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Abstract
In this paper, we prove foliated Schwarz symmetry of solutions to a cooperatively 
coupled system of equations involving nonlocal operators. Here, the class of nonlo-
cal operators covers in particular the case of the fractional Laplacian. Moreover, we 
give an explicit example of a nonlocal nonlinear system, in which our result can be 
applied.

Keywords Nonlocal operator · Axial symmetry · Maximum principle for systems

1 Introduction

In the following, we investigate symmetry properties of solutions of a system of 
equations in bounded radial domains. More precisely, for m ∈ ℕ we investigate 
bounded continuous solutions of

where Ω is a bounded, radial, connected open subset of  ℝN , N ≥ 2 . Moreo-
ver, f1,… , fm ∈ C1([0,∞) ×ℝm) are nonlinearities to be specified later and Ii , 
i = 1,… ,m are nonlocal operators, which for u ∈ C2(ℝN) ∩ L∞(ℝN) are given by

(1)

{
Ii ui = fi(|x|, u1,… , um) in Ω, i = 1,… ,m

u1 = ⋯ = um = 0 in ℝN⧵Ω
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Here, ki ∶ ℝN⧵{0} → [0,∞) for i = 1,… ,m are kernel functions, which are each 
given by ki(z) = ki,0(|z|) , z ∈ ℝN⧵{0} for a monotone decreasing (in the broad sense) 
function ki,0 ∶ (0,∞) → [0,∞) satisfying

These conditions imply that the kernel functions ki are not in L1(ℝN) and satisfy 
the usual Lévy condition ∫

ℝN min{1, |z|2} ki(z) dz < ∞ . In particular, this implies 
the ki satisfy a certain singular behavior for z → 0 . We emphasize moreover that 
the ki can be different for each  i. Hence, these assumptions on the ki cover also 
the particular case, where Ii = (−Δ)si with possibly different si ∈ (0, 1) by setting 
ki,0(r) = cN,si r

−N−2si for i = 1,… ,m . Here cN,s > 0 for s ∈ (0, 1) is a normalization 
constant given by

The value of cN,s is chosen to make the fractional Laplacian (−Δ)s the pseudodiffer-
ential operator whose symbol is |�|2s (see e.g. [4, Section 3.1] or [8, Proposition 3.3] 
for details). The equality of the two values given in (4) is shown in [12, 16] (see also 
[14]). For further information on the operators Ii and the definition of weak solution, 
which we use in this paper, we refer to Sect. 2.1 below: see, in particular, (16) (see 
also [13, 19]).

Symmetry properties of solutions to nonlocal nonlinear problems have been 
studied for one or more equations in the case where I is the fractional Lapla-
cian in [10, 11, 14, 18], while in [19] the question of symmetries to solutions 
was studied for a general class of nonlocal operators. However, if Ω is not a ball 
but rather an annulus or the solutions change sign, then in general it is no longer 
true that a solution of (1) must be radial even in the case where I is a local opera-
tor and m = 1 . However, under some suitable assumptions on the equation or the 
system, some axial symmetry can still be achieved. In the case where m = 1 and 
I is a local operator this has been studied in [24, 25, 30], whereas symmetry for 
systems have been studied in [5, 6] (see also there references in there). For the 
nonlocal case, the axial symmetry of solutions has been studied in [17] for m = 1.

In the present paper we face the difficulties that arise when two or more equa-
tions interact with each other, thus dropping the restriction to the case of one sca-
lar equation, which was in effect in [17]. Furthermore, unlike [10, 11, 14, 18, 19], 
we also take annular domains into consideration, and we allow the solutions to 
change sign. To be more specific, we consider a particular kind of axial symmetry 

(2)
Ii u(x) ∶= p.v.∫ℝN

(u(x) − u(y)) ki(x − y) dy

∶= lim
�→0+ ∫ℝN⧵B� (0)

(u(x) − u(y)) ki(x − y) dy, x ∈ ℝN .

(3)
∫

1

0

ki,0(r) r
N−1 dr = ∞, ∫

1

0

ki,0(r) r
N+1 dr < ∞, and ∫

∞

1

ki,0(r) r
N−1 dr < ∞.

(4)cN,s =
22ssΓ(

N

2
+ s)

�
N

2 Γ(1 − s)
=
(
∫ℝN

1 − cos x1

|x|N+2s dx
)−1

.
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called foliated Schwarz symmetry, which was defined in [29, Definition  2.4], 
based on an idea in [26]. We refer to the general survey [33], in particular Sec-
tion 2.3. Note that the literature on the subject is large and still growing: thus, our 
reference list is far from being complete.

Let Ω ⊂ ℝN , N ≥ 2 , be a radial domain, and take a unit vector 
p ∈ SN−1 ∶= {x ∈ ℝN ∶ |x| = 1} . A function u ∶ Ω → ℝ is called foliated Schwarz 
symmetric with respect to p in Ω , if for every r > 0 with rp ∈ Ω and for every c ∈ ℝ , 
the restricted superlevel set {x ∈ r SN−1 ∶ u(x) ≥ c} is equal to r SN−1 or a geodesic 
ball in the sphere r SN−1 centered at rp.

We simply call u foliated Schwarz symmetric, if u has this property for some 
p ∈ SN−1.

We give an equivalent definition in Sect. 2.2.1 below (see also [30, Proposition 
3.3]), which we use in our proof. Note that if u ∶ ℝN → ℝ is such that u|Ω is foliated 
Schwarz symmetric with respect to some p for some radial set Ω ⊂ ℝN , then u�Ω is 
axially symmetric with respect to the axis ℝ ⋅ p and nonincreasing in the polar angle 
� = arccos(

x

|x| ⋅ p).
Our main result on the symmetry properties of solutions of (1) is the following.

Theorem 1.1 Let Ω ⊂ ℝN be a bounded radial domain and m ∈ ℕ . For i = 1,… ,m 
assume that fi ∈ C1([0,∞) ×ℝm) and fi(r, u1,… , um) satisfies

Let u1,… , um ∶ ℝN → ℝ be continuous bounded functions satisfying (1) in weak 
sense. If

then there is p ∈ SN−1 such that u1,… , um are foliated Schwarz symmetric in Ω with 
respect to p and strictly decreasing in the polar angle.

Clearly, assumption (5) is restricting, which is due to the fact that we did not 
assume any further connection between the fi and uj . In the following variant of 
Theorem 1.1 we weaken the assumption on fi but assume positivity of the uj.

Theorem 1.2 Let Ω ⊂ ℝN be a bounded radial domain and m ∈ ℕ . For i = 1,… ,m 
assume that fi ∈ C1([0,∞) ×ℝm) and fi(r, u1,… , um) satisfies

Let u1,… , um ∶ ℝN → ℝ be continuous bounded functions satisfying (1) in weak 
sense. If uj > 0 in Ω for j = 1,… ,m and (6) holds, then there is p ∈ SN−1 such that 

(5)
𝜕

𝜕uj
fi > 0 on (0,∞) ×ℝm, i, j ∈ {1,… ,m}, i ≠ j.

(6)
uj(x1, x

�) ≥ uj(−x1, x
�) for all x1 > 0, x� ∈ ℝN−1, j = 1,… ,m, and

there is x1 > 0, x� ∈ ℝN−1 with u1(x1, x
�) > u1(−x1, x

�),

(7)
𝜕

𝜕uj
fi > 0 on (0,∞)m+1, i, j ∈ {1,… ,m}, i ≠ j
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u1,… , um are foliated Schwarz symmetric in Ω with respect to p and strictly decreas-
ing in the polar angle.

The proof of Theorems 1.1 and 1.2 follows from the rotating plane method for 
nonlocal operators developed in [17], which we adjust here to the case of systems. 
Theorems 1.1 and 1.2 then follow from Theorem 4.1 below.

Remark 1.3 Some remarks are necessary on the assumptions in Theorems 1.1 and 
1.2. 

1. Assumption (5), or assumption (7) with the positivity of the uj , can be weakened 
further. Indeed, we only need a kind of strong coupling condition on a linearized 
system connected with (1) (see Sect. 3 below).

2. Condition (6) is necessary in order that u1,… , um are foliated Schwarz symmetric 
with respect to any p = (p1,… , pN) with p1 > 0 , and strictly decreasing in the 
polar angle. Of course, the second requirement in (6) is not satisfied if u1 is foli-
ated Schwarz symmetric with respect to some p with p1 = 0.

3. Assumption (6) clearly can be rotated to an arbitrary hyperplane with respect to 
which the first inequality holds. Moreover, the function u1 in the second assump-
tion of (6) can be replaced by any uj . For the general formulation, see Theorem 4.1 
below.

4. We note that the connectedness of Ω is not necessary if the ki,0 are strictly decreas-
ing. Indeed, this assumption follows from the kind of strong maximum principle 
used in our proof (see also Remark 3.3).

It is not obvious under which circumstances a solution u1,… , um can be found 
such that (6) is satisfied. In the following, we give an explicit example, covering the 
case of the fractional Laplacian, where Theorem  1.2 can be applied. For this, we 
need the first eigenvalue of the operator Iki in an open subset Ω of ℝN , given by

where Eki denotes the bilinear form associated to the kernel ki and Dki
(Ω) is the asso-

ciated nonlocal Dirichlet domain, see (11) and (12) below. Recall from [21] that 
𝜆1,ki (Ω) > 0 for i = 1,… ,m if Ω is bounded in one direction. The following exist-
ence statement is related to the Brézis–Nirenberg problem, which for systems with 
the fractional Laplacian has been studied in [9]. In the following statement, we 
consider a more general class of nonlocal operators, which includes the fractional 
Laplacian and deals with the geometry of the pair of solutions to the system.

Theorem 1.4 For i = 1, 2 let the function ki,0 in (3) be strictly decreasing and, for 
some 0 < s ≤ 𝜎 < 1 , � ∈ (0, 1) , and c > 0 , satisfy

(8)�1,ki (Ω) ∶= inf
u∈Dki

(Ω)⧵{0}

Eki
(u, u)

‖u‖2
L2(Ω)

,
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Furthermore, let Ω ⊂ ℝN be a bounded radial domain, a1, a2 ∈ L∞(ℝ) with 
‖a+

i
‖L∞(ℝ) < 𝜆1,ki (Ω) for i = 1, 2 , and let 1 < q <

N

N−2s
 . If a1 ≠ a2 , then there are two 

continuous, bounded functions u1, u2 ∶ ℝN → ℝ , u1 ≠ u2 , which are positive in Ω 
and satisfy in weak sense

Moreover, u1 and u2 are foliated Schwarz symmetric with respect to some p ∈ SN−1 
and, if u1 and u2 are not radial, then they are strictly decreasing in the polar angle.

The paper is organized as follows. In Sect. 2, we present our notation and recall 
known statements on the nonlocal operators we use. Moreover, we introduce the 
notation for systems and recall the properties and definitions of foliated Schwarz 
symmetry. In Sect.  3, we state and prove variants of maximum principles, which 
we use in Sect. 4 to derive Theorems 1.1 and 1.2. The proof of Theorem 1.4 can be 
found in Sect. 5.

2  Notation and preliminaries

In the following we use N ∈ ℕ to denote the dimension. For A,B ⊂ ℝN non-
empty measurable sets we denote by �A ∶ ℝN → ℝ the characteristic func-
tion and |A| the Lebesgue measure. The notation B ⊂⊂ A means that B is com-
pact and contained in the interior of A. We denote dist(A,B) ∶= infa∈A, b∈B |a − b| 
and as usual dist(x,A) ∶= dist({x},A) for x ∈ ℝN . For r > 0 we denote 
Br(A) ∶= {x ∈ ℝN ∶ dist(x,A) < r} and then Br(x) denotes the ball of radius r for 
x ∈ ℝN . Moreover, we fix SN−1 ∶= �B1(0) = {x ∈ ℝN ∶ |x| = 1} to denote the 
N-dimensional sphere.

As usual, for A open, Cm(A) (resp. Cm(A) ) denotes the space of m-times continu-
ously differentiable functions in A (resp. A ) and C0,1(A) denotes the space of Lip-
schitz functions. Cm

c
(A) and C0,1

c
(A) denotes respectively those functions in Cm(A) or 

C0,1(A) , which have compact support in A. In the following, if X(A) is some func-
tion space and u ∈ X(A) is a function, we always mean that u ∶ ℝN → ℝ is such that 
�A u ∈ X(A) and �ℝN⧵A u ≡ 0 . For instance, if u ∈ L2(A) , then u ∈ L2(ℝN) and u = 0 
on ℝN⧵A.

Finally, for a function u ∶ A → ℝ we use u+ ∶= max{u, 0} and u− ∶= −min{u, 0} 
to denote the positive and negative part of u respectively, so that u = u+ − u−.

(9)

1

c
r−1−2s ≤ ki,0(r) ≤ cr−1−2� for r ∈ (0, 1) and ki,0(r) ≤ cr−1−2� for r ≥ 1.

(10)

⎧
⎪⎨⎪⎩

I1 u1 = a1(�x�) u1 + �u2�q �u1�q−2 u1 in Ω

I2 u2 = a2(�x�) u2 + �u1�q �u2�q−2 u2 in Ω

u1 = u2 = 0 in ℝN⧵Ω.
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2.1  On the operator and associated spaces

Let k ∶ ℝN⧵{0} → [0,∞) be a radial and radially decreasing function. That is 
k(z) = k0(|z|) , z ∈ ℝN⧵{0} for a monotone decreasing function k0 ∶ (0,∞) → [0,∞) 
satisfying (3). We denote formally the bilinear form associated to k by

For Ω ⊂ ℝN open, this bilinear form is well-defined on

It follows that Dk(Ω) is a Hilbert space with scalar product

where ⟨⋅, ⋅⟩2 denotes the usual L2 scalar product. By standard methods (see 
e.g. [19, 20]) it follows that Ek is associated to a (nonlocal) operator I, which on 
C2(ℝN) ∩ L∞(ℝN) is represented by (2) and it holds

We note that the embedding Dk(Ω) → L2(Ω) is locally compact in the sense that 
Dk(ℝ

N) ∋ u ↦ �B u ∈ L2(ℝN) is compact for any bounded open set K ⊂ ℝN (see 
[21, Theorem 1.1]). In the particular case, where Ω is bounded in one direction, say 
Ω ⊂ (−a, a) × Ω for some a > 0 , we have (see [21, Proposition 1.7], [13, Lemma 
2.7])

and moreover (see [21, Proposition 1.7], [19, Lemma 2.1])

It hence follows that in this case Ek is a scalar product and the induced norm is 
equivalent to ⟨⋅, ⋅⟩2 . In particular, if Ω is bounded, then Dk(Ω) → L2(Ω) is compact 
and �1(Ω) corresponds to the first eigenvalue of I.

In the following, we understand solutions in the weak sense, that is, given 
f ∈ L2(ℝN) , we say that u ∈ Dk(Ω) is a solution of

if for all � ∈ Dk(Ω) we have

(11)Ek(u, v) ∶=
1

2 ∫ℝN ∫ℝN

(u(x) − u(y)) (v(x) − v(y)) k(x − y) dy.

(12)Dk(Ω) ∶= {u ∈ L2(Ω) ∶ Ek(u, u) < ∞}.

⟨u, v⟩k ∶= ⟨u, v⟩2 + Ek(u, v), u, v ∈ Dk

⟨Iu, v⟩2 = ∫ℝN

Iu(x) v(x) dx = Ek(u, v) for allu ∈ C2(ℝN) ∩ L∞(ℝN), v ∈ Dk(ℝ
N).

(13)𝜆1,k(Ω) ∶= inf
u∈Dk(Ω)⧵{0}

Ek(u, u)

‖u‖2
L2(Ω)

> 0

(14)�1,k(Ω) → ∞ for either a → 0 or |Ω| → 0.

(15)Iu = f in Ω and u = 0 in ℝN⧵Ω

Ek(u,�) = ∫Ω

f (x)�(x) dx.
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Accordingly, the m-tuple (u1,… , um) is called weak solution of (1), if for i = 1,… ,m 
we have ui ∈ Dk(Ω) and

for all �i ∈ Dki
(Ω) , whenever the right-hand side is well defined.

Finally, in our analysis, we use the rotating plane method and linearize the system 
of equations. Our symmetry results then follow from an application of different max-
imum principles for supersolutions. For this, we introduce a function space extend-
ing Dk(Ω) . Let Ω ⊂ ℝN open and denote

Clearly by definition we have for A ⊂ B ⊂ ℝN open

The following Lemma collects all information on Vk(Ω) needed in this paper.

Lemma 2.1 (See [19] and Lemma 3.1, Lemma 3.2 in [20]) Let Ω ⊂ ℝN open. 

1. Ek is well-defined on Vk(Ω) ×Dk(Ω) and

2. u ∈ Vk(Ω) implies u±, |u| ∈ Vk(Ω).
3. If u ∈ Dk(Ω) , then Ek(u+, u−) is well defined and

Moreover, if k0 is strictly decreasing, then equality holds in these inequalities if 
and only if u = u+ or u = u− a. e. in ℝN

Furthermore, if Ω is in addition bounded and u ∈ Vk(Ω) , then

4. u�ℝN⧵Ω ≡ 0 , then u ∈ Dk(Ω).
5. u ≥ 0 on ℝN⧵Ω , then u− ∈ Dk(Ω).

The additional assertion in Lemma 2.1.3 follows immediately from the proof in 
[19]. Based on Lemma 2.1 we say u ∈ Vk(Ω) satisfies for some f ∈ L2(Ω) in weak 
sense

if u ≥ 0 on ℝN⧵Ω and for all v ∈ Dk(Ω) , v ≥ 0 we have

(16)Eki
(ui,�i) = ∫Ω

fi(|x|, u1, u2)�i(x) dx

Vk(Ω) ∶=

{
u ∶ ℝN → ℝ measurable ∶

𝜌k(u,Ω) ∶= ∫Ω ∫
ℝN

(u(x) − u(y))2 k(x − y) dx dy < ∞

}
.

Dk(A) ⊂ Dk(B) ⊂ Dk(ℝ
N) ⊂ Vk(ℝ

N) ⊂ Vk(B) ⊂ Vk(A).

Ek(u, v) ≤ (2 +
√
2) �k(u,Ω)

1

2 Ek(v, v)
1

2 for u ∈ Vk(Ω), v ∈ Dk(Ω).

Ek(u
+, u−) ≤ 0 and also Ek(|u|, |u|) ≤ Ek(u, u).

(17)Iu ≥ f in Ω and u ≥ 0 in ℝN⧵Ω
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We also call u in this case a supersolution of (15). Similarly, we call u a subsolution 
of (15) if −u satisfies in weak sense (17).

2.1.1  On the notation for systems

In the following, let M be any set, m ∈ ℕ , and Ψ ∶ M → ℝm , where we denote 
the coordinates of Ψ with �1,… ,�m ∶ M → ℝ . We say Ψ ≥ 0 (or > 0 ), if �i ≥ 0 
(or > 0 ) for i = 1,… ,m and we say Ψ ⪈ 0 , if Ψ ≥ 0 and there is x ∈ M and 
i ∈ {1,… ,m} such that 𝜓i(x) > 0 . Furthermore, we denote Ψ± ∶= (�±

1
,… ,�±

m
).

We fix k ∶= (k1,… , km) , where ki ∶ ℝN⧵{0} → [0,∞) , i = 1,… ,m are functions 
such that ki(z) = ki,0(|z|) for a monotone decreasing function ki,0 ∶ (0,∞) → [0,∞) 
satisfying (3). Denote for Ω ⊂ ℝN open

For U = (u1,… , um) ∈ Vk(Ω) , V = (v1,… , vm) ∈ Dk(Ω) we write

and similarly, for U ∈ (L2(Ω))m , ‖U‖2
L2(Ω)

=
∑m

i=1
∫
Ω
(ui)

2 dx.
Hence, a solution (u1,… , um) ∈ Dk(Ω) of

for i = 1,… ,m , where f1,… , fm ∈ C1([0,∞) ×ℝm) can be rewritten in one equa-
tion by setting U = (u1,… , um) ∈ Dk(Ω) , F(r,U) =

(
fi(r, u1,… , um)

)
1≤i≤m and 

IU = (I1 u1,… , Im um) . The system (18) then reads

and U solves (19) in the weak sense if for all V ∈ Dk(Ω) we have

whenever the right-hand side exists.

Ek(u, v) ≥ �Ω

f (x) v(x) dx.

Dk(Ω) ∶= Dk1
(Ω) ×⋯ ×Dkm

(Ω) and Vk(Ω) ∶= Vk1
(Ω) ×⋯ × Vkm

(Ω).

Ek(U,V) ∶=

m∑
i=1

Eki
(ui, vi).

(18)

{
Ii ui = fi(|x|, u1,… , um) in Ω

ui = 0 in ℝN⧵Ω

(19)

{
IU = F(|x|,U) in Ω

U = 0 in ℝN⧵Ω.

Ek(U,V) = ∫Ω

F(|x|,U(x)) ⋅ V(x) dx,
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2.2  Notation for the reflection of a hyperplane

In the following let Ω ⊂ ℝN be an open radial set. For e ∈ SN−1 we set 
He ∶= {x ∈ ℝN ∶ x ⋅ e > 0} and Ωe ∶= Ω ∩ He . Moreover, we let �e ∶ ℝN → ℝN , 
�e(x) ∶= xe ∶= x − 2(x ⋅ e)e be the reflection at Te ∶= �He ; for a function 
u ∶ ℝN → ℝm , m ∈ ℕ we let ue ∶= u◦�e be the reflected function at Te.

For U ∈ Vk(Ω) we say that He is dominant, if U ≥ Ue in He and we say He is 
strictly dominant, if U ⪈ Ue in He . Moreover, we note that

Lemma 2.2 Let Ω ⊂ ℝN be an open radial set, e ∈ SN−1 , and U ∈ Vk(Ω) . Then

1. Ue ∈ Vk(Ω).
2. If U ∈ Dk(Ω) satisfies Ue = −U , then �He

U ∈ Dk(Ωe).
3. Let U ∈ Vk(Ω) such that Ue = −U and U ≥ 0 on He⧵Ω . If Ω is bounded, then 

�He
U− ∈ Dk(Ωe) and

Proof 1. follows immediately from the definition of the function space since 
k(ze) = k(z) for all z ∈ ℝN , e ∈ SN−1 . 2. and 3. follow from [17, Lemma 3.2] with 
(13) noting that we have

  ◻

Lemma 2.3 Let m ∈ ℕ , Ω ⊂ ℝN be an open bounded radial set, 
F ∈ C1([0,∞) ×ℝm) , and let U ∈ Dk(Ω) with u1,… , um ∈ L∞(Ω) be a solution of

Let e ∈ SN−1 and W ∶= We ∶= U − Ue . Then We ∈ Dk(Ω) is a solution of the linear 
problem

which satisfies in addition W = −We . Here, C(x) = (cij(x))1≤i,j≤m where cij ∈ L∞(Ω) , 
i, j = 1,… ,m is given by

Ek(U,�He
U−) ≤ −Ek(�He

U−,�He
U−) ≤ − min

i∈{1,…,m}
�1,ki (Ωe) ‖U−‖2

L2(Ωe)
.

Ek(U, �He
U−) =

m�
i=1

Eki
(ui, �He

u−
i
) ≤ −

m�
i=1

Eki
(�He

u−
i
, �He

u−
i
)

≤ − min
i∈{1,…,m}

�1,ki (Ωe)�Ω

m�
i=1

(u−
i
)2 dx = − min

i∈{1,…,m}
�1,ki (Ωe) ‖U−‖2

L2(Ωe)
.

IU = F(|x|,U) in Ω; U = 0 inℝN⧵Ω.

(20)

{
IW = C(x)W in Ω;

W = 0 in ℝN⧵Ω,
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Proof Let e ∈ SN−1 , W = (w1,… ,wm) as in the statement and fix i ∈ {1,… ,m} . 
Then clearly W = −We and by Lemma 2.2 we have W ∈ Dk(Ω) and we have in weak 
sense in Ω

where we have used the mean value theorem.   ◻

2.2.1  Foliated Schwarz symmetry

Denote by H  the set of open half spaces in ℝN . Give u ∶ ℝN → ℝ , the polarization 
uH ∶ ℝN → ℝ of u with respect to H ∈ H  is given by

where �H(x) denotes the reflection of x at �H . For U = (u1,… , um) ∶ ℝN → ℝm and 
H ∈ H  we denote similarly UH ∶ ℝN → ℝm by UH ∶= ((u1)H ,… , (um)H) . Clearly, 
U ≥ Ue if and only if U = UHe

 . The following Proposition relates the polarization of 
a function with the property that this function is foliated Schwarz symmetric.

Proposition 2.4 (Proposition 3.3, [30]) Let Ω ⊂ ℝN be an open radial set and let P 
be a set of functions u ∶ ℝN → ℝ , which are continuous. Moreover, let

Assume that there is e0 ∈ M such that the following is true:

For all two dimensional subspaces V ⊂ ℝN with e0 ∈ V  there are e+, e− ∈ M ∩ V  , 
e+ ≠ e− , which are in the same connected component of M ∩ V  and satisfy u = ue+ 
and u = ue− for every u ∈ P.

Then there is p ∈ SN−1 such that for every connected component D on Ω the func-
tions u�D for u ∈ P are foliated Schwarz symmetric with respect to p.

Proposition 2.4 is essential in our proofs and we apply it to the family 
P = {u1,… , um} , where (u1,… , um) ∈ Dk(Ω) ∩ (C0(ℝN))m solves (1). The assump-
tion of the proposition is verified with the rotating plane method based on the notation 

(21)cij(x) = ∫
1

0

�

�uj
fi(|x|, Ue + t(U − Ue)) dt, x ∈ Ω.

Ii wi = fi(|x|,U) − fi(|x|,Ue) = ∫
1

0

�

�U
fi(|x|, Ue + t(U(x) − Ue(x))) dt ⋅ (U(x) − Ue(x))

= ci1(x)w1 +⋯ + cim(x)wm,

(22)uH(x) =

{
max{ u(x), u(�H(x)) } x ∈ H;

min{ u(x), u(�H(x)) } x ∈ ℝN⧵H,

M ∶= {e ∈ SN−1 ∶ u = uHe
on Ωe for allU ∈ P}.
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of Sect. 2.2. We note that the polarization of a function in Dk(Ω) remains in Dk(Ω)

—we include a statement of this fact for the reader’s convenience in Lemma 5.7 below.

3  Linear systems and the maximum principle

In the following we collect maximum principles needed for our proofs for linear 
systems of equations. Here, the problems are stated in a half space and the defi-
nition of supersolution is adjusted to the oddness of the solution with respect to a 
hyperplane as presented in Lemma 20. In the following, let as above H  be the set 
of half spaces in ℝN and fix H ∈ H  and D ⊂ H , an open bounded set. We denote 
the reflection at �H by �H . Moreover, let cij ∈ L∞(D) , i, j = 1,… ,m be given and 
denote C(x) ∶= (cij(x))1≤i,j≤m . The following maximum principles are for functions 
U ∈ Vk(D) such that U = −U◦�H and

We also say, that U satisfies in weak sense

We call the linear system (23) weakly coupled (in D), if

Moreover, we call the linear system (23) strongly coupled, if it is weakly coupled 
and

Proposition 3.1 (Small volume maximum principle for systems) Let c∞ > 0 and 
H ∈ H  . Then there is 𝛿 > 0 such that for any D ⊂ H open bounded with |D| < 𝛿 the 
following holds. If cij ∈ L∞(D) , i, j = 1,… ,m are weakly coupled and with cij ≤ c∞ 
for i, j = 1,… ,m , then any function U ∈ Vk(D) satisfying (23) satisfies U ≥ 0 in D.

Proof For m = 1 see [19, Proposition 3.5]. The general case follows simi-
larly. Indeed, let c∞ > 0 be given and by (14) we may fix 𝛿 > 0 such that 
Λ1(D) ∶= mini∈{1,…,m} 𝜆1,ki (D) > 2m−1c∞ for all D ⊂ H with |D| < 𝛿 . Moreover, by 
Lemma 2.2 we may choose W = �H U− ∈ Dk(D) as a suitable test function and we 
have with Lemma 2.2 and the weak coupling assumption

Ek(U,V) ≥ �Ω

C(x)U(x) ⋅ V(x) dx.

(23)

⎧⎪⎨⎪⎩

IU ≥ C(x)U(x) in D

U ≥ 0 in H⧵D

U = U◦�H in ℝN

cij ≥ 0 for all i, j such that i ≠ j.

for all i, j there is a compact set K ⊂ D with |K| > 0 and essinfK cij > 0.
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Hence

which is only possible if U− = 0 a.e. on D.   ◻

Proposition 3.2 (Strong maximum principle for systems) Let H ∈ H  , D ⊂ H be a 
domain, and let cij ∈ L∞(D) , i, j = 1,… ,m be strongly coupled. Then for any func-
tion U ∈ Vk(D) satisfying in weak sense (23) with U ≥ 0 in H we have either U ≡ 0 
in D or U > 0 in D in the sense that

Proof For m = 1 see [19, Proposition 3.6]. For m ∈ ℕ arbitrary, we first note that for 
any i = 1,… ,m we have in weak sense

so that ui ≡ 0 in D or ui > 0 in D by [19, Proposition 3.6]. If U ≢ 0 in D, then there 
is at least one i ∈ {1,… ,m} such that ui ≢ 0 in D. But then ui > 0 in D (in the essen-
tial sense). Next, let j ∈ {1,… ,m} , j ≠ i and assume by contradiction that uj ≡ 0 in 
D. Then for v ∈ Dkj

(D) , v ≥ 0 we have

− Λ1(D) ‖U−‖2
L2(D)

≥ −Ek(�H U−, �H U−) ≥ Ek(U, �H U−) ≥ �D

C(x)U ⋅ U− dx

=

m�
i,j=1

�D

cij(x) ui u
−
j
dx

= −

m�
i=1

�D

cii(x) (u
−
i
)2 dx +

m�
i, j = 1

i ≠ j

�D

cij(x) (u
+
i
− u−

i
) u−

j
dx

≥ −c∞

m�
i=1

�D

(u−
i
)2 dx − c∞

m�
i, j = 1

i ≠ j

�D

u−
i
u−
j
dx

= −c∞ �D

� m�
i=1

u−
i

�2
dx ≥ −2m−1 c∞ ‖U−‖2

L2(D)
.

(2m−1 c∞ − Λ1(D)) ‖U−‖2
L2(D)

≥ 0,

essinfK ui > 0 for i = 1,… ,m and all compactK ⊂ D.

Ii ui ≥
m∑
j=1

cij(x) uj ≥ cii(x) ui inD,

(24)

Ekj
(uj, v) ≥

m∑
k=1

�D

ckj(x) uk v dx ≥ �D

cjj(x) uj v + cij(x) ui v dx = �D

cij(x) ui v dx.
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Since there is a compact set K ⊂ D with |K| > 0 , essinfK cij > 0 , and also 
essinfK ui > 0 , and moreover, there is v ∈ Dkj

(D) ∩ C2
c
(D) , v ≥ 0 with v ≡ 1 on K, it 

follows that by (24) we have

where we have used that uj(x) = uj(�H(x)) for all x ∈ H since U solves (23). Clearly, 
this however is a contradiction and hence uj ≡ 0 in D is impossible. Thus uj > 0 in 
D by [19, Proposition 3.6] and since j was arbitrary the statement of the Proposition 
follows.   ◻

Remark 3.3 We note that the connectedness of D in Proposition 3.2 is not needed, if 
for i = 1,… ,m the functions ki,0 are strictly decreasing and hence ki > 0 in ℝN⧵{0}.

Remark 3.4 We emphasize that the conclusions of Propositions 3.1 and 3.2 also fol-
low if U ∈ Vk(D) satisfies IU ≥ C(x)U in D and U ≥ 0 on ℝN⧵D . The proof in this 
case is similar, but simpler.

4  Proof of the symmetry result

Using the notation of the previous sections, Theorems 1.1 and 1.2 follow from

Theorem  4.1 Let m ∈ ℕ , Ω ⊂ ℝN be a bounded radial domain, and assume that 
F ∈ C1([0,∞)×ℝm,ℝm) . Let U ∈ Dk(Ω) be a bounded continuous solution of (19), 
and assume that there is e0 ∈ SN−1 such that U ≥ Ue0

= U◦�e0 in Ωe0
 in the sense 

that U(x) ≥ Ue0
(x) for all x ∈ Ωe0

 . Suppose, further, that there exist i ∈ {1,… ,m} 
and x ∈ Ωe0

 such that ui(x) > ui(𝜎e0 (x)) , hence U ⪈ Ue0
 . If either (5) holds, or U > 0 

in Ω and (7) is satisfied, then there is p ∈ SN−1 such that U is foliated Schwarz sym-
metric with respect to p and strictly decreasing in the polar angle.

Proof Denote We ∶= U − Ue for e ∈ SN−1 and note that W satisfies in weak sense

where C(x) = (cij(x))1≤i,j≤m with entries cij(x) as in  (21). Note that by our assump-
tions there is c∞ > 0 such that

0 < Ekj
(uj, v) = −�D �ℝN⧵D

uj(y) v(x) k(x − y) dy dx

= −�D �H⧵D

uj(y) v(x) k(x − y) dydx − �D �H

uj(𝜎H(y)) v(x) k(x − 𝜎H(y)) dy dx

= −�D �H⧵D

v(x) uj(y) [k(x − y) − k(x − 𝜎H(y))] dy dx ≤ 0,

(25)

⎧⎪⎨⎪⎩

IWe = C(x)We in Ω

We = 0 in ℝN⧵Ω

We = −We◦�e in ℝN ,
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If (5) holds, or if U > 0 in Ω and (7) is satisfied, then the system (25) is strongly 
coupled.

Step 1: We claim that

Note that We0
⪈ 0 in Ωe0

 and for We0
= (w1,… ,wm) we have for i = 1,… ,m

Hence (26) follows by Proposition 3.2 (since We0
≡ 0 is impossible by assumption).

Step 2: Next, by continuity of U and e ↦ �e , there is for any 𝛿 > 0 an 𝜖 > 0 such 
that for any e ∈ SN−1 with |e − e0| < 𝜖 there is K ⊂ Ωe ∩ Ωe0

 with

We claim that there is 𝜖 > 0 such that

To see (27), we use Proposition 3.1. Fix 𝛿 > 0 such that 𝜆1(M) > c∞ for any 
A ⊂ ℝN with |A| < 𝛿 . Let 𝜖 > 0 be given by the above remark and fix e ∈ SN−1 with 
|e − e0| < 𝜖 and K ⊂ Ωe ∩ Ωe0

 with We ⪈ 0 in K. Finally, let A ∶= Ωe⧵K . As before, 
let We = (w1,… ,wm) and note that now for i = 1,… ,m

Since by the assumptions on F (and U) this system is weakly coupled, Proposition 
3.1 implies We ≥ 0 in He . Whence (27) holds.

Step 3: Next, we fix (−�,�) ∋ � → R(�) ∈ O(N) , such that R(�) is a rotation of 
angle � in a fixed direction and put e� ∶= R(�) e0 ∈ SN−1 . Denote

max
i,j

sup

x ∈ Ω

e ∈ SN−1

|cij(x)| ≤ c∞.

(26)We0
> 0 in Ωe0

.

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Ii wi = cii wi +

m�
j = 1

j ≠ i

cij wj in Ωe0

wi = 0 in He0
⧵Ωe0

wi = −wi◦�e in ℝN ,

We ≥ 0 in K and |Ωe⧵K| ≤ �.

(27)We ≥ 0 inΩe for e ∈ SN−1 with |e − e0| < 𝜖.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ii wi = cii wi +

m�
j = 1

j ≠ i

cij wj in A

wi = 0 in He0
⧵A

wi = −wi◦�e inℝN ,
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and let

Clearly, �+ ∈ (�, � − �) for some 𝜖 > 0 by Step 1 and similarly �− ∈ (−� + �, −�) 
for some 𝜖 > 0 . Let e+ ∶= e�+ and e− ∶= e�− . The proof is finished once we have 
shown (see Proposition 2.4)

Note that then there must be i ∈ {1,… ,m} such that we+,i
≡ 0 in Ωe+

 , because oth-
erwise a similar argumentation as in Step 1 and Step 2 allows to continue rotating 
the hyperplanes which is a contradiction to the definition of e+ . Similarly, there must 
be i ∈ {1,… ,m} such that we−,i

≡ 0 in Ωe−
 . Let i ∈ {1,… ,m} such that we+,i

≡ 0 in 
Ωe+

 , and assume there is j ∈ {1,… ,m} such that we+,j
≢ 0 in Ωe+

 . Then as in Step 1 
it follows that this is impossible. Thus We+

≡ 0 and similarly, also We−
≡ 0 . Hence 

(28) holds.
By Proposition 2.4 and equalities (28) it follows that there is p ∈ SN−1 such that 

U is foliated Schwarz symmetric, since e+ and e− are clearly in the same two dimen-
sional component of e’s in which U ≥ U◦�e and e+ ≠ e− . The fact that U is strictly 
decreasing in the polar angle now follows because from Step 2 and with Proposition 
3.2 we actually have that We𝜙 > 0 in Ωe� for � ∈ (�−,�+) . This finishes the proof.  
 ◻

5  An application

In the following, we consider the case m = 2 . The system (18) is called of gradient 
type if there exists a scalar function g(|x|, u1, u2) such that 
fj(|x|, u1, u2) = �g

�uj
(|x|, u1, u2) for j = 1, 2 (see [7, p. 3]). Let us consider the follow-

ing system:

where Ω is an open bounded set in ℝN , N ≥ 2 with Lipschitz boundary, and we 
assume:

M ∶= {� ∈ (−�,�) ∶ We� ≥ 0 in Ωe�}.

�+ ∶= supM and �− ∶= infM.

(28)We+
≡ 0 inΩe+

and We−
≡ 0 inΩe−

.

(29)

⎧⎪⎨⎪⎩

I1 u1 = a1(x) u1 + �u2�q �u1�q−2 u1 in Ω

I2 u2 = a2(x) u2 + �u1�q �u2�q−2 u2 in Ω

u1 = u2 = 0 in ℝN⧵Ω

(30)
there is c > 0 and s ∈ (0, 1) such that

ki,0(r) ≥ cr−1−2s for r ∈ (0, 1) and i = 1, 2,
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where 𝜆1,ki (Ω) > 0 is the first eigenvalue of Ii (see (8), (13)) for i = 1, 2 . Moreover, 
we let 1 < q <

N

N−2s
 (cf. [23, (2.2)]). Note that we clearly have N > 2s since 

s ∈ (0, 1) and that the kernel of the fractional Laplacian (−Δ)s satisfies (30). Moreo-
ver, the system (29) is of gradient type, with g given by g(u1, u2) =

1

q
|u1 u2|q . In the 

following let fi(u1, u2) = |u3−i|q |ui|q−2 ui for i = 1, 2 , then we see immediately that

Hence, the system (29) is weakly coupled as long as the product u1 u2 is non-neg-
ative in Ω . A similar system is considered in [23] (see also [5, (4.1)]) with a local 
operator in place of I, and with the bounded set Ω replaced by the whole space ℝN . 
An existence proof of a pair of non-negative, radially symmetric solutions u1, u2 ≥ 0 
satisfying u1 + u2 ≢ 0 in ℝN is given there. In the present paper, to keep the argu-
ment as transparent as possible, the nonlinearities in (29) are simpler than those in 
[23]. However, the parameter � occurring there is replaced by the function a2(x) . In 
order to prove Theorem 1.4, we begin with an existence statement.

Theorem 5.1 (Existence of non-trivial solutions) Let Ω ⊂ ℝN , N ≥ 2 be a bounded 
open set with Lipschitz boundary, assume k1,0, k2,0 satisfy (30) for some s ∈ (0, 1) , 
and 1 < q <

N

N−2s
 . Then system (29) has a weak solution (u,  v) satisfying u, v ≢ 0 

in Ω and u ≢ v.

The existence proof is based on the mountain-pass theorem (see, for instance, [1, 
Theorem 8.2] or [31, Chapter  III, Theorem 6.1, p. 109]). More precisely, we con-
sider the functional

where we have used the notation ‖(u, v)‖2 = Ek1
(u, u) − ∫

Ω
(a1 u

2 + a2 v
2) dx + Ek2

(v, v) , 
for shortness. Note that it is easy to see that Dki

(Ω) , i = 1, 2 are continuously embed-
ded into Hs

0
(Ω) = {u ∈ Hs(ℝN) ∶ u = 0 on ℝN⧵Ω} and hence by the assump-

tion q <
N

N−2s
 , it follows by the Sobolev embedding that Dki

(Ω) , i = 1, 2 are com-
pactly embedded into L2q(Ω) (see [8, Theorem 6.7]). Hence the product uv belongs 
to Lq(Ω) , and the functional J(u, v) is well defined on Dk(Ω) . The differential J′ at 
(u, v) is the linear operator L given by

where (�,�) ranges in Dk(Ω) . Hence the critical points of J are the weak solutions 
of (29). To apply the mountain pass theorem, we collect in the next section several 

a1, a2 ∈ L∞(ℝ)with a1 ≠ a2 and ‖a+i ‖L∞(ℝ) < 𝜆1,ki (Ω) for i = 1, 2,

�

�uj
fi = q |ui uj|q−2 ui uj for i = 1, 2 and j = 3 − i.

(31)J(u, v) =
1

2
‖(u, v)‖2 − 1

q
‖uv‖q

Lq(Ω)
,

(32)
L(�,�) = Ek(u,�) − ∫Ω

(
a1 u� + a2 v�

)
dx + Ek(v,�)

− ∫Ω

|v|q |u|q−2 u� dx − ∫Ω

|u|q |v|q−2 v� dx,
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properties of the Nehari Manifold N  . For general applications of the mountain pass 
theorem to nonlocal operators, see also [27, 28].

5.1  The Nehari manifold

In the sequel we refer to the Nehari manifold N  associated to the functional J. First 
define the functional

and then let

The last equality is readily obtained by letting (�,�) = (u, v) in  (32): this gives 
L(u, v) = ‖(u, v)‖2 − 2 ‖uv‖q

Lq(Ω)
 , and (33) follows. In order to prove the existence of 

polarized solutions of system (29), we need

Lemma 5.2   

1. The Nehari manifold N  is a C1-manifold of codimension one in Dk(Ω).
2. If (u, v) belongs to N  , then the direction of (u, v) is non-tangential to N .
3. The manifold N  keeps far from the origin in the sense that there exists r0 > 0 

such that if ‖(u, v)‖ < r0 then (u, v) ∉ N .

Proof Choose a point (u0, v0) ∈ N+ , and observe that the product u0 v0 cannot van-
ish identically (that would be in contrast with (33)). In a neighborhood of (u0, v0) , 
the Nehari manifold is the set of zeros of the functional G(u, v), whose differential is 
the linear functional G�(u, v) given by

To prove Claim 1 we show that the image of (�,�) through G�(u, v) does not vanish 
for every (�,�) . This is achieved by letting (�,�) = (u, v) and taking into account 
that G(u, v) = 0 , i.e., ‖(u, v)‖2 = 2 ‖uv‖q

Lq(Ω)
 . We obtain

G(u, v) =
1

2
‖(u, v)‖2 − ‖uv‖q

Lq(Ω)
,

(33)

N = { (u, v) ∈ Dk(Ω)⧵(0, 0) ∣ the differentialJ
�(u, v)vanishes in the direction of(u, v) }

= { (u, v) ∈ Dk(Ω)⧵(0, 0) ∣ G(u, v) = 0 }.

G�(u, v) ∶ (�,�) ↦ Ek1
(u,�) − ∫Ω

(
a1 u� + a2 v�

)
dx + Ek2

(v,�)

− q∫Ω

|v|q |u|q−2 u� dx − q∫Ω

|u|q |v|q−2 v� dx.

G�(u, v) ∶ (u, v) ↦ ‖(u, v)‖2 − 2q ‖uv‖q
Lq(Ω)

= (1 − q) ‖(u, v)‖2 < 0,
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which implies that N  is a C1-manifold of codimension 1, and the direction of (u, v) 
is non-tangential, thus proving Claims 1 and  2 at once. To prove the last claim, 
observe that by the Poincaré inequality and the Sobolev embedding we have

where C0,C,C1 > 0 are constants. Hence, we may write ‖uv‖q
Lq(Ω)

≤ C2 ‖(u, v)‖2q , 
and therefore the inequality:

holds provided that ‖(u, v)‖ < r0 with a conveniently small r0 > 0 . The last claim 
follows, and the proof is complete.   ◻

Proof of Theorem 5.1 Let us check that the functional (31) satisfies the assumptions 
of the mountain-pass theorem.

Step 1: The equality J(0, 0) = 0 holds, and there exists r0 > 0 such that 
J(u, v) > 0 for all u, v ∈ Dk(Ω) satisfying 0 < ‖(u, v)‖ < r0 . Indeed, arguing as in 
the proof of the last claim of Lemma 5.2, and writing J in place of G, we arrive at 
J(u, v) ≥ 1

3
‖(u, v)‖2 for ‖(u, v)‖ < r0 (cf. (34)). The same inequality also shows that 

J(u, v) ≥ r2
0
∕3 whenever ‖(u, v)‖ = r0.

Step 2: The functional J is unbounded from below. To see this, fix a pair 
(u, v) ∈ Dk(Ω) satisfying ‖uv‖q

Lq(Ω)
> 0 in Ω . Since for every t ≥ 0 we have

we see that J(tu, tv) → −∞ as t → ∞ , hence J is unbounded from below, as claimed.
Step 3: The last condition needed to apply the mountain-pass theorem is the 

Palais-Smale compactness condition. More precisely, assume that a sequence of 
pairs (ui, vi) ∈ Dk(Ω) satisfies J(ui, vi) → c ∈ (0,∞) as i → ∞ in the Euclidean 
topology of the real line, as well as J�(ui, vi) → 0 as i → ∞ in the strong topology 
of the dual space (Dk(Ω))

� . Then we have to prove the existence of a strongly con-
vergent subsequence in Dk(Ω) . To this purpose, observe that the differential J′ at the 
point (ui, vi) is the linear functional Li(�,�) given by

where (�,�) ranges in Dk(Ω) ⊂ (L2q(Ω))2 . In the special case when (�,�) = (ui, vi) 
we find Li(�,�) = ‖(ui, vi)‖2 − 2 ‖uv‖q

Lq(Ω)
 , and hence

‖(u, v)‖2 ≥ Ek(u, u) − ‖a+
1
‖L∞(Ω) ‖u‖2L2(Ω) + Ek(v, v) − ‖a+

2
‖L∞(Ω) ‖v‖2L2(ℝ)

≥ C0

�
Ek1

(u, u) + Ek2
(v, v)

� ≥ C
�‖u‖2

Lq(Ω)
+ ‖v‖2

Lq(Ω)

�

≥ C1 ‖uv‖Lq(Ω),

(34)G(u, v) ≥ ‖(u, v)‖2
�

1

2
− C2 ‖(u, v)‖2(q−1)

� ≥ 1

3
‖(u, v)‖2

(35)J(tu, tv) = t2
�

1

2
‖(u, v)‖2 − t2(q−1)

q
‖uv‖q

Lq(Ω)

�
,

(36)Li(�,�) = Ek1
(ui,�) − ∫Ω

(
a1 ui � + a2 vi �

)
dx + Ek2

(vi,�)

(37)− ∫Ω

|vi|q |ui|q−2 ui � dx − ∫Ω

|ui|q |vi|q−2 vi � dx,



401

1 3

Foliated Schwarz symmetry of solutions to a cooperative system…

Let us combine the equality above with the assumption that J�(ui, vi) → 0 as i → ∞ 
strongly. Such an assumption implies Li(ui, vi) = o(1) ‖(ui, vi)‖ as i → ∞ : by plug-
ging this into (38) we obtain

Now we are ready to prove the existence of a strongly convergent subsequence. As 
usual, the proof is divided into two parts.

Part i: The sequence (ui, vi) is bounded. Indeed, if we assume ‖(ui, vi)‖ → ∞ for 
i → ∞ , then we reach a contradiction by the following argument. Taking (39) into 
account, we have

which contradicts the assumption J(ui, vi) → c < ∞ for i → ∞ . Hence the sequence 
(ui, vi) must be bounded, as claimed.

Part ii: Once we know that the sequence (ui, vi) is bounded in Dk(Ω) , the proof of 
the existence of a strongly converging subsequence is standard: see [1, p. 125] and 
[31, Proposition 2.2]. To be more precise, by the weak compactness theorem in Hil-
bert spaces there exists a subsequence, still denoted by (ui, vi) , weakly convergent to 
some (u, v) ∈ Dk(Ω) . Furthermore, since q <

N

N−2s
 , the set Dk(Ω) ⊂ H

s

0
(Ω) is com-

pactly embedded in the Lebesgue space L2q(Ω) , hence we may assume that when 
i → ∞ the sequences (ui), (vi) converge to u, v, respectively, strongly in L2q(Ω) , and 
therefore ‖ui vi‖qLq(Ω) → ‖uv‖q

Lq(Ω)
 . This and  (39), taking the boundedness of the 

sequence (ui, vi) into account, imply

Consider the functional L(�,�) in  (32). Taking  (36) into account, and since 
(ui, vi) ⇀ (u, v) weakly in Dk(Ω) , and (ui, vi) → (u, v) strongly in (L2q(Ω))2 , we 
deduce

for every (�,�) ∈ Dk(Ω) : thus, we have proved the weak-∗ convergence Li
∗
⇀L . But 

since Li → 0 strongly by assumption, we must have L = 0 . In particular, (u, v) ∈ N  . 
By comparing (33) with (40) we deduce

Finally, by recalling that the weak convergence in a Hilbert space together with the 
convergence of the norms to the norm of the limiting function implies the strong 
convergence, we conclude that (ui, vi) → (u, v) strongly in Dk(Ω) , which completes 
the proof of the Palais–Smale compactness condition.

(38)2 ‖uv‖q
Lq(Ω)

= ‖(ui, vi)‖2 − Li(ui, vi).

(39)‖ui vi‖qLq(Ω) = 1

2
‖(ui, vi)‖2 + o(1) ‖(ui, vi)‖ as i → ∞.

J(ui, vi) =
1

2
(1 −

1

q
) ‖(ui, vi)‖2 + o(1) ‖(ui, vi)‖ → ∞,

(40)lim
i→∞

‖(ui, vi)‖2 = 2 ‖uv‖q
Lq(Ω)

.

lim
i→∞

(Li − L)(�,�) = 0

lim
i→∞

‖(ui, vi)‖ = ‖(u, v)‖.



402 A. Greco, S. Jarohs 

1 3

At this point the mountain-pass theorem implies the existence of a critical point 
(u, v) ≠ (0, 0) of the functional J, which is therefore a weak solution (u1, u2) = (u, v) 
of the system (29). By the mountain-pass theorem we also know that the two identi-
ties u1 ≡ 0 and u2 ≡ 0 cannot hold at once, but we may, in principle, have u2 ≡ 0 . 
However, if u2 vanishes identically, then system (29) implies Iu1 = a1 u1 in Ω , u1 = 0 
in ℝN⧵Ω , hence u1 should also vanish identically by unique solvability and the 
maximum principle, a contradiction. A similar argument shows that u1 ≢ 0 , hence 
u1, u2 ≢ 0 in Ω . Finally, if u1 ≡ u2 in (29), then by comparing the two equations—
recall a1 ≠ a2—we obtain u1 ≡ 0 , which has been just excluded. Hence u1, u2 are 
distinct functions, and the proof is complete.   ◻

5.2  Positivity

Let us now turn to show that the solutions u,  v obtained so far do 
not change sign. To this aim we need to define the set of paths 
Γ = { 𝛾 ∈ C0([0, 1], Dk(Ω)) ∣ 𝛾(0) = 0, J(𝛾(1)) < 0 } and the two infima

Lemma 5.3 The two values c, cN  defined above are positive and coincide.

Proof The argument is similar to [34, Theorem 4.2] (for a scalar equation) and [23, 
Lemma  3.2] for a system of local equations. Let us verify that c ≤ cN  . Take 
(u, v) ∈ N  and observe that ‖uv‖q

Lq(Ω)
> 0 , otherwise we would reach a contradic-

tion with (33). Then (35) applies, and the path �(t) = (tu, tv) , t ∈ [0,∞) , starts from 
the origin and satisfies lim

t→∞
J(�(t)) = −∞ . Of course, we may find a reparametriza-

tion such that J(𝛾(1)) < 0 , but we prefer to avoid unnecessary technicalities. Tak-
ing  (33) into account, a straightforward computation shows that the real-valued 
function f (t) = J(�(t)) of the real variable t > 0 (whose graph is outlined in Fig. 1) 
satisfies f �(1) = 0.

c = inf
�∈Γ

max
t∈[0,1]

J(�(t)), cN = inf
(u,v)∈N

J(u, v).

Fig. 1  The function f(t)



403

1 3

Foliated Schwarz symmetry of solutions to a cooperative system…

Furthermore, f attains its maximum (which is positive) at t = 1 and hence 
c ≤ max

t≥0 J(�(t)) = J(u, v) . Since (u, v) ∈ N  is arbitrary, we may write c ≤ cN  . To 
prove the converse, recall that by Theorem 5.1 there exists (u, v) ≠ (0, 0) such that 
J�(u, v) = 0 and J(u, v) = c > 0 (this is a by-product of the mountain-pass theorem). 
But then (u, v) ∈ N  and therefore cN ≤ J(u, v) = c . The lemma follows.   ◻

Proposition 5.4 The two functions u, v obtained by Theorem 5.1 do not change sign.

Proof The argument is based on the combination of three inequalities: 

1. Since (u, v) is a critical point of the functional J, we have G(u, v) = 0 (see (33)), 
hence the function f (t) = J(tu, tv) =

t2

2
‖(u, v)‖2 − t2q

q
‖uv‖q

Lq(Ω)
 satisfies 

f �(1) = 0 . An elementary computation shows that 

 for all t > 0 , with equality if and only if t = 1 (the graph of f is outlined in 
Fig. 1).

2. Since the graph of g(t) = G(t�u�, t�v�) = t2

2
‖(�u�, �v�)‖2 − t2q ‖uv‖q

Lq(Ω)
 has the 

same shape as the one of f, there exists t0 > 0 such that g(t0) = 0 . Then, by (33) 
we have (t0|u|, t0|v|) ∈ N  , and by Lemma 5.3 we get 

3. Using Lemma 2.1 we obtain J(t0|u|, t0|v|) ≤ J(t0 u, t0v) = f (t0).

In conclusion, we arrive at J(t0|u|, t0|v|) = f (t0) = J(u, v) , whence we deduce that 
t0 = 1 and J(|u|, |v|) = J(u, v) . This and Lemma 2.1 imply that either u+ or u− van-
ishes almost everywhere, and either v+ or v− vanishes almost everywhere. The claim 
follows.   ◻

Corollary 5.5 (Existence of positive solutions) Let Ω ⊂ ℝN , N ≥ 2 be a bounded 
open set with Lipschitz boundary, assume k1,0, k2,0 satisfy (30) for some s ∈ (0, 1) , 
and 1 < q <

N

N−2s
 . Then system (29) has a weak solution (u1, u2) satisfying 

u1, u2 > 0 in Ω and u1 ≢ u2.

Proof Consider the non-negative functions u1 = |u| and u2 = |v| , where (u,  v) is 
the weak solution whose existence follows from Theorem  5.1. In view of Propo-
sition  5.4, we must have either u1 = u or u1 = −u , and either u2 = v or u2 = −v . 
Therefore the pair (u1, u2) satisfies (29). But then (u1, u2) also satisfies the system of 
uncoupled inequalities

f (t) ≤ f (1) = J(u, v)

J(u, v) = c ≤ J(t0|u|, t0|v|).

⎧⎪⎨⎪⎩

I1 u1 ≥ a1(x) u1 in Ω

I2 u2 ≥ a2(x) u2 in Ω

u1 = u2 = 0 in ℝN⧵Ω
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By the strong maximum principle (see Proposition 3.2 and Remark 3.4) we have that 
for each j = 1, 2 either uj > 0 in Ω or uj ≡ 0 in ℝN , and the conclusion follows from 
Theorem 5.1.   ◻

Remark 5.6 

 (i) Since the weak solution (u1, u2) whose existence is asserted by Corollary 5.5 
minimizes the functional J over the Nehari manifold N  , we say that (u1, u2) 
is a ground state.

 (ii) The pair (−u1, u2) is also a weak solution, as well as (u1,−u2) and (−u1,−u2) : 
the assertion follows by replacing uj in (29) with ±uj , j = 1, 2.

5.3  Polarized solutions

The main result in this paragraph states that if Ω is symmetric, then system (29) 
admits a solution made up of two polarized functions. Before proceeding further, 
observe that in our notation we may write u�H (H)(x) = uH(�H(x)) . Let us describe 
the effect of polarization on the functionals J and G:

Lemma 5.7 (Functionals reduced by polarization) Let Ω be a bounded open 
set in ℝN , symmetric with respect to the hyperplane �H for some half-space  H. 
Moreover, assume that ai is symmetric with respect to �H for i = 1, 2 . For every 
(u, v) ∈ Dk(Ω) satisfying u, v ≥ 0 in ℝN we have

Furthermore, if k1,0, k2,0 are strictly decreasing and J(uH , vH) = J(u, v) then: 

1. either u = uH or u = u�H (H);
2. either v = vH or v = v�H (H);
3. the following inequality is satisfied: 

The lemma also holds with G in place of J.
Proof By Proposition  A.2 we have Ek(uH , uH) ≤ Ek(u, u) and Ek(vH , vH) ≤ Ek(v, v) . 
Furthermore, by Cavalieri principle and since due to the symmetry of a1, a2 we also 
have ∫

Ω
a1 u

2 dx = ∫
Ω
(a1)H (uH)

2 dx and ∫
Ω
a2 v

2 dx = ∫
Ω
(a2)H (vH)

2 dx . This and 
Proposition  A.3 prove  (41). Now suppose that (41) holds with equality. We may 
write

hence

(41)J(uH , vH) ≤ J(u, v).

(42)
(
u(x) − u(�H(x))

) (
v(x) − v(�H(x))

) ≥ 0 a.e. in Ω.

0 = J(u, v) − J(uH , vH) =
�
Ek(u, u) − Ek(uH , uH)

�
+
�
Ek(v, v) − Ek(vH , vH)

�

−
1

q

�‖uv‖q
Lq(Ω)

− ‖uH vH‖qLq(Ω)
�
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where the last inequality follows from Proposition  A.3. Since the right-hand side 
cannot be negative by Proposition  A.2, it must vanish. But then Proposition  A.2 
implies that either u = uH or u = u�H (H) , and either v = vH or v = v�H (H) , as claimed, 
and Proposition A.3 implies that (42) holds. The argument obviously applies to the 
functional G as well.   ◻

Remark 5.8 When uH = u ≠ u�H (H) and vH ≠ v = v�H (H) , and the product in (42) van-
ishes almost everywhere in Ω , the equality holds in (41) although u and v have oppo-
site polarizations.

Theorem 5.9 (Solutions are polarized) Let Ω ⊂ ℝN , N ≥ 2 be a bounded open set 
with Lipschitz boundary and assume Ω is symmetric with respect to some hyperplane 
�H of a half-space H. Assume further that k1,0, k2,0 satisfy (30) for some s ∈ (0, 1) , 
and 1 < q <

N

N−2s
 . Then system (29) has a weak solution (u1, u2) satisfying u1, u2 > 0 

in Ω , which satisfy either uj = (uj)H for both j = 1, 2 , or uj = (uj)�H (H) for both 
j = 1, 2 . Furthermore, if uj is symmetric with respect to �H for some j ∈ { 1, 2 } , 
then u3−j is also symmetric.

Proof Step 1: Construction of a polarized solution. Denote by vj = (uj)H the polari-
zation of uj for j = 1, 2 . By Lemma 5.7, we find G(v1, v2) ≤ G(u1, u2) = 0 , hence the 
real-valued function g(t) = t2

2
‖(v1, v2)‖2 − t2q ‖v1 v2‖qLq(Ω) , whose graph has the 

shape depicted in Fig.  1, satisfies g(1) = G(v1, v2) ≤ 0 . Consequently, there exists 
t0 ∈ (0, 1] such that (t0 v1, t0 v2) ∈ N  . We may write J(t0 v1, t0 v2) ≤ J(t0 u1, t0 u2) 
by Lemma 5.7, and J(t0 u1, t0 u2) ≤ J(u1, u2) because the function f (t) = J(tu1, tu2) 
attains its maximum at t = 1 , hence

Furthermore, recall that the value c = J(u1, u2) is the minimum of  J constrained 
to N  by Lemma 5.3: this and (43) imply t0 = 1 and J(u1, u2) = J(v1, v2) . Hence the 
pair (v1, v2) , which is made up of polarized functions, positive in Ω , is also a mini-
mizer of the functional J constrained to N  , and therefore the intrinsic gradient, also 
called the tangential gradient, of the functional J on the manifold N  vanishes there.

Let us prove that the normal component of the gradient vanishes as well. By 
Lemma 5.2 we know that the direction of (u, v) is non-tangential to N  . Further-
more, by (33), the differential J′ at any (u, v) ∈ N  vanishes in the direction of (u, v), 
hence the normal component of the gradient also vanishes, as claimed. But then 
J�(v1, v2) = 0 , and therefore the pair (v1, v2) is a weak solution of system (29).

Step 2: Comparison between solutions. Since J(u1, u2) = J(v1, v2) , by Lemma 5.7 
we have that either u1 = v1 or u1 = (u1)�H (H) , and either u2 = v2 or u2 = (u2)�H (H) . 
To prove the theorem we have to exclude two cases: the case when u1 ≠ v1 and 
u2 = v2 , and the case when u1 = v1 and u2 ≠ v2 . We examine the first case in 
detail, the second one being analogous. Suppose, by contradiction, that u1 ≠ v1 
and u2 = v2 . Then u1 = (u1)�H (H) and there exists a set X1 ⊂ Ω ∩ H having positive 

�
Ek(u, u) − Ek(uH , uH)

�
+
�
Ek(v, v) − Ek(vH , vH)

�
=

1

q

�‖uv‖q
Lq(Ω)

− ‖uH vH‖qLq(Ω)
� ≤ 0,

(43)J(t0 v1, t0 v2) ≤ J(t0 u1, t0 u2) ≤ J(u1, u2).



406 A. Greco, S. Jarohs 

1 3

measure and such that u1(x) < u1(𝜎H(x)) = v1(x) for every x ∈ X1 . We may assume 
that u1(x) = u1(�H(x)) = v1(x) in (Ω ∩ H)⧵X1 . Recall that the pairs (u1, u2) and 
(v1, v2) = (v1, u2) are both critical points of the functional  J. Now the condition 
J�(u1, u2) = J�(v1, u2) = 0 comes into play: we have

for every (�,�) ∈ Dk(Ω) (cf. (36)), and similarly

Letting � = 0 and � = (u1 − v1)
− , and subtracting the second equality from the first 

one, we obtain

This contradiction shows that it is impossible to have u1 ≠ v1 and u2 = v2 . The 
case when u1 = v1 and u2 ≠ v2 is excluded similarly. Hence we must have either 
(u1, u2) = (v1, v2) or (u1, u2) = ((u1)�H (H), (u2)�H (H)) , as claimed. To complete 
the proof, suppose that uj is symmetric with respect to �H for some j ∈ { 1, 2 } . 
For instance, suppose that u2 is symmetric, the other case being analogous. Then 
u2 = v2 , and the preceding argument shows that u1 = v1 . Now we replace the half-
space  H with �H(H) , and we apply the same reasoning again, thus proving that 
u1 = (u1)�H (H) , hence u1 is symmetric. The proof is complete.   ◻

Remark 5.10 We note that if u = uH , then either u is symmetric with respect to the 
reflection at �H or there is x ∈ H such that u(x) > u(𝜎H(x)) . Moreover, there exist 
non radial functions u ∶ Ω → ℝ , defined in a radial set Ω , polarized with respect to 
every half-space  H. A two-dimensional example is given by Ω = B1(0) ⊂ ℝ2 and 
u(x1, x2) = x1 (1 − |x|2).

5.4  Proof of the existence of solutions with axial symmetry

In the following, we finish the proof of Theorem 1.4. For this we assume k1,0, k2,0 
satisfy (9) with c > 0 and 0 < s ≤ 𝜎 < 1 . Let Ω be an open, bounded, radial domain 
in ℝN , N ≥ 2 , and let 1 < q <

N

N−2s
 . Moreover, we let a1, a2 ∈ L∞(ℝ) with a1 ≠ a2 

and ‖a+
i
‖L∞(ℝ) < 𝜆1,ki (Ω) for i = 1, 2.

Proof of Theorem 1.4 completed Note that by Theorem 5.1 and Corollary 5.5 it fol-
lows that there are u1, u2 ∈ Dk(Ω) , u1, u2 > 0 satisfying (10) with u1 ≠ u2 . Moreover, 
by Theorem 5.9 and the radiality of Ω and a1, a2 , it follows that for every half-space 
H with 0 ∈ �H we have either

Ek1
(u1,�) − ∫Ω

(
a1 u1 � + a2 u2 �

)
dx + Ek(u2,�) = ∫Ω

u
q

2
u
q−1

1
� dx + ∫Ω

u
q

1
u
q−1

2
� dx

Ek2
(v1,�) − ∫Ω

(
a1 v1 � + a2 u2 �

)
dx + Ek(u2,�) = ∫Ω

u
q

2
v
q−1

1
� dx + ∫Ω

v
q

1
u
q−1

2
� dx.

0 = ∫Ω

(u
q

1
− v

q

1
) u

q−1

2
𝜓 dx = −∫X1

(u
q

1
− v

q

1
) u

q−1

2
(u1 − v1) dx < 0.
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• u1 = (u1)H and u2 = (u2)H , or
• u1 = (u1)�H (H) and u2 = (u2)�H (H).

Hence, if either u1 or u2 is not radial, it follows that after a rotation —and a renum-
bering if necessary— the assumption (6) is satisfied. Since clearly the right-hand 
sides of (10) satisfy (7) the statement of Theorem  1.4 follows from Theorem  1.2 
once we have shown that

The boundedness of the solution pair follows indeed by a standard iteration argu-
ment using the Sobolev embedding theorem. We give the details of this argument 
in the appendix (see Lemma B.1 and Corollary B.3). Having the boundedness of u1 
and u2 , the continuity of u1 and u2 in Ω follow e.g. from [22]. Thus (44) holds and the 
statement of Theorem 1.4 follows from Theorem 1.2 as mentioned before.   ◻

Appendix A: On the polarization of a function in the nonlocal setting

Recall the polarization of a function u with respect to an open half space defined in 
(22). Moreover, we use the notation of Section 5.

In the next proposition we show that polarization reduces the energy, with special 
care to the equality case (see also [2, Theorem 2] and [32, Proposition 8]). In the proof 
we will need the following (somehow surprising) identity:

Lemma A.1 (Functional identity and inequality) Let H be a half-space in ℝN , and let 
u ∶ ℝN → ℝ be any real-valued function. Define

For every x1, x2 ∈ H we have f (x1, x2) = −g(x1, x2) ≥ 0 . Furthermore, f (x1, x2) = 0 
if and only if

Proof Define �j =
1

2

(
u(xj) + u(�H(xj))

)
 and �j =

1

2

(
u(xj) − u(�H(xj))

)
 , j = 1, 2 , so 

that

where we have used the assumption that x1, x2 ∈ H . With this notation, we may 
write f (x1, x2) = 2 |�1 �2| − 2 �1 �2 and g(x1, x2) = 2 �1 �2 − 2 |�1 �2| , while inequal-
ity (45) reduces to �1 �2 ≥ 0 . The lemma follows.   ◻

(44)u1 and u2 are bounded and continuous in Ω.

f (x1, x2) = uH(x1) uH(x2) + uH(�H(x1)) uH(�H(x2)) − u(x1) u(x2) − u(�H(x1)) u(�H(x2)),

g(x1, x2) = uH(x1) uH(�H(x2)) + uH(�H(x1)) uH(x2) − u(x1) u(�H(x2)) − u(�H(x1)) u(x2).

(45)
(
u(x1) − u(�H(x1)

) (
u(x2) − u(�H(x2)

) ≥ 0.

{
u(xj) = �j + �j

u(�H(xj)) = �j − �j

{
uH(xj) = �j + |�j|

uH(�H(xj)) = �j − |�j|
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Proposition A.2 (Polarization reduces the energy) Let Ω be an open set in ℝN , 
k ∶ ℝN⧵{0} → [0,∞) be given by k(z) = k0(|z|) for a monotone decreasing function 
k0 ∶ (0,∞) → [0,∞) satisfying (3). Let u ∈ Dk(Ω) . For every half-space H ⊂ ℝN we 
have Ek(uH , uH) ≤ Ek(u, u) . Furthermore, if k0 strictly decreasing, then the equality 
Ek(uH , uH) = Ek(u, u) holds if and only if either u = uH , or u = u�H (H).

Proof We start by giving a convenient expression of Ek(u, u) . Since the integral is 
additive with respect to the domain of integration, we can split

The last integral, by the change of variables x = �H(x1) and y = �H(z) , satisfies

and therefore we may write

Let us repeat the argument once more: we split

Now in the first integral we write x2 in place of  z, and in the last integral we let 
x2 = �H(z) , thus obtaining

By a similar procedure we also obtain

Ek(u, u) = ∫H×ℝN

(u(x1) − u(z))2 k(x1 − z) dx1 dz

+ ∫
�H (H)×ℝN

(u(x) − u(y))2 k(x − y) dx dy.

∫
�H (H)×ℝN

(u(x) − u(y))2 k(x − y) dx dy

= ∫H×ℝN

(u(�H(x1)) − u(�H(z)))
2 k(x1 − z) dx1 dz

Ek(u, u) = ∫H×ℝN

(
(u(x1) − u(z))2 + (u(�H(x1)) − u(�H(z))

2
)
k(x1 − z) dx1 dz.

Ek(u, u) = ∫H×H

(
(u(x1) − u(z))2 + (u(�H(x1)) − u(�H(z))

2
)
k(x1 − z) dx1 dz

+ ∫H×�H (H)

(
(u(x1) − u(z))2 + (u(�H(x1)) − u(�H(z))

2
)
k(x1 − z) dx1 dz.

Ek(u, u) = ∫H×H

(
(u(x1) − u(x2))

2 + (u(�H(x1)) − u(�H(x2))
2
)
k(x1 − x2) dx1 dx2

+ ∫H×H

(
(u(x1) − u(�H(x2)))

2 + (u(�H(x1)) − u(x2)
2
)
k(x1 − �H(x2)) dx1 dx2.
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To go further, observe that u2(xj) + u2(�H(xj)) = u2
H
(xj) + u2

H
(�H(xj)) for j = 1, 2 . 

Hence

where f and g are as in Lemma A.1. Since f = −g , we may write

When the pair (x1, x2) ranges in the domain of integration H × H , the distance from x1 
to  x2 cannot be larger than the distance from  x1 to �H(x2) (see  (46)). Since k0 is 
monotone decreasing by assumption, it follows that k(x1 − x2) − k(x1 − �H(x2)) ≥ 0 , 
which implies Ek(uH , uH) ≤ Ek(u, u) because f is non-negative. To manage the spe-
cial case when k0 is strictly decreasing, we need the equality

where dj ≥ 0 denotes the distance from xj to �H , j = 1, 2 . Equality  (46) is estab-
lished as follows. Let �j ∈ �H be the projection of xj onto �H , j = 1, 2 . Then by the 
Pythagorean theorem (see Fig. 2) we have |x1 − �H(x2)|2 = (d1 + d2)

2 + |�1 − �2|2 
as well as |x1 − x2|2 = (d1 − d2)

2 + |�1 − �2|2 , and (46) follows.
Equality  (46) shows that k(x1 − x2) − k(x1 − 𝜎H(x2)) > 0 for all x1, x2 in the 

(open) half-space H. But then the equality Ek(uH , uH) = Ek(u, u) holds if and only if 
f (x1, x2) = 0 a.e. in H × H . By Lemma A.1, this occurs if and only if (45) holds a.e. 
in H × H . Clearly, if u = uH or u(x) = uH(�H(x)) almost everywhere in ℝN , then both 

Ek(uH , uH) = ∫H×H

(
(uH(x1) − uH(x2))

2 + (uH(�H(x1)) − uH(�H(x2))
2
)

k(x1 − x2) dx1 dx2

+ ∫H×H

(
(uH(x1) − uH(�H(x2)))

2 + (uH(�H(x1)) − uH(x2)
2
)

k(x1 − �H(x2)) dx1 dx2.

1

2

(
Ek(u, u) − Ek(uH , uH)

)
= ∫H×H

f (x1, x2) k(x1 − x2) dx1 dx2

+ ∫H×H

g(x1, x2) k(x1 − �H(x2)) dx1 dx2

1

2

(
Ek(u, u) − Ek(uH , uH)

)
= ∫H×H

f (x1, x2)
(
k(x1 − x2) − k(x1 − �H(x2))

)
dx1 dx2.

(46)|x1 − �H(x2)|2 − |x1 − x2|2 = 4 d1 d2,

Fig. 2  Finding |x
1
− x

2
| and 

|x
1
− �

H
(x

2
)|
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factors in  (45) have the same sign and therefore the inequality holds. Conversely, 
assume that (45) holds true. Then u may be symmetric with respect to �H . Otherwise 
there exists a non-negligible set X ⊂ H such that either u(x1) − u(𝜎H(x1)) > 0 in X, or 
u(x1) − u(𝜎H(x1)) < 0 in X. In the first case, (45) implies that u(x2) − u(�H(x2)) ≥ 0 
a.e. in H, hence u = uH . In the second case, (45) implies that u = u�H (H) . The proof is 
complete.   ◻

The proposition above, which deals with the energy functional, is used in com-
bination with the following, which deals with the Lq-norm of the product of two 
given functions. Contrary to what one may expect, it turns out that polarization 
increases the norm:

Proposition A.3 (On the Lq-norm of a product) Let Ω ⊂ ℝN be an open, nonempty 
set, symmetric with respect to the boundary �H of some half-space H. Take two non-
negative functions u, v ∈ Lq(Ω) for some q ∈ [1,∞) . Then

Furthermore, equality holds in (47) if and only if (42) is satisfied.

Proof In order to prove (47), we split

and perform the change of variable y = �H(x) in the last integral. Since Ω = �H(Ω) , 
we obtain

By a similar procedure we also obtain

Thus, it is enough to prove that for all y ∈ Ω ∩ H we have

which is readily obtained from the rearrangement inequality [15, (10.2.1)]. To man-
age with the equality case, we prefer to let

Thus, for y ∈ Ω ∩ H we have

(47)‖uH vH‖Lq(Ω) ≥ ‖u v‖Lq(Ω).

∫Ω

uq(x) vq(x) dx = ∫Ω∩H

uq(x) vq(x) dx + ∫Ω∩�H (H)

uq(y) vq(y) dy

∫Ω

uq(x) vq(x) dx = ∫Ω∩H

(
uq(x) vq(x) + uq(�H(x)) v

q(�H(x))
)
dx.

∫Ω

u
q

H
(x) v

q

H
(x) dx = ∫Ω∩H

(
u
q

H
(x) v

q

H
(x) + u

q

H
(�H(x)) v

q

H
(�H(x))

)
dx.

(48)u
q

H
(x) v

q

H
(x) + u

q

H
(�H(x)) v

q

H
(�H(x)) ≥ uq(x) vq(x) + uq(�H(x)) v

q(�H(x)),

{
uq(x) = �u + �u

uq(�H(x)) = �u − �u

{
vq(x) = �v + �v

v q(�H(x)) = �v − �v
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and  (48) reduces to |�u �v| ≥ �u �v , which obviously holds. Equality is achieved 
in (47) if and only if �u �v ≥ 0 a.e. in Ω ∩ H , which is equivalent to (42).   ◻

Remark A.4 If u is symmetric with respect to �H , for instance if u is constant, then 
(42) holds for every v.

Appendix B: On the boundedness of solutions

In the following, N ≥ 2 , and we assume that k1,0, k2,0 satisfy (9) for some 
s, � , � ∈ (0, 1) , and c > 0 . Moreover, Ω is an open bounded set in ℝN with Lip-
schitz boundary, Eki(u, v) and Dki

(Ω) , i = 1, 2 are defined as in Sect.   2.1. For a 
related result with the fractional Laplacian, see also [9, Lemma 2.3].

Lemma B.1 Let A be a non-negative constant, and 1 ≤ q <
2s

2
 with 2s ∶=

2N

N−2s
 . If 

u1, u2 are two functions in Dk(Ω) satisfying

then u1, u2 ∈ L∞(Ω).

Remark B.2 Since u1,�1 ∈ Dk1
(Ω) and u2,�2 ∈ Dk2

(Ω) , it follows immediately by 
the Sobolev embedding theorem that u1, u2,�1,�2 ∈ Lm(Ω) for every m ∈ [1, 2s] . 
Since q ≤ 2s

2
 the integral in (49) converges. The strict inequality q <

2s

2
 is needed in 

the Moser iteration (see below).

Proof of Lemma B.1 We follow the idea of Moser’s iteration presented in [3] to show 
the claim. Moreover, k represents either k1 or k2 in order to present general inequali-
ties, which follow in a similar manner.

Step 1: Preliminaries. Let g ∈ W
1,1

loc
(ℝ) be nondecreasing and define

Then we have (see also [3, Lemma A.2]) for a, b ∈ ℝ using Hölder’s inequality

{
u
q

H
(x) = �u + |�u|

u
q

H
(�H(x)) = �u − |�u|

{
v
q

H
(x) = �v + |�v|

v
q

H
(�H(x)) = �v − |�v|

(49)

|||Eki (ui,�i)
||| ≤ �Ω

(
A |ui| + |u3−i|q |ui|q−1

)
�i dx for all �i ∈ Dki

(Ω),�i ≥ 0, i = 1, 2,

(50)G ∶ ℝ → ℝ, G(t) = ∫
t

0

√
g�(�) d�.

(G(a) − G(b))2 =

(
�

a

b

G�(t) dt

)2
≤ |b − a|�

max{a,b}

min{a,b}

G�(t)2 dt = |b − a|�
max{a,b}

min{a,b}

g�(t) dt

= (a − b)(g(a) − g(b)).
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Hence, if g ∶ ℝ → ℝ is a nondecreasing Lipschitz function, that is, we have 
for some Lg > 0 , |g(a) − g(b)| ≤ Lg |a − b| for all a, b ∈ ℝ , it follows that 
Ek(g(v), g(v)) ≤ L2

g
Ek(v, v) and

In particular, we see that both g(v) and G(v) belong to Dk(Ω).
Step 2: A convenient Lipschitz function. To apply Moser’s iteration, define for 

L > 0 , r ≥ 2 the Lipschitz function

Then g�(t) = 0 = G(t) for t < 0 , where G is defined as in (50), and for t > 0 we have

By the definition of g, it follows that if v ≥ 0 then g(v) ≥ 0.
Step 3: Energy estimate from above. We perform a suitable truncation of the ker-

nels ki and the solutions ui : our purpose is to get rid of the linear term A |ui| in (49), 
thus proving (52). Let

Note that k�i satisfies the same assumptions as ki and, in particular, we 
have Dk𝛿,i

(Ω) = Dk(Ω) ⊂ L2s(Ω) for all 𝛿 > 0 . Moreover, by our assump-
tions on ki,0 , i = 1, 2 , we have j�,i ∈ L1(ℝN) ∩ L2(ℝN) for all 𝛿 > 0 and 
J� ∶= mini=1,2 ‖j�,i‖L1(ℝN ) → ∞ for � → 0 , hence we can fix some 𝛿 > 0 such that

With the Cauchy–Schwarz inequality and vin = (ui − n)+ for n ∈ ℕ0 we have, since 
k�,i = ki − j�,i and taking (49) into account,

(51)Ek(G(v),G(v)) ≤ Ek(v, g(v)) ≤ Lg Ek(v, v) for all v ∈ Dk(Ω).

g ∶ ℝ → ℝ, g(t) =

⎧
⎪⎪⎨⎪⎪⎩

0 t ≤ 0,

tr−1

r − 1
0 < t < L,

Lr−1

r − 1
t ≥ L.

g�(t) =

�
tr−2 0 < t < L,

0 t > L,
and hence G(t) =

⎧⎪⎨⎪⎩

2 t
r

2

r
0 < t < L,

2 L
r

2

r
t ≥ L.

k�,i ∶= �B� (0)
ki and j�,i ∶= ki − k�,i.

J𝛿 > A.

ℰk�,i (ui, g(vin)) ≤ ℰki (ui, g(vin)) − J� ∫Ω
ui(x) g(vin(x)) dx + ∫Ω

g(vin(x))∫ℝN
ui(y) j�(x − y) dy dx

≤ ∫Ω

{

(A |ui(x)| − J� ui(x)) + |u3−i(x)|q |ui(x)|q−1 + ∫ℝN
ui(y) j�(x − y) dy

}

g(vin(x)) dx

= ∫Ω

{

(A − J�) ui(x) + |u3−i(x)|q |ui(x)|q−1 + ∫ℝN
ui(y) j�(x − y) dy

}

g(vin(x)) dx

≤ ∫Ω

{

(A − J�) n + |u3−i(x)|q |ui(x)|q−1 + ‖ui‖L2(ℝN ) ‖j�‖L2(ℝN )

}

g(vin(x)) dx,
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where we have used that ui ≥ n in the set { g(vin) > 0 } . Since J𝛿 > A 
and ui ∈ L2(Ω) , we can fix from now on some n ∈ ℕ large such that 
(A − J�) n + ‖ui‖L2(ℝN ) ‖j�,i‖L2(ℝN ) ≤ 0 for i = 1, 2 , and therefore

Let p ∈ [2s,∞) be such that u1, u2 ∈ Lp(Ω) , and observe that for x ∈ { g(vin) > 0 } 
we have

for a suitable constant Cq . Hence, from (52) we get

where � =
p

p−q
∈ (1, 2) is the conjugate exponent to p

q
 . Here and in the following, 

for � ≥ 1 we let ‖ ⋅ ‖� = ‖ ⋅ ‖L� (Ω).
Step 4: Energy estimate from below. To estimate Ek� (ui, g(vin)) from below, 

note that we have with Lemma 2.1, (51), and with the Sobolev embedding 
Dk�,i

(Ω) ↪ L2s(Ω)

where 𝜀0 > 0 is a suitable constant.
Step 5: We show that u1, u2 ∈ Lp(Ω) for all p ∈ [1,∞) . Combining the above ine-

quality with (53), we have

where C depends on n, Ω , k, � , q. Hence, with the monotone convergence theorem, 
we have for L → ∞ and for every r ≥ 2

Here and in the sequel it is understood that the norms of vin may attain the value ∞ . 
However, if the right-hand side is finite, then the left-hand side is also finite, and the 
inequalities hold. Furthermore, by Hölder’s inequality the L�-norm in the bounded 
domain Ω dominates the norm in L�(Ω) for � ∈ [1, �] in the sense that

Using (54) with f = vin , � = (r − 1) � and � = (r + q − 2) � we get

(52)Ek�,i
(ui, g(vin)) ≤ �Ω

|u3−i(x)|q |ui(x)|q−1 g(vin(x)) dx, i = 1, 2.

|ui(x)|q−1 = ui(x)
q−1 = (n + vin)

q−1 ≤ Cq (n
q−1 + v

q−1

in
)

(53)Ek�,i
(ui, g(vin)) ≤ Cq ‖u3−i‖qp

�
nq−1 ‖g(vin)‖� + ‖vq−1

in
g(vin)‖�

�
,

Ek�,i
(ui, g(vin)) = Ek�,i

(ui − n, g(vin)) ≥ Ek�,i
(vin, g(vin)) ≥ Ek�,i

(G(vin),G(vin)) ≥ �0 ‖G(vin)‖22s ,

‖G(vin)‖22s ≤ C ‖u3−i‖qp
�
‖g(vin)‖� + ‖vq−1

in
g(vin)‖�

�
,

4

r2
‖vin‖r2s r

2

≤ C

r − 1
‖u3−i‖qp

�
‖vin‖r−1(r−1) �

+ ‖vin‖r+q−2(r+q−2) �

�
.

(54)‖f‖� ≤ �Ω� �−�

�� ‖f‖� .

‖vin‖(r−1) � ≤ �Ω� q−1

(r−1)(r+q−2)� ‖vin‖(r+q−2) � = �Ω� (q−1)(p−q)

(r−1)(r+q−2)p ‖vin‖(r+q−2) � .
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In view of the subsequent application, it is relevant that the coefficient |Ω| (q−1)(p−q)

(r−1)(r+q−2)p  
keeps bounded when p, r → ∞ . Thus, by suitably modifying the constant C intro-
duced before we may write

The last inequality follows from the fact that r − 1 ≤ r + q − 2 . Hence

where C′ has the same dependencies as C by using that (Cr)
1

r → 1 for r → ∞ , 
so that we can bound this quantity independently of r ∈ [2,∞) . Notice that 
vin ≤ u+

i
≤ n + vin in Ω , hence u+

i
  belongs to some Lp(Ω) if and only if vin does. 

To manage with u−
1
, u−

2
 , note that assumption  (49) continues to hold if we replace 

ui with −ui . Hence, following the Steps 3, 4 and the above argumentation with 
win = (−ui − n)+ in place of ui for i = 1, 2 and n as above, we also find

Clearly, for p ∈ [1,∞] we have ui ∈ Lp(Ω) if and only if win, vin ∈ Lp(Ω) . In order to 
use  (55) and (56) iteratively (for both i = 1 and i = 2 ), we start from p0 = 2s , 
�0 =

2s

2s−q
 and r0 such that

Moreover, for m ∈ ℕ we define pm = 2s
rm−1

2
 , �m =

pm

pm−q
 and we let rm be obtained 

from rm−1 through the equality 2s
rm−1

2
= (rm + q − 2) �m . In other terms, we define 

� =
2s

2
 and

Since 1 ≤ q < 𝜈 by assumption, it follows that rm ↗ ∞ for m → ∞ and therefore 
u1, u2 ∈ Lp for every p ∈ [1,∞) . Indeed, using the notation introduced above, and 
letting r = rm in (55) we obtain

4

r2
‖vin‖r2s r

2

≤ C

r − 1
‖u3−i‖qp

�
‖vin‖r−1(r+q−2) �

+ ‖vin‖r+q−2(r+q−2) �

�

≤ 2C

r − 1
‖u3−i‖qp max

�
1, ‖vin‖r+q−2(r+q−2) �

�
.

(55)

‖vin‖2s r

2

≤ �
C

2

r2

r − 1

�1

r ‖u3−i‖
q

r

p max
�
1, ‖vin‖1+

q−2

r

(r+q−2) �

�

≤ (Cr)
1

r ‖u3−i‖
q

r

p max
�
1, ‖vin‖1+

q−2

r

(r+q−2) �

�

≤ C� ‖u3−i‖
q

r

p max
�
1, ‖vin‖1+

q−2

r

(r+q−2) �

�
,

(56)‖win‖2s r

2

≤ C� ‖u3−i‖
q

r

p max
�
1, ‖win‖1+

q−2

r

(r+q−2) �

�
.

(r0 + q − 2) 𝜅0 = 2s, i.e. r0 ∶= 2s − 2q + 2 > 2.

rm ∶= � rm−1 − 2 (q − 1) = 2 �m+1 − 2 (q − 1)

m∑
k=0

�k = 2 �m+1
� − q

� − 1
+ 2

q − 1

� − 1
.
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and we may inductively apply the inequalities above together with  (54) to prove 
vin,win ∈ Lp(Ω) for all p ∈ [1,∞) , but then u1, u2 ∈ Lp(Ω) for p ∈ [1,∞) as claimed.

Step 6: Conclusion. To show that indeed we have u1, u2 ∈ L∞(Ω) , we fix 
i ∈ {1, 2} and p0 >

N

2s
 . Since the product fi ∶= |u3−i|q |ui|q−1 belongs to Lp0(Ω) , 

from (52) we get in place of (53) the estimate

where p�
0
=

p0

p0−1
 and vin = (ui − n)+ as above. Using again Step 4 and the subsequent 

argument, we arrive at

where C depends on n, Ω , k, and � . In order to use (57) iteratively, we define r0 = 2 , 
𝜈 =

2s

2p�
0

> 1 and

Note that �m ∶= 2s
rm

2
= (rm+1 − 1) p�

0
 for m ∈ ℕ0 , and rm ↗ ∞ for m → ∞ . Letting 

r = rm+1 and M ≥ C ‖fi‖p0 in  (57) we get ‖vin‖rm+1 ≤ (Mrm+1)
1

rm+1 am , where 
am = max{ 1, ‖vin‖�m } ≥ 1 . Without loss of generality we take M ≥ 1

2
 , so that 

Mrm+1 ≥ Mr0 ≥ 1 , and therefore we may write 
am+1 ≤ max

{
1, (Mrm+1)

1

rm+1 am

}
= (Mrm+1)

1

rm+1 am for m ∈ ℕ0 . Thus, by induction 
we obtain

Using  (58), it is readily seen that the infinite product in the right-hand side con-
verges to a (finite) limit, hence we have

Since the argument above also holds with win = (−ui − n)+ in place of vin we con-
clude that u1, u2 ∈ L∞(Ω) .   ◻

Corollary B.3 Let u1 ∈ Dk1
(Ω) , u2 ∈ Dk2

(Ω) satisfy the system (29) for some 
a1, a2 ∈ L∞(Ω) and q such that 1 ≤ q <

N

N−2s
 . Then u1, u2 ∈ L∞(Ω).

‖vin‖pm+1 ≤ C� ‖u3−i‖
q

rm

pm
max

�
1, ‖vin‖

1+
q−2

rm

pm

�
for i = 1, 2, m ∈ ℕ and

‖win‖pm+1 ≤ C� ‖u3−i‖
q

rm

pm
max

�
1, ‖win‖

1+
q−2

rm

pm

�
for i = 1, 2, m ∈ ℕ

Ek�,i
(ui, g(vin)) ≤ ‖fi‖p0 ‖g(vin)‖p�0 ,

(57)‖vin‖2s r

2

≤ (C ‖fi‖p0 r)
1

r ‖vin‖1−
1

r

(r−1) p�
0

≤ (C ‖fi‖p0 r)
1

r max{ 1, ‖vin‖(r−1) p�
0
},

(58)rm ∶= �rm−1 + 1 =
2� − 1

� − 1
�m −

1

� − 1
for m ∈ ℕ.

am ≤ a0

m∏
j=1

(Mrj)
1

rj ≤ a0

∞∏
j=1

(Mrj)
1

rj .

‖vin‖∞ = lim
m→∞

‖vin‖𝛼m < ∞.
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Proof Let A ∶= max{‖ai‖L∞(Ω) ∶ i = 1, 2} , then for i = 1, 2 and any �i ∈ Dki
(Ω) , 

�i ≥ 0 we have

so the statement follows from Lemma B.1.   ◻
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