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Abstract: In this article the 15 moments model is found for polyatomic gases, expressed
in terms of the physical variables previousy used in the Landau-Lifshitz description for
monoatomic gases. It is also proved that the expression of the collision term Q recently
proposed by Pennisi and Ruggeri as a variant of the Anderson and Witting model is equal,
up to first order with respect to equilibrium, to the original one proposed by Anderson and
Witting but which uses the four-veocity Uα

L in the Landau-Lifshitz description. The same
thing can be said for all the balance equations, so that the two approaches are equivalent but
only up to first order with respect to equilibrium.

Keywords: Rational Extended Thermodynamics; Rarefied Polyatomic Gases; Relativistic
Fluids

1 Introduction

The idea behind this article comes from a comparison of two different models for monoatomic
gases; one was presented in [1] and the other in [2]. The first one has been implemented in
[3] for polyatomic gases and the same thing is here obtained by implementing, in the next
section, the model of [2].
The principal difference between [1] and [2] is that they use different physical variables. In
fact, both of them use the field equations

∂α V α = 0 , ∂α Tαβ = 0 , ∂α Aαβγ = Iβγ . (1)

The first one of these is the conservation law of mass, while the second one is the conservation
law of momentum-energy. In both models the independent variables are V α and Tαβ, but
they are decomposed in a different way. In fact, [1] uses the decomposition

V α = m n Uα , Tαβ =
e

c2
UαUβ + (p + π) hαβ +

2

c2
U (αqβ) + t<αβ>3 , (2)
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where m is the rest mass of the particle, n is the particle number density, Uα is the
four-velocity, e is the energy, c the light speed, p the pressure, π the dynamical pres-
sure, hαβ = − gαβ + 1

c2
UαUβ is the projector into the subspace orthogonal to Uα, gαβ =

diag(1 , −1 , −1 , −1) the metric tensor, qα the heat flux, t<αβ>3 is the viscous deviatoric
stress and they are constraned by

Uα Uα = c2 , qα Uα = 0 , t<αβ>3 Uα = 0 , t<αβ>3 gαβ = 0 . (3)

On the other hand, [2] uses the decomposition

V α = m nCK Uα
L −

m nCK

eCK + pCK
qCK α , Tαβ =

eCK

c2
Uα

LUβ
L − (pCK + πCK) ∆αβ + P<αβ>3 ,

(4)

(See eqs. (3)-(5) of cite2 )where we have substituted en with eCK and ω with πCK to compact
the notations of the two articles), where the suffix CK has been introduced to distinguish
the variables in [1] from those in [2]. Moreover, ∆αβ = gαβ − 1

c2
Uα

LUβ
L is the projector into

the subspace orthogonal to Uα
L and the variables are constrained by

Uα
L ULα = c2 , qCKα ULα = 0 , P<αβ>3 UαL = 0 , P<αβ>3 gαβ = 0 , (5)

The transformation law between the two sets of variables isn’t linear, as we will see in section
3, while in the next section we will find the model in the Landau-Lifshitz description extending
the results of [2] to the case of polyatomic gases.
The physical meaning of the decomposition (2), (3) is self-evident, while that of (4), (5) can
be found in the Landau-Lifshitz book [4]. It is important because it implies automatically zero
production terms of mass and energy-momentum if the following model for the Boltzmann
equation is adopted

pα ∂α f = Q , with Q = − ULα pα

c2 τ
(f − fE) . (6)

This model was proposed by Anderson and Witting [5], after having realized that the ex-
pression Q = − m

τ
(f − fE), previously proposed by Marle [6], implies a relaxation time τ

tending to infinity in the limiting case of particles with zero rest-mass.
Both the expressions of Q in [5] and [6] in the non relativistic limit lead to the so-called
BGK model which was formulated in [7] and [8] to simplify the structure of the collision term
which otherwise depends on the product of distribution functions.
On the other hand, the decomposition (2), (3) jointly with Q = − Uα pα

c2 τ
(f − fE) doesn’t im-

ply automatically zero production terms of mass and energy-momentum; this isn’t due to the
presence of ULα in (6) because f − fE is of first order so that, to have a first order expression
for Q, we must calculate ULα at equilibrium where it is equal to Uα. So the problem is due
to the different definitions of the first order deviations from equilibrium. This problem has
been overcome in [9] by adding an extra term of Q in the framework of the Anderson-Witting
model, both in the monoatomic and in the polyatomic case. It was useful in [10] to find the
production term Iβγ of (1).
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In [11] it has been shown how a similar result is obtained in the framework of the Marle
model. In sct. 4 we will prove that the expression (6) of Q in the Landau-Lifshitz descrip-
tion, if linearized with respect to equilibrium defined as in [3], gives the same expression
found in [9]. The same thing can be said for all eqs. (1) and this will be proved in sect. 5.

2 The extension of the model in the Landau-Lifshitz

description to the case of polyatomic gases.

Before going into this discussion, we want to take a look at the background in which it fits.
For many years the works in Extended Thermodynamics were referred to monatomic gases
and, for the case with an arbitrary but fixed number of moments in the classical context, the
equations were used

∂tF
i1···ir + ∂kF

ki1···ir = P i1···ir , (7)

where the moments F i1···ir and their fluxes are expressed in terms of the distribution function
f by

F i1···ir = m

∫
<3

f ξi1 · · · ξir d ~ξ . (8)

Equation (7) with r = 0, 1 gives the conservation laws of mass and momentum, while that of
energy is the trace of (7) with r = 2-
Countless articles have been written in this context, as can be seen from the book [12] and
its bibliography.
An important step for the extension of the model to polyatomic gases was taken with the
article [13] where the authors assumed that the distribution function depends on the time
t, the space variables xi , the microscopic velocity ξi and on a variable I representing the
energy of the internal modes. This model led to the formulation of a generalized Boltzmann
equation in [14]. Between these two works and inspired by the first of them, the article [15]
was published; the idea developed there is that of two blocks of equations: In addition to the
aforementioned eq. (7) (which represents the block of mass), there is another another one
which represents the block of energy

∂tG
i1···is + ∂kG

ki1···is = Qi1···is . (9)

Moreover, the moments and their fluxes are expressed in terms of the distribution function
f by

F i1···ir = m

∫
<3

∫ +∞

0

f ξi1 · · · ξirφ(I) d I d ~ξ ,

Gi1···is = m

∫
<3

∫ +∞

0

f ξi1 · · · ξis
2 I
m

φ(I) d I d ~ξ .

(10)

In this way the conservation law of energy is no more the trace of (7) with r = 2, but eq. (9)
with s = 0.
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These works gave a breakthrough to Extended Thermodynamics and gave way to many other
works some of which are summarized or cited in the book [16]. (See also [17] which describes
the results obtained in this context, also in the relativistic framework as in [3], and which
contains up to 539 references).
Working in this context and in particular in the relativistic context that has begun with
[3], we will prove now that the closure for the field equations (1) in the Landau-Lifshitz
description (which is different from that in [3]) is

Aαβγ = A0
1 Uα

LUβ
LUγ

L − 3 A0
11 ∆(αβU

γ)
L +

∆

c2
Uα

LUβ
LUγ

L − 3 ∆(αβU
γ)
L

(
N∆

D
∆ +

Nπ

D
π

)
−

3

c4

m n

e + p

N1

D3

q(αUβ
LU

γ)
L +

1

5

m n

e + p

N2

D3

∆(αβqγ) + 3 C5 P (<αβ>3U
γ)
L ,

(11)

where A0
1, A0

11, D3 and C5 are the same of [3] and expressed in terms γ = mc2

kBT
(with T the

absolute temperature), γ∗ = γ
(
1 + I

mc2

)
and of the functions

Jm,n(γ) =

∫ +∞

0

sinhm s coshn s e−γ cosh s d s ,

After that, the above expressions are

p =
nmc2

γ
, e = nmc2

∫ +∞
0

J2,2

(
γ + γI

mc2

) (
1 + I

mc2

)
φ(I) d I∫ +∞

0
J∗2,1 φ(I) d I

,

A0
1 = n

∫ +∞
0

J∗2,3

(
1 + 2I

mc2

)
φ(I) d I∫ +∞

0
J∗2,1 φ(I) d I

, A0
11 =

1

3
n c2

∫ +∞
0

J∗4,1

(
1 + 2I

mc2

)
φ(I) d I∫ +∞

0
J∗2,1 φ(I) d I

,

(12)

D3 =

∣∣∣∣∣∣
p
m

2
A0

11

m

1
3
B4 c2 2

3
B2 c2

∣∣∣∣∣∣ , C5 =
B6

B1

.

The new coefficents appearing in (11) are

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n c2 e
m

A0
1

m
c2 A0

11

m
c2

e
m

c2 c4 B5 c4 B3
1
3
c4 B2

p
m

1
3
B4

1
3
B2

1
9
B1

A0
1

m
c4 c4 B3 c4 B8

1
3
c4 B7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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N∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n c2 e
m

A0
1

m
c2 A0

11

m
c2

e
m

c2 c4 B5 c4 B3
1
3
c4 B2

p
m

1
3
B4

1
3
B2

1
9
B1

A0
11

m
1
3
B2

1
3
B7

1
9
B6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Nπ = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n c2 e
m

A0
1

m
c2 A0

11

m
c2

e
m

c2 c4 B5 c4 B3
1
3
c4 B2

A0
11

m
1
3
B2

1
3
B7

1
9
B6

A0
1

m
c4 c4 B3 c4 B8

1
3
c4 B7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

N1 =

∣∣∣∣∣∣
1
3
B2 c4 2

3
B7c

4

1
3
c2 B4

2
3
c2 B2

∣∣∣∣∣∣ ,

N2 =

∣∣∣∣∣∣
B1 2 B6

1
3
c2 B4

2
3
c2 B2

∣∣∣∣∣∣ .

The scalars B··· appearing in the above expressions are those of eqs. (A.6)-(A.9) of [3], i.e.,

B1 = n c4
J∗6,0

(
1 + I

mc2

) (
1 + 2 I

mc2

)
J∗2,1

, B2 = n c2
J∗4,2

(
1 + I

mc2

) (
1 + 2 I

mc2

)
J∗2,1

,

B3 = n
J∗2,4

(
1 + I

mc2

) (
1 + 2 I

mc2

)
J∗2,1

, B4 = n c2
J∗4,1

(
1 + I

mc2

)2

J∗2,1

,

B5 = n
J∗2,3

(
1 + I

mc2

)2

J∗2,1

, B6 = n c4
J∗6,1

(
1 + 2 I

mc2

)2

J∗2,1

,

B7 = n c2
J∗4,3

(
1 + 2 I

mc2

)2

J∗2,1

, B8 = n
J∗2,5

(
1 + 2 I

mc2

)2

J∗2,1

,
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where overlined terms denote thath they are multiplied by φ(I) and, after that, integrated

in d I d~P .
To prove this we note that some passages followed in [3] still hold also in the present case. For
example, the expression of the distribution function f in terms of the Lagrange multipliers
λ, λβ, λβγ is

f = exp

(
−1− χ

kB

)
(13)

with

χ = mλ +

(
1 +

I
mc2

)
λβpβ +

1

m

(
1 +

2I
mc2

)
λβγp

βpγ .

However, we want to consider here the case of the 15 moments model because as outlined in
[18] this case is physically more significant. In any case, for monoatomic gases the trace of
eq. (1)3 is (1)1 multiplied times a constant non zero coefficient; so the 15 moments model
reduces in the monoatomic limit to the models in [1] and [2]. More than that, if we assume
that the Lagrange multiplier λβγ is traceless and take away the trace of (1)3, we obtain also
for polyatomic gases the model in [3]. Now eq. (13) at equilibrium reduces to

f = e
−1− 1

kB
[mλ+(1+ I

mc2
)λβpβ] .

By substituting this distribution function in the definitions

V α = mc

∫
<3

∫ +∞

0

fpαφ(I) d~P d I ,

Tαβ = c

∫
<3

∫ +∞

0

f

(
1 +

I
mc2

)
pαpβ φ(I) d~P d I ,

Aαβγ =
c

m

∫
<3

∫ +∞

0

f

(
1 +

2 I
mc2

)
pαpβpγφ(I) d~P d I ,

(14)

we obtain

nE = 4πm3c3e−1−m
k

λ

∫ +∞

0

J∗2,1 φ(I) d I , V α
E = m n Uα

L ,

Tαβ
E = − p∆αβ +

e

c2
Uα

LUβ
L , Aαβγ

E = A0
1 Uα

LUβ
LUγ

L − 3A0
11 ∆(αβU

γ)
L

(15)

We note that these expressions are the same of (26), (41), (42), (48)-(50), jointly with (36)1

of [3], excpt that now we have Uα
L instead of Uα and −∆αβ instead of hαβ. They are also

the extension of [2], at equiibrium, to the polyatomic case with 15 moments.
In order to obtain the first order deviation from equilibrium we have to consider the
following system

V α
E (λ− λE) + Tαµ

E

(
λµ −

ULµ

T

)
+ Aαµν

E λµν =
kB n

e + p
qα ,

Tαβ
E (λ− λE) + m Aαβµ

11

(
λµ −

ULµ

T

)
+ m Aαβµν

12 λµν = −kB

m

(
−π ∆αβ + P<αβ>3

)
,

Aαβγ
E (λ− λE) + m Aαβγµ

12

(
λµ −

ULµ

T

)
+ m Aαβγµν

22 λµν = −kB

m

(
Aαβγ − Aαβγ

E

)
,

(16)
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where the new tensors appear

Aαβµ
11 =

c

m

∫
<3

∫ +∞

0

fEpαpβpµ

(
1 +

I
mc2

)2

φ(I) d~P d I ,

Aαβµν
12 =

c

m2

∫
<3

∫ +∞

0

fEpαpβpµpν

(
1 +

I
mc2

) (
1 +

2 I
mc2

)
φ(I) d~P d I ,

Aαβγµν
22 =

1

m5c3

∫
<3

∫ +∞

0

fEpαpβpγpµpν

(
1 +

2 I
mc2

)
φ(I) d~P d I .

(17)

Their expressions is reported in (A.6)-(A.8) of [3] and is

Aαβµ
11 = B4 h(αβUγ) + B5 Uα Uβ Uγ ,

Aαβµν
12 =

1

5
B1 h(αβhµν) + 2 B2 h(αβUµU ν) + B3 Uα Uβ Uµ U ν ,

Aαβγµν
22 = B6 h(αβhγµ U ν) +

10

3
B7 h(αβUγ UµU ν) + B8 Uα Uβ UγUµ U ν .

(18)

By comparing the system (16) with (54) of [3], we see that only the right hand sides are
different and this is due to the different definition of the non-equilibrium variables. This
system is useful to give the first order deviation from equilibrium of the Lagrange multipliers
in terms of physical variables. Since we are considering a 15 moments model, we have to take
another independent variable besides n. Uα

L , γ, π, qα, P<αβ>3 and we assume that it is

∆ =
1

c4
ULαULβULγ

(
Aαβγ − Aαβγ

E

)
. (19)

If we contract (16)1 with ULα, (16)2 with ULαULβ and ∆αβ, (16)3 with ULαULβULγ, we obtain

nc2(λ− λE) +
e

m
ULµ

(
λµ −

ULµ

T

)
+

A0
1

m
c2 ULµULνλµν −

A0
11

m
c2 ∆µνλµν = 0 ,

e

m
c2(λ− λE) + c4B5 ULµ

(
λµ −

ULµ

T

)
+ B3c

4 ULµULνλµν −
1

3
B2 c4 ∆µνλµν = 0 ,

p

m
(λ− λE) +

1

3
B4U

Lµ

(
λµ −

ULµ

T

)
+

1

3
B2 ULµULνλµν −

1

9
B1 ∆µνλµν = − kB

m2
π ,

A0
1

m
c4 (λ− λE) + B3 c4ULµ

(
λµ −

ULµ

T

)
+ B8 c4 ULµULνλµν −

1

3
B7 c4 ∆µνλµν = − kB

m2
∆ ,

(20)

where the coefficients of the unknowns (λ− λE), ULµ
(
λµ − Uµ

T

)
, ULµULνλµν , −∆µνλµν are

the same reported in [3]. We see that this system is the same as what would have been
obtained with the same calculations but using decomposition (2), (3) so also the value of the
above unknowns is the same and reads

λ− λE = − kB

m2

(
N31

D
π +

N41

D
∆

)
, ULµ

(
λµ −

Uµ

T

)
= − kB

m2

(
N32

D
π +

N42

D
∆

)
,

ULµULνλµν = − kB

m2

(
N33

D
π +

N43

D
∆

)
, ∆µνλµν =

kB

m2

(
N34

D
π +

N44

D
∆

)
,

(21)
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where D is the determinant (12)5 and Nij is the algebraic complement in D of its element in
the line i and coulumn j.

We contract now (16)1 with ∆δ
α, and (16)2 with ∆δ

αULβ; so we obtain

p

m
∆δµ

(
λµ −

ULµ

T

)
+ 2

A0
11

m
∆δµU ν

L λµν = − kB n

m (e + p)
qδ ,

1

3
B4c

2 ∆δµ

(
λµ −

ULµ

T

)
+

2

3
B2 c2 ∆δµU ν

L λµν = 0 .

We see that this system isn’t the same as what would have been obtained with the same
calculations but using decomposition (2), (3) (the difference is present in the right hand
sides); in any case it gives the above unknowns and they are

∆δµ

(
λµ −

ULµ

T

)
= − 2

3

kB n

m (e + p)
B2 c2 qδ

D3

,

∆δµU ν
L λµν =

1

3

kB n

m (e + p)
B4 c2 qδ

D3

,

(22)

where D3 is the above reported determinant (12)5.
We contract now (16)2 with ∆<δ

α ∆φ>3

β ; so we obtain

2

15
B1 ∆µ<δ∆φ>3ν λµν = − kB

m2
P<δφ>3 → ∆µ<δ∆φ>3ν λµν = − 15

2 B1

kB

m2
P<δφ>3 . (23)

We substitute now the Lagrange multipliers given by (21), (22), (23) in (16)3; so we obtain
the closure (11).

• The production terms.
Eq. (6)1 multiplied by mc φ(I), c

(
1 + I

mc2

)
pβ φ(I), c

m

(
1 + 2 I

mc2

)
pβ pγ φ(I) and integrated

in d I d ~P gives respectively

I = − ULα

c2τ
(V α − V α

E ) =
ULα

c2τ

m n qα

e + p
= 0 (Mass production),

Iβ = − ULα

c2τ

(
Tαβ − Tαβ

E

)
= − ULα

c2τ

[
π ∆αβ + P<αβ>3

]
= 0 (Momentum-energy production),

Iβγ = − ULα

c2τ

(
Aαβγ − Aαβγ

E

)
= − 1

c2τ

[
∆ Uβ

LUγ
L − ∆βγ c2

(
N∆

D
∆ +

Nπ

D
π

)
−

2

c2

m n

e + p

N1

D3

UL(β q
γ)
L + C5 c2 P (<βγ>3

]
.

(24)

So the closure of (1) is completed.
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3 The transformation law between the sets of variables

in the two descriptions,

Let us firstly see how to obtain the variables in [1] in terms those in the Landau-Lifshitz
description.
From (2)1 and (4)1 we have m n Uα = m nCK Uα

L − m nCK

eCK+pCK qCK α; this equation, contracted
with itself gives

n = nCK

(
1 +

qCK αqCK α

c2 (eCK + pCK)2

) 1
2

. (25)

After that, the equation under consideration gives

Uα =

(
1 +

qCK αqCK α

c2 (eCK + pCK)2

)− 1
2

(
Uα

L − qCK α

eCK + pCK

)
,

p = nCK kB T

(
1 +

qCK αqCK α

c2 (eCK + pCK)2

) 1
2

,

(26)

where the last equation is a consequence of p = n kB T . From (25) and (26) we see that
the transformation law between the sets of variables in the two descriptions is not linear.
Moreover, from (26) we can desume the expression of hαβ; from (2)2 and (4)2 we have

e

c2
UαUβ + (p + π) hαβ +

2

c2
U (αqβ) + t<αβ>3 =

eCK

c2
Uα

LUβ
L − (pCK + πCK) ∆αβ + P<αβ>3 ,

(27)

which, contracted with 1
c2

UαUβ, hαβ, Uαhδ
β, hγ

αhδ
β − 1

3
hαβhγδ gives e, p + π, qα, t<αβ>3

respectively, in tems of the other variables. These expressions are not linear (for example,
qα is a linear combination of Uα

L , qCK α, P<αβ>3qCK β through non linear scalar coefficients).
For the sake of simplicity we will limit ourselves to write here only the linear parts with
respect to the equilibrium state defined in [2] and which we will denote with the suffix E to
distinguish it from that defined in [1] which we will denote with the suffix eq.
Well, eqs. (25) and (26) give

n = nCK , p = pCK , Uα = Uα
L − qCK α

eCK + pCK
, up to first order with respect to equilibrium .

(28)

After that, (27) contracted with
UαUβ

c2
and

hαβ

3
gives

e = eCK , π = πCK , up to first order with respect to equilibrium . (29)

Finally, (27) contracted with Uαhγ
β and h<γ

α hδ>3
β gives

qγ =
pCK

eCK + pCK
qCK γ , t<γδ>3 = P<γδ>3 , up to first order with respect to equilibrium .

(30)

9



• Let us consider now the transformation in the inverse sense to find the variables of the
Landau-Lifshiz description in terms of the commonly used variables. To this end we note
that (4)2 contracted with ULβ gives(

Tαβ − eCKgαβ
)

ULβ = 0 , (31)

i.e., eCK is an eigenvalue of Tαβ and ULβ is a corresponding eigenvector. Since eigenvectors
are defined except for a coefficient of proportionality, this coefficient must be chosen in order
to satisfy the condition (5)1.
Once ULα is known, eq. (4)1 contacted with ULα gives

nCK =
n

c2
ULα Uα , and its remaining part gives

qCK α

eCK + pCK
= Uα

L − n

nCK
Uα ,

pCK =
p

c2
ULα Uα ,

(32)

where the third equation comes from pCK = nCK kB T . (Note that qCK α plays a role in the

above equations only through qCK α

eCK+pCK ).

After this, eq. (27) contracted with gαβ and ∆<γ
α ∆δ>3

β gives respectively,

πCK = p

(
1 − ULα Uα

c2

)
+ π +

1

3

(
eCK − e

)
,

P<γδ>3 = ∆<γ
α ∆δ>3

β t<αβ>3 +
e + p + π

c2
∆<γ

α ∆δ>3
β UαUβ .

(33)

• For example, at equilibrium defined as in [1], eq. (31) becomes[(
eCK

eq + p
)
hαβ +

e − eCK
eq

c2
UαUβ

]
ULβ = 0 .

This has the eigenvalue eCK
eq = e and the eigenvector ULβ = Uβ which satisfies also the

condition (5)1. Eq. (32) gives

nCK
eq = n , pCK

eq = p , qCK α
eq = 0 .

Finally, eq. (33) gives

πCK
eq = 0 , P<γδ>3

eq = 0 .

• Let us consider now the first order homogeneous part of our equations with
respect to equilibrium. Eq. (31) becomes(

Tαβ
eq − e gαβ

)
U

(1)
Lβ +

(
Tαβ − Tαβ

eq − eCK(1) gαβ
)

Uβ = 0 →
→ (e + p) hαβ ULβ(1) + qα − eCK(1) Uα = 0 .

10



This equation contracted with Uα gives

eCK(1) = 0 , and there remains hαβ ULβ(1) = − qα

e + p
.

There is still to impose the condition (5)1 which, at first order becomes Uβ ULβ(1) = 0.
Jointly with the previous result, this equation gives

ULα
(1) =

qα

e + p
.

The first order part of eq. (32) gives

nCK(1) = 0 , pCK(1) = 0 ,
qCK(1) α

e + p
= UL(1)α =

qα

e + p
→ qCK(1) α = qα .

The first order part of (33) is

πCK(1) = π , P<δγ>3(1) = t<δγ>3 .

So we have obtained that, up to first order

nCK = n , pCK = p , πCK = π , ULα = Uα +
qα

e + p
, eCK = e , qCK α = qα ,

P<δγ>3(1) = t<δγ>3 .

(34)

We note that these eqs. are the inverse of (28)-(30) except for (30)1 and (34)6.

4 The linearization of Q defined by (6) in the variables

(2), (3).

We firstly see that ULα in (6) is multplied by a first order term f − fE with respect to
equilibrium. So in a linerized theory it can be replaced by Uα. After that, we see that in
the expression of Q proposed in [9], there is too a factor f − feq; so we evaluate now their
difference

(f − fE) − (f − feq) = feq

(
1 − fE

feq

)
= feq

(
1 − e

− 1
kB

[m(λE−λeq)+(1+ I
mc2

)(λE
β −λeq

β ) pβ]
)

.

(35)

But λE and λeq are defined by

e
−1− 1

kB
λE =

1

4 π m3c3

nck∫ +∞
0

J∗2,1 φ(I) d I
, e

−1− 1
kB

λeq =
1

4 π m3c3

n∫ +∞
0

J∗2,1 φ(I) d I
.

11



Since nck and n are equal, up to first order with respect to equilibrium, we have also that
λE = λeq up to the same order. So (35) becomes

(f − fE) − (f − feq) = feq

(
1 − e

− 1
kB

(1+ I
mc2

)(λE
β −λeq

β ) pβ
)

. (36)

Moreover, we have that

λE
β =

ULβ

T
, λeq

β =
Uβ

T
→ λE

β − λeq
β =

ULβ − Uβ

T
=

qβ

(e + p)T
,

where in the last passage we have used (34)4. So eq. (36) becomes

(f − fE) − (f − feq) = feq

(
1 − e

− 1
kB

(1+ I
mc2

)
qβ pβ

(e+p)T

)
≈ feq

1

kB

(
1 +

I
mc2

)
qβ pβ

(e + p)T
,

where the last passage holds up to first order with respect to quilibrium. So we have obtained
that (6)2, up to first order with respect to quilibrium becomes

Q = − Uα pα

c2 τ

[
f − feq + feq

1

kB

(
1 +

I
mc2

)
qβ pβ

(e + p)T

]
, (37)

while in [9] it was proposed

Q = − Uα pα

c2 τ

[
f − feq + 3 feq

(
1 +

I
mc2

)
qβ pβ

B4m2c2

]
. (38)

To prove that (37) and (38) are equal, it suffices to prove that

m B4 γ = 3(e + p) , i.e., that (39)

m n c2
γ

∫ +∞
0

J∗4,1

(
1 + I

mc2

)2
φ(I) d I∫ +∞

0
J∗2,1 φ(I) d I

= m n c2

∫ +∞
0

(
3 J∗2,2 + J∗4,0

) (
1 + I

mc2

)
φ(I) d I∫ +∞

0
J∗2,1 φ(I) d I

,

and this relation is identically satisfied because from (7.6)2 of [1] we have

γ J4,1(γ) = − J2,0(γ) + 4J2,2(γ) = J4,0(γ) + 3J2,2(γ) ,

where in the last passage we have used (7.6)2 of [1]. From this result it follows

γ

(
1 +

I
mc2

)
J∗4,1 = J∗4,0 + 3J∗2,2 .

After this, it is easy to see that the above identity holds.

12



5 Comparison of the closures coming from the two ap-

proaches.

We have seen that the production terms coming from the two approaches are equal up to the
first order with respect to equilibrium. We prove now that also the left hand sides of (1) are
equal up to the first order with respect to equilibrium. To this end we note that, by using
ULα = Uα + qα

e+p
, we have

∆αβ = gαβ − 1

c2

(
Uα +

qα

e + p

) (
Uβ +

qβ

e + p

)
≈ −hαβ − 2

(e + p) c2
U (α qβ) ,

where the second order term has been omitted. We have also

Aαβγ
E = A0

1 Uα
LUβ

LUγ
L − 3 A0

11 ∆(αβU
γ)
L ≈ A0

1

(
UαUβUγ +

3

e + p
U (αUβqγ)

)
+

+
3A0

11

e + p
h(αβqγ) + 3A0

11 h(αβUγ) +
6A0

11

(e + p)c2
U (αUβqγ) =

= A0
1 UαUβUγ + 3A0

11 h(αβUγ) +
3

(e + p)

(
A0

1 +
2

c2
A0

11

)
U (αUβqγ) +

3A0
11

e + p
h(αβqγ) .

(Here too, higher order terms have been omitted). This results shows that also the equilib-
rium term of Aαβγ in the Landau-Lifshitz description produces a first order term when it is
converted in the usual variables. By substituting this expression in (11), we see that there
are now two terms in U (αUβqγ) and two terms in h(αβqγ). Consequently, we see that the two
linearized closures are equal if and only if the following two relations hold

− m n

c2
N1 +

(
A0

1 c2 + 2 A0
11

)
D3 = N3 (e + p) ,

− m n N2 + 15 A0
11 D3 = 3 N31 (e + p) .

(40)

The first one of these can be written as∣∣∣∣∣∣∣∣∣∣

m n
c2

p
m

2 A0
11

m

A0
1 c2 + 2 A0

11
1
3
B2 c4 2

3
B7 c4

e+p
c2

1
3
B4 c2 2

3
B2 c2

∣∣∣∣∣∣∣∣∣∣
= 0 ,

and this is an identity because the second coulumn is equal to the first one multiplied by
kB T c2

m2 . This is easy to verify for the first element and for the third one thanks to (39). To
prove that it holds also for the second element, let us consider the expression of B2 reported
in [3] and have that

γ B2 = n
γ

∫ +∞
0

J∗4,2

(
1 + I

mc2

) (
1 + 2I

mc2

)
φ(I) d I∫ +∞

0
J∗2,1 φ(I) d I

.
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But, from (7.6)2 of [1] we have

γ J4,2(γ) = −2 J2,1(γ) + 5J2,3(γ) = 2 J4,1(γ) + 3J2,3(γ) ,

where in the last passage we have used (7.6)2 of [1]. From this result it follows

γ

(
1 +

I
mc2

)
J∗4,2 = 2 J∗4,1 + 3J∗2,3 .

By using this, the above expression of γ B2 becomes

γ B2 = n

∫ +∞
0

2
(
J∗4,1 + 3J∗2,3

) (
1 + 2I

mc2

)
φ(I) d I∫ +∞

0
J∗2,1 φ(I) d I

=
3

m

(
A0

1 c2 + 2 A0
11

)
.

Thank to this result, also the second element in the first coulumn of the above matrix,
multiplied by kB T c2

m2 becomes equal to the corresponding one in the second coulumn.
The second equation of (40) can be written as∣∣∣∣∣∣∣∣∣∣

m n p
m

2 A0
11

m

15 A0
11 B1 2 B6

e + p 1
3
B4 c2 2

3
B2 c2

∣∣∣∣∣∣∣∣∣∣
= 0 ,

and this is an identity because the second coulumn is equal to the first one multiplied by
kB T
m2 . This is easy to verify for the first element and for the third one thanks to (39). To

prove that it holds also for the second element, let us consider the expression of B1 reported
in [3] and have that

γ B1 = n c4
γ

∫ +∞
0

J∗6,0

(
1 + I

mc2

) (
1 + 2I

mc2

)
φ(I) d I∫ +∞

0
J∗2,1 φ(I) d I

.

But, from (7.6)2 of [1] we have

γ J6,0(γ) = 5 J4,1(γ) → γ

(
1 +

I
mc2

)
J∗6,0 = 5 J∗4,1 .

By using this, the above expression of γ B1 becomes

γ B1 = 5 n c4

∫ +∞
0

J∗4,1

(
1 + 2I

mc2

)
φ(I) d I∫ +∞

0
J∗2,1 φ(I) d I

=
15 c2

m
A0

11 .

Thank to this result, also the second element in the first coulumn of the above matrix,
multiplied by kB T

m2 becomes equal to the corresponding one in the second coulumn.
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Obviously, also the closure of the left hand sides of (1)1,2 is the same up to first order terms.
In fact, we have

V α
E = m n Uα

L = m n

(
Uα +

qα

e + p

)
→

V α = V α
E + (V α − V α

E ) = m n

(
Uα +

qα

e + p

)
− m n

e + p
qα = m n Uα .

and

Tαβ
E = − p ∆αβ +

e

c2
Uα

LUβ
L =

e + p

c2

(
Uα +

qα

e + p

) (
Uβ +

qβ

e + p

)
− p gαβ ≈

≈ e + p

c2

(
Uα Uβ +

2

e + p
U (α qβ)

)
− p gαβ =

e

c2
Uα Uβ + p hαβ +

2

c2
U (α qβ) .

From this expression it follows

Tαβ = Tαβ
E − π ∆αβ + P<αβ>3 ≈ e

c2
Uα Uβ + (p + π) hαβ +

2

c2
U (α qβ) + t<αβ>3 .

We concude with the closure of the right hand sides of (1).
• The production terms.

We conclude our proof by analizing the production term (24)3 and comparing it with its
expression which comes out with the usual variables. In the article for the 15 moments
obtained in the usual variables there is the variable ∆ which we call now ∆15 and see that
∆15 = c ∆, where ∆ is the 15th variable in the present article. Moreover, in the calculations
with the usual variables there is a determinant D which we call now D15 and see that the
third line of D15 is equal to the fourth line of the present D divided by 1

c
, while the fourth

line of D15 is equal to the third line of the present D. So we have D15 = − 1
c
D. By taking

into account these particulars, we see that the two expressions of Iβγ are equal if and only if

B2

B4

− N3

D3

=
m n

(e + p) c2

N1

D3

.

By substituting here e + p from eq. (39), this condition becomes∣∣∣∣∣∣∣∣∣∣

3 n
c2 γ

p
m

2 A0
11

m

B2
1
3
B2 c4 2

3
B7 c4

1
c2

B4
1
3
B4 c2 2

3
B2 c2

∣∣∣∣∣∣∣∣∣∣
= 0 ,

which surely holds because the second coulumn is equal to the first one multiplied by 1
3
c4.

So our proof is complete.
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6 Conclusions

In this paper we have generalized the relativistic 14 moments model for polyatomic gases by
Pennisi and Ruggeri to a 15 moments model. This was necessary because the same authors
showed in a subsequent article that the 15 moments model is more suitable for describing such
gases. However, we have limited ourselves here to obtaining this result using the variables of
the Landau-Lifshitz description (used, for example, by Cercignani and Kremer) and which
are less intuitive than the usual one; the corresponding model that makes use of the usual
variables is left for further research and study which are now in progress jointly with prof.
Ruggeri and other possible cooperators. The transformation law between the two sets of
variables was also found here; this made it possible to compare the models that come out
with the two sets of variables and to deduce that they are practically the same as long as we
limit ourselves to the first order with respect to equilibrium; for this purpose it was necessary
to clarify what this ”first order with respect to equilibrium” means, since it is different in
the two descriptions. As a bonus we discovered that the expression proposed by Pennisi and
Ruggeri for the collisional term modifying a little that of Anderson-Witting, in reality doesnt
differ from the original unmodified one, but with the presence of the Landau-Lifshitz four
velocity Uα

L (Obviously, also this is valid within the approximation we talked about earlier).
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