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A B S T R A C T

Background and objective: Abnormal ventricular potentials (AVPs) in intracardiac electrograms (EGMs) are 
frequently considered as markers of arrhythmogenic sites in post-ischemic ventricular tachycardia (VT) during 
electroanatomic mapping (EAM) procedures. Their detection is strongly operator-dependent and time- 
consuming. This work explores the adoption of explainable deep learning to support the discrimination be
tween physiological EGMs and AVPs.
Methods: Three convolutional neural networks were trained to discriminate the target signals based on their 
time–frequency representations by synchrosqueezed wavelet transform. The efficacy of the method was assessed 
on 2561 real bipolar EGMs collected from nine post-ischemic VT patients.
Results: The proposed approach achieved high performance, with accuracy levels reaching up to 89%. It also 
demonstrated coherent localization of the arrhythmogenic sites with respect to conventional voltage and local 
activation time maps. Moreover, by using saliency maps, AVPs discriminant signatures were highlighted at high 
frequencies (i.e., in the 103–125 Hz band, which was generally relevant for every network), in line with prior 
evidence.
Conclusion: For the first time, deep learning has been successfully applied and robustly evaluated in the field. The 
proposed approach paves the way to the development of effective AI-driven systems. These systems will enable a 
faster, trustworthy and operator-independent identification of AVPs in VT EAM procedures. Furthermore, even 
without injecting prior knowledge in the adopted models, the analysis of saliency maps revealed that CNNs are 
prone to autonomously select time–frequency ranges of the EGMs in agreement with the current knowledge.

1. Introduction

Out-of-hospital cardiac arrest is a leading cause of death in Europe 
[1], with an incidence between 67 and 170 per 100,000 inhabitants per 
year. Among these, ventricular tachycardia (VT) in ischemic cardio
myopathy is responsible for 40% of cases [2]. Abnormal impulse prop
agation pathways, and specifically scar-related reentrant circuits, 
represent the main arrhythmogenic mechanism of VT [3,4].

Catheter ablation represents an effective therapeutic option for 
different forms of VT [5–8]. Nowadays, catheter ablation may be guided 

by substrate mapping during electroanatomic mapping (EAM) proced
ures through the recording of local electrical activations called elec
trograms (EGMs). This approach has proved to be effective in reducing 
the arrhythmia recurrence [9,10] and the incidence of implantable 
cardioverter-defibrillator therapy [11]. Substrate-guided mapping may 
be based on the identification of low-voltage, slow-conducting areas, in 
sinus rhythm, which become targets for catheter ablation to inhibit 
electrical conduction through the arrhythmogenic tissue [12]. Several 
EGM characteristics are frequently exploited for the identification of the 
arrhythmogenic substrate [13,14], such as the presence of abnormal 
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ventricular potentials (AVPs). After arrhythmogenic site identification, 
different substrate-based ablation strategies can be chosen by electro
physiologists [15,16], with a variable impact on the healthy myocardial 
substrate. However, both EAM and ablation are entirely manual and 
time-consuming procedures, and their outcome significantly depends on 
clinicians’ expertise and level of attention.

Due to the relevance of accurately detecting VT arrhythmogenic 
substrates to reduce recurrences, various supporting tools, strategies for 
mapping [17–21], and detection algorithms [22–25] have been 
introduced.

In this regard, artificial intelligence (AI) may represent an important 
tool in cardiac electrophysiology, providing effective insights and 
innovative perspectives in the field [26]. AI tools, such as machine 
learning (ML) and deep learning (DL), have been widely applied to the 
study of cardiac arrhythmias [27,28] by considering different data types 
for training according to the specific application. For instance, AI on the 
12-lead electrocardiograms (ECG) have been deeply investigated, both 
for detection of arrhythmic events [29–32], and their treatment, as in 
the case of scar localization in the myocardium [33]. Interestingly, AI 
has been also adopted in EGM analysis for computer-aided localization 
of ablation targets for atrial fibrillation (AF) treatment [34–36]. Besides 
applications based on noninvasive electrophysiological signals 
[33,37,38] and imaging [39,40], the use of ML has been recently 
investigated on EGMs for automatic detection of arrhythmogenic sub
strate in VT [41–43]. Indeed, this kind of approach has proven to be 

useful in distinguishing between physiological potentials and AVPs by 
extracting multiple features from different domains. Furthermore, in a 
very preliminary investigation, the use of DL for the detection of VT 
arrhythmogenic sites has been reported [44]. However, in such an 
explorative study, only the performance of a single convolutional neural 
network (CNN) has been paradigmatically presented, without any 
assessment of the models and parameterizations.

In this work, DL has been extensively investigated for the detection of 
arrhythmogenic sites in post-ischemic VT, by using the information 
enclosed in the morphology of EGMs and their spectral characteristics, 
leveraging the synchrosqueezed wavelet transform (SSWT) [45] to 
represent the signals by embedding both time and frequency informa
tion. To achieve this, three well-established pre-trained CNN architec
tures for image recognition have been investigated by transfer learning. 
Furthermore, the Gradient-Weighted Class Activation Mapping (Grad- 
CAM) [46] technique was used to perform the analysis of model 
explainability, pointing out the most informative time–frequency ranges 
for each EGM class.

The significance of this study lies in the ability of the proposed DL 
models to achieve highly accurate classification performance by 
leveraging only the time and frequency-domain signatures of the EGMs 
routinely acquired during EAM procedures, therefore without per
forming any manual feature extraction. To the best of the authors’ 
knowledge, this study constitutes the first robust investigation into the 
use of DL in targeting VT arrhythmogenic sites.

Fig. 1. Workflow. On the top left (a), an example of a multi-channel recording presented to the electrophysiologist during the annotation procedure is represented, 
involving superficial ECG leads and intracardiac EGMs; in the latter, the 500-ms window of interest is highlighted for subsequent time–frequency analysis. On the 
right (b), the image creation process is depicted. Finally, on the bottom (c), a visual explanation of the proposed approach for AVP detection is depicted: here, the 
transfer learning strategy scheme, along with a saliency map generation and a visualization of the CNN predictions onto a fast anatomical map (FAM), are reported.
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2. Methods

The overview of the proposed approach is represented in Fig. 1. 
Automatic AVPs identification by CNN was modelled as a binary clas
sification problem between AVPs and physiological potentials. To 
overcome the limitations associated with the small size and variety of 
instances in the used dataset, transfer learning has been adopted on 
three popular pre-trained CNNs (AlexNet [47], GoogLeNet [48] and 
VGG16Net [49]). Specifically, transfer learning involved updating the 
weights in pre-trained models, by submitting new training instances. A 
voting procedure was also carried out on the predicted labels to inves
tigate the effect of the joint use of the three CNNs on the classification 
performance. In the following subsections, we outline the steps involved 
in the proposed methodology, including the preprocessing pipeline by 
using the SSWT, the training procedure of the CNNs, and the model 
explainability aimed at pointing out the most informative time
–frequency ranges.

All the processing steps were performed in MATLAB R2022a 
(MathWorks Inc., MA, USA), and the DL training and test processes were 
carried out on a 64-GB NVIDIA Tesla P100 GPU cluster.

2.1. Dataset acquisition, labelling, and partition

The EAM procedures were carried out on nine post-ischemic VT 
patients between 2017 and 2018 at the San Francesco Hospital (Nuoro, 
Italy), by using the CARTO®3V6 mapping system. The study on ano
nymised data was approved by the Independent ATS (Azienda Tutela 
Salute Sardegna) Ethical Committee (Prot. n. 351/2021/CE, date of 
approval: 13/07/2021) and performed following the principles outlined 
in the 1975 Helsinki Declaration, as revised in 2000. All patients pro
vided their informed consent.

Bipolar EGMs were acquired by PentaRay™ (Biosense Webster, Inc.) 
2–6-2 mm by exploiting only the 2-mm spaced electrode pairs, as well as 
by ThermoCool SmartTouch® and ThermoCool SmartTouch® SF (Bio
sense Webster, Inc.) catheters. All the signals were recorded during sinus 
rhythm, using a sampling frequency of 1000 Hz, and were band-pass 
filtered between 16 and 500 Hz. Once exported, the EGMs were retro
spectively blindly annotated by a single experienced electrophysiologist, 
using an ad-hoc MATLAB graphical user interface, as in [41]. Specif
ically, the electrophysiologist was unaware of the clinical case, the 3D 
EA maps, and the location of the EGM on the EA map during the 
annotation, so that the EGM labelling was carried out by relying on the 
morphological characteristics of the signal only. The annotation was 
performed by visually inspecting each single EGM along with the 
simultaneous surface ECG recordings and labelling as AVPs all abnormal 
potentials occurring during or after the corresponding QRS complex, as 
in [50]. Since the electrophysiologist was provided with the EGM and 
the corresponding surface ECG leads, to be able to identify the earliest 
and latest QRS activations, the annotation completely relied on the EGM 
morphology and its latency w.r.t. the surface QRS. This ensured any 
physiological early occurrences with high-frequency components (e.g., 
Purkinje potentials) to not be mistakenly labeled as AVP.

A different number of EGMs was collected and labelled as useful for 
each patient, according to both the signal quality and the specific pro
cedure. Specifically, only the EGMs for which the electrophysiologist 
could confidently assign the label were included, while ambiguous or 
noisy traces were discarded. This preliminary data pruning ensured the 
investigation to be focused on reliable EGM morphologies only, at the 
expense of a reduced map density. Therefore, from the nine EAM pro
cedures, a dataset composed of 1809 physiological EGMs and 752 AVPs 
(i.e., consisting of 84 ± 96 AVPs and 201 ± 222 physiological EGMs per 
patient, mean ± standard deviation) was obtained. Table 1 reports the 
numerosity of AVPs and physiological EGMs for each patient.

To evaluate the performance of the proposed approach, we con
ducted a stratified leave-one-subject-out (LoSO) cross-validation. 
Despite the limited dataset size, this condition is considered closer to a 

real application scenario, wherein a trained classifier is used on a 
completely unknown patient.

To provide a balanced training set, at each cross-validation step 
(hence, for each patient to be tested according to the LoSO), all EGMs 
from eight out of nine patients were randomly downsampled to obtain 
an equal number of physiological potentials and AVPs. Therefore, the 
balanced training set Atr

i used while testing the ith patient has been ob
tained by the union of all the balanced EGMs subsets from the remaining 
participants, as: 

Atr
i =

⋃

j∕=i
Aj (1) 

Aj =

⎧
⎨

⎩

AAVP
j ∪ Â

Phy
j if NPhy > NAVP

Â
AVP
j ∪ APhy

j if NPhy < NAVP

with size(Aj) = 2 × min
(
NPhy,NAVP

)

(2) 

Where Â
c
j with c = {AVP,Phy} represents the downsampled subset of 

EGMs belonging to the cth class for the jth patient, NPhy the number of 
physiological potentials and NAVP the number of AVPs.

This balanced set Atr
i was further divided into 80% for training and 

20% for validation. Remarkably, the validation set was only used for the 
prevention of overfitting, by stopping the model training according to 
the early stopping approach, as detailed in Section 2.3. As such, this 
process resulted in a different number of training samples per each 
tested patient, starting from the available samples (both physiological 
EGMs and AVP) presented in Table 1, i.e., 1013, 965, 1060, 989, 605, 
1066, and 1072 EGMs in the training sets when considering patient 1, 2, 
3, 4, 5, 6 and 7 as testing sets, respectively, and 253, 241, 264, 247, 151, 
266, and 268 EGMs in the validation sets of the same patients.

Conversely, all EGMs of the tested patient in the LoSO procedure 
were included in the test set only (so neither in the training set nor in the 
validation one) even if the numerosity of the instances in the two classes 
was unbalanced. However, to provide a more robust assessment, only 
patients with more than 30 potentials in the AVP and in the physio
logical classes were tested: 

Atest
i = AAVP

i ∪ APhy
i if size

(
AAVP

i
)
> 30 and size

(
APhy

i

)
> 30 (3) 

Due to this constraint, the patients with ID8 and ID9 in Table 1 were 
not considered in the test sets. This choice was made to obtain classifi
cation metrics on a reliable statistical sample, even though typically 
imbalanced, as no balancing was pursued on the tested patient.

2.2. Image generation

The SSWT [45] was adopted to enhance the time–frequency locali
zation of relevant features on signals with rapidly changing or localized 
frequency contents. In fact, the SSWT is recognized as one of the most 
effective techniques for producing robust time–frequency representa
tions, by highlighting the presence of a distinctive frequency signature 
[50], while simultaneously providing accurate information from both 

Table 1 
Dataset information.

Patient ID

1 2 3 4 5 6 7 8 9

Number of AVPs 83 99 67 84 324 36 41 13 5
Number of 

physiological 
EGMs

69 287 40 700 375 84 32 65 157

Sex (F/M) F M M M M M M F M
Age (y.o.) 68 68 83 50 78 61 60 57 69
Ejection fraction 

(%)
30 32 42 30 27 31 21 28 24
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the time and frequency domains. It has been extensively and successfully 
applied in various biomedical contexts due to its ability to yield sharper 
and precise time–frequency representations through the reassignment 
method, outperforming simpler methods like traditional wavelet trans
forms [45]. Specifically, in SSWT, the continuous wavelet transform 
(CWT) is firstly computed as [51]: 

Wx(a, b) =
∫

x(t)a− 1/2ψ*
(

t − b
a

)

dt (4) 

where x is the signal, a the scale, b the time shift, and ψ is an appro
priately chosen mother wavelet. In this study, the analytic Morlet 
wavelet was selected to emphasize the fragmented peaks of the signals. 
In the second step, the reassignment rule is applied through syn
chrosqueezing, which exploits the phase information embedded in the 
wavelet coefficients Wx. Synchrosqueezing is a process used to estimate 
instantaneous frequency by relying on the phase derivative. This infor
mation is then used to redistribute the wavelet coefficients’ energy, i.e., 
transferring the information from the time-scale to the time–frequency 
domain. Indeed, from the CWT, the instantaneous frequency ωx(a, b) can 
be computed as [52]: 

ωx(a, b) = − i(Wx(a, b) )− 1 ∂
∂b

Wx(a, b) (5) 

and finally, the synchrosqueezed transform may be computed as: 

Tx(ωx, b) =
∫

A(b)
Wx(a, b)a− 3/2δ(ωx(a, b) − ω ) da (6) 

where A(b) identifies the domain in which the wavelet coefficients Wx(a,
b) are different from zero.

As such, for the input image generation, firstly we extracted a 500-ms 
window around the reference annotation for each EGM, considering 
200 ms before and 300 ms after such a reference. Then, we generated the 
RGB images by computing the modulus of the SSWT, to have a repre
sentation invariant with respect to the polarity of the signal, plotting the 
results setting the “jet” colormap and removing the axes (see Fig. 1(b)). 
Specifically, since “jet” is a conventional multi-gradient colormap that 
exploits a wide range of colors, it might reduce redundancy between 
layers of the RGB image, thus potentially supporting the identification of 
distinct and meaningful patterns and features. While recognizing that 
using a different colormap might have an impact on the image genera
tion and then on the models’ performance, no optimization was per
formed in this regard, to maintain greater generalizability of the models. 
Next, two images per signal were saved, with slightly different size ac
cording to the input layer of the different CNNs (i.e., 227x227 pixels for 
AlexNet, 224x224 pixels for GoogLeNet and VGG16Net).

During the image generation, the saturation limit of the colormap 
was fixed using a value obtained in a preliminary analysis, aimed at 
optimizing the AVPs detection rate (see Fig. S1 in Supplementary Ma
terial for additional information).

2.3. Network training

The AlexNet, GoogLeNet, and VGG16Net DL models, pre-trained on 
ImageNet [53], were used in this study, adapting them to a binary 
classification problem to distinguish between physiological potentials 
and AVPs. As such, the final classification layers (i.e., the last fully 
connected, the softmax, and the classification output layers) have been 
changed in each CNN. In particular, the fully connected layer was 
replaced by a new fully connected layer of the same size, with randomly 
initialized weights obtained by using the Glorot uniform initialization 
method [54], while the size of both softmax and classification layers was 
set equal to two, for the binary classification (see Fig. 1(c)). To enable a 
faster learning in the new fully connected layer, we increased both the 
learning rate for the weights and bias by a factor of 10, compared to the 

transferred layers.
The decision to adopt transfer learning was supported by a series of 

preliminary empirical evaluations. A preliminary comparative analysis 
between the classification performance achieved through transfer 
learning and that obtained by training the models from scratch using 
random weights initialization across the three selected CNNs indicated a 
significant improvement with transfer learning. This improvement was 
accompanied by a reduction in computational costs (see Section II in 
Supplementary Material).

The models were trained using the stochastic gradient descent with 
momentum algorithm and the binary cross-entropy as loss function, by 
considering a pre-established set of values for each hyperparameter 
undergoing optimization. The hyperparameters associated with the 
model training, i.e., learning rate, learning rate decay factor, mo
mentum, and batch size, were tuned through a conventional grid search 
(see Section II in Supplementary Material for further details). Besides 
hyperparameter optimization, we decided to prevent the overfitting by 
introducing an early stopping condition as training option. In this re
gard, by considering a trade-off between the computational time needed 
for the training and the best model identification, a validation frequency 
of 50 was chosen. Furthermore, by leveraging a preliminary analysis of 
the loss function, the validation patience was set equal to 9 steps, while 
the maximum number of epochs was fixed to 1000, to accommodate a 
large number of iterations if a long training is needed.

2.4. Performance assessment

The CNNs performance was assessed in terms of accuracy (Acc), true 
positive rate (TPR), true negative rate (TNR), precision (or positive 
predictive value, PPV) and F1 score, by using a balanced classification 
threshold at 0.5, representing the case where equal risk is assigned to 
both classes. Hereinafter AVPs were associated with the positive class 
whereas the physiological potentials to the negative class. Moreover, 
receiver operating characteristic (ROC) and the area under the curve 
(AUC) were analyzed during performance assessment. Specifically, a 
global ROC was computed for each CNN by averaging the patient- 
specific ROCs after interpolation (see Fig. 3 (a)). This approach was 
chosen as it provides a better understanding of how the model performs 
across different patients while avoiding the potential bias introduced by 
patients with a larger number of samples.

In addition to training and testing the three CNNs separately, we also 
explored the performance of a multiple classifier based on a majority 
voting on the CNNs’ predictions. Finally, the spatial localization of both 
correct and incorrect classifications was visually inspected on the fast 
anatomical map (FAM) colored according to the voltage and the local 
activation time, by considering the predictions of the CNN exhibiting the 
best performance.

2.5. Explainability and saliency maps analysis

The Grad-CAM technique [46] was used to study the underpinnings 
behind the predictions provided by the three CNNs in their best settings. 
This aspect is relevant to build a more trustable AI-based system in terms 
of explainability, and to compare the model outcomes with current 
knowledge on EGM morphology and spectral characteristics.

By exploiting the class-specific gradient information ∂yc

∂Ak, where yc is 
the score computed before the softmax for the class c, and Ak is the k-th 
layer of feature map A in the final convolutional layer, the Grad-CAM 
produces a saliency map that provides a coarse localization of the 
most informative regions in the input image, as follows: 

Lc
Grad− CAM = ReLu

(
∑

k

αc
kA

k

)

(7) 

where αc
k represents the importance of each feature map layer k, Ak, for 
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the class c, and it is computed as: 

αc
k =

1
Z
∑

i

∑

j

∂yc

∂Ak
ij

(8) 

where Z is the number of pixels in Ak, and i and j are the indexes for the x 
and y direction in Ak.

To assess a Lc
Grad− CAM map for each class, the following algorithm was 

implemented. Indeed, for the n-th CNN architecture and the p-th patient, 
we considered the common occurrences t that were correctly classified 
by all the CNNs and computed a set of maps Lc

n,p,t. This step allowed 
considering only the maps representing useful patterns for the overall 
correct prediction. At first, by linear interpolation, we resized every 
saliency map Lc

n,p,t to 500 × 500 pixels. Such a resizing procedure allows 
studying the maps, which are referred to SSWT images, with a unitary 
resolution on both frequency and time axes (i.e., 1 Hz and 1 ms, 
respectively), according to the sampling frequency and the duration of 
the signals. Since Grad-CAM is sensitive to the amplitude of the pixels 
composing the input image, we normalized each saliency map Lc

n,p,t by its 
standard deviation, thus unbiasing the resulting maps. Next, we per
formed an intra-subject weighted ensemble average on the normalized 
maps Lc

n,p,t corresponding to each class c, for the n-th CNN architecture. 
This process results in a patient-specific map for each class Lc

n,p. At this 
stage, weighting was performed exploiting the softmax output, which 
gives the model probability ρc

t for each instance t to be assigned to the 
class c, as: 

Lc
n,p =

∑

t
Lc

n,p,tρc
t (9) 

This intra-subject weighting was introduced to favor the images in 
which the models were more certain about the prediction, thus high
lighting the saliency maps where the model was strongly confident 
about the classification, while hindering those whose outcome was 
doubtful.

Finally, to obtain a single saliency map Lc
n for each class c and for the 

n-th CNN architecture, we computed the weighted average of Lc
n,p across 

the patients. This inter-subject weighting was performed according to 
the patient’s true prediction rate of each class TRc

p (i.e., the TPR and the 
TNR for the AVPs and the physiological potentials maps, respectively), 
as: 

Lc
n =

∑

p
Lc

n,pTRc
p (10) 

This inter-subject weighting was introduced to identify the time
–frequency regions that resulted to be more effective in predicting the 
right outcome for the n-th CNN architecture, by emphasizing the 
patient-related salience maps Lc

n,p with high performance.
In each weighting (i.e., intra- and inter-subject), each resulting map 

was normalized by its standard deviation. A flow-chart of the whole 
algorithm followed for the saliency maps generation is presented in 

Fig. 2.
Finally, to further define the ranges of interest in both time and 

frequency domains, we included two additional plots alongside the sa
liency maps. These plots represent the average contribution across fre
quencies and across time, respectively. The ranges of interest were 
identified by applying a threshold equal to the median of the values on 
each side-plot.

3. Results

Considering the higher performance when transfer learning is 
adopted in the training stage (see Fig. S2 in Supplementary Material), 
the Tables 2 and 3 provide the results for each of the three CNNs with 
transfer learning and hyperparameter optimization, as well as for the 
voting of their predictions, in terms of overall results and patient-related 
evaluations.

As can be seen from Table 2, the three networks showed Acc values 
above 84.5%, up to 89% for AlexNet, even if AlexNet exhibited higher 
variability (i.e., with standard deviation of 10.6%) compared to the 
other CNNs.

Overall, TPR was lower than TNR for all the CNNs, with values 
ranging from 80.6% by GoogLeNet to 88.6% by AlexNet. Moreover, in 
accordance with the other metrics, AlexNet exhibited the best perfor
mance also in terms of F1 (0.87). Conversely, the VGG16Net out
performed the other CNNs in terms of TNR and PPV (90.3% and 89.5%, 
respectively).

Contrarily to expectations, the voting approach failed in leading to 
better classification performance. Indeed, although yielding to reason
able efficacy, it did not outperform the AlexNet performance, except for 
TNR.

On the other hand, when examining the patient-specific performance 
in Table 3, it is evident that the proposed approaches showed good re
sults on all tested subjects, with the exception of the one identified by ID 
5. There, a significant performance drop emerged for TNR regardless of 
the chosen CNN, thus leading to lower Acc and to large standard devi
ation values in Table 2.

The results reported in Tables 2 and 3 are further confirmed by the 
ROCs and AUC values showed in Fig. 3(a). Indeed, AlexNet and 
VGG16Net exhibited sharper ROC curves, which closely approach an 
ideal classification performance and higher AUC values (0.96 and 0.95, 
respectively), compared to GoogLeNet.

Fig. 4 presents the distribution of AVPs and physiological potentials 
on the local activation time (LAT) (Fig. 4(a)) and the greyscale voltage 
maps (Fig. 4(b)) of three exemplary patients (i.e., ID 1, 2 and 5). Fig. 4
(b) also shows the predicted class by AlexNet for every EGM. As both the 
scientific literature and the clinical practice show that thresholds on 
EGMs amplitude are still highly valued to guide ablation procedures, the 
Pearson’s correlation coefficient between the probability prediction 
scores of the three CNNs and the EGMs amplitude was computed to 
investigate possible biases in the prediction due to the amplitude in
formation. This investigation led to a correlation coefficient of − 0.04, 

Fig. 2. Flow diagram for saliency maps computation. From left to right, in step 1, the saliency maps related to the false prediction in at least one CNN were discarded. 
Then, in step 2, images were resized to obtain a unitary resolution in time (1 ms) and frequency (1 Hz) domains. In step 3, the maps were grouped by class (i.e., AVP 
or physiological). After this, for each class, the maps were grouped per subject, and a weighted ensemble average was performed using the model probability score 
(step 4). Finally, at step 5, on the patient-related maps, a weighted ensemble average was performed using TPR (for AVPs) and TNR (for physiological class).
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− 0.07, and − 0.04 for AlexNet, GoogLeNet, and VGG16Net, respectively, 
thus excluding any potential bias in this regard. Indeed, some false AVPs 
exhibited quite high peak-to-peak amplitude, whereas physiological 
signals tend to reveal low amplitudes; in contrast, signal fractionation 
could have been led to false AVP detections, possibly due to its signature 
in higher frequency band.

Although the performance of the different CNNs was quite compa
rable, the training time was dramatically different. Indeed, on a high- 

end 64-GB NVIDIA Tesla P100 GPU, training time lasted (mean ±
standard deviation): 70 ± 10 s for AlexNet, 191 ± 34 s for GoogLeNet, 
and 333 ± 36 s for VGG16Net, with a number of performed training 
iterations equal to 714 ± 107, 686 ± 131, and 607 ± 73, respectively.

3.1. Saliency maps analysis results

To better understand the learning outcome and the decision process 
of the different CNNs, we examined the saliency maps Lc

n for both classes 
c. In this regard, Fig. 5 shows the range of highest saliency identified in 
the input images, as highlighted by the side-plot. For physiological 
EGMs, the most useful contributions were coherently localized by all the 
CNNs in the lower part of the spectrum, without any component above 
223 Hz (Fig. 5 (d)-(f)). Conversely, the range of interest for AVPs was 
less consistent across the CNNs, but generally including a higher part of 
the spectrum too, compared to the physiological potentials (up to over 
440 Hz). This aspect is particularly evident for GoogLeNet and 
VGG16Net in Fig. 5 (i.e., comparing (b) vs. (e), and (c) vs. (f)). Overall, 
the frequency ranges of interest were limited to a compact interval 
around a single maximum frequency, leading to a unimodal curve in the 
side-plot for all the CNNs (Fig. 5 (b), (c)) except for AlexNet, which 

Fig. 3. Classification performance by ROCs, AUCs, confusion matrices and Grad-CAM maps. At the top (a), ROC curves for the different patients (sub) and CNNs. The 
patient-specific and average ROC curves are depicted, along with their dispersion. In the middle (b), confusion matrices are reported for the different CNNs and the 
voting of their predictions. Finally at the bottom (c), selected instances from the testing dataset are illustrated with Grad-CAM maps. These maps highlight the regions 
in the input images that contribute the most to the classification decisions made by the models.

Table 2 
Overall classification results. Results are reported as mean ± standard deviation 
across the different patients.

Acc (%) TPR (%) TNR (%) PPV (%) F1

AlexNet 89.0 ±
10.6

88.6 ± 9.4 89.2 ±
22.8

89.2 ±
15.9

0.87 ±
0.07

GoogLeNet 84.8 ± 5.9 80.6 ±
11.6

89.1 ±
11.6

81.6 ±
14.8

0.80 ±
0.06

VGG16Net 88.5 ± 9.0 83.1 ±
16.8

90.3 ±
18.6

89.5 ±
14.4

0.84 ±
0.09

Voting 88.9 ± 9.1 86.2 ±
13.6

90.1 ±
19.1

89.1 ±
14.4

0.86 ±
0.07
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showed two peaks above the threshold for the AVPs class (Fig. 5 (a)). 
Furthermore, from the time-domain perspective, the AVP class was 
characterized by a lower dispersion compared to the physiological class.

4. Discussion

In this work, the development of a DL approach to support clinicians 
in the automatic identification of AVPs and physiological potentials in 
EGMs acquired during EAM in sinus rhythm from post-ischemic VT 
patients has been introduced and deeply analyzed.

To generate detailed and robust time–frequency representation for 
each EGM to be provided as input to the CNNs, the SSWT was used 
because of its higher performance compared to other simpler trans
forms. In fact, the short-time Fourier transform is constrained by the 
uncertainty principle due to its fixed window duration, while the CWT, 
despite mitigating some of these issues, still results in blurred or smeared 
signal representations in the time–frequency domain and exhibits sig
nificant edge effects [55], which can be overcome by the SSWT through 
the reassignment method along the instantaneous frequency 
components.

Since an in-target pre-training was hampered by the unavailability of 
large amount of annotated data from VT EAM procedures, in this work 
we investigated the adoption of transfer learning from a generic domain. 
As also demonstrated in this work (see Supplementary Material), 
transfer learning can improve performance when employing pre-trained 
CNN architectures on a different target domain, regardless of their 
complexity and depth. This is because certain knowledge may be shared 
across domains, thus enhancing generalization [56]. As such, we choose 
CNNs trained on large general-purpose image datasets, being able to 
recognize different types of patterns, that might be difficult to learn from 
scratch. This prior knowledge can advantage the extraction of features 
that might be highly relevant to the detection of the AVPs. Indeed, in our 
work, the pretrained CNNs led to an increased accuracy and TPR with 
respect to the use of non-pretrained models, but contrarily affected the 
TNR. Despite this trend, the selectivity remains a less relevant perfor
mance metric in our clinical application compared to sensitivity and 

Table 3 
Patient-specific classification results.

Patient ID

1 2 3 4 5 6 7

Acc (%) AlexNet 88.8 91.7 86.9 98.1 66.8 93.3 97.3
GoogleNet 80.9 85.5 79.4 94.1 78.3 85.0 90.4
VGG16Net 80.9 90.9 93.5 96.7 72.5 87.5 97.3
Voting 82.2 92.2 90.7 97.2 71.8 90.8 97.3

TPR (%) AlexNet 79.5 96.0 79.1 90.5 100 77.8 97.6
GoogleNet 65.1 90.9 68.7 84.5 92.6 72.2 90.2
VGG16Net 65.1 92.9 89.6 76.2 99.7 58.3 100
Voting 67.5 96.0 85.1 85.7 100 69.4 100

TNR (%) AlexNet 100 90.2 100 99.0 38.1 100 96.9
GoogleNet 100 83.6 97.5 95.3 65.9 90.5 90.6
VGG16Net 100 90.2 100 99.1 49.1 100 93.8
Voting 100 90.9 100 98.6 47.5 100 93.8

PPV (%) AlexNet 100 77.2 100 91.6 58.3 100 97.6
GoogleNet 100 65.7 97.9 68.3 70.1 76.5 92.5
VGG16Net 100 76.7 100 91.4 62.8 100 95.4
Voting 100 78.5 100 87.8 62.2 100 95.4

F1 AlexNet 0.89 0.86 0.88 0.91 0.74 0.88 0.98
GoogleNet 0.79 0.76 0.81 0.76 0.80 0.74 0.91
VGG16Net 0.79 0.84 0.95 0.83 0.77 0.74 0.98
Voting 0.81 0.86 0.92 0.87 0.77 0.82 0.98

Fig. 4. EAM and classification maps for three different patients (i.e., from left to right ID 1, 2 and 5). From top to bottom, the local activation time (LAT) maps (a) 
and grey-scale voltage maps (b) with the localization of the predicted labels (both correct and incorrect predictions) by the best-performing CNN (i.e., AlexNet) are 
reported. Some examples of correctly classified and misclassified signals for both the physiological and AVP classes are presented.
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accuracy. Considering the aim of the study, which is the recognition of 
VT arrhythmogenic sites identified by AVPs, the network reporting the 
highest TPR, would be preferable. Indeed, a higher TPR indicates that 
the network reliably identified AVPs, while a few AVPs were missed, 
ensuring effective alerts to the clinicians, while a low TNR would reflect 
a high number of physiological EGMs misrecognized as AVPs, resulting 
in more frequent false alarms. Therefore, after testing both pre-trained 
and not pre-trained models and evaluating their pros and cons, we 
concluded that pretrained models are preferable, since led to a sub
stantial increase in the metrics mostly useful in this application scenario. 
Furthermore, the adoption of transfer learning significantly reduced the 
number of training iterations, regardless of the CNN (see Table S1 in 
Supplementary Material), thus saving computation time.

For the same reasons, we identified AlexNet as the best performing 
network in this scenario, since it reported the highest TPR and accuracy 
among the three examined pre-trained CNNs. Remarkably, the classifi
cation threshold was not optimized in this study, even though its tuning 
would have allowed to a further increase in TPR (AUC = 0.96, see Fig. 3
(a)) at the expense of a reduced generalizability, also considering the 
limited dataset size.

Overall, the results revealed higher accuracies in the physiological 
potential recognition than for the AVPs (i.e., TNR > TPR for the three 
CNNs). A possible explanation is that physiological potentials exhibit a 
quite invariant signature in the SSWT representation across different 
patients, whereas the same is not true for AVPs. In fact, according to the 
literature, AVPs can be categorized in different sub-classes as per their 
onset and duration [57], which introduces further variability that was 

not considered in this work, nor stratified for different folds and patients 
in the cross-validation.

Moreover, high standard deviations could reflect the different 
number of instances for each patient, in terms of number of EGMs ac
quired in the single EAM procedure and in terms of number of EGMs 
labelled as AVPs or physiological, that led to slight performance dif
ferences according to the tested patient, as reported in Table 3. Indeed, 
different patients could exhibit a different number and type of labelled 
AVPs, along with intrinsic differences in terms of scar morphology, 
deepness, and localization onto the ventricle. This fact is particularly 
visible for patient ID 5, for which an overall performance drop can be 
seen for all the CNNs (see Table 3), especially in terms of TNR (i.e., in the 
recognition of physiological EGMs). Despite the aim of the study is to 
provide an effective detection of arrhythmogenic sites, and, therefore, 
TPR plays a relevant role, this patient deserves further investigation. 
Remarkably, patient ID 5 exhibited a high (and approximately balanced) 
number of labelled EGMs (see Table 1), and an outstanding number of 
AVPs with respect to the other examined clinical cases. Accordingly, 
when this patient was tested in the LoSO cross-validation, the numer
osity of the training samples dramatically dropped to 605 EGMs (see 
Section 2.1), being that patient the main contributor of AVPs. Such a 
drop in the number of AVP instances (and so of physiological EGMs too) 
used for training could have affected the generalization capabilities of 
that models. Furthermore, by looking at the related voltage map in Fig. 4
(b), it is clear that this patient also showed a very extended scar with a 
strongly complex morphology: therefore, most of its EGMs have been 
acquired in highly damaged myocardial areas. This aspect could have 

Fig. 5. Results of the saliency maps analysis. Saliency maps for the AVPs (a-c) and physiological potentials (d-f) by the three different CNNs with their best settings. 
On the top of each map, a side-plot represents the average contribution across frequencies, allowing to identify the ranges of interest (in squared brackets) in the time 
domain; similarly, on the left of each map, a side-plot represents the average contribution across time, to identify the ranges of interest (in squared brackets) in the 
frequency domain.
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possibly led to patient-specific characteristic morphologies in its phys
iological EGMs, mainly related to highly scarred areas. Furthermore, 
looking at the classification results shown in Fig. 4(b), in this case false 
detections mainly occurred in the most irregular zones, i.e., the 
boundaries of scar. This hypothesis was also supported by the related 
saliency map, which showed different ranges of interest in the frequency 
domain for this patient, when classifying physiological EGMs (data not 
shown). Interestingly, upon analyzing the saliency maps by merging the 
ranges resulted by the three CNNs, it was discovered that the lower 
spectral contents (below 128 Hz) provided the most informative cues for 
identifying the physiological potentials. Conversely, for the AVP iden
tification, the CNNs found higher frequency contributions more rele
vant. In particular, the frequency range between 103 Hz and 125 Hz was 
generally highly considered by all the CNNs, which is in agreement with 
the literature in the field [50], describing the main frequency contri
bution for AVPs at higher frequencies (i.e., between 40 Hz and 320 Hz) 
compared to physiological potentials (i.e., below 20 Hz). Although the 
discriminating frequency ranges highlighted by the saliency maps 
overlap, the CNNs prioritized also lower frequency components for 
physiological EGMs compared to AVPs, since for the latter the fre
quencies below 103 Hz were not considered significant for classification. 
However, AlexNet and VGG16Net also focused on higher frequencies to 
identify AVPs, up to over 440 Hz. Furthermore, looking at the same 
results in the time domain, some interesting aspects could be also 
highlighted. As shown in Fig. 5, AlexNet used to focus on the latest 
portion of the EGM, detecting eventual signatures after the far field 
activation (see Fig. 5 (a) and (d)). Conversely, both GoogLeNet and 
VGG16Net generally focused more on the far field activation, with a 
single sporadic exception (see Fig. 5 (f)). This aspect contributes to the 
explanation of the different frequency ranges considered by AlexNet, 
since such model considered different portions of the EGMs in the 
discrimination, which might have been associated with different spec
tral contents.

Unfortunately, the saliency maps themself do not elucidate the in
fluence of signal amplitude on the classification process. Interestingly, a 
complete lack of correlation between the AVPs predictions and scar 
areas, characterized by low-amplitude EGMs, was found. This was 
further confirmed by a closer examination of the reported EGMs (see 
Fig. 4.b), in which both AVPs and physiological EGMs exhibited either 
high or low amplitudes.

This study further proves the effectiveness of AI-based solutions in 
cardiac electrophysiology. However, a point performance comparison 
with pre-existent literature cannot be easily performed, according to the 
specific application. Indeed, some AI-based solutions were proposed so 
far for the localization of ablation targets for AF electrophysiological 
procedures, as [34], in which the deep neural network achieved 95% of 
accuracy in distinguishing rotational from non-rotational images in AF, 
outperforming other ML techniques tested on the same dataset. 
Furthermore, similar results have been obtained in [35], when using 
CNNs to identify ablation targets by spatiotemporal dispersion in atrial 
recordings, and in [36], where a commercial ML tool called VX1 (Volta 
Medical, Marseille, France) was exploited to localize the spatiotemporal 
dispersion site in the atria from the analysis of the EGM, exhibiting high 
effectiveness in ablation sites localization for AF termination occurrence 
(with accuracies of 92% and 83% in patients belonging to the primary 
and satellite centers, respectively). Focusing on post-ischemic VTs, some 
studies investigated the identification of arrhythmogenic areas by 
defining cut-off thresholds on features or criteria and evaluated the 
performance of their algorithms by assessing the proportion of identified 
areas w.r.t. scar areas [22,23], successful ablation sites [19] or areas 
with LAVA, VT isthmuses or late potentials [17]. Moreover, some studies 
(e.g., [22,25,23]) validated their strategies on VT patients and a non-VT 
control group. However, these approaches are intrinsically not compa
rable with ours, whose aim is to distinguish between AVPs and physi
ological EGMs in the same post-ischemic VT population. Furthermore, 
some other works aimed at detecting sites of VT origin [20] or VT 

isthmuses [22–24,17]. However, the different research objective of 
these studies further hampers the comparison with our DL approach, 
which aims at detecting AVPs to assist clinicians in determining 
arrhythmogenic sites (which are not strictly limited to VT isthmuses nor 
coincide with sites of VT origin).

Regarding more similar approaches, a previous study [41] reported a 
comparison of three different ML methods for supervised classification 
of AVPs and physiological potentials in bipolar EGMs, exploiting multi- 
domain features. In such a work, an accuracy of 84.7% was reported 
when using the best performing model in a LoSO cross-validation, with a 
different efficacy in AVPs and physiological potential recognition (TPR 
= 79.4%, TNR = 88.1%). Nonetheless, the CNN models presented in this 
work, demonstrated higher performance compared to such ML-based 
methods exploiting simpler temporal and spectral features: indeed, by 
considering the best-performing approach in both studies, despite an 
improvement in accuracy is slightly perceived (+1.5%), a stronger 
impact is seen on TPR (+13.5%), but not in TNR (− 5%). Indeed, since 
this study aims at providing a computer-aided system based on DL to 
detect arrhythmogenic sites, these findings are very encouraging, 
especially in TPR. Interestingly, in this previous study [41], the most 
valuable spectral features (highlighted by the feature selection) covered 
most of the 20-Hz sub-bands within the 80–240 Hz range (albeit using 
different methodologies for spectral estimation), which partially aligns 
with the ranges identified by our saliency maps.

Although the reported performance of our study is promising, the 
restricted dataset size is a limitation that suggest taking some care in 
generalizing the achieved results. In fact, despite the adoption of transfer 
learning, which reduces the impact of the small number of instances 
provided for training, a larger dataset would allow for a better gener
alization. In this sense, a larger dataset would guarantee an improved 
robustness, which should lead to more comparable results between 
different subjects. Additionally, a larger dataset would allow to have a 
separate cohort of patients for the validation set when applying the 
early-stopping criterion, to further avoid any bias for the model even 
during the training phase. We also acknowledge that the presented DL 
approach has not been validated using external dataset. However, 
currently there are no freely accessible datasets on post ischemic VT in 
the literature that would allow for a comparison. Indeed, most studies 
use nonpublic datasets, making comparative analysis between different 
algorithms impossible.

Another limitation is the labelling of the available dataset by a single 
cardiologist, albeit done in a blinded manner with respect to algorithm 
development and tuning. This labeling process could potentially intro
duce bias to the results. Remarkably, these limitations are shared with 
the most similar studies in the field.

5. Conclusions

This work introduced an AI-driven tool to support clinicians in 
identifying AVP during EAM procedures for post-ischemic VT. To ach
ieve this goal, we proposed a DL approach that explores three different 
pre-trained CNNs and using information from EGMs, as they are 
routinely acquired during EAM procedures. Our approach leverages the 
time–frequency signatures of EGMs by the SSWT, resulting in a high 
accuracy and AVP detection rates, both close to 90%, on the available 
dataset. In particular, AlexNet provided the best performance, with 
better results also compared to a majority voting procedure performed 
on the prediction of all the trained CNNs. Remarkably, to investigate the 
reasons behind the models’ prediction, we exploited the saliency maps, 
which highlighted the most important regions of interest for the CNNs. 
Since this approach seems to offer precise detection of AVPs, and so 
arrhythmogenic sites, this achievement paves the way to the introduc
tion of DL for VT procedures, with potential implications in the EAM 
procedure acceleration and success.

Future studies that reveal the underpinnings of the reentrant mech
anisms, or the use of masks on the feature maps based on the saliency 
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maps results, may enhance the predictive capabilities of the proposed AI 
tools. These studies could provide additional information to inject into 
the model, which alongside with signal localization on EA map, could 
exploit the electrical properties of the substrate.
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