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FACTORIZATION UNDER LOCAL FINITENESS CONDITIONS

LAURA COSSU AND SALVATORE TRINGALI

Abstract. It has been recently observed that fundamental aspects of the classical theory of factoriza-
tion can be greatly generalized by combining the languages of monoids and preorders. This has led to
various theorems on the existence of certain factorizations, herein called ⪯-factorizations, for the ⪯-non-
units of a (multiplicatively written) monoid H endowed with a preorder ⪯, where an element u ∈ H is a
⪯-unit if u ⪯ 1H ⪯ u and a ⪯-non-unit otherwise. The “building blocks” of these factorizations are the
⪯-irreducibles of H (i.e., the ⪯-non-units a ∈ H that cannot be written as a product of two ⪯-non-units
each of which is strictly ⪯-smaller than a); and it is interesting to look for sufficient conditions for the
⪯-factorizations of a ⪯-non-unit to be bounded in length or finite in number (if measured or counted in a
suitable way). This is precisely the kind of questions addressed in the present work, whose main novelty
is the study of the interaction between minimal ⪯-factorizations (i.e., a refinement of ⪯-factorizations
used to counter the “blow-up phenomena” that are inherent to factorization in non-commutative or non-
cancellative monoids) and some finiteness conditions describing the “local behaviour” of the pair (H,⪯).
Besides a number of examples and remarks, the paper includes many arithmetic results, a part of which
are new already in the basic case where ⪯ is the divisibility preorder on H (and hence in the setup of
the classical theory).

1. Introduction

A number of problems in different areas of mathematics, herein generically named factorization prob-
lems, revolve around the possibility or impossibility of expressing certain elements of a (multiplicatively
written) monoid as a finite product of certain other elements, henceforth referred to as elementary factors,
that in a sense cannot be “broken down into smaller pieces”. One way of formalizing these ideas is to
combine the languages of monoids and preorders, as was recently done in [24, 61] as part of a broader
program [34, 60, 5] aimed to enlarge the boundaries of the classical theory of factorization (see Remark
2.1(1) for a formal definition of what we mean here by this term), where the elementary factors used
all along the “factorization process” are most usually atoms in the sense of P.M. Cohn [22, p. 587] (i.e.,
non-units that do not factor as a product of two non-units) and the structures taken under consideration
(from monoids of modules [28, 62, 10] and monoids of ideals [43, 50] to Krull domains and Krull monoids
[17, 40, 39], from rings of integer-valued polynomials [37, 30] to monoid algebras [15, 31], from numerical
monoids [6, 45, 44, 13] to Puiseux monoids [48, 18], etc.) are, apart from rare exceptions, cancellative, if
not even cancellative and commutative.

In fact, it is only in very recent years that first significant steps have been made towards a systematic
extension of the theory to monoids that need be neither commutative nor cancellative (and hence to
rings that need not be domains), although most of the work in this direction has so far been limited to
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the unit-cancellative case [33, 46, 47, 9, 12] (see Example 2.2(1) for further details). A major difficulty
with factorization in non-unit-cancellative monoids, no matter whether commutative or not, is due to
“blow-up phenomena” (triggered, e.g., by the presence of proper idempotents and, more generally, non-
units of finite order) whose immediate effect is to make a number of (arithmetic) invariants of classical
interest essentially meaningless; and analogous phenomena show up in cancellative but non-commutative
monoids too (Example 5.6). The question is extensively discussed in [5, Sects. 1 and 4] and has led to
the idea of replacing classical (atomic) factorizations with minimal (atomic) factorizations in an effort to
counter the issues arising from the departure from cancellativity: Skipping the details for the moment,
the main point is again that preorders play a crucial role in the bigger picture.

Our goal in the present paper is to further develop the paradigm of minimal factorizations (Sect. 3)
and study fundamental aspects of the arithmetic of monoids that are, in a sense, “approximately finitely
generated on a local scale”. For, we will fully embrace the philosophy of [24, 61] and work out most of
our results in the language of premonoids (that is, monoids endowed with a preorder).

Plan of the paper. After reviewing the key definitions of ⪯-[non-]unit, ⪯-irreducible, and ⪯-atom
associated with a premonoid H = (H,⪯) and recalling a few notions from the general theory of monoids
(Sect. 2), we throw in preordered monoids, weakly (resp., strongly) positive monoids, etc. (Definition 2.3)
and prove a converse (Proposition 2.8) to the main theorem of [61] on the existence of a ⪯-factorization
(that is, a factorization into ⪯-irreducibles) for the ⪯-non-units of the monoid H under the hypothesis
that the preorder ⪯ is artinian (Theorem 2.7). Next, we bring up [atomic] ⪯-factorizations and minimal
[atomic] ⪯-factorizations and look for sufficient conditions for the [minimal] ⪯-factorizations of a ⪯-non-
unit to be bounded in length or finite in number (if measured or counted in a proper way): This ultimately
leads to BF-factorable premonoids, FmF-atomic premonoids, etc. (Definition 3.2) and to investigate the
interplay between [minimal] [atomic] ⪯-factorizations and some finiteness conditions describing the “local
arithmetic” of H. Accordingly, we introduce l.f.g., [weakly] l.f.g.u., and loft premonoids (Definition 4.1)
and, among other things, we prove that (i) every l.f.g.u. premonoid is weakly l.f.g.u. (Proposition 4.3),
(ii) if H is a weakly l.f.g.u. weakly positive monoid, then it is also factorable, i.e., every ⪯-non-unit factors
as a product of ⪯-irreducibles (Corollary 4.8), (iii) a loft premonoid is BF- or BmF-factorable if and only
if it is, resp., FF- or FmF-factorable (Theorem 4.11), (iv) if H is a weakly l.f.g.u. weakly positive monoid
such that every ⪯-irreducible is a ⪯-atom, then H is loft and hence FmF-atomic (Theorem 4.12), and
(v) every weakly l.f.g.u. strongly positive monoid is FF-atomic (Corollary 4.13).

When ⪯ is the divisibility preorder, BF-atomicity and FF-atomicity recover (and generalize) the stan-
dard notions of BF-ness and FF-ness [42, Definitions 1.3.1 and 1.5.1]; BmF-atomicity and FmF-atomicity
recover the notions of BmF-ness and FmF-ness first considered in [5]; and, in the commutative setting,
the premonoid H is l.f.g.u. if and only if the monoid H is l.f.g. after modding out the units (see Remark
4.4(2) for additional details). We can therefore translate the aforementioned results (on the arithmetic of
premonoids) back into the language of the classical theory and hence obtain results that, especially in the
case of non-commutative or non-unit-cancellative monoids, are completely new (Theorem 5.1 and Corol-
lary 5.2). In this regard, it is worth remarking that, to a large extent, the classical theory of factorization
is all about monoids H that are “(locally) arithmetically isomorphic” to a cancellative, commutative,
l.f.g. monoid K: The basic idea fits with the abstract philosophy of “transfer morphisms” and, in the
specific scenario of factorization, boils down to H being essentially equimorphic to K in the sense of [60,
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Definition 3.2], by which we mean that there is an atom-preserving monoid homomorphism f : H → K

with K = K×f(H)K× such that every atomic factorization (in K) of the image f(x) of a non-unit x ∈ H

can be pulled back to an atomic factorization of x (see [34, Remarks 2.17–2.20] for a critical comparison
with analogous definitions from the literature). Formalities aside, the bottom line is that cancellative,
commutative, l.f.g. monoids have a prominent role in the classical theory: Due to their relative simplicity,
they serve as “canonical models” for the study of much more complicated objects. On the other hand,
almost nothing is known about the arithmetic of non-commutative or non-unit-cancellative monoids that
are not essentially equimorphic to a cancellative, commutative, l.f.g. monoid, apart from the little that
is known in very specific examples: For one thing, every finite monoid is finitely generated (f.g.), but
a majority of finite monoids are not even atomic and hence, by Remark 4.4(2), cannot be essentially
equimorphic to a cancellative, commutative, l.f.g. monoid.

We conclude by observing that cancellative f.g. monoids need not satisfy the ACCP, i.e., the ascending
chain condition on principal two-sided ideals (Remark 2.6 and Example 5.6): This lies in stark contrast
with the case of cancellative, commutative, f.g. monoids [42, Proposition 2.7.8.4] and shows, at the end of
the day, that Corollary 4.8 does not follow from Theorem 2.7 in any obvious way (Proposition 2.8 proves
that there is a way, but the result is more of theoretical interest than of any practical use). The situation
is, however, quite different if we focus attention on the class of left (or right) duo monoids (Example
2.5(2)), which is exactly what we do in the second half of Sect. 5 (most notably, we prove in Theorem
5.8 that every left duo, l.f.g.u. monoid satisfies the ACCP).

Besides a number of examples and remarks that will gently guide the reader through, the paper contains
a stack of new ideas, some of which mark a kind of discontinuity with the past (leaving aside the switch
from monoids to premonoids in the wake of [24, 61]): These include the role of weakly l.f.g.u. monoids and
germs (Definition 4.1(1)) in the “local analysis” of arithmetic properties (to the contrary of the classical
theory, where the same role is rather played by divisor-closed submonoids); the introduction of weakly
positive monoids (as opposite to the stronger notion of preordered monoid) to “encode” the arithmetic
of (Dedekind-finite) monoids through the language of premonoids (Example 2.5(1)); and the first-ever
applications to factorization theory of a combinatorial result of G. Higman (see Theorem 4.10 and the
comments after Lemma 5.7) that can be regarded as a non-commutative extension of a well-known lemma
of L.E. Dickson which is, in turn, an old acquaintance of practitioners in the field (see, e.g., Theorem
1.5.3 in [42]).

2. Monoids and preorders

Throughout, H is a multiplicatively written monoid with identity 1H (e.g., the multiplicative monoid
of a ring). Undefined terminology and notation are either standard or borrowed from [61, Sect. 2]. In
particular, we address the reader to Howie’s monograph [52] for basic aspects of semigroup theory. We use
H× for the group of units of H and ⟨X⟩H for the submonoid of H generated by a set X ⊆ H. Accordingly,
we say that H is reduced if H× is trivial (i.e., the only unit is the identity).

Let ⪯ a preorder (i.e., a reflexive and transitive binary relation) on (the carrier set of) H; in the
parlance of [61, Definitions 3.2 and 3.4], we refer to the pair H := (H,⪯) as a premonoid and say x ∈ H

is ⪯-equivalent to y ∈ H if x ⪯ y ⪯ x (of course, being ⪯-equivalent is an equivalence on H). The binary
relation |H defined by x |H y if and only if x ∈ H and y ∈ HxH is in fact a preorder of the utmost
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importance in the study of factorization: We call |H the divisibility preorder (on H), let x be a divisor of y
in H if x |H y, and denote by JxKH the smallest divisor-closed submonoid of H containing the element x.

An element u ∈ H is a ⪯-unit if it is ⪯-equivalent to 1H ; otherwise, u is a ⪯-non-unit. A ⪯-non-unit
a ∈ H is then a ⪯-quark if there is no ⪯-non-unit b with b ≺ a (i.e., b ⪯ a and a ̸⪯ b); and is a ⪯-atom
of degree s (resp., a ⪯-irreducible of degree s), for a certain s ∈ N≥2, if a ̸= x1 · · ·xk for every k ∈ J2, sK
and all ⪯-non-units x1, . . . , xk ∈ H (resp., for all ⪯-non-units x1, . . . , xk ∈ H with x1 ≺ a, . . . , xk ≺ a).
In particular, we will simply refer to a ⪯-atom of degree 2 as a ⪯-atom; to a ⪯-irreducible of degree
2 as a ⪯-irreducible (note that, occasionally, the term may also be used as an adjective); and to a |H -
irreducible as an irreducible (of H). The notions of ⪯-[non-]unit, ⪯-quark, ⪯-atom, and ⪯-irreducible
were introduced in [61, Definition 3.6], while ⪯-irreducibles of higher degree were first considered in [24,
Definition 3.1]. We write H× for the set of ⪯-units, A (H) for the set of ⪯-atoms, and I (H) for the set
of ⪯-irreducibles. Moreover, given x ∈ H, we denote by Ix(H) the set of ⪯H -irreducibles a such that
a |H x; and by Ax(H) the intersection of Ix(H) with A (H).

Remarks 2.1. (1) Roughly speaking, the classical theory of factorization comes down to the case where
H is a Dedekind-finite monoid (i.e., the product of any two non-units is a non-unit) and ⪯ is the divisibility
preorder |H on H: A key observation in this regard is that, under the hypothesis of Dedekind-finiteness,
a |H -unit is an (ordinary) unit of H and hence a |H -atom is an (ordinary) atom, cf. [61, Remark 3.7].

(2) Given a premonoid H = (H,⪯), we let a subpremonoid of H be a premonoid K = (K,⪯K) such
that K is a submonoid of H and ⪯K is the restriction of ⪯ to K (i.e., the binary relation on K defined
by taking x ⪯K y if and only if x, y ∈ K and x ⪯ y): In particular, we denote by JxKH the subpremonoid
of H whose “ground monoid” is the smallest divisor-closed submonoid JxKH of H containing an element
x ∈ H. It follows from the definitions that the ⪯K-units of K are exactly the ⪯-units of H that lie in
K, viz., K× = K ∩ H×: In fact, we have 1K = 1H (since K is a submonoid of H) and hence u ∈ K is a
⪯K-unit if and only if 1H ⪯ u ⪯ 1H .

(3) In the notation of item (2), it is worth noting that the restriction to K of the divisibility preorder
|H on H is not necessarily the divisibility preorder |K on K. This happens, e.g., if K is a divisor-closed
submonoid of H: If a, b ∈ K and a |H b, then there exist x, y ∈ H such that b = xay; and K being
divisor-closed, x and y must lie in K and hence a |K b.

Some simple examples will help us illustrate the notions we have so far introduced: The first of them
will also come in handy in Sect. 5, where we focus attention on divisibility.

Examples 2.2. (1) Understanding the interrelation between the ⪯-irreducibles, the ⪯-atoms, and the
⪯-quarks of a monoid H, for a given preorder ⪯ on H, is often pivotal to a deeper comprehension of
various phenomena. For instance, it is obvious that ⪯-atoms and ⪯-quarks are all ⪯-irreducibles. Yet,
a ⪯-irreducible need not be either a ⪯-atom or a ⪯-quark; and neither need a ⪯-quark be a ⪯-atom.
Most notably, this remains true in the fundamental case when ⪯ is the divisibility preorder |H , see [61,
Remark 3.7(4), Proposition 4.11(iii), and Theorem 4.12]. If, however, the monoid H is acyclic in the
sense of [61, Definition 4.2] (namely, uxv ̸= x for all u, v, x ∈ H such that u or v is a non-unit), then
we get from [61, Corollary 4.4] that |H -irreducibles, |H -atoms, |H -quarks, and (ordinary) atoms are all
the same, an observation that will come in helpful in Corollary 5.2. In the meanwhile, it is worth noting
that if H is acyclic or cancellative, then it is also unit-cancellative in the sense of [34, Sect. 2.1, p. 256]
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(namely, xy ̸= x ̸= yx for all x, y ∈ H with y /∈ H×); the converse need not be true (e.g., see Example
5.6). Unit-cancellativity was first introduced, in the commutative setting, in [58, Sect. 4, p. 72] (although
under a different name) and, independently, in [33, Sect. 3]. Most literature on factorization in non-
cancellative monoids has been so far limited to the unit-cancellative setting. The notions of acyclicity
and unit-cancellativity coincide in the commutative setting; otherwise, they are different [61, Example
4.8].

(2) Let P(S) be the premonoid obtained by endowing the power set of a set S with the binary operation
∪S sending a pair of subsets of S to their union and the inclusion order ⊆S defined by X ⊆S Y if and
only if X ⊆ Y ⊆ S. It is immediate that the only ⊆S-unit is the empty set and hence the ⊆S-irreducibles
are the one-element subsets of S, which, in addition, are all ⊆S-quarks. On the other hand, the set of
⊆S-atoms is empty, because X = X ∪X for every set X.

(3) Let H be a monoid and (K,⪯) a premonoid. Following [61, Example 3.3(2)], we define the pullback
of ⪯ through a function ϕ : H → K as the binary relation ⪯ϕ on H such that x ⪯ϕ y if and only if
ϕ(x) ⪯ ϕ(y). It is routine to check that ⪯ϕ is a preorder on H, and we seek a “sensible characterization”
of the ⪯ϕ-units, ⪯ϕ-irreducibles, ⪯ϕ-atoms, and ⪯ϕ-quarks in terms of the ⪯-units, ⪯-irreducibles, ⪯-
atoms, and ⪯-quarks of K, resp. In general, this is unattainable. Assume, however, that ϕ is a monoid
isomorphism from H to K: An element u ∈ H is then a ⪯ϕ-unit if and only if ϕ(u) is a ⪯-unit; and an
element a ∈ H is a ⪯ϕ-irreducible, a ⪯ϕ-atom, or a ⪯ϕ-quark if and only if ϕ(a) is, resp., a ⪯-irreducible,
a ⪯-atom, or a ⪯-quark of K (we leave the details to the reader).

The reader will have noted by now that, in the definition of a premonoid (H,⪯), no compatibility
between the operation of the monoid H and the preorder ⪯ is assumed. This is intentional, because in
general no compatibility is guaranteed, for instance, in the fundamental case of the divisibility preorder
[61, Example 3.5(1)]. However, an interplay between H and ⪯ (as weak as it may be) is necessary in
certain applications, which leads us straight to:

Definition 2.3. A premonoid H = (H,⪯) is a preordered (resp., strongly preordered) monoid if x ⪯ y

implies uxv ⪯ uyv (resp., H is preordered and x ≺ y implies uxv ≺ uyv) for all u, v ∈ H; a positive
(resp., strongly positive) monoid if H is a preordered (resp., strongly preordered) monoid with the further
property that 1H ⪯ H; and a weakly positive monoid if H×xH× ⪯ x ⪯ HxH for every x ∈ H, where we
write x in place of {x} and A ⪯ B, for some A,B ⊆ H, means that a ⪯ b for all a ∈ A and b ∈ B.

In the next remarks, we list some properties of preordered or weakly (resp., strongly) positive monoids
that will come in handy later (e.g., in the proofs of Theorem 4.7 and Corollary 4.13), while the subsequent
examples will further clarify why, in a sense, the definition of a premonoid has to be so general.

Remarks 2.4. (1) Of course, every strongly preordered (resp., strongly positive) monoid is also a pre-
ordered (resp., positive) monoid. In general, neither of these implications can be reversed. However, if
H = (H,⪯) is a preordered monoid with the additional property that H is cancellative and ⪯ is an order
(i.e., an antisymmetric preorder), then H is in fact a strongly preordered monoid: If x ≺ y and u, v ∈ H,
then uxv ⪯ uyv (since H is a preordered monoid); and if the latter inequality is not strict, then uxv =

uyv (since ⪯ is an order) and hence x = y (since H is cancellative), which is a contradiction.

(2) Given a preordered monoid H = (H,⪯), it is found (by induction on n) that, if x1 ⪯ y1, . . . , xn ⪯ yn,
then x1 · · ·xn ⪯ y1 · · · yn. It follows that, if 1H ⪯ yi for each i ∈ J1, nK and σ is a strictly increasing
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function J1, kK → J1, nK (with k ∈ N), then 1H ⪯
∏k

i=1 yσ(i) ⪯ y1 · · · yn, with strict inequality on the left
if and only if 1H ≺ yσ(i) for some i ∈ J1, kK, and strict inequality on the right if H is a strongly positive
monoid, yi is a ⪯-non-unit for all i ∈ J1, nK, and k < n (we leave the details to the reader). In particular,
this yields that, if H is strongly positive, then every ⪯-irreducible is a ⪯-atom and hence I (H) = A (H).

(3) If H = (H,⪯) is a weakly positive monoid, then 1H ⪯ H1HH = H and the product of any two
⪯-units is itself a ⪯-unit (i.e., H× is a submonoid of H). Also, the set of ⪯-non-units is a two-sided ideal
of H (i.e., a subset i of H with the property that HiH ⊆ i): In fact, if u, v, and x are elements of H
with x /∈ H× and uxv is a ⪯-unit, then uxv ⪯ x(uxv) ⪯ x ⪯ uxv and hence x ∈ H× (absurd).

(4) A subpremonoid K = (K,⪯K) of a weakly positive monoid H = (H,⪯) is itself a weakly positive
monoid. In fact, we have from Remark 2.1(2) that every ⪯K-unit is a ⪯-unit. So, H being a weakly
positive monoid implies that K×xK× ⪯ x ⪯ KxK for every x ∈ K, which shows in turn that K×xK× ⪯K

x ⪯K KxK (and finishes the proof) because K×xK× ⊆ KxK ⊆ K.
It is even easier to prove that a subpremonoid of a preordered (resp., strongly preordered) monoid is

still a preordered (resp., strongly preordered) monoid. In particular, a subpremonoid of a positive (resp.,
strongly positive) monoid is positive (resp., strongly positive).

(5) If H = (H,⪯) is a positive monoid and u ∈ H is an (ordinary) unit, then 1H ⪯ u−1 and hence
1H ⪯ u = 1Hu ⪯ u−1u = 1H , which ultimately proves that H× ⊆ H×. Moreover, H is a weakly positive
monoid. For, we already know from item (2) that x ⪯ HxH for every x ∈ H (recall that, in a positive
monoid, 1H ⪯ H), and it remains to see that H×xH× ⪯ x. For, let u, v ∈ H×. Since u ⪯ 1H , then ux ⪯
x and uxv ⪯ xv. But v ⪯ 1H implies xv ⪯ x, and hence uxv ⪯ x (as wished).

Examples 2.5. (1) The divisibility preorder |H on a monoid H has the obvious property that x |H HxH

for all x ∈ H and hence 1H |H H. Thus it follows by Remark 2.1(1) that if H is Dedekind-finite, then
(H, |H) is a weakly positive monoid. The converse, however, need not be true.

For, let M be a non-Dedekind-finite monoid so that we can pick x, y ∈ M with xy = 1M ̸= yx, and
define H as the submonoid of M generated by x and y. It is evident that H is not Dedekind-finite, and
we get from [61, Remark 4.9(2)] that H = HzH for every z ∈ H. In consequence, (H, |H) is a positive
monoid (with the additional property that every element is a |H -unit), which suffices to conclude because
every positive monoid is weakly positive by Remark 2.4(5).

(2) In analogy with the case of rings (see, e.g., [56] and references therein), a monoid H is called left
(resp., right) duo if aH ⊆ Ha (resp., Ha ⊆ aH) for all a ∈ H; and is duo if it is left and right duo. Duo
monoids (also known as normal or normalizing monoids) and, more generally, “one-sided duo” monoids
have much in common with commutative monoids (every commutative monoid is obviously duo) and we
will come back to them in Sect. 5. Here we just note, in complement to item (1), that the Dedekind-
finiteness of the monoid H is not enough for the pair (H, |H) to be a preordered and hence positive
monoid (see, e.g., Example 3.5(1) in [61]): A sufficient condition for this to happen is that H is left or
right duo, for then u |H x and v |H y imply xy ∈ HuH · HvH ⊆ HuvH and hence uv |H xy. If, in
addition, H is commutative and unit-cancellative, then (H, |H) is strongly preordered and hence strongly
positive (we leave the details to the reader).

(3) Let G be a totally orderable group (written multiplicatively), by which we mean that there exists a
total order ⪯ on G such that the pair G = (G,⪯) is a preordered monoid; for an extensive list of totally
orderable groups, see [55] and references therein. The set {x ∈ G : 1G ⪯ x}, endowed with the restriction
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of the order ⪯, is then a subpremonoid of G, herein denoted by Con(G) and called the non-negative cone
of G. It is routine to check that Con(G) is, in fact, a strongly positive monoid (note that every submonoid
of a group is cancellative and hence Remark 2.4(1) applies).

Following [61, Definitions 3.8 and 3.11], we say that a preorder ⪯ on a monoid H is artinian, or H is
a ⪯-artinian monoid, if there is no infinite sequence x1, x2, . . . of elements of H with xn+1 ≺ xn for each
n ∈ N+; and we take the ⪯-height of an element x ∈ H to be the supremum of the set of all n ∈ N+ for
which there are ⪯-non-units x1, . . . , xn ∈ H with x1 = x and xk+1 ≺ xk for each k ∈ J1, n− 1K (with the
understanding that sup∅ := 0). We call H a strongly ⪯-artinian monoid, or ⪯ a strongly artinian preorder
on H, if every element of H has a finite ⪯-height.

Remark 2.6. A monoid H is said to satisfy the ascending chain condition (ACC) on principal two-sided
ideals (ACCP) if there is no (infinite) sequence x1, x2, . . . of elements of H such that HxiH ⊊ Hxi+1H

for each i ∈ N+. As already observed in [61, Remark 3.9.4], H satisfies the ACCP if and only if the
divisibility preorder |H is artinian. Thus, we get from Remark 2.1(3) that H satisfies the ACCP if and
only if so does every divisor-closed submonoid of H, if and only if so does JxKH for every x ∈ H.

For, note in particular that, if x1, x2, . . . is a sequence such that xi+1 |H xi for each i ∈ N+, then
x1, x2, . . . lie all in Jx1KH and, in fact, xi+1 |Jx1KH xi for every i ∈ N+. So, if JxKH satisfies the ACCP for
all x ∈ H, then xi |Jx1KH xi+1 and hence xi |H xi+1 for all large i ∈ N+, which shows H is |H -artinian.

The significance of these definitions is related to the next result and its refinements [24, Theorems 3.4
and 3.5], which can be effectively applied to a variety of situations where the goal is merely to prove the
existence of certain factorizations, decompositions, etc.

Theorem 2.7. If H is a ⪯-artinian monoid and s is an integer ≥ 2, then every ⪯-non-unit x factors as
a product of sht(x)−1 or fewer ⪯-irreducibles of degree s, where ht(x) is the ⪯-height of x.

To date, applications of Theorem 2.7 include a generalization to unit-cancellative monoids [61, Corol-
lary 4.6] of a classical theorem of Cohn [23, Proposition 0.9.3] on atomic factorizations (i.e., factorizations
into atoms) in cancellative monoids; a non-commutative generalization [61, Corollary 4.1] of a factoriza-
tion theorem of D.D. Anderson and S. Valdes-Leon [4, Theorem 3.2] for commutative rings; a refinement
[61, Proposition 4.11 and Theorem 4.12] of a characterization theorem of A.A. Antoniou and Tringali
[5, Theorem 3.9] on atomic factorizations in various “monoids of sets” naturally arising from arithmetic
combinatorics (see Example 4.5(3) and references therein); and a quantitative strengthening [24, Theorem
5.19] of the classical theorems of J.A. Erdos [27], R.J.H. Dawlings [26], T.J. Laffey [54, Theorem 1], and
J. Fountain [36, Theorem 4.6] on idempotent factorizations (i.e., factorizations into idempotents) in the
multiplicative monoid of the ring of n-by-n matrices over a skew field or a commutative DVD.

By and large, the object of the present paper is to discuss further applications of the same ideas. We
begin with a result that can be viewed as a sort of converse to Theorem 2.7.

Proposition 2.8. Let A and S be subsets of a monoid H with 1H /∈ A∪S. The following are equivalent:

(a) Every element of S factors as a non-empty product of elements of A.
(b) There exists a strongly artinian preorder ⪯ on H such that every x ∈ S is a ⪯-non-unit and an

element a ∈ H is ⪯-irreducible if and only if it is a ⪯-quark, if and only if a ∈ A.
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(c) There exists an artinian preorder ⪯ on H such that every x ∈ S is a ⪯-non-unit and every
⪯-irreducible is an element of A.

Proof. We will focus attention on proving that (a) ⇒ (b), because the implication (b) ⇒ (c) is obvious
and (c) ⇒ (a) is a trivial consequence of Theorem 2.7.

(a) ⇒ (b): In the language of Example 2.2(3), let ⪯ be the pullback of the usual order ≤ on N through
the function ϕ : H → N that maps a non-identity element x ∈ ⟨A⟩H to the smallest integer n ≥ 1 such
that x = a1 · · · an for some a1, . . . , an ∈ A and any other element of H to 0. Since (N,+) is a strongly
≤-artinian monoid (by the well-ordering principle), ⪯ is a strongly artinian preorder on H. Moreover,
u ∈ H is a ⪯-unit if and only if ϕ(u) = 0. So, every x ∈ S is a ⪯-non-unit (by the hypothesis that 1H /∈
S and the assumption that x factors as a non-empty product of elements of A), and every a ∈ A is a
⪯-quark (because ϕ(a) = 1 and hence b ≺ a only if b is a ⪯-unit). Recalling that a ⪯-quark is obviously
a ⪯-irreducible, it remains to see that all ⪯-irreducibles are in A.

For, let x ∈ H be ⪯-irreducible. In particular, this means that x is a ⪯-non-unit, with the result that
n := ϕ(x) ∈ N+ and x = a1 · · · an for some a1, . . . , an ∈ A. Suppose for a contradiction that x /∈ A. Then
n ≥ 2 and hence x = yz, where y := a1 · · · an−1 and z := an are ⪯-non-units with 1 ≤ ϕ(y) ≤ n− 1 < n

and 1 = ϕ(z) < n, namely, y ≺ x and z ≺ x (if ϕ(y) = 0, then y = 1H and x = an ∈ A, which is absurd).
This, however, means that x is not ⪯-irreducible, which is impossible and finishes the proof. ■

Proposition 2.8 shows that Theorem 2.7 is, in a certain sense, “best possible”: In a monoid, proving
that every element of a given set S factors through the elements of a prescribed set A of elementary
factors is equivalent to the artinianity of a suitable preorder. The result is of more theoretical than
practical interest, but the reader will hopefully agree that it adds to the “roundness and soundness” of
the ideas put forth in the present work and its predecessors [61, 24].

With that said, there are in fact many possible ways to improve on Theorem 2.7 when attention is
focused on a specific class of premonoids. Similarly as in the classical theory, one may want to check,
e.g., if the factorizations (however defined) of a fixed element are all “bounded in length”, or if there are
only finitely many of them that are “essentially different”, or if the same conditions hold true for some
“restricted class” of factorizations. Formalizing these ideas will keep us busy in the next section.

3. Factorizations and minimal factorizations

Given a set X, we denote by F (X) the free monoid on X; use the symbols ∗X and εX , resp., for the
operation and the identity of F (X); and refer to an element of F (X) as an X-word, or simply as a word
if no confusion can arise. We recall that F (X) consists, as a set, of all finite tuples of elements of X; and
u ∗X v is the concatenation of two such tuples u and v. Accordingly, the identity of F (X) is the empty
tuple, herein called the empty X-word (or simply the empty word if X is clear from the context).

We take the (word) length of an X-word u, denoted by ∥u∥X , to be the unique non-negative integer
h such that u ∈ X×h (so the empty word is the only X-word whose length is zero). Note that, if u is
an X-word of positive length h, then u = u1 ∗X · · · ∗X uh for some uniquely determined u1, . . . , uh ∈ X,
named the letters of the word. Given i ∈ J1, hK, we then denote by u[i] the ith letter of u; whence we have
u = u[1] ∗ · · · ∗ u[h] provided that u is not the empty word.

When there is no serious risk of ambiguity, we will usually drop the “X” from the above notation and
write u∗k for the kth power of an X-word u (so that u∗0 := ε and u∗(k+1) := u∗k ∗ u).
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Building on these premises, we aim to extend an approach first envisioned in [5, Section 4] to counter
the “blow-up phenomena” already mentioned in the introduction. The starting point is the following:

Definition 3.1. Given a premonoid H = (H,⪯), we denote by ⊑H the binary relation on the free
monoid F (H) defined by a ⊑H b, for some H-words a and b, if and only if there is an injective function
σ : J1, ∥a∥HK → J1, ∥b∥HK such that a[i] ⪯ b[σ(i)] ⪯ a[i] for every i ∈ J1, ∥a∥HK.

Since the composition of two injective functions is injective, it is immediate that the relation ⊑H in
Definition 3.2 is in fact a preorder on the free monoid F (H); more precisely, ⊑H is an artinian preorder,
because a ⊏H b implies ∥a∥H < ∥b∥H (it is easily seen that, if a ⊑H b and ∥a∥H = ∥b∥H , then b ⊑H a).
This makes it possible to talk of ⊑H-minimality and ⊑H-equivalence in F (H), so leading to:

Definition 3.2. (1) A ⪯-factorization of an element x ∈ H is an I (H)-word a ∈ π−1
H (x) and we set

ZH(x) := π−1
H (x)∩F (I (H)), where πH is the factorization homomorphism of H, i.e., the unique extension

of the identity map on H to a monoid homomorphism F (H) → H.

(2) A minimal ⪯-factorization of x is then a ⊑H-minimal word in ZH(x), namely, an I (H)-word a ∈
π−1
H (x) with the additional property that there is no I (H)-word b ∈ π−1

H (x) such that b ⊏H a. We
denote the set of minimal ⪯-factorizations of x by Zm

H(x); and we refer to

LH(x) :=
{
∥a∥H : a ∈ ZH(x)

}
and LmH(x) :=

{
∥a∥H : a ∈ Zm

H(x)
}
,

resp., as the set of lengths and the set of minimal lengths of x (relative to the premonoid H).

(3) Likewise, an atomic ⪯-factorization of x is an A (H)-word a ∈ ZH(x) and a minimal atomic ⪯-fac-
torization of x is an A (H)-word a ∈ Zm

H(x). Then we define

ZH(x ;A (H)) := ZH(x) ∩ F (A (H)) and Zm
H(x ;A (H)) := Zm

H(x) ∩ F (A (H)),

and we let the set of atomic lengths and the set of minimal atomic lengths of x be, resp., the sets

LH(x ;A (H)) :=
{
∥a∥H : a ∈ ZH(x ;A (H))

}
and LmH(x ;A (H)) :=

{
∥a∥H : a ∈ Zm

H(x ;A (H))
}
.

(4) The premonoid H is factorable if every ⪯-non-unit has at least one ⪯-factorization; BF-factorable
(resp., BmF-factorable) if the set of lengths (resp., of minimal lengths) of each ⪯-non-unit is finite and
non-empty; HF-factorable (resp., HmF-factorable) if the same sets of lengths (resp., of minimal lengths)
are all singletons; FF-factorable (resp., FmF-factorable) if the quotient of ZH(x) (resp., of Zm

H(x)) by
the relation of ⊑H-equivalence (properly restricted) is finite and non-empty for every ⪯-non-unit x; and
UF-factorable (resp., UmF-factorable) if the same quotients are all singletons.

(5) In a similar way, H is atomic if every ⪯-non-unit has an atomic ⪯-factorization; and is BF-atomic,
FmF-atomic, etc., if the analogous definitions given in item (4) are reformulated in terms of ⪯-atoms.

(6) Finally, we say that the monoid H is factorable, BF-factorable, etc., or atomic, BF-atomic, etc., if
the premonoid (H, |H) is, resp., factorable, BF-factorable, etc., or atomic, BF-atomic, etc. Furthermore,
we denote by I (H) and A (H), resp., the set of irreducibles and the set of |H -atoms of H.

In the next remark we examine the interrelationship among the notions from the last definition, and
then we work out a couple of examples (see also Remark 4.14).

Remarks 3.3. (1) In the notation of Definition 3.2, it is evident that, for every x ∈ H, Zm
H(x) is

contained in ZH(x) and hence LmH(x) is contained in LH(x). Moreover, Zm
H(x) is empty if and only if so is
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ZH(x): In particular, if ZH(x) is non-empty, then the artinianity of the preorder ⊑H implies that ZH(x)

has a ⊑H-minimal element a (see, e.g., [61, Remark 3.9(3)]) and hence a ∈ Zm
H(x). It follows that H is

factorable if and only if every ⪯-non-unit admits a minimal ⪯-factorization.

(2) We have already noted that every ⪯-atom of a premonoid H = (H,⪯) is a ⪯-irreducible; whence
H is atomic only if it is factorable. On the other hand, two H-words a and b are ⊑H-equivalent (i.e.,
a ⊑H b ⊑H a) only if ∥a∥H = ∥b∥H . Therefore, if H is UF-factorable (resp., UmF-factorable), then it
is HF-factorable (resp., HmF-factorable); and if H is FF-factorable (resp., FmF-factorable), then it is
BF-factorable (resp., BmF-factorable). It is also clear from the definitions that H is BF-factorable (resp.,
BmF-factorable) whenever it is HF-factorable (resp., HmF-factorable); and is FF-factorable (resp., FmF-
factorable) whenever it is UF-factorable (resp., UmF-factorable). Further, we have from item (1) that if
H is UF-, FF-, HF-, or BF-factorable, then it is UmF-, FmF-, HmF, or BmF-factorable, resp. Lastly, all
these statements remain true (essentially by the same arguments) with “factorable” replaced by “atomic”.

We summarize the above conclusions in the following diagram, which is ultimately a refinement (and
a generalization) of analogous diagrams that are often encountered in the literature:

UF-factorable

FF-factorable

HF-factorable

BF-factorable

atomic

UmF-factorable

HmF-factorable

FmF-factorable

BmF-factorable

factorable

BmF-atomic

FmF-atomic

HmF-atomic

UmF-atomic

BF-atomic

FF-atomic

HF-atomic

UF-atomic

Below in Example 3.4(1), we construct a UmF-atomic commutative monoid that is not BF-atomic
and whose irreducibles are all atoms; and in Example 3.4(2), we discuss a UmF-factorable commutative
monoid that is not atomic. On the other hand, one can already check in the classical case of commutative
domains [41, Sect. 1.2] that there exist (i) FF-atomic monoids that are not HF-atomic, and conversely; (ii)
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BF-atomic monoids that are neither FF- nor HF-atomic; and (iii) atomic monoids that are not BF-atom-
ic. Considering that, in a unit-cancellative commutative monoid H, every |H -factorization is a minimal
atomic |H -factorization (see the proof of Corollary 5.3), we can thus conclude that, in general, none of
the implications in the above diagram is reversible.

Examples 3.4. (1) Let H be the multiplicative monoid of the integers modulo pn, where p ∈ N is a
prime and n be an integer ≥ 2. Set H = (H, |H). Given x ∈ Z, we write x̄ for the residue class of x
modulo pn. It is immediate that the units of H are the residue classes modulo pn of the integers between
1 and pn that are not divisible by p (and there are precisely pn−1(p − 1) of them); and the (ordinary)
atoms of H are the elements of the form p̄u with u ∈ H× (note that H is Dedekind-finite and hence, by
Remark 2.1(1), every |H -unit is a unit and every |H -atom is an atom). We claim that H is an atomic
monoid.

In fact, every non-zero non-unit x ∈ H can be uniquely written as p̄ku for some k ∈ J1, n − 1K and
u ∈ H×, and this shows, in particular, that every irreducible is an atom. The |H -factorizations of x are
therefore the non-empty H-words p̄u1 ∗ · · · ∗ p̄uk of length k with u1, . . . , uk ∈ H and u1 · · ·uk = u (which
implies that the ui’s are all units). On the other hand, the |H -factorizations of 0̄ are all and only the
length-l H-words of the form p̄v1 ∗ · · · ∗ p̄vl with l ≥ n and v1, . . . , vl ∈ H×.

Thus, H is UmF-atomic: All the minimal |H -factorizations of a non-unit x ∈ H are ⊑H-equivalent
(in particular, the minimal |H -factorizations of 0̄ are the H-words p̄v1 ∗ · · · ∗ p̄vn with v1, . . . , vn ∈ H×).
On the other hand, H is not even BF-atomic, for the set of |H -factorizations of 0̄ contains the H-word
p̄∗(n+k) for every k ∈ N (and hence there are infinitely many of them that are pairwise ⊑H-inequivalent).

(2) In the notation of Example 2.2(2), it is clear that the premonoid P(S) is (i) atomic if and only if
S = ∅, and (ii) factorable if and only if it is BmF-factorable, if and only if it is FmF-factorable, if and
only if it is UmF-factorable, if and only if |S| < ∞: In particular, recall that the ⊆S-irreducibles are the
one-element subsets of S and hence every finite X ⊆ S has a unique minimal ⊆S-factorization; and note
that, if a is an arbitrary element of S (and hence S is non-empty), then the length-n word {a} ∗ · · · ∗ {a}
is a ⊆S-factorization of {a} for all n ∈ N+.

On the whole, the present paper is about sufficient or necessary conditions for a premonoid to be
factorable, BmF-factorable, etc.; and in particular for a monoid to be atomic, BF-atomic, FmF-atomic,
etc. The literature abounds with results of this kind, but they are mainly about commutative or unit-
cancellative monoids, see, e.g., [21, Theorems 2.3, 2.4, and 3.1], [35, Theorems 4 and 7], [14, Théorème de
Structure], [4, Theorems 3.9, 3.11, 3.13, 4.4, and 4.9], [19, Theorems 3.3, 3.4, and 3.6], and [34, parts (i)
and (iv) of Theorem 2.28, and Corollary 2.29], [7, Theorem 2.8], and [11]. On the other hand, much less is
known for non-commutative non-unit-cancellative monoids (including non-commutative rings with zero
divisors), see, e.g., [5, 61, 24] (for an alternative notion of BF-ness, cf. [29, Lemma 2.2]). Our starting
point is the following proposition (the reader may want to review Remark 2.1(2) before reading further):

Proposition 3.5. Let H = (H,⪯) be a premonoid and K = (K,⪯K) be a subpremonoid of H containing
all the divisors (in H) of a fixed x ∈ H (and hence x itself). The following hold:

(i) Ix(H) = Ix(K) and Ax(H) = Ax(K).

(ii) ZH(x) = ZK(x) and ZH(x;A (H)) = ZK(x;A (K)).

(iii) Zm
H(x) = Zm

K (x) and Zm
H(x;A (H)) = Zm

K (x;A (K)).
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(iv) LH(x) = LK(x) and LH(x;A (H)) = LK(x;A (K)).

(v) LmH(x) = LmK(x) and LmH(x;A (H)) = LmK(x;A (K)).

In particular, these conclusions are true when K is a divisor-closed submonoid of H containing x.

Proof. The “In particular” part of the proposition is obvious, because every divisor-closed submonoid of
H containing x does also contain each and every divisor of x in H. Moreover, (iv) and (v) are immediate
consequences of (ii) and (iii), resp. So, we concentrate on items (i)–(iii).

(i) We will only check that Ix(H) = Ix(K); showing Ax(H) = Ax(K) can be done in a similar (and
even simpler) way, and we leave the details to the reader.

To start with, pick a ∈ Ix(K) and assume for a contradiction that a /∈ Ix(H). Then a |K x and hence
a |H x (because K is a submonoid of H). We thus get that a /∈ I (H); and since a is a ⪯-non-unit (recall
from Remark 2.1(2) that K× = K ∩H×), it follows that there exist ⪯-non-units u, v ∈ H with u ≺ a and
v ≺ a such that a = uv. So, u and v are |H -divisors of x and hence elements of K, because K contains all
the divisors of x in H (by hypothesis). This is, however, in contradiction with the ⪯K-irreducibility of
a, because u and v are then ⪯K-non-units with u ≺K a and v ≺K a. In consequence, Ix(K) ⊆ Ix(H).

As for the opposite inclusion, let a ∈ I (H) such that x = yaz for some y, z ∈ H. Since K contains all
the divisors of x in H, each of a, y, and z lies in K. So, a is a ⪯K-non-unit and a divisor of x in K; in
particular, if a is not ⪯K-irreducible, then there exist ⪯K-non-units u, v ∈ K with u ≺K a and v ≺K a

such that a = uv, which is impossible as it means that a is not ⪯-irreducible. All in all, we can therefore
conclude that a ∈ Ix(K) and hence Ix(H) ⊆ Ix(K).

(ii) Let a ∈ ZH(x) be a ⪯-factorization of x, meaning that a is an I (H)-word such that πH(a) = x.
Then a[i] ∈ Ix(H) for each i ∈ J1, ∥a∥HK; and by item (i), this implies that a is an I (K)-word such that
πK(a) = x, that is, a ⪯K-factorization of x. It follows that ZH(x) is contained in ZK(x), and the reverse
inclusion is analogous. In consequence, we find that

ZH(x;A (H)) = ZH(x) ∩ F (A (H)) = ZH(x) ∩ F (Ax(H))

(i)
= ZK(x) ∩ F (Ax(K)) = ZK(x) ∩ F (A (K)) = ZK(x;A (K)),

(1)

where, among other things, we have used that if an A (H)-word (resp., an A (K)-word) a is a ⪯-factori-
zation (resp., a ⪯K-factorization) of x, then a is an Ax(H)-word (resp., an Ax(K)-word).

(iii) Let a and b be K-words. In the notation of Definition 3.1, we have that a ⊑K b if and only if
there exists an injective function σ : J1, ∥a∥KK → J1, ∥b∥KK such that a[i] ⪯K b[σ(i)] ⪯K a[i] for each i ∈
J1, ∥a∥KK. Since ∥z∥K = ∥z∥H for every K-word z and, on the other hand, a ⪯K b if and only if a ⪯ b

and a, b ∈ K, we thus find that a ⊑K b if and only if a ⊑H b.
At the end of the day, this shows that the preorder ⊑K is the restriction to F (K) of the preorder ⊑H.

It is therefore clear that a word z in a set of K-words is ⊑K-minimal if and only if it is ⊑H-minimal; and
by the first part of item (ii), we obtain that Zm

H(x) = Zm
K (x) for every x ∈ K. Similarly as in the proof

of Eq. (1), it then follows that Zm
H(x;A (H)) = Zm

K (x;A (K)). ■

Corollary 3.6. Let H = (H,⪯) be a premonoid and K = (K,⪯K) be a subpremonoid of H such that
K is a divisor-closed submonoid. Then I (K) = K ∩ I (H) and A (K) = K ∩ A (H).

Proof. We just prove the first equality, the second can be proved in an analogous fashion.
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To begin, pick x ∈ I (K). It is obvious from the definitions that x ∈ K and x ∈ Ix(K). Since K is
divisor-closed in H (and hence contains all the divisors of x in H), we thus get from Proposition 3.5(i)
that x ∈ Ix(H) and hence x ∈ K ∩ I (H). It follows that I (K) ⊆ K ∩ I (H).

As for the reverse inclusion, let x ∈ K ∩ I (H). As before, we have x ∈ Ix(H) = Ix(K), since x is in
K and K satisfies the hypotheses of Proposition 3.5(i). It follows that x ∈ I (K), and so we are done. ■

For the next result we recall from Remark 2.1(2) that JxKH denotes the subpremonoid of a premonoid
H, whose “ground monoid” is the smallest divisor-closed submonoid JxKH of H containing an element
x ∈ H.

Corollary 3.7. A premonoid H = (H,⪯) is factorable, UF-factorable, HF-factorable, FF-factorable,
BF-factorable, UmF-factorable, HmF-factorable, BmF-factorable, or FmF-factorable (resp., atomic, UF-
atomic, etc.) if and only if so is JxKH for every ⪯-non-unit x.

Proof. We will just show that, if H is a factorable premonoid, then so is JxKH for every ⪯-non-unit x:
The converse is immediate from Proposition 3.5(ii), because every ⪯-non-unit has a ⪯K-factorization;
and the other logical equivalences (involving atomicity, BF-ness, etc.) are proved in essentially the same
way, based on Proposition 3.5(ii)–(v) (we leave the details to the reader).

So, assume H is factorable, let x be a ⪯-non-unit, and for ease of notation set K := JxKH and K :=

JxKH. We claim that K is a factorable premonoid. For, fix y ∈ K∖K×. By Remark 2.1(2), y is a ⪯-non-
unit and hence, by assumption, ZH(y) is non-empty. Therefore, we gather from Proposition 3.5(ii) that
ZK(y), too, is non-empty, since K is a divisor-closed submonoid of H. By the arbitrariness of x and y,
this is enough to finish the proof. ■

Incidentally, we get from Remark 2.1(3) that Corollary 3.6 and items (ii)–(v) of Proposition 3.5 (spe-
cialized to the divisibility preorder) are a generalization of [34, Proposition 2.21] and [5, Proposition 4.7]
for the part concerning factorizations and sets of lengths relative to (ordinary) atoms. Note in this regard
that the existence itself of an atom in a monoid H is a sufficient condition for H to be Dedekind-finite [34,
Proposition 2.30], with the result that the set of |H -units is nothing else than the set H× of (ordinary)
units and hence the set of |H -atoms is the set of atoms (Remark 2.1(1)).

4. Finitely generated monoids and beyond

In this section, we focus attention on premonoids that are, in a sense, “arithmetically small”. The basic
idea is formalized in the next definition, which contains some of the main novelties of the paper.

Definition 4.1. (1) Given a premonoid H = (H,⪯), we denote by ⟪x⟫H the submonoid of H generated
by the divisors of an element x ∈ H and by ⟪x⟫H the subpremonoid of H obtained by endowing ⟪x⟫H
with the restriction of the preorder ⪯. In particular, we call ⟪x⟫H the germ of H at x.

(2) The premonoid H is finitely generated or f.g. if H is a finitely generated monoid, i.e., H = ⟨A⟩H
for a finite A ⊆ H; finitely generated up to units or f.g.u. if there exists a finite A ⊆ H such that H =

⟨H×AH×⟩H ; locally f.g.u. or l.f.g.u. (resp., locally f.g. or l.f.g.) if, for each ⪯-non-unit x, the premonoid
JxKH is f.g.u. (resp., f.g.); and weakly l.f.g.u. (resp., weakly l.f.g.) if the germ of H at every ⪯-non-unit is
an f.g.u. (resp., f.g.) premonoid.
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(3) On the other hand, H is of finite type or oft if there is a finite set A ⊆ I (H) such that every
⪯-factorization of a ⪯-non-unit is ⊑H-equivalent to an A-word; and is locally of finite type or loft if, for
each ⪯-non-unit x, there is a finite set Ax ⊆ I (H) such that every ⪯-factorization of x is ⊑H-equivalent
to an Ax-word.

(4) Finally, we say that the monoid H is [weakly] l.f.g., f.g.u., [weakly] l.f.g.u., oft, or loft if (H, |H) is,
resp., a [weakly] l.f.g., f.g.u., [weakly] l.f.g.u., oft, or loft premonoid.

In particular, the notion of l.f.g.u. monoid is ultimately a generalization of [42, Definition 2.7.6.5] from
commutative, cancellative to arbitrary monoids (see Remark 4.4(2) for further details).

Lemma 4.2. Every germ of an f.g.u. premonoid is itself an f.g.u. premonoid.

Proof. Let H = (H,⪯) be an f.g.u. premonoid and pick x ∈ H. There then exists a finite A ⊆ H such
that H = ⟨H×AH×⟩H . Denote by Ax the set of all a ∈ A with the property that a |H y for some divisor
y of x in H and by K = (K,⪯K) the germ of H at x (so that K is the submonoid ⟪x⟫H of H generated
by the divisors of x in H). It is obvious that Ax is a finite subset of K, since it is a subset of A and every
a ∈ Ax is a divisor of x in H (by transitivity of |H). It follows that K×AxK× ⊆ K, and we claim K ⊆
⟨K×AxK×⟩K : This will show that K is an f.g.u. premonoid and finish the proof.

Fix y ∈ H such that y |H x. Since K is generated by the divisors of x in H, it suffices to check that
y ∈ ⟨K×AxK×⟩K . For, note that H = ⟨H×AH×⟩H implies the existence of u1, v1, . . . , un, vn ∈ H× and
a1, . . . , an ∈ A such that y = u1a1v1 · · ·unanvn; and since each of the factors on the right is a divisor of
a divisor of x in H, we have (by the definitions of K and Ax) that ui, vi ∈ K ∩H× and ai ∈ Ax for each
i ∈ J1, nK. This is enough to conclude, as we know from Remark 2.1(2) that K ∩H× = K×. ■

Proposition 4.3. For a premonoid H = (H,⪯), all implications in the following diagram hold:

f.g. l.f.g. weakly l.f.g.

f.g.u. l.f.g.u. weakly l.f.g.u.

In particular, every f.g.u. monoid is l.f.g.u. and every l.f.g.u. monoid is weakly l.f.g.u.

Proof. The implications corresponding to the vertical arrows in the above diagram are obvious. Moreover,
showing that an f.g. premonoid is l.f.g. and an l.f.g. premonoid is weakly l.f.g., is pretty much the same as
(and in fact easier than) showing that an f.g.u. premonoid is l.f.g.u. and an l.f.g.u. premonoid is weakly
l.f.g.u. Lastly, proving that an f.g.u. premonoid H is l.f.g.u., is tantamount to proving that the premonoid
JxKH is f.g.u. for each ⪯-non-unit x; and this can be done in a similar way as to Lemma 4.2, with the set
Ax now equal to A ∩ JxKH (we leave the details to the reader). Therefore, it only remains to check that
an l.f.g.u. premonoid is weakly l.f.g.u.

For, assume H is l.f.g.u. and fix a ⪯-non-unit x ∈ H. Then JxKH is an f.g.u. premonoid and, by Lemma
4.2, so is every germ of JxKH. It follows that the germ ⟪x⟫H of H at x is an f.g.u. premonoid, because
the submonoid ⟪x⟫H of H generated by the divisors of x in H is obviously a submonoid of the smallest
divisor-closed submonoid JxKH of H containing x and, on the other hand, it is routine to check that the



Factorization under Local Finiteness Conditions 15

restriction of the preorder ⪯ to ⟪x⟫H is nothing different from the restriction to ⟪x⟫H of the restriction
of ⪯ to JxKH (with the result that ⟪x⟫H is also the germ of JxKH at x). This finishes the proof, since x

was an arbitrary ⪯-non-unit. ■

In the remainder of the section, we will show that not only weakly l.f.g.u. premonoids are a generaliza-
tion of l.f.g.u. monoids (Proposition 4.3), but they are also well behaved with respect to certain properties
of interest. First, though, some remarks and examples are in order:

Remarks 4.4. (1) A premonoid H = (H,⪯) is f.g.u. if and only if there is a finite A ⊆ H such that
every ⪯-non-unit lies in the submonoid of H generated by H×AH×: In particular, the latter condition
implies that H = ⟨H×ĀH×⟩H , where Ā := A ∪ {1H} ⊆ H is still finite (the other direction is obvious).

(2) A Dedekind-finite reduced monoid is l.f.g.u. if and only if it is l.f.g.; and a commutative monoid is
f.g.u. (resp., l.f.g.u.) if and only if modding out the group of units gives an f.g. (resp., l.f.g.) monoid, cf. [42,
Propositions 2.7.4.1 and 2.7.8.1]. Moreover, it follows from [42, Proposition 1.1.7] that a cancellative,
commutative monoid H is l.f.g.u. if and only if, for every x ∈ H, the set of (ordinary) atoms a ∈ H

such that a |H x is finite up to associates; and from [42, Proposition 2.7.8.4] that every cancellative,
commutative, l.f.g.u. monoid is FF-atomic. This last result will be generalized in Corollary 5.3.

(3) We say that a monoid H is idf (for irreducible-divisor-finite) if, for every |H -non-unit x, the set
Ix(H) of irreducible divisors of x is finite up to |H -equivalence. This is ultimately a generalization of
(commutative) idf-domains in the sense of A. Grams and H. Warner [49], which are in turn a generalization
of Cohen-Kaplansky domains, i.e., idf-domains where each non-zero non-unit is a product of atoms [20, 3].

We claim that every idf monoid H is loft. For, let x be a |H -non-unit, a1, . . . , an be representatives
of the (finitely many) |H -equivalence classes in Ix(H), and b1 ∗ · · · ∗ bk be a non-empty |H -factorization
of x of length k. Then bi ∈ Ix(H) for each i ∈ J1, kK and there is an index ji ∈ J1, nK such that bi is
|H -equivalent to aji . It is then clear from Definition 3.1 that b1 ∗ · · · ∗ bk is ⊑H-equivalent to the Ax-word
aj1 ∗ · · · ∗ ajk , where H := (H, |H) and Ax := {a1, . . . , an}. Thus H is loft (by the arbitrariness of x).

Examples 4.5. (1) A list of cancellative, commutative, l.f.g.u. monoids (and, in particular, of commu-
tative domains whose non-zero elements form an l.f.g.u. monoid under multiplication) can be found in
[60, Example 3.4] and [63, Example 2.1]. The list includes Cohen-Kaplansky domains (Remark 4.4(3)),
Krull monoids [42, Definition 2.3.1.5], Krull (and especially Dedekind) domains [42, Definition 2.10.1.1],
rings of integer-valued polynomials over a unique factorization domain [57], numerical monoids [6], etc.

(2) Fix k ∈ N+. Every submonoid of (N×k,+) is weakly l.f.g., because (y1, . . . , yk) divides (x1, . . . , xk)

in (N×k,+) only if yi ∈ J0, xiK for each i ∈ N. However, the submonoid H of (N×2,+) generated by the
set A :=

⋃
n≥1{(1, n), (n, 1)} is not l.f.g.u.: In fact, H is a reduced monoid with A (H) = A (implying

that H is not f.g.u.); and since n(1, 1) = (1, n) + (n, 1) for all n ∈ N+, we have J(1, 1)KH = H.

(3) Following [34, Sect. 3], let Pfin,1(H) be the reduced power monoid of a monoid H, i.e., the monoid
obtained by endowing the family of all finite subsets of H containing the identity 1H with the binary
operation of setwise multiplication (X,Y ) 7→ XY . We gather from [61, Proposition 4.11(i)] that Pfin,1(H) is
a Dedekind-finite reduced monoid; and this implies by Example 2.5(1) that, endowed with the divisibility
preorder, Pfin,1(H) is a weakly positive monoid. Furthermore, it is easily checked that Pfin,1(H) is loft
and weakly l.f.g.u.: Both of these properties follow at once from considering that, if Y is a divisor of X
in Pfin,1(H), then Y is contained in X and hence X has finitely many divisors (in fact, no more than
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2|X|−1 of them), because Y = 1HY 1H ⊆ UY V for all U, V ∈ Pfin,1(H).
On the other hand, Pfin,1(H) need not be an l.f.g.u. monoid. For, denote by Pfin,0(N) the reduced power

monoid of the additive monoid of non-negative integers and write the operation of Pfin,0(N) additively.
For every finite set X ⊆ N with 0 ∈ X, there is an integer n ≥ 1 such that n{0, 1} = X + Y for some
Y ∈ Pfin,0(N): It suffices to take n = 2max(X) and Y = J0,max(X)K. Thus, the smallest divisor-closed
submonoid of Pfin,0(N) containing {0, 1} is Pfin,0(N) itself; and since Pfin,0(N) is reduced and has infinitely
many atoms (for instance, we get from [34, Proposition 4.1(iv)] that any set of the form {0, a} with a ∈
N+ is an atom), we conclude that the monoid is not l.f.g.u.

Lastly, we note that Pfin,1(H) is finite if and only if so is H, which gives a class of finite monoids with
a rich arithmetic already in the case when H is a finite cyclic group [5, Sect. 5]. Moreover, the |Pfin,1(H)-
irreducibles of Pfin,1(H) are not necessarily atoms (whereas the |Pfin,1(H)-atoms are atoms, since Pfin,1(H)

is Dedekind-finite): In fact, it is known from [61, Proposition 4.11(iii)] that every |Pfin,1(H)-irreducible
is a |Pfin,1(H)-quark (and vice versa); and from [61, Theorem 4.12] that every |Pfin,1(H)-irreducible is an
atom if and only if 1H ̸= x2 ̸= x for each non-identity x ∈ H.

(4) Let G0 be a subset of a (multiplicatively written) group G and Fab(G) be the free abelian monoid
on G, namely, the quotient of the free monoid F (G) by the monoid congruence ≡ that identifies two
G-words if and only if they can be obtained from each other by a permutation of their letters. We will
use ū for the (congruence) class in Fab(G) of a G-word u and write Fab(G) multiplicatively.

Consider the function ΠG : Fab(G) → G that maps the class of a G-word to its direct image under the
factorization homomorphism πG : F (G) → G of G (note that ΠG is well defined, because if u ≡ v then
ū = v̄). The set of all classes ū with u ∈ F (G0) and 1G ∈ ΠG(u) forms then a submonoid of Fab(G),
called the monoid of product-one sequences over G with support in G0 and herein denoted by B(G0): This
is a monoid with a central role in the classical theory of factorization since it can often be used as a
“canonical model” for much more complicated objects (see [32] and references therein).

It is fairly obvious that B(G0) is a cancellative, commutative, weakly l.f.g.u. monoid with trivial group
of units: In particular, if u and v are G0-words with ū |B(G0) v̄, then u is a scrambled subword of v, i.e.,
there exists an injective function σ : J1, ∥u∥GK → J1, ∥v∥GK such that u[i] = v[σ(i)] for each i ∈ J1, ∥u∥GK;
and there are, of course, finitely many scrambled subwords of v. Yet, B(G) need not be an l.f.g.u. monoid.

For, let G be a dihedral group of infinite order with generators α and τ such that τ2 = 1G and ατ =

τα−1. The G-word un := α∗2n ∗ τ∗2 represents a product-one sequence ūn over G for each n ∈ N+,
because (αn τ)2 = αnτ2α−n = 1G; and it is routine to check that ūn is in fact an atom of B(G). It follows
that Jū1KB(G) is not an f.g.u. monoid, since ūn |B(G) ū

n
1 for all n ∈ N+. So, B(G) is not l.f.g.u.

(5) Let R be a commutative PID and Mn(R) be the ring of n-by-n matrices over R (we refer to [53]
for basic aspects of ring theory). It is well known that the set of matrices A ∈ Mn(R) with non-zero
determinant is a cancellative submonoid, herein denoted by H, of the multiplicative monoid of Mn(R).
In consequence, H is Dedekind-finite (as is the case with any cancellative monoid) and, by Remark 2.1(1),
the |H -units are exactly the units of Mn(R), i.e., the elements of the general linear group GLn(R).

We claim that H is a weakly l.f.g.u. monoid. For, let A be a non-unit of H. Since R is a commutative
PID and hence a UFD, there are an integer k ≥ 1 and prime elements p1, . . . , pk ∈ R such that detA =

p1 · · · pk. Now let B be a divisor of A in H. By [53, Theorem 3.8] (namely, by the existence of a Smith
normal form for matrices over a commutative PID), we can find U, V ∈ H× and a diagonal matrix D :=
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diag(b1, . . . , bn) ∈ H such that B = UDV . It follows (by the Cauchy-Binet formula) that detD = b1 · · · bn
divides det(A) = p1 · · · pk in R and, by the elementary properties of UFDs, there are a sequence I1, . . . , In

of pairwise disjoint subsets of J1, kK and units u1, . . . , un ∈ R such that bi = ui℘i for every i ∈ J1, nK,
where ℘i :=

∏
j∈Ii

pj . We can thus write B = U ′D′V , where U ′ := U diag(u1, . . . , un) ∈ H× and D′ :=

diag(℘1, . . . , ℘n) ∈ H. Since there are finitely many choices for the n-tuple (I1, . . . , In) and hence for the
definition of the matrix D′, we therefore conclude from the arbitrariness of B that A has finitely many
divisors up to associates and then, from the arbitrariness of A, that H is a weakly l.f.g.u. monoid.

(6) We say that a premonoid (H,⪯) is finite if so is the monoid H. We have already encountered finite
premonoids in Example 3.4(1). Further examples arising from the interplay between factorization theory
and additive combinatorics are given by restricted power monoids (see item (3)) of finite abelian groups.
Of course, every finite premonoid is loft and f.g., regardless of the actual choice of the preorder.

We will see that, under some circumstances, weakly l.f.g.u. premonoids are factorable (Corollary 4.8),
FmF-atomic (Theorem 4.12), or even FF-atomic (Corollary 4.13). We start with a preliminary lemma.

Lemma 4.6. Let A and Q be subsets of a monoid H. If Q2 ⊆ Q, then ⟨QAQ⟩H ⊆ Q∪ ⟨Q(A∖Q)Q⟩H .

Proof. Let x ∈ H be an element of the form u1a1v1 · · ·unanvn (with n ∈ N+), where u1, v1, . . . , un,

vn ∈ Q and a1, . . . , an ∈ A. We have to prove that x is either in Q or in ⟨Q(A∖Q)Q⟩H .
We may assume that there exists j ∈ J1, nK with aj ∈ Q; otherwise, a1, . . . , an are all in A ∖ Q and

there is nothing left to prove because x ∈ ⟨Q(A∖Q)Q⟩H . If n = 1, then j = 1 and x ∈ Q3, so again we
are done because Qk ⊆ Q for all k ∈ N+ (by the hypothesis that Q2 ⊆ Q). If, on the other hand, n ≥ 2,
then we can write x = ū1b1v̄1 · · · ūn−1bn−1v̄n−1, where we put

ūi :=


ui if 1 ≤ i < j

uiaiviui+1 if i = j ̸= n

ui+1 if j < i ≤ n− 1

and v̄i :=


vi if 1 ≤ i < j ≤ n− 1

vi+1 if j ≤ i ≤ n− 1

viui+1ai+1vi+1 if i+ 1 = j = n

,

and we take bi := ai for 1 ≤ i < j and bi := ai+1 for j ≤ i ≤ n − 1. It follows, by induction on n, that
x ∈ H (as wished), since it is clear from the above that ūi, v̄i ∈ Q and bi ∈ A for all i ∈ J1, n− 1K. ■

For the next theorem we recall from Definition 3.2(4) that a premonoid H = (H,⪯) is factorable if
each ⪯-non-unit can be written as a product of ⪯-irreducibles; and from Definition 2.3 that H is a weakly
positive monoid if H×xH× ⪯ x ⪯ HxH for every x ∈ H.

Theorem 4.7. Let H = (H,⪯) be an f.g.u. weakly positive monoid. There then exists a finite set A of
⪯-irreducibles such that every ⪯-non-unit can be written as a product of elements of I (H) ∩H×AH×.
In particular, H is factorable.

Proof. Let the set of ⪯-non-units be non-empty, or else the conclusion is obvious. We split the proof into
two parts: In Part 1, we prove that there is a finite set A ⊆ I (H) such that H ∖H× ⊆ ⟨H×AH×⟩H ;
and in Part 2, that H ∖H× ⊆ ⟨I (H) ∩H×AH×⟩H .

Part 1: By the hypothesis that H is an f.g.u. premonoid, there is a subset A of H with |A| < ∞ and
H ∖H× ⊆ ⟨H×AH×⟩H ; and it is, of course, harmless to assume (as we do) that

H ∖H× ̸⊆ ⟨H×BH×⟩H , for every B ⊆ H with |B| < |A|. (2)
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On the other hand, since H is a weakly positive monoid, we have from Remark 2.4(3) that (H×)2 = H×.
Therefore, we gather from the above and Lemma 4.6 that

∅ ̸= H ∖H× ⊆ ⟨H×AH×⟩H ∖H× ⊆ ⟨H×(A∖H×)H×⟩H ,

which, in view of Equ. (2), is only possible if A is a set of ⪯-non-units. Suppose by way of contradiction
that there is an element a ∈ A that is not ⪯-irreducible. Then a = xy for some ⪯-non-units x, y ∈ H

with x ≺ a and y ≺ a (as we have just found that a is a ⪯-non-unit); and since every ⪯-non-unit lies in
the submonoid of H generated by H×AH×, there exist a1, . . . , am+n ∈ A (with m,n ∈ N+) such that

x ∈ H×a1H× · · ·H×amH× and y ∈ H×am+1H× · · ·H×am+nH×.

Thus, using again that H is a weakly positive monoid (and hence, in particular, z ⪯ HzH for each z ∈
H), we conclude that ai ⪯ x ≺ a for every i ∈ J1,mK and am+i ⪯ y ≺ a for every i ∈ J1, nK; that is to
say, ai ̸= a for all i ∈ J1,m+nK. This, however, means that a = xy lies in the submonoid of H generated
by H×ĀH×, where Ā := A∖ {a}. It follows that

H ∖H× ⊆ ⟨H×AH×⟩H ⊆ ⟨H×ĀH×⟩H ,

which is in contradiction with Eq. (2) and ultimately shows that A is a set of ⪯-irreducibles.

Part 2: It remains to see that every ⪯-non-unit factors as a product of elements from the set IA :=

I (H) ∩H×AH×; and since H ∖H× ⊆ ⟨H×AH×⟩H , it will suffice to check that H×AH× ⊆ ⟨IA⟩H .
Assume to the contrary that α /∈ ⟨IA⟩H for some α ∈ H×AH×; we will freely use that, by Remark

2.4(3), H∖H× is a two-sided ideal of H and hence H×AH× is a set of ⪯-non-units. We claim that there
exists a sequence α1, α2, . . . of elements of H×AH× ∖ ⟨IA⟩H with αi+1 ≺ αi for all i ∈ N+. For, put
α1 := α and suppose that, for a certain k ∈ N+, we have recursively found α1, . . . , αk ∈ H×AH×∖ ⟨IA⟩H
with the property that αi+1 ≺ αi for each i ∈ J1, k− 1K. Since αk is neither a ⪯-unit nor a ⪯-irreducible
(or else αk ∈ IA ⊆ ⟨IA⟩H), we have αk = xy for some ⪯-non-units x, y ∈ H with x ≺ αk and y ≺ αk. So,
there are u1, v1, . . . , um+n, vm+n ∈ H× and a1, . . . , am+n ∈ A (with m,n ∈ N+) such that

x = u1a1v1 · · ·unanvn and y = um+1am+1vm+1 · · ·um+nam+nvm+n,

which is only possible if αk+1 := uiaivi /∈ ⟨IA⟩H for some i ∈ J1,m+nK (or else αk = xy ∈ ⟨IA⟩H). Since,
on the other hand, αk+1 ⪯ x ≺ αk or αk+1 ⪯ y ≺ αk (by the hypothesis that H is a weakly positive
monoid), this is enough to prove our claim (by induction).

Considering that every α ∈ H×AH× is ⪯-equivalent to an element a ∈ A (again by the weak positivity
of H), it follows that there is a sequence a1, a2, . . . of elements of A such that ai+1 ⪯ αi+1 ≺ αi ⪯ ai for
all i ∈ N+, which is a contradiction because A is a finite set. ■

Corollary 4.8. Every weakly l.f.g.u. weakly positive monoid is factorable.

Proof. Let H = (H,⪯) be a weakly l.f.g.u. weakly positive monoid and fix a ⪯-non-unit x; we have to
check that ZH(x) is non-empty. Since H is a weakly l.f.g.u. premonoid, the germ K := ⟪x⟫H is f.g.u. On
the other hand, we gather from Remark 2.4(4) that K is a weakly positive monoid. Thus, Theorem 4.7
implies that K is factorable. It follows that ZK(x) is non-empty, as we have from Remark 2.1(2) that x

is a ⪯K-non-unit; and by Proposition 3.5(ii), this suffices to finish the proof (by definition, the monoid
⟪x⟫H contains all the divisors of x in H). ■
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Remarks 4.9. (1) Let H = (H,⪯) be a weakly positive monoid and assume the existence of a finite set
A of ⪯-irreducibles such that I (H) ⊆ H×AH×; we aim to show that H is oft. For, let b = b1 ∗ · · · ∗ bn
be a non-empty I (H)-word of length n. Then, for every i ∈ J1, nK, bi = uiaivi for some ui, vi ∈ H× and
ai ∈ A; and since H is weakly positive, bi ⪯ ai ⪯ bi for each i ∈ J1, nK. Hence b is ⊑H-equivalent to the
A-word a1 ∗ · · · ∗ an, and this suffices to conclude.

(2) Let H = (H,⪯) be an f.g.u. weakly positive monoid. By Theorem 4.7, there is a finite A ⊆ I (H)

with the property that H = ⟨H×AH×⟩H , and we claim A (H) ⊆ H×AH×: By item (1), this will imply
that, if I (H) ⊆ A (H), then H is oft. For the claim, let a ∈ H be a ⪯-atom. Then a ̸= 1H and hence
a = u1a1v1 · · ·unanvn for some u1, v1, . . . , un, vn ∈ H× and a1, . . . , an ∈ A (with n ∈ N+). However, if
n ≥ 2 then we get from Remark 2.4(3) that a factors as a product of two ⪯-non-units, contradicting that
a is a ⪯-atom. So, a = u1a1v1 ∈ H×AH× (as wished).

(3) As a complement to item (2), we note that not for every l.f.g.u. positive monoid H = (H,⪯) there
exists a finite A ⊆ I (H) such that I (H) ⊆ H×AH× (recall from Remark 2.4(5) that positive implies
weakly positive). E.g., let H := (N,+) be the additive monoid of the non-negative integers and, for all
x, y ∈ N, define x ⪯ y if and only if x = 0 or x, y ∈ N+. The only ⪯-unit is then the identity 0, the only
⪯-atom is 1, and every non-zero element of H is a ⪯-quark and hence a ⪯-irreducible. Moreover, the
premonoid H = (H,⪯) is obviously positive and f.g. (in fact, H is generated by 1). Yet, every positive
integer is a ⪯-irreducible, with the result that I (H) is not contained in H×AH× = A for any finite A ⊆
H. (Incidentally, H is not a strongly positive monoid, because 0 ≺ 1 but 0 + 1 ⪯ 1 + 1 ⪯ 0 + 1.)

Given a set X, we say that an X-word u is a scattered subword of an X-word v if there is a (strictly)
increasing function σ : J1, ∥u∥XK → J1, ∥v∥XK such that u[i] = v[σ(i)] for each i ∈ J1, ∥u∥XK (cf. Example
4.5(4)). Our interest in scattered subwords lies in the following result, which is commonly referred to as
Higman’s lemma and will be a main ingredient in the proof of Theorem 4.11(ii) and Corollary 4.13 (the
result will also enter the proof of Theorem 5.8, though in a more general form).

Theorem 4.10 (Higman’s lemma). If X is a finite set, then every infinite sequence of X-words contains
an infinite subsequence each of whose terms is a scattered subword of the next.

Proof. This is an immediate corollary of [51, Theorems 2.1 and 4.3] applied to the finite poset (X,=X),
where =X is the discrete order on X (meaning that x =X y if and only if x = y ∈ X). ■

As already mentioned in the introduction, Higman’s lemma is a non-commutative generalization of
Dickson’s lemma [25]. But while Dickson’s lemma has been long known to play a key role in the study
of the arithmetic of integral domains and “nearly cancellative” commutative monoids (see [42, Theorem
2.9.13], [38, Proposition 7.3], and [33, Proposition 3.4] for some representative results in this direction),
Higman’s has never found application in factorization theory until now.

Theorem 4.11. The following hold for a loft premonoid H = (H,⪯):

(i) H is BF-factorable (resp., BmF-factorable) if and only if it is FF-factorable (resp., FmF-factorable).
(ii) Up to ⊑H-equivalence, every ⪯-non-unit has finitely many minimal ⪯-factorizations.

Proof. Fix a ⪯-non-unit x ∈ H. The loftness of H implies the existence of a finite set Ax ⊆ I (H) such
that every word in the set ZH(x) of ⪯-factorizations of x is ⊑H-equivalent to an Ax-word.
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(i) We have already observed in Remark 3.3(2) that an FF-factorable premonoid is BF-factorable. So,
let H be a BF-factorable premonoid. The set of lengths LH(x) of x is then finite and non-empty. Assume
for a contradiction that ZH(x) contains infinitely many ⊑H-inequivalent elements (note that ZH(x) is
non-empty, because H is BF-factorable). The same is then true for the set

Λ(x) := {ā ∈ F (Ax) : ā ⊑H a ⊑H ā, for some a ∈ ZH(x)} (3)

Since Λ(x) is a subset of F (Ax) and Ax is finite, it follows that there is a sequence ā1, ā2, . . . of non-empty
Ax-words in Λ(x) with ∥āi∥H < ∥āi+1∥H for all i ∈ N+. But this implies that the set LH(x) is infinite
(absurd), for each Ax-word ā ∈ Λ(x) is ⊑H-equivalent to a ⪯-factorization a of x and hence ∥ā∥H = ∥a∥H .

An analogous argument applied to minimal ⪯-factorizations of x shows that H is BmF-factorable only
if it is FmF-factorable, and the converse follows from Remark 3.3(2).

(ii) Suppose to the contrary that there is a ⪯-non-unit x such that Zm
H(x) contains infinitely many

⊑H-inequivalent elements. Then, also the set

Λm(x) := {ā ∈ F (Ax) : ā ⊑H a ⊑H ā, for some a ∈ Zm
H(x)} (4)

is infinite. So, arguing as in the proof of item (i), we get a sequence ā1, ā2, . . . of non-empty Ax-words in
Λm(x) with ∥āi∥H < ∥āi+1∥H for every i ∈ N+; and by Higman’s lemma, there is no loss of generality in
assuming that āi is a scattered subword of āi+1. But then, by the very definition of the preorder ⊑H, we
get ā1 ⊏H ā2 and conclude from Eq. (4) that a1 ⊑H ā1 ⊏H ā2 ⊑H a2 for some a1, a2 ∈ Zm

H(x), which is
impossible since a minimal ⪯-factorization of x is a ⊑H-minimal word in the set π−1

H (x)∩F (I (H)). ■

We note in passing that the use of Higman’s lemma in the proof of Theorem 4.11(ii) is not really
necessary: Dickson’s lemma would work just fine, at the cost of making the proof slightly longer.

Theorem 4.12. Every weakly l.f.g.u. weakly positive monoid H = (H,⪯) such that the ⪯-irreducibles
are ⪯-atoms, is loft and hence FmF-atomic.

Proof. By Corollary 4.8 and Theorem 4.11(ii), it suffices to show that H is loft. Let x be a ⪯-non-unit
and consider the germ ⟪x⟫H of H at x. To ease the notation, we put K := ⟪x⟫H and K := ⟪x⟫H. Since
H is a weakly l.f.g.u. premonoid, K is f.g.u.; and since H is weakly positive, we get from Remark 2.4(4)
that K is itself weakly positive. It then follows from Theorem 4.7 that there exists a finite A ⊆ I (K) such
that K ∖ K× ⊆ ⟨K×AK×⟩K = ⟨K×AK×⟩H . We claim that every ⪯-factorization of x is ⊑H-equivalent
to an Ax-word, where Ax := A ∩ Ix(H) is a finite subset of I (H).

For, let a = a1 ∗ · · · ∗ an be a ⪯-factorization of x (note that a cannot be the empty word). Since x =

a1 · · · an and, by hypothesis, I (H) = A (H), we have from Proposition 3.5(i) that, for every i ∈ J1, nK,
ai ∈ Ix(H) = Ax(H) = Ax(K) ⊆ A (K). Thus, since A (K) ⊆ K×AK× by Remark 4.9(2), ai = uibivi

for some ui, vi ∈ K× and bi ∈ A, which in turn shows that bi ∈ A ∩ Ix(K) = A ∩ Ix(H). So, arguing as
in Remark 4.9(1), we conclude (as wished) that a1 ∗ · · · ∗ an is ⊑H-equivalent to b1 ∗ · · · ∗ bn (recall from
Remark 2.1(2) that K× ⊆ H×). ■

Corollary 4.13. Every weakly l.f.g.u. strongly positive monoid is FF-atomic.

Proof. Let H = (H,⪯) be a weakly l.f.g.u. strongly positive monoid and write ≈ for the relation of
⪯-equivalence. By Remark 2.4(2), every ⪯-irreducible is a ⪯-atom; and by Theorem 4.12, H is then loft
and FmF-atomic (recall from Remark 2.4(5) that every strongly positive monoid is weakly positive).
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Suppose for a contradiction that H is not FF-atomic. Then, by Theorem 4.11(i), H is not BF-atomic.
So, there is a sequence a1, a2, . . . of non-empty atomic ⪯-factorizations of a certain ⪯-non-unit x ∈ H

with ∥ai∥H < ∥ai+1∥H for each i ∈ N+. On the other hand, the same argument used to prove loftness in
Theorem 4.12 shows that there is a finite set Ax ⊆ Ix(H) = Ax(H) such that every ⪯-factorization a of
x is ⊑H-equivalent to an Ax-word b with ∥a∥H = ∥b∥H and a[j] ≈ b[j] for all j ∈ J1, ∥a∥HK. Therefore,
for each i ∈ N+, there exists an Ax-word bi of the same length as ai such that ai[j] ≈ bi[j] for all j ∈ J1,
∥ai∥HK, which shows that x = πH(ai) ≈ πH(bi) by Remark 2.4(2) and the fact that H is a preordered
monoid. But the finiteness of Ax implies, by Higman’s lemma, that bi is a scattered subword of bj for
some i, j ∈ N+ with i < j and hence ∥bi∥H < ∥bj∥H . Since H is strongly positive, this however means
by Remark 2.4(2) that x ≈ πH(bi) ≺ πH(bj) ≈ x, which is impossible. ■

Remark 4.14. As a complement to Corollary 4.13, note that the premonoid H = (H,⪯) in Remark
4.9(3) (where H is the additive monoid of the non-negative integers) is positive, weakly l.f.g.u, and UF-
atomic (and hence FF-atomic), in spite of it not being strongly positive: Every positive integer n can be
uniquely written as the sum of n ones and 1 is the only ⪯-atom of H. On the other hand, it is clear that
H is FF-factorable but not UF-factorable, since there are finitely many ways to write a positive integer
as a sum of positive integers and every positive integer is, in fact, a ⪯-irreducible.

Strongly positive monoids abound in nature: Some of them have already been discussed in items (2)
and (3) of Examples 2.5, and a few more can be found in [59]. The range of application of Corollary 4.13
is therefore wide.

5. Back to the classical theory

Below, we discuss some applications of the main results from the previous sections to premonoids of the
form (H, |H) in which H is a Dedekind-finite monoid and hence to the classical theory of factorizations.
For, it is perhaps worth recalling from Definition 3.2(6) that we denote by I (H) the set of irreducibles
(that is, |H -irreducibles) and by A (H) the set of |H -atoms; and from Remark 2.1(1) that A (H) coincides
with the set of (ordinary) atoms of H whenever H is Dedekind-finite.

Theorem 5.1. Every Dedekind-finite weakly l.f.g.u. monoid H is factorable. If, in addition, every
irreducible of H is an (ordinary) atom, then H is FmF-atomic.

Proof. By Definition 4.1(4), H is a weakly l.f.g.u. monoid if and only if (H, |H) is a weakly l.f.g.u. pre-
monoid. On the other hand, we have from Example 2.5(1) and the Dedekind-finiteness of H that (H, |H) is
a weakly positive monoid. So, H is a factorable monoid by Corollary 4.8. If, in addition, I (H) = A (H),
then the hypotheses of Theorem 4.12 are satisfied and hence H is FmF-atomic. ■

Corollary 5.2. Every acyclic weakly l.f.g.u. monoid is FmF-atomic.

Proof. Every acyclic monoid is unit-cancellative and hence, by [34, Proposition 2.30], Dedekind-finite.
Moreover, we noted in Example 2.2(1) that the irreducibles of an acyclic monoid are no different than
the (ordinary) atoms. So, the statement follows from Theorem 5.1. ■

In particular, Corollary 5.2 leads to the following generalization of [41, Proposition 2.7.8.4] and [33,
Proposition 3.4], where it is essentially proved (though in a different terminology) that every commutative,
unit-cancellative, l.f.g.u. monoid is FF-atomic.
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Corollary 5.3. Every unit-cancellative, weakly l.f.g.u., commutative monoid is FF-atomic.

Proof. It is obvious that a commutative monoid is acyclic if and only if it is unit-cancellative (cf. Example
5.4(4)). On the other hand, if H is a unit-cancellative commutative monoid, then we have from Example
2.2(1) that an irreducible of H is an (ordinary) atom and hence from [5, Proposition 4.7(v)] that every
|H -factorization is actually a minimal atomic |H -factorization. Stitching the pieces together, we thus see
from Corollary 5.2 that a unit-cancellative, weakly l.f.g.u., commutative monoid is FF-atomic. ■

Further examples of acyclic monoids to which one can apply Corollary 5.2 are listed below:

Examples 5.4. (1) Let f : H → K be a monoid homomorphism with f−1(K×) ⊆ H× and K acyclic.
If x = uxv for some u, v, x ∈ H, then f(u), f(v) ∈ K× and hence u, v ∈ H×, i.e., H is itself acyclic.
Suppose, on the other hand, that K is also commutative (and hence unit-cancellative).

Given a non-unit x ∈ H, we claim that every word in the set π−1
H (x) ∩ F (H ∖H×) is ⊑H-minimal,

where H := (H, |H). For, assume to the contrary that b ⊏H a for some words a, b ∈ F (H ∖H×) such
that πH(a) = πH(b) = x and, to ease notation, put n := ∥a∥H and k := ∥b∥H . Then 1 ≤ k < n and there
is an injective function σ : J1, kK → J1, nK such that b[i] is |H -equivalent to a[σ(i)] for every i ∈ J1, kK.
Since H is acyclic (from the above), this means that b[i] ∈ H×a[σ(i)]H× for each i ∈ J1, kK; and since K

is commutative and monoid homomorphisms send units to units, there is then u ∈ H× such that

f(a[1]) · · · f(a[n]) = f(πH(a)) = f(x) = f(πH(b)) = f(b[1]) · · · f(b[k]) = uf(a[σ(1)]) · · · f(a[σ(k)]).

By unit-cancellativity of K, we thus find that f(a[j]) ∈ K× for some j ∈ J1, nK∖ {σ(1), . . . , σ(k)} (recall
that k < n), which is impossible because a[j] is a non-unit of H and f maps non-units to non-units.

(2) In the notation of Example 4.5(5), the function f : Mn(R) → R : A 7→ detA yields a monoid
homomorphism from H to the monoid K of non-zero elements of R. Since f−1(K×) ⊆ H× and K is
commutative and cancellative, it then follows from Corollary 5.2 and item (1) that H is FF-atomic (recall
the diagram in Remark 3.3(2) and cf. the block “Matrix rings” on p. 531 of [8], where Baeth and Smertnig
show that f is a transfer homomorphism as per [8, Definition 2.1(1)] and hence H is HF-atomic).

(3) Let H = (H,⪯) be a strongly positive monoid with H× = {1H}, and pick u, v, x ∈ H. If 1H ≺ u

or 1H ≺ v, then we get from Remark 2.4(2) that x ≺ uxv, which is enough to conclude that H is acyclic
when considering that 1H ⪯ H (and the only ⪯-unit of H is the identity).

(4) We have already observed in Example 2.2(1) that, in general, an acyclic monoid is unit-cancellative
but not the other way around. Assume, however, that H is a unit-cancellative duo monoid (see Example
2.5(2) for the terminology). If x = uxv for some u, v, x ∈ H, then x = xu′v = uv′x for certain u′, v′ ∈ H

(since H is duo) and hence u, v ∈ H× (because H unit-cancellative and unit-cancellative monoids are
Dedekind-finite): This shows that H is acyclic.

(5) We have from [61, Corollary 4.6] that a unit-cancellative monoid H satisfying both the ACC on
principal left ideals and the ACC on principal right ideals is acyclic and satisfies the ACC on principal
two-sided ideals (cf. Remark 2.6 and references therein).

(6) A Dedekind-finite BF-factorable monoid H is acyclic. For, assume to the contrary that there
exist u, v, x ∈ H with u /∈ H× (resp., v /∈ H×) such that uxv = x. Then a routine induction shows
that unxvn = x for all n ∈ N; and since H is Dedekind-finite, we find that x is a non-unit (or else
uxv ∈ H× and therefore u, v ∈ H×) and hence so are un and xvn (resp., unx and vn). Considering that
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H is factorable (and each non-unit is thus a product of irreducibles), it follows that x = unxvn has a
factorization into n+ 1 or more irreducibles for every n ∈ N+. To wit, H is not BF-factorable (absurd).

Remark 5.5. The condition that the irreducibles of a Dedekind-finite weakly l.f.g.u. monoid H are
(ordinary) atoms, is sufficient but not necessary for H to be FmF-factorable.

In fact, we know from Example 4.5(3) that the reduced power monoid Pfin,1(M) of a monoid M is
loft and weakly l.f.g.u., and becomes a weakly positive monoid under the divisibility preorder. It thus
follows from Theorems 4.7 and 4.11(ii) applied to (Pfin,1(M), |Pfin,1(M)) that Pfin,1(M) is an FmF-factor-
able monoid (which, by the way, complements the conclusions of [5, Theorem 4.13] and [60, Sect. 4.2] on
the atomicity of reduced power monoids). Yet, we noted in the same Example 4.5(3) that Pfin,1(M) is a
Dedekind-finite, weakly l.f.g.u. monoid whose irreducibles are not in general atoms.

Next, we construct an FmF-atomic, f.g., reduced monoid H that (i) has the property that every ir-
reducible is an atom, and (ii) does not satisfy the ACCP (Remark 2.6) and hence is not BF-atomic
(to the contrary of what happens in the classical case with cancellative, f.g., commutative monoids [42,
Proposition 2.7.8.4]).

Example 5.6. Given a set X and a (binary) relation R on the free monoid F (X), we define R♯ as the
smallest monoid congruence on F (X) containing R. This means that u ≡ v mod R♯, for some X-words
u and v, if and only if there are z0, z1, . . . , zn ∈ F (X) with z0 = u and zn = v such that, for each i ∈
J0, n− 1K, there exist X-words pi, qi, q′i, and ri with the following properties:

(i) either qi = q′i, or qi R q′i, or q′i R qi; (ii) zi = pi ∗ qi ∗ ri and zi+1 = pi ∗ q′i ∗ ri.
We denote by Mon⟨X | R⟩ the monoid obtained by taking the quotient of F (X) by the congruence R♯,
write it multiplicatively, and call it a (monoid) presentation.

Now, fix an integer n ≥ 2 and let H be the monoid defined by the presentation Mon⟨X | R⟩, where X

is the 2-element set {x, y} and R := {(x∗n, y ∗ x∗n ∗ y)} ⊆ F (X) × F (X). By [61, Example 4.8], H is
an atomic, reduced, cancellative monoid that does not satisfy the ACCP and each of whose irreducibles
is an atom. On the other hand, H is f.g. So, we gather from Theorem 5.1 that H is FmF-atomic. Yet,
H is not BF-atomic, or else it would satisfy the ACCP by [34, Theorem 2.28(iii) and Corollary 2.29].
(Incidentally, the same presentation (with n = 1 or 2) was considered by A. Geroldinger in [38, p. 969].)

Example 5.6 shows not only that Theorem 5.1 is, in a sense, sharp; but also that the results obtained
in this paper make it possible to draw (non-trivial) arithmetic conclusions on the existence of certain
factorizations in cases where there is no obvious way of resorting to Theorem 2.7. As we are about to
see, things are different if we restrict ourselves to left (or right) duo monoids (Example 2.5(2)).

Lemma 5.7. Given a left duo monoid H, we have Hx1H · · ·HxnH ⊆ Hxσ(1) · · ·xσ(m) for all x1, . . . ,

xn ∈ H and every (strictly) increasing function σ : J1,mK → J1, nK.

Proof. We proceed by induction on m. The base case m = 1 is trivial: For all x1, . . . , xn ∈ H and each
i ∈ J1, nK, we have xiH ⊆ Hxi (by the fact that H is a left duo monoid) and hence

Hx1H · · ·HxnH ⊆ HxiH ⊆ H2xi = Hxi.

Now pick µ ∈ N+, assume inductively that the claim holds for every integer m between 1 and µ, and
fix x1, . . . , xn ∈ H and an increasing function σ : J1, µ + 1K → J1, nK. It is clear that σ(µ) is a positive
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integer (strictly) smaller than n. We can therefore consider the (well-defined) increasing function J1, µK →
J1, σ(µ)K : i 7→ σ(i) and derive from the inductive hypothesis that

Hx1H · · ·HxnH = (Hx1H · · ·Hxσ(µ)H)(Hxσ(µ)+1H · · ·Hxn) ⊆ (Hxσ(1) · · ·xσ(µ))Hxσ(µ+1).

So, using that xσ(1) · · ·xσ(µ)H ⊆ Hxσ(1) · · ·xσ(µ), we conclude that

Hx1H · · ·HxnH ⊆ H2xσ(1) · · ·xσ(µ)xσ(µ+1) = Hxσ(1) · · ·xσ(µ+1),

which, by induction on m, suffices to finish the proof (since µ was an arbitrary positive integer). ■

For the next theorem we say after [51, Sect. 2, p. 328] that a preset (X,⪯) satisfies the Erdős-Rado
condition if, for every sequence x1, x2, . . . of elements of X, there exist i, j ∈ N+ with i < j and xi ⪯ xj

(we use “preset” as a shortening of “preordered set”). We gather from [51, Theorems 2.1 and 4.3] that, if
(X,⪯) satisfies the Erdős-Rado condition, then so does the preset (F (X),⪯X), where ⪯X is the preorder
on (the carrier set of) the free monoid F (X) defined by u ⪯X v if and only if u and v are X-words for
which there is a (strictly) increasing function σ : J1, ∥u∥XK → J1, ∥v∥XK such that u[i] ⪯ v[σ(i)] for each
i ∈ J1, ∥u∥XK. This is a generalization of Higman’s lemma (i.e., Theorem 4.10), herein referred to as
Higman’s full lemma.

Theorem 5.8. Every left duo, l.f.g.u. monoid satisfies the ACCP.

Proof. Let H be a left duo, l.f.g.u. monoid. By Remark 2.6, H satisfies the ACCP if and only if so
does JxKH for every x ∈ H. Moreover, every divisor-closed submonoid K of H is itself left duo: For all
a, b ∈ K, we have ab = ca for some c ∈ H (because aK ⊆ aH ⊆ Ha), which yields c ∈ K and hence
aK ⊆ Ka (because K is divisor-closed in H and we have c |H ab ∈ K). So, there is no loss of generality
in assuming (as we do) that H is f.g.u.

Accordingly, let a1, . . . , an be an enumeration of a non-empty finite A ⊆ H such that H = ⟨A′⟩H ,
where A′ := H×AH×; and suppose for a contradiction that H does not have the ACCP, viz., there exists
an infinite sequence x1, x2, . . . of non-units of H that is (strictly) decreasing with respect to the divisibility
preorder |H . For each k ∈ N+, there is then a non-empty A′-word ak such that xk = πH(ak), where πH is
the factorization homomorphism of H; and the finiteness of A guarantees that the preset (A′,⪯) satisfies
the Erdős-Rado condition, where ⪯ is the preorder on A′ defined by a ⪯ b if and only if a ∈ A′ and b ∈
H×aH×. By Higman’s full lemma applied to (A′,⪯), we thus find that there are h, k ∈ N+ with h < k

and a (strictly) increasing function σ : J1,mK → J1, nK such that ak[σ(i)] ∈ H×ah[i]H
× ⊆ Hah[i]H for

each i ∈ J1,mK, where m := ∥ah∥H and n := ∥ak∥H . So, we get from Lemma 5.7 (applied twice) that

ak[1] · · · ak[n] ∈ Hak[σ(1)] · · · ak[σ(m)] ⊆ Hah[1]H · · ·Hah[m]H ⊆ Hah[1] · · · ah[m],

which means that xk = πH(ak) ∈ HπH(ah) = xh and hence xh |H xk. This is however impossible, as we
have assumed that x1, x2, . . . is a |H -decreasing sequence. ■

Corollary 5.9. In a left duo, l.f.g.u. monoid, every non-unit factors as a product of irreducibles.

Proof. By Theorem 2.7 and Remarks 2.1(1) and 2.6, every non-unit of a Dedekind-finite monoid satisfying
the ACCP factors as a product of irreducibles. On the other hand, it is easily checked that every left duo
monoid H is Dedekind-finite (if 1H = uv for some u, v ∈ H, then 1H ∈ Hu and hence u ∈ H×). So, the
conclusion follows at once from Theorem 5.8. ■
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