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A B S T R A C T

We provided the detailed buckling and post-buckling analysis of corrugated shallow spherical shells. Such shells
are extensively used in civil and mechanical engineering. Here the main attention is paid to a corrugation as
a key parameter affecting the instability. Three types of corrugation are introduced and discussed. The latter
includes the following types: edge corrugated, half corrugated, and fully corrugated shells. Since the effect on
instability is highly affected by the imperfections, a customised set of defects is proposed compared to a perfect
structure. Several boundary conditions and load cases are analysed. An increase in the load multiplication
factors highlights the effects of corrugation in shallow shells mechanics. Being inspired by the fascinating
Nervi’s Flaminio dome in Rome, we introduce a novel way to improve the shells design against the instability
effects.
1. Introduction

Stability of shells constitutes a rather old and developed branch of
mechanics of structures, which found a lot of applications in modern
engineering, see e.g. [1–4]. On the other hand, unlike buckling of
beams and plates, curved structures such as arches and shells demon-
strate much more complex behaviour related to high nonlinearity,
sensitivity to imperfections, and multiplicity of solutions. For example,
if minor geometric deviations from a perfect structure are considered,
the non-linear behaviour significantly differs from the ideal one and
exhibits a noticeable decrease of the critical load. This essential influ-
ence of imperfections was studied by Koiter [5–7]. In the following
we restrict ourselves to spherical shells. Considering buckling of a
complete spherical shell under uniform pressure one should mention
original papers [8,9], where the classical linear eigenvalue analysis
under axisymmertic deformations was provided. More general case was
studied in [10], where it was proven that one of the solutions is always
symmetrical about a diameter, whereas the others show a sinusoidal
variation about the diameter. The membrane solution becomes unstable
at the critical pressure given by the formula:

𝑃𝑐 = 2𝐸
( 𝑡
𝑅

)2 1
√

3 − 3𝜈2
, (1)

where 𝐸 and 𝜈 are Young’s modulus and Poisson’s ratio, respectively,
𝑡 the shell thickness and 𝑅 the radius of the sphere. After the struc-
ture has reached 𝑃𝑐 , an equilibrium is still possible but the pressure
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decreases significantly. The buckling mode was found to be a zonal
spherical surface harmonic.

Further analysis of spherical shells was given by Hutchinson [11],
where the Donnel-Mushtari-Vlasov (DMV) shallow shell theory was
used, see also Koiter’s lessons [7]. Note, in buckling and post-buckling
analysis DMV theory is one of the most used. Nevertheless, the small
strain moderate rotations theory [5,12,13] and the exact theory should
be also mentioned. A review and a comparison between them are
given by Hutchinson [14]. Koiter [15] has provided results about the
axisymmetric buckling under uniform pressure of a shallow portion of
a spherical shell, clamped along a circular boundary. The solution pro-
posed by Budiansky [13] for the equilibrium of differential equations
depends only on the geometrical parameter 𝜆, defined as follows:

𝜆 =
[

12(1 − 𝜈2)
]1∕4

√

𝑅
ℎ
. (2)

Following the definition by Reissner [16] a shell could be considered a
shallow one when ‘‘. . . difference between meridian slope and sloping
angle may be disregarded . . . ’’; according to that, shallowness requires
coarsely that the ratio between the rise of the shell ℎ, and the half-
span 𝑎, to be less than 1∕6. A complete collection of all the major
experiments on spherical shells is reported in [17], where a comparison
with theoretical results were given. In [17] one can found a significant
discrepancy between the theoretical predictions and the experiments.
The reasons for such discrepancy can be summarised as follows:
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Fig. 1. The Flaminio dome desingned by Nervi (figure courtesy of E. Reccia).
Fig. 2. The representation of four cases for the shallow spherical cross-section, with different rise-to-half-span ratios: A, complete semi-circle with centre 𝐶1 and diameter equal
to span; B, C, and D, circles of increasing radios with centres 𝐶2, 𝐶3, 𝐶4, respectively, having the same half-span. The last case D, highlighted in red, is considered here. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1
Geometric dimension of the spherical cross-section passing through the 𝑧𝑥 plane.

Case 𝑓 𝑓∕𝑙 𝑅 𝑥0 𝑧0
m – m m m

A 30.00 1.00 30.00 0.00 0.00
B 15.00 0.50 37.50 0.00 −22.50
C 10.00 0.33 50.00 0.00 −40.00
D 5.00 0.17 92.50 0.00 −87.50

1. The behaviour of the shell is highly non-linear, especially in
the post-buckling phase. Even in the relatively simple case of
circular arches one can see a series of equilibrium paths, see
e.g. [18]. The first researchers to point out quantitatively this
issue were [19,20]. These authors made it clear that structures
deform at significantly lower loads than expected. The reason
was attributed to a slight different initial geometry with refer-
ence to the theoretical one. This prompted further research into
the search for the minimum buckling load. Even more relevant
2

for the purpose of this research was the insight of increasing the
flexural stiffness to achieve higher buckling loads. In fact, one
way to increase flexural stiffness is to corrugate the shell. The
prediction was given by von Kàrmàn [19].

2. The high sensitivity to imperfections and defects, that was
clearly the most significant achievement of [21]. Imperfections
are defined as deviations from perfect characteristics such as
shape, thickness, material properties and load distribution. In
practical terms, they are unavoidable and, regardless of the skill,
craft and precision of the builders, will always be present in any
construction.

Some practical design approaches were suggested in the literature
for estimation of a critical load, see e.g. Gioncu [22], Sawires [23],
Ramm [24], including analysis of concrete shells by Heyman [25]. It
is essential in buckling analysis of reinforced concrete (RC) shells to
distinguish between the influence of material and geometrical nonlin-
earities. It should be pointed out that Ramm suggested to use ‘‘buck-
ling phenomena’’ when the problem involves finite strain and where
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Table 2
Eigenvalues and critical loads of a shallow shell (case D) under pressure.

Hinged edge Clamped edge

Eigenvalue Critical load Eigenvalue Critical load
– kPa – kPa

1st 12.723 63.615 12.425 62.125
2nd 12.770 63.850 12.583 62.915
3rd 12.770 63.850 12.583 62.915

Table 3
Eigenvalues of a linear elastic analysis of shallow shells under self-weight.

Smooth Edge-corrugated Half-corrugated Whole corrugated

1st 16.748 17.259 16.196 25.543
2nd 17.013 17.402 16.196 25.543
3rd 17.013 17.402 16.312 25.553
4th 17.183 17.587 16.312 25.553
5th 17.183 17.587 16.910 27.089
6th 17.329 17.723 16.910 27.089
7th 17.329 17.723 17.639 27.222
8th 17.500 17.869 17.639 27.222
9th 17.500 17.869 18.233 29.095
10th 17.601 17.990 18.233 29.095

Fig. 3. Spherical coordinate system, with colatitude angles 𝑣𝑎𝑟𝑡ℎ𝑒𝑡𝑎0.

non linear material effects have little influence on the global be-
haviour. Last but not least, the ACI recommendations based on IASS
recommendations are still valid for design purposes [26].

The aim of this paper is to provide an analysis of corrugated
spherical shells including studies of various imperfections similar to
whose which one can observe in Nervi’s Flaminio dome in Rome, see
Fig. 1, and similar corrugated structures. The remainder of the paper
is organised as follows. The main content of the paper is presented in
Section 2. Here we discussed the relevant geometrical description of a
corrugations. A general framework of instability analysis is provided.
Then we study the linear stability analysis for different corrugations
and loadings. Finally we present post buckling analysis and we provide
a discussion of the obtained equilibrium paths. Some final remarks and
3

further applications are given in Conclusions. o
Fig. 4. Analysis procedure.

2. Parametric stability evaluation of corrugated-edge shells

2.1. Geometrical description

The geometric description of a shallow shell with assigned span is
described here, and will be used as a model for the subsequent numer-
ical examples. The structure is constructed to resemble the Flaminio
dome, keeping constant the span, roughly equal to 60 m and varying
the rise, in such way that a set of cases with variable rise-to-span ratio
can be described.

Considering now a shell cross-section that lies within the 𝑥𝑧 plane.
Let 𝑙 and 𝑓 be respectively the half-span and the rise of the dome
(𝑙 < 𝑅), and let 𝑥0 = 0, 𝑧0 = 0 be the centre of a circle, therefore the
ircle equation is given by:
2 + (𝑧 − 𝑧20) = 𝑅2 (3)

consequently, for a circle whose centre is located in the negative part
of the 𝑧 axis, the half-span-to-rise ratio is expressed functionally by 𝑓
and 𝑅 in the following way:

𝑙
𝑓

=
+
√

𝑅2 − (𝑓 − 𝑅)2

𝑓
=

+
√

−𝑓 2 + 2𝑓𝑅
𝑓

=
√

2𝑅
𝑓

− 1. (4)

The formula gives real values for 0 < 𝑓 ≤ 2𝑅, and it is possible now to
express the circle radius depending on the half-span and on the rise:

𝑅 =
𝑙2 + 𝑓 2

2𝑓
. (5)

Therefore, different ratios with an assigned half-span can be attributed,
and the corresponding radius can be derived. Table 1 shows the values
of four different geometries starting from a complete semi-circle, A, to a
circle, D, whose rise is 5 m, all of them having a half-span of 30 m. The
our cases A, B, C, and D, are depicted in Fig. 2. The obtained values
ould be replaced in the parametric equations reported in [27–29] and
y using the procedure therein referred to, a geometrical model of the
urfaces can be produced to perform FE analyses. Since, the instability

f spherical shells is sensitive to the rise-to-half-span ratio 𝑓∕𝑙, i.e. the
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Fig. 5. Convention for the displacement orientation at the apex of the dome.
Fig. 6. The first ten eigenvalues derived from a linear buckling analysis for the four cases: smooth, edge-corrugated, half-corrugated and fully corrugated.
smaller the ratio, the more easily instability is triggered. Therefore,
the last case, D, whose rise-to-half-span ratio 𝑓∕𝑙 is equal to 0.17, is
considered here. Moreover, the geometry of case D is comparable with
the Nervi’s Flaminio dome, that has a radius of 48.5 m, an half-span
of 29.25 m, and a rise of 5.8 m, leading to a rise-to-half-span ratio 𝑓∕𝑙
equal to 0.19.

In the following numerical analyses will be considered only for case
D, that constitutes the most delicate case towards buckling phenomena.
In order to figure out the effect of the corrugation on the dome non-
linear behaviour, firstly the smooth case will be analysed, secondly
corrugation will be introduced at the edge and then corrugation will
be extended to half of the surface and finally, to the whole surface.

The parameter used to set the extension of the corrugation is the
colatitude angle 𝜗0, see Fig. 3. The corrugated spherical shell cases are
henceforth identified as: smooth, edge-corrugated, half-corrugated, and
fully corrugated. Excluding the first case, the corrugation starting angle
are respectively: 𝜗0, 𝜗0∕2 and 0.

2.2. Instability analysis: general framework

Instability investigations will be conducted as follows:
4

Table 4
First maximum load multiplier and first minimum load multiplier extracted from the
equilibrium paths of a corrugated shell, to which an imperfection from the first to the
fifth eigenshapes was individually applied.

1st 2nd 3rd 4th 5th

𝜆𝑚𝑎𝑥 Smooth 4.38023 3.86702 6.36546 3.29877 3.29428
Edge-corrugated 10.49390 5.21167 5.21167 6.22284 6.22284

𝜆𝑚𝑖𝑛 Smooth 1.64345 3.67448 3.34554 1.61897 1.51548
Edge-corrugated 4.01866 3.15565 3.15565 2.54318 2.71113

1. analysis of stability issues (including a search for bifurcations)
for perfect spherical caps of different amplitude with different
load patterns (external pressure acting on the whole cap or on a
subset of it and dead-weight load);

2. analysis of stability issues for imperfect spherical caps, with em-
phasis on sensitivity on location and amplitude of imperfection
(for instance: displacement imposed to the edge, dimple-like im-
perfection, a hole in the shells), even for random imperfections;

3. analysis of stability issues for perfect edge-corrugated spherical
caps, with a sensitivity evaluation based on the depth, angular
extension, and number of waves.
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Fig. 7. Eigenshapes of a smooth shell, 1st (a), 2nd (b), 3rd (c), 4th (d), 5th (e), 6th (f), 7th (g), 8th (h), 9th (i) and 10th (l). The contour plot shows the magnitude of the
displacement in 𝑧 direction.
Table 5
First maximum load multiplier and first minimum load multiplier extracted from the
equilibrium paths of a corrugated shell, to which an imperfection from the sixth to the
tenth eigenshapes was individually applied.

6th 7th 8th 9th 10th

𝜆𝑚𝑎𝑥 Smooth 4.01016 3.84184 4.34948 4.62767 4.96369
Edge-corrugated 5.99063 5.99063 5.69488 5.69499 5.52714

𝜆𝑚𝑖𝑛 Smooth 3.44032 3.08219 4.53428 4.44666 3.43911
Edge-corrugated 2.68605 2.68605 3.58923 3.34211 4.55273
5

The procedure to perform an analysis with imperfection in Abaqus
is:

1. define an imperfection based on eigenmode shapes: when the
imperfections are not known in advance, then it is possible to
use, as an imperfection, the first eigenshape (which is given
by a linear buckling analysis) or a combination of weighted
eigenshapes;

2. defining an imperfection based on static analysis data. It consists
in assigning a prescribed displacement to the whole set of nodes
or to a chosen subset (for instance: only on the edge, or only
upon a parallel, etc.), the displacement field computed by a static
analysis;

3. define an imperfection directly: when the kind of imperfection is
already known, that should be given to the model. It can be ex-
pressed as a displacement field in a chosen reference system; All
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Fig. 8. Eigenshapes of an edge-corrugated shell, 1st (a), 2nd (b), 3rd (c), 4th (d), 5th (e), 6th (f), 7th (g), 8th (h), 9th (i) and 10th (l). The contour plot shows the magnitude of
the displacement in 𝑧 direction.
the previously mentioned models can be implemented working
only on the ‘‘input’’ file of the model;

4. use customised perturbations.

The procedure and methodology adopted in henceforth has been in
accordance with [17,30,31]. The above described procedure is sum-
marised in the flowchart provided in Fig. 4.

In order to address properly the problem, it is necessary to recall
some recent approaches that are currently used in non-linear analyses
of shell structures. The studies presented in the scientific literature
are mainly devoted to understanding the effect of imperfection in pre-
critical behaviour on spherical shells, here some references have been
selected.

In the following analysis, the non-linear material behaviour of
concrete will not be addressed. In fact, the research campaign on the
plastic behaviour of Nervi’s structures is lacking, and there are no
6

available data on real specimens or real structures. Nonetheless, the aim
is to figure out the effect of instability on spherical shells of the wavy
shape. In contrast, it is well-clear to the authors that plasticity affects
the actual behaviour of such structures, though for the purpose of this
research, it is sufficient to decouple the non-linearities considering only
the geometrical one.

The equilibrium curves (i.e. a plot of the structure equilibrium
position depending on the load multiplier and evolutive parameters)
are limited only to displacements not greater than 1 m. Considering
thin concrete shells, this assumption does not seem reasonable, but to
fully understand the post-critical behaviour, it is worth extending the
displacement range beyond the admissible displacement for reinforced
concrete. Otherwise it is not possible to correctly characterise the
phenomenon.

For instance, sudden instability, such as the snap-through, is char-
acterised by an everted portion of the shell (i.e. a signum change of
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Fig. 9. Eigenshapes of a half-corrugated shell, 1st (a), 2nd (b), 3rd (c), 4th (d), 5th (e), 6th (f), 7th (g), 8th (h), 9th (i) and 10th (l). The contour plot shows the magnitude of
the displacement in 𝑧 direction.
the surface curvature). Even though it is an issue that has still to be
addressed in the design process, it is likely, and to accurately assess its
chance to occur, that the analysis must consider large displacements
(a hypothesis not usually adopted in the RC design) and the complete
shape of the equilibrium curve. Furthermore, once the structure has
become unstable, mechanical reserves of strength still exist after the
buckling load has been reached. The choice of the evolutive parameter
for the equilibrium curves requires some clarifications. In fact, in the
case of a simple structure such as a frame or an articulated beam, it
is relatively easy to select the parameters due to the limited number
of nodes to choose from, or the easiness to compute other significant
quantities, namely strain, volume etc. For example, if a truss girder is
loaded with a concentrated load, the parameter should be the displace-
ment in the load direction. See the well-known case of a von Mises truss
and Lee’s frame.
7

However, this is different when shells are dealt with; theoretically,
a shell is a continuous structure with various modes of buckling which
differ significantly from one another. Each buckling mode requires a
separate parameter, limiting the possibility of comparing the various
graphs. For example, in the case of a localised snap instability, the
choice falls on the point of maximum displacement around the snapped
area. In the following discussion about the dome instability behaviour,
considering that the option is not unique, the sensitivity and the
insight of the designer has to guide the suitable choice. Henceforth,
the displacement of the dome vertex is chosen as the monitored point,
see Fig. 5. This is the point generally subjected to the most significant
displacement, but the reader should keep in mind that the choice is not
unique.

Even though the equilibrium curves are pushed beyond the admis-
sible displacement for concrete it must be clear that failure mode will
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Fig. 10. Eigenshapes of a fully corrugated shell, 1st (a), 2nd (b), 3rd (c), 4th (d), 5th (e), 6th (f), 7th (g), 8th (h), 9th (i) and 10th (l). The contour plot shows the magnitude of
the displacement in 𝑧 direction.
not be due to instability but, most likely, to overcoming the strength
of concrete. The failure may be produced by forming a plastic hinge
or by fragility, especially in the area where the stress is localised (i.e.
supports). At preliminary step, we provided convergence analysis con-
sidering various numbers of elements and their type, as done in [28,29].
The further analysis was provided for a given number of elements and
the same type of finite elements. The FE model number of elements
is similar for corrugated shells and for smooth ones, so a choice of 94
elements for each hoop circle and 30 in the meridian direction has been
adopted. A 4-node shell element based on [32,33] is used. Notice that
the 8-node shell element, which better represents the shape in case
of a surface with double curvature due to the its second order shape
functions, is not employed.
8

Investigations to consider the impact of geometrical non-linearities,
limiting only to geometrical imperfections, are addressed. The follow-
ing cases can be distinguished: (1) linear buckling analysis of perfect
shells (shorten to buckling analysis), (2) linear analysis with geometrical
imperfections, (3) geometrically non-linear analysis, (4) geometrically
non-linear analysis with imperfections.

2.3. Linear instability analysis

Table 2 shows the results of a linear buckling analysis for two differ-
ent boundary conditions, namely, hinged and clamped edge; it reports
the load multipliers (eigenvalues) for which the model stiffness matrix
becomes singular. The hydrostatic pressure load case is considered.
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Fig. 11. Equilibrium paths of perfect shells: smooth (black solid line), an edge corrugated (red solid line), a half corrugated (blue solid line) and a wholly corrugated (orange
solid line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
The theoretical values can be obtained considering the fully restrained
conditions; nonetheless, even for the hinged shells, the values do not
significantly differ. In the design practice, the actual support conditions
are not easily classified, see, for instance, some references about the
historical techniques of construction for concrete supports [34] and
should be analysed experimentally. The worst condition is that of
hinged supports; therefore, the subsequent analyses will consider only
this case.

Table 3 presents the eigenvalues for the first ten modes for each
of the considered shapes under self-weight loading. The corrugation
gradually vary from a smooth one to a fully corrugated surface, through
the intermediate cases: the edge-corrugated shape that resembles the
Nervi’s Flaminio dome and the half-corrugated dome. It should be
noticed that all the values are close to each others, and after the first
value, the eigenvalues show a double multiplicity; this evidence is
known to be associated to a high sensitivity to imperfections.

Fig. 6 demonstrates graphically the obtained numerical results; it
is evident that the critical load value increases as the corrugation
spreads across the surface. This increase is remarkable in the case
of the fully-corrugated shells, about 50% with respect to the smooth
one.

Figs. 7 and 8 provide the buckling eigenshapes for the first 10th
modes of the smooth and the edge-corrugated dome. The contour plot
displays the displacement field in the vertical direction. The first eigen-
shape is always symmetrical [14]. The edge-corrugated shell is also the
case, with the difference that the displacements are smaller near the
edge. Consequently, the wavy shape restricts the buckled surface to a
minor area. Figs. 9 and 10 show the analogous eigenshapes for the half
and wholly corrugated dome. In the third case, the new shape locks all
9

the buckled shapes that involve the wavy area; this forces the structure
to buckle with higher modes (concerning the smooth case modes). This
effect is amplified for the fully corrugated domes, where much higher
modes involve only the area surrounding the apex. Besides, these modes
are not likely to be triggered.

2.4. Equilibrium paths

In Fig. 11 we present four equilibrium paths, i.e. load–displacement
curves, for corrugated shells without imperfections. One can see that
corrugation dramatically changes the mechanical response. Note that
hereinafter displacements are taking in the apex as in Fig. 5 and given
in metres, whereas the load multiplier is dimensionless.

Instead in the next figures we show equilibrium paths for shells with
imperfections. Figs. 12, 13, and 14 show the applied load as a function
of the displacement for different cases. The applied imperfection is
based on the 𝑛th buckling mode of the linear analysis, to which a
scale factor has been applied that reduces the buckling modes to obtain
the desired imperfection size. This value has been set to 0.1, so the
imperfection consists of a displacement field applied to the initial
configuration. Figs. 15, 16, and 17 show the same equilibrium path
considering only one parameter of the mechanical system (which is
always increasing) instead of the displacement of a control point, in
this case the measure arc length, although not having an immediate
mechanical meaning, constitutes a continuous and evolving parameter
that can make the output of the equilibrium path more readable.

Tables 4 and 5 show the first two load values of the limit points for
each equilibrium path (i.e. the first is the first maximum value and the
second one is the minimum one).
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Fig. 12. Equilibrium paths of a smooth shell (black solid line) and of an edge corrugated shell (red solid line). The following imperfections have been individually applied: 1st
(a), 2nd (b), 3rd (c) and 4th (d) eigenshapes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
If we restrict ourselves to considering vertex displacements to the
range in 30 ÷ 40 cm (corresponding to an approximate maximum
admissible displacement equal to 1∕200 of the dome span), it appears
that, for the smooth dome, the most critical case is that shown in graph
(a). For the corrugated dome, case (d) appears to be the most severe.

One could therefore observe that for the smooth dome, the most
detrimental imperfections are those that approximate the first mode,
while for the corrugated dome, on the other hand, are those that have
a shape close to the fourth mode.

Comparing the two equilibrium curves, then, one sees that the
corrugated dome has a critical load of about twice that of the smooth
dome. The behaviour significantly changes when the corrugation is
applied to the whole surface and not only to a minor part of the
shell, i.e. the edge. The previous considerations about post-buckling
behaviour show that the corrugation on a portion of the shell leads
to an improvement of about 2 ÷ 4%, that is not significant in practical
applications. On the contrary when the whole corrugation is analysed
the load corresponding to the limit and the bifurcation point shows
greater values.

The post-buckling curves of the mechanical response considering
each time the first five eigenshapes are depicted in Fig. 18. What is
striking in these curves is the greater values of the load at which the
instability occurs; indeed, regarding the first imperfection, the value
is three times the respective one for the smooth shells; the same
10
happens when the second and fifth eigenshapes are used. Whereas, with
the third eigenshapes, the value is more than two times. The more
remarkable improvement is reached when the fourth imperfection is
introduced; the buckling occurs at a value that is roughly five times
the one obtained when no corrugation is adopted.

3. Conclusions

Using parameterisation of corrugated shells proposed recently in
[27,28,35], which accurately handles the doubly curved geometry, we
presented a suitable FE simulation procedure for buckling and post-
buckling analysis of shallow shells. As a result, we provide the detailed
analysis of buckling of shallow spherical shells considering three types
of corrugations. In addition considering an eigenshape as initial im-
perfection we discussed the sensitivity to imperfections. It has been
shown through numerical simulation what was probably intuitively
clear to P. L. Nervi: a corrugation along the edge improves the structural
performance of a shell. As a result, corrugated shell structures can
be both used as a canopy also endowed with some aesthetics and
can be introduced in buildings for their high-performance mechanical
properties, like in the case of roofs for special and spatial structures.

Considering further applications of our results it is worth to men-
tion the automatisation of building processes. Indeed, the presented
above procedure may be applied to perform more extensive parametric
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Fig. 13. Equilibrium paths of a smooth shell (black solid line) and of an edge corrugated shell (red solid line). The following imperfections have been individually applied: 5th
(a), 6th (b), 7th (c) and 8th (d) eigenshapes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
analysis of different corrugation geometries that may lead to even
more complex behaviours, as well to analyse different shapes, such as
free-form shells [36,37] and concrete printed structures. Some improve-
ments could be achieved in the LIDAR (Laser Imaging Detection And
Ranging) field to accurately identify the influence of small deviations
in the structural behaviour; a comparison between a theoretical shape
and in situ surveys could be done [38]. A main issue related to the topic
discussed in the present work involves the role of corrugation in insta-
bility phenomena, and it was intended to highlight the statical intuition
envisioned by P.L. Nervi. The effect of edge-corrugation is assessed
only through linear elastic stress analysis. Besides, buckling has been
explicitly addressed, and for this purpose, imperfections have been con-
sidered to trigger the instability phenomena. The corrugation effect has
been highlighted without imperfections and with a customised set of
imperfections, showing a relevant effect in switching the eigenshapes to
higher modes, reducing the displacements and increasing the ultimate
load. Indeed, it constitutes a very challenging problem whose solution
has yet to be achieved.

The methods developed in this paper for civil engineering and
architecture applications can be relatively simply generalised to be used
in different scientific milieux. Moreover, the presented study may be
extended towards advanced theories of shells. Given the relevance of
this problem in thin-shell structures [39], the buckling behaviour could
be studied more comprehensively in forthcoming research to ascertain
how the discussed geometry affects the stability of such shells and to
discuss a prospective corrugation optimisation.
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Fig. 14. Equilibrium paths of a smooth shell (black solid line) and of an edge corrugated shell (red solid line). The following imperfections have been individually applied:x 9th
(a) and 10th (b) eigenshapes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Equilibrium paths of a smooth shell (black solid line) and a edge corrugated shell (red solid line), using the arc-length. The following imperfections the 1st (a), 2nd (b),
3rd (c) and 4th (d) eigenshapes was individually applied. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 16. Equilibrium paths of a smooth shell (black solid line) and a edge corrugated shell (red solid line), using the arc-length. The 5th (a), 6th (b), 7th (c) and 8th (d) eigenshapes
was applied as imperfections. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Equilibrium paths of a smooth shell (black solid line) and a edge corrugated shell (red solid line), using the arc-length method. As imperfections the 9th (a) and 10th
(b) eigenshapes was applied. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. Equilibrium paths of a smooth shell (black solid line) and a wholly corrugated shell (red solid line). The 1st (a), 2nd (b), 3rd, 4th, 5th eigenshapes was applied as the
imperfections. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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