1-ha C Mg ) 

A. marina 1.43(±0.09) 2.7(±0.5) 115.9 (±22) 180.5(±56) 73.5(±28) 253.9(±78.9) 

115.3 

(±37.9) 

282.1 

A. marina &R. 

mucronata 

1.27(±0.09) 6.2(±1.0) 226.2 (±37) 409.5(±298) 146.6(±107) 556 253.7 (±175) 466.5 

R. mucronata 0.92(±0.12) 8.1 (±0.8) 222.7 (±21) 25.6(±3.4) 13.6(±1.7) 39.2(±5.1) 17.6(±1.9) 238.1 

Mean 1.19 (±0.1) 5.6 (±0.8) 188.3 (±27) 205.9(±79) 77.9(±45) 283.1 

128.9 

(±59.3) 

317.2 

 504 

 505 

 506 

 507 
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Table 5 Comparison of OC (%), bulk densities (BD) and soil organic carbon stock (SOC) of mangrove forests in Sirik Azini creek 508 

region in this study and those for other arid mangrove regions.  509 

Site Vegetation 
OC 

(%) 

BD 

(g cm-3) 

Depth 

(cm) 

SOC 

(Mg OC ha-1) 
Reference 

Red Sea coast of Saudi Arabia Avicennia marina 1.4-1.8 1.5-1.9 50 67-105 Shaltout et al., 2020 

Qatar Avicennia marina 0.3-6.9 0.2-2 50 20-64 Chatting et al., 2020 

La Paz Bay - Gulf of California 

(Mexico) Rhizophora mangle 

  

45 208.9 ± 144.6 Ochoa-Gómez et al., 2019 

 

Avicennia germinans 

  

45 155.5 ± 72.1 

 
Sirik, Iran Avicennia marina 2.7±0.45 1.43 30 115.9±21.5 This study 

  Avicennia&Rhizophora 6.2±1.04 1.27 30 226.2±37.2 This study 

  R. mucronata 8.1±0.81 0.92 30 222.7±21.0 This study 

United Arab Emirates Avicennia marina  

  

100 36.7–367.0 Schile et al., 2017 

Jask area in southern, Iran Avicennia marina 0.1-1.1 1.1-1.9 

  

Etamadi et al., 2018 

Kingdom of Saudi Arabia Avicennia marina 0.2-1.5 

 

100 43±5  Almahasheer et al., 2017 

Farasan Islands, Saudi Arabia Avicennia marina 1.63±0.03 1.55±0.02 

  

Eid et al., 2020 

 

R.mucronata 1.49±0.02 1.48±0.02 

   
Southern Red Sea coast, Saudi Arabia Avicennia marina 2.3-3.3 1.25-1.45 30 110 Eid et al., 2019 

Red Sea coast, Egypt Avicennia marina 1.55±0.06 1.40±0.02 40 85 Eid and Shaltout, 2016 

510 
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Figure Captions 511 

 512 

 Figure 1. Location of the study site: Azini creek in Sirik (Iran). 513 

 514 

Figure 2. Boxplots of  A) the diameter (cm) and B) the woody density (g cm-3) among the 515 

vegetation areas. Different lowercase-letters indicate significant differences between different 516 

regions (p <0.05). 517 

 518 

Figure 2. Boxplots of A) the soil bulk densities (BD), B) OC content and C) soil organic carbon 519 

storage (SOC) for the three different vegetation areas of mangrove forest in Sirik Azini creek 520 

region. Different lowercase-letters indicate significant differences between the vegetation regions 521 

(p <0.05). 522 

Figure 4. Mangrove forest carbon allocation in the biomass (ABC and BGC) and soil organic 523 

carbon storage (SOC) for the three vegetation regions.  524 
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