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Abstract. These notes aim to provide a deeper insight on the speci�cs of the paper �Re�ned criteria toward boundedness
in an attraction-repulsion chemotaxis system with nonlinear productions� by A. Columbu, S. Frassu and G. Viglialoro [Appl.
Anal. 2024, 103:2, 415�431].

1. Aim of the paper

In this report we focus on [1, Theorem 2.2] where an attraction-repulsion chemotaxis model is formulated as follow:

(1)



ut = ∆u− χ∇ · (u∇v) + ξ∇ · (u∇w) in Ω× (0, Tmax),

vt = ∆v − βv + f(u) in Ω× (0, Tmax),

wt = ∆w − δw + g(u) in Ω× (0, Tmax),

uν = vν = wν = 0 on ∂Ω× (0, Tmax),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) x ∈ Ω̄.

Herein, Ω of Rn, with n ≥ 2, is a bounded and smooth domain, χ, ξ, β, δ > 0, and f = f(s) and g = g(s) su�ciently regular
functions in their argument s ≥ 0, essentially behaving as sk and sl for some k, l > 0. Moreover, further regular initial data
u0(x), v0(x), w0(x) ≥ 0 are �xed, uν (and similarly vν and wν) indicates the outward normal derivative of u on ∂Ω, whereas
Tmax identi�es the maximum time up to which solutions to the system can be extended.

Once these hypotheses are �xed

(2)

{
f, g ∈ C1([0,∞)) with 0 ≤ f(s) ≤ αsk and γ0(1 + s)l ≤ g(s) ≤ γ1(1 + s)l, for some α, k, l > 0, γ1 ≥ γ0 > 0,

(u0, v0, w0) ∈ (W 1,∞(Ω))3, with u0, v0, w0 ≥ 0 on Ω̄,

[1, Theorem 2.2] establishes that problem (1) admits a unique global and uniformly bounded classical solution (i.e., Tmax = ∞
and there exists C > 0 such that ∥u(·, t)∥L∞(Ω) ≤ C for all t ∈ (0,∞)) whenever

(i) l, k ∈
(
0, 1

n

]
;

(ii) l ∈
(

1
n ,

1
n + 2

n2+4

)
and k ∈

(
0, 1

n

]
, or k ∈

(
1
n ,

1
n + 2

n2+4

)
and l ∈

(
0, 1

n

]
;

(iii) l, k ∈
(

1
n ,

1
n + 2

n2+4

)
.

From the one hand, we mention that the above conditions have been improved in the recent paper [2]; in the speci�c, [2,
Theorem 2.2] ensures boundedness under the more relaxed assumption k, l ∈

(
0, 2

n

)
.

As to our contribution, we aim at providing a further scenario toward boundedness involving also coe�cients connected
to g in (2); essentially we will show that

solutions to model (1) are uniformly bounded in time whenever k < l and under a largeness assumption on γ0.

Remark 1 (On the origins and the meaning of model (1)). The interested reader can �nd motivations connected to biological
phenomena described by system (1) exactly in [1], and references therein mentioned. Also known results in close contexts are
collected.
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2. Presentation of the main theorem

As an essential tool in order to mathematically formulate our main theorem, we have �rst to recall the following consequence
of Maximal Sobolev regularity results ([4] or [3, Theorem 2.3]):

Proposition 1. For n ∈ N, let Ω ⊂ Rn be a bounded domain with smooth boundary, ρ > 0 and q > max{1, 1ρ}. Then

there is Cρ = Cρ(Ω, n, q) > 0 such that the following holds: Whenever T ∈ (0,∞], I = [0, T ), h ∈ Lq(I;Lq(Ω)) and

ψ0 ∈W 2,q
∂
∂ν

(Ω) = {ψ0 ∈W 2,q(Ω) : ∂νψ0 = 0 on ∂Ω}, every solution ψ ∈W 1,q
loc (I;L

q(Ω)) ∩ Lq
loc(I;W

2,q(Ω)) of

ψt = ∆ψ − ρψ + h in Ω× (0, T ); ∂νψ = 0 on ∂Ω× (0, T ); ψ(·, 0) = ψ0 on Ω

satis�es∫ t

0

es
∫
Ω

(
|ψ(·, s)|q + |ψt(·, s) +

ψ(·, s)
q

|q + |∆ψ(·, s)|q
)
ds ≤ 2q−1Cq

ρ

[
∥ψ0∥qq,1− 1

q

+

∫ t

0

es
∫
Ω

|h(·, s)|qds
]

for all t ∈ (0, T ).

Proof. The proof is based on the classical result in [8]; for an appropriate adaptation to our case see details, for instance, in
[5]. □

Remark 2 (On the constant Cρ and the norm ∥ψ0∥q,1− 1
q
in Proposition 1). The key role of Proposition 1 is the existence

of the constant Cρ, which remains de�ned once n,Ω and q are set. In particular (see [8, Theorem 2.5]), Cρ does not depend
on the initial con�guration ψ0 and the source h.

As to ∥ψ0∥q,1− 1
q
, it represents the norm of ψ0 in the interpolation space (Lq(Ω),W 2,q

∂
∂ν (Ω)

)1− 1
q ,q
. (See, for instance, [7, §1].)

Exactly in view of what said, we can now give the claim of our

Theorem 2.1. For n ∈ N, let Ω be a bounded domain of Rn with smooth boundary, 0 < k < l, δ, α, β > 0 and

(3) p̄ = max

{
n

2
, k

(
1

β
− 1

)
, l

(
1

δ
− 1

)}
+ 1.

Additionally, let us set

(4) A = 2−
l(p̄+l−1)+p̄

p̄+l

(
p̄+ l

p̄+ 2l + δ(p̄+ l)

)
.

Then there exists C = C(n,Ω, l, k, δ, β) > 0 such that if C < A, it is possible to �nd γ1, γ0 > 0 ful�lling

(5) γ1 ≥ γ0 > A−1Cγ1
and with this property: Whenever f, g, u0, v0, w0 are taken as in (2), problem (1) admits a global and uniformly bounded
solution (u, v, w) ∈ (C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)))3.

3. Existence of local-in-time solutions and a pricniple for boundedness

The arguments concerning the forthcoming local existence issue and the boundedness criterion are standard; details are
achievable in [9] and [10, Appendix A.].

3.1. Local existence statement. Once χ, ξ, β, δ > 0 and f, g, u0, v0 are �xed as in (2), from here henceforth, with (u, v, w)
we will refer to the classical and nonnegative solution to problem (1); u, v, w are de�ned for all (x, t) ∈ Ω̄ × [0, Tmax), for
some �nite Tmax.

3.2. Boundedness criterion. As explained in the next lines, if we establish that u ∈ L∞((0, Tmax);L
p(Ω)), for some p > n

2 ,
we can exploit the boundedness criterion below and directly obtain that, indeed, u ∈ L∞((0,∞);L∞(Ω)); as an immediate
consequence of that, well-known parabolic regularity results applied to the equations of v and w entail that also v, w belong
to L∞((0,∞);L∞(Ω)).

De�nitely, globality and boundedness of (u, v, w), in the sense that

u, v, w ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)) ∩ L∞((0,∞);L∞(Ω))

are achieved whenever this boundedness criterion applies:

(6) If ∃ L > 0, p > n
2

∣∣∣ ∫
Ω

up ≤ L on (0, Tmax) ⇒ (u, v, w) ∈ (L∞((0,∞);L∞(Ω)))3.

Subsequently, Theorem 2.1 is established once (6) is derived.

4. A priori bounds; proof of the main result

From now on we will tacitly assume that all the appearing constants below ci, i = 1, 2, . . . , are positive.
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4.1. Some preparatory tools. Let us start with this necessary result:

Lemma 4.1. Let A,B ≥ 0 and p ≥ 1. Then we have

(7) (A+B)p ≤ 2p−1(Ap +Bp).

Proof. The proof is available [6, Theorem 1]. □

4.2. Achieving the boundedness criterion. We have this sequence of results, valid for any constant Ξ > 0, which will
be properly chosen later on, in the proof of our theorem.

The following lemma is valid for a general class of proper functions. Despite that, we contextualize it to the local solution
(u, v, w) to problem (1).

Lemma 4.2. For any p > 1 and all t ∈ (0, Tmax), we have

(p− 1)ξ

∫
Ω

up|wt| ≤ (p− 1)ξΞ

∫
Ω

|wt +
l

p+ l
w|

p+l
l

+

[
ξp
p− 1

p+ l

(
Ξ
p+ l

l

)− l
p
(
1 +

l

p+ l

)]∫
Ω

up+l + lξΞ
p− 1

p+ l

∫
Ω

w
p+l
l ,

and

(p− 1)ξδ

∫
Ω

upw ≤ (p− 1)ξδΞ

∫
Ω

w
p+l
l + ξpδ

p− 1

p+ l

(
Ξ
p+ l

l

)− l
p
∫
Ω

up+l.

Proof. Let, for commodity but also for reasons which will be clearer later, q = p+l
l . From the evident relation |wt| ≤

|wt +
1
qw|+ | 1qw|, we obtain

(p− 1)ξ

∫
Ω

up|wt| ≤ (p− 1)ξ

∫
Ω

up|wt +
w

q
|+ ξ

p− 1

q

∫
Ω

upw on (0, Tmax),

so that thanks to the Young inequality for all t ∈ (0, Tmax) it is seen

(p− 1)ξ

∫
Ω

up|wt| ≤ (p− 1)ξΞ

∫
Ω

|wt +
w

q
|q

+
(p− 1)pξ

p+ l
(Ξq)−

l
p

∫
Ω

up+l + Ξ
p− 1

q
ξ

∫
Ω

wq + ξp
p− 1

q(p+ l)
(Ξq)

− l
p

∫
Ω

up+l,

and the �rst claim is established.
As to the other relation, it can be derived in the same �avor. □

Lemma 4.3. For any p > max
{
1, l
(
1
δ − 1

)}
and t ∈ (0, Tmax) it holds that

(p− 1)ξΞ

∫ t

0

es
(∫

Ω

|wt +
l

p+ l
w|

p+l
l

)
ds ≤ (p− 1)ξΞ2

p
l C

p+l
l

δ

×
[
∥w0∥

p+l
l

p+l
l , p

p+l

+ γ
p+l
l

1 2p+l−1

∫ t

0

es
(∫

Ω

up+lds

)
+ γ

p+l
l

1 2p+l−1|Ω|
∫ t

0

esds

]
,

(8)

and

(p− 1)ξΞ

(
l

p+ l
+ δ

)∫ t

0

es
(∫

Ω

w
p+l
l

)
≤ (p− 1)ξΞ2

p
l

(
l

p+ l
+ δ

)
C

p+l
l

δ

×
[
∥w0∥

p+l
l

p+l
l , p

p+l

+ γ
p+l
l

1 2p+l−1

∫ t

0

es
(∫

Ω

up+lds

)
+ γ

p+l
l

1 2p+l−1|Ω|
∫ t

0

esds

]
.

(9)

Proof. We can derive (8) (and similarly (9)) by invoking Proposition 1 with ψ = w, h = g and ρ = δ; indeed, for q = p+l
l as

before, it is q > max{1, 1δ } so that

(p− 1)ξΞ

∫ t

0

es
(∫

Ω

|wt +
w

q
|q
)
ds ≤ (p− 1)ξΞCq

δ2
q−1

[
∥w0∥qq,1− 1

q

+

∫ t

0

es
(∫

Ω

g(u)q
)
ds

]
,

and the conclusion is attained by virtue of the upper bound (2) for g and (7), in the form (u + 1)p+l ≤ 2p+l−1(up+l + 1)
(naturally p+ l > 1). □

The next two results, indeed, provide properties of local solutions (u, v, w) to model (1) and are based on applications of
Proposition 1.

Lemma 4.4. For any p > max
{
1, k

(
1
β − 1

)}
and t ∈ (0, Tmax) there is c1 such that

c1

∫ t

0

es
(∫

Ω

|∆v|
p+k
k

)
ds ≤ c1C

p+k
k

β

[
∥v0∥

p+k
k

p+k
k , p

p+k

+ α
p+k
k

∫ t

0

es
(∫

Ω

up+k

)
ds

]
.
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Proof. The proof follows from analogous arguments used in Lemma 4.3; in this case, in particular, Proposition 1 is exploited
with q = p+k

k > max{1, 1
β }, ψ = v, h = f and ρ = β. □

With the aim of ensuring u ∈ L∞((0, Tmax);L
p(Ω)) for some p > n

2 , let us study the evolution in time of t 7→
∫
Ω
up; this

will be done by means of testing procedures.

Lemma 4.5. For any p > 1 and all t ∈ (0, Tmax) the following relation is satis�ed:

d

dt

∫
Ω

up ≤
∫
Ω

up+k + c1

∫
Ω

|∆v|
p+k
k + (p− 1)ξΞ

∫
Ω

|wt +
l

p+ l
w|

p+l
l

+ (p− 1)ξΞ

(
δ +

l

p+ l

)∫
Ω

w
p+l
l + (p− 1)ξ

[
p

p+ l

(
p+ l

l

)− l
p

Ξ− l
p

(
1 + δ +

l

p+ l

)
− γ0

]∫
Ω

up+l.

(10)

Proof. By testing the �rst equation of problem (1) with pup−1, using its boundary conditions and taking into account the
second and the third equation, we have thanks to the Young inequality

d

dt

∫
Ω

up = p

∫
Ω

up−1ut = −p(p− 1)

∫
Ω

up−2|∇u|2 − (p− 1)χ

∫
Ω

up∆v + (p− 1)ξ

∫
Ω

up∆w

≤
∫
Ω

up+k + c1

∫
Ω

|∆v|
p+k
k + (p− 1)ξ

∫
Ω

up(wt + δw − g(u)) on (0, Tmax).

Now, we recall the properties of g given in (2) so to deduce, by using Young's inequality, again the relation |wt| ≤ |wt +
l

p+lw|+ | l
p+lw|, and Lemma 4.2

d

dt

∫
Ω

up ≤
∫
Ω

up+k + c1

∫
Ω

|∆v|
p+k
k + (p− 1)ξ

∫
Ω

up|wt|+ δ(p− 1)ξ

∫
Ω

upw − ξγ0(p− 1)

∫
Ω

up+l

≤
∫
Ω

up+k + c1

∫
Ω

|∆v|
p+k
k + (p− 1)ξΞ

∫
Ω

|wt +
l

p+ l
w|

p+l
l

+
l(p− 1)ξΞ

p+ l

∫
Ω

w
p+l
l +

p(p− 1)ξ

p+ l

(
Ξ
p+ l

l

)− l
p
(
1 +

l

p+ l

)∫
Ω

up+l

+ (p− 1)ξδΞ

∫
Ω

w
p+l
l +

p(p− 1)ξδ

p+ l

(
Ξ
p+ l

l

)− l
p
∫
Ω

up+l − ξ(p− 1)γ0

∫
Ω

up+l on (0, Tmax).

The claim is achieved by collecting terms. □

Lemma 4.6. Let k < l. Then for every p > max
{

n
2 , k

(
1
β − 1

)
, l
(
1
δ − 1

)}
we have that for all t < Tmax

et
∫
Ω

up ≤c2 + c3

∫ t

0

esds+

(p− 1)ξ

[(
1 + δ +

l

p+ l

)(
ΞC

p+l
l

δ γ
p+l
l

1 2
p
l +p+l−1 +

p

p+ l

(
p+ l

l

)− l
p

Ξ− l
p

)
+ ε− γ0

]∫ t

0

es
(∫

Ω

up+l

)
ds.

Proof. Let us start with these estimates, fruit of the application of Young's inequality: for all ε > 0, ĉ > 0, p > 1 and
0 < k < l it holds that

(11) ĉ

∫
Ω

up ≤ ε

2

∫
Ω

up+l + c4 for all t ∈ (0, Tmax),

and

(12) ĉ

∫
Ω

up+k ≤ ε

2

∫
Ω

up+l + c5 for all t ∈ (0, Tmax).

By adding to both sides of relation (10) the term
∫
Ω
up, estimate (11) leads to this inequality, valid on (0, Tmax).

d

dt

∫
Ω

up +

∫
Ω

up ≤
∫
Ω

up+k + c1

∫
Ω

|∆v|
p+k
k + (p− 1)ξΞ

∫
Ω

|wt +
l

p+ l
w|

p+l
l

+ (p− 1)ξΞ

(
δ +

l

p+ l

)∫
Ω

w
p+l
l + (p− 1)ξ

[
p

p+ l

(
p+ l

l

)− l
p

Ξ− l
p

(
1 + δ +

l

p+ l

)
+
ε

2
− γ0

]∫
Ω

up+l + c6.

(13)

Successively, we multiply (13) by et and integrate on (0, t). From the identity d
dt (e

t
∫
Ω
up) = et d

dt

∫
Ω
up + et

∫
Ω
up, we get

et
∫
Ω

up ≤
∫
Ω

up0 +

∫ t

0

es
{∫

Ω

up+k + c1

∫
Ω

|∆v|
p+k
k + (p− 1)ξΞ

∫
Ω

|wt +
l

p+ l
w|

p+l
l

+(p− 1)ξΞ

(
δ +

l

p+ l

)∫
Ω

w
p+l
l + (p− 1)ξ

[
p

p+ l

(
p+ l

l

)− l
p

Ξ− l
p

(
1 + δ +

l

p+ l

)
+
ε

2
− γ0

]∫
Ω

up+l + c6

}
ds.
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The term involving
∫ t

0
es(
∫
Ω
|∆v|

p+k
k )ds can be essentially controlled by

∫ t

0
es(
∫
Ω
up+k)ds, thanks to Lemma 4.4; additionally,∫

Ω
up+k is treated through (12). These two operations provide

et
∫
Ω

up ≤
∫
Ω

up0 +

∫ t

0

es
{
(p− 1)ξΞ

∫
Ω

|wt +
l

p+ l
w|

p+l
l + (p− 1)ξΞ

(
δ +

l

p+ l

)∫
Ω

w
p+l
l

+(p− 1)ξ

[
p

p+ l

(
p+ l

l

)− l
p

Ξ− l
p

(
1 + δ +

l

p+ l

)
+ ε− γ0

]∫
Ω

up+l + c7

}
ds.

By invoking (8) and (9) we conclude by virtue of a reorganization of the involved terms. □

4.3. Proof of Theorem 2.1. With the above preparations we are now in a position to establish what anticipated.

Proof. For 0 < k < l, δ, α, β > 0, let p̄ be as in (3) and, additionally, for Cδ

(
Ω, n, p̄+l

l

)
being the constant provided by

Proposition 1, when it is applied to the equation for w in model (1), let also set

C = Cδ

(
Ω, n,

p̄+ l

l

)
.

Since by assumptions C < A, where A is de�ned in (4), we can �nd γ1 ≥ γ0 complying with (5); in these positions, let

Ξ =
l

p̄+ l
C− p̄

l

δ γ
− p̄

l
1 2−

p̄(p̄+(p̄+l−1)l)
l(p̄+l) ,

and let f, g, u0, v0 and w0 obey (2). Some computations show that for proper small ε > 0

γ0 > A−1Cγ1 ⇒
(
1 + δ +

l

p̄+ l

)(
ΞC

p̄+l
l

δ γ
p̄+l
l

1 2
p̄
l +p̄+l−1 +

p̄

p̄+ l

(
p̄+ l

l

)− l
p̄

Ξ− l
p̄

)
+ ε− γ0 ≤ 0,

and henceforth hypothesis (5) allows to exploit Lemma 4.6 and obtain

et
∫
Ω

up̄ ≤ c2 + c3

∫ t

0

esds for all t ∈ (0, Tmax),

or also
∫
Ω
up̄ ≤ L on (0, Tmax). The claim follows from the extensibility criterion (6). □
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