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Abstract
In this article we apply quaternionic linear algebra and quaternionic linear system
theory to develop the inverse scattering transform theory for the nonlinear Schrödin-
ger equation with nonvanishing boundary conditions. We also determine its soliton
solutions by using triplets of quaternionic matrices.
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1 Introduction

The initial-value problem for the focusing nonlinear Schrödinger (NLS) equation

i q̃t + q̃xx − 2|q̃|2q̃ = 0 (1.1)

with nonvanishing boundary conditions q̃(x, t) → q̃r ,l(t) as x → ±∞, where
q̃r ,l(t) = μ e−2iμ2t+iθr ,l for a positive constant μ and phases θr ,l ∈ R, has been
abundantly studied using the inverse scattering transform (IST) technique [9, 10, 14,
20]. In [8] the IST with full account of the spectral singularities has led to rogue wave
solutions of the focusing NLS with nonvanishing boundary conditions. Throughout
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this article we study instead of (1.1) the NLS-like equation

iqt + qxx − 2|q|2q + 2μ2q = 0, (1.2)

obtained from (1.1) by applying the gauge transformation

q̃(x, t) = e−2iμ2t q(x, t),

where q(x, t) tends to the time invariant limits qr ,l = μ eiθr ,l as t → ±∞. We also

write Q =
(

0 q
−q∗ 0

)
to convert (1.2) into the 2 × 2 matrix NLS-like equation

iσ3Qt + Qxx − 2Q3 − 2μ2Q = 02×2, (1.3)

where Q† = −Q. Here we write Ip for the identity matrix of order p, 0p×r for the
p×r matrix with zero entries, the dagger for the complex conjugate matrix transpose,
and σ3 = (

1 0
0 −1

)
for the third Pauli matrix. The nonlinear Schrödinger equations have

served as mathematical models for surface waves on deep waters [1, 2, 41], signals
along optical fibers [24–26, 35], plasma oscillations [39], magnetic spin waves [11,
40], and particle states in Bose–Einstein condensates [29, 32, 33].

In [17] a new method to solve the initial-value problem of the matrix NLS equation
by means of the inverse scattering transform technique was introduced. Instead of
determining the time evolution of the scattering data associated with the Zakharov–
Shabat system vx = (−ikσ3 + Q)v and solving the Marchenko integral equations
associated with the time dependent scattering data (as in [14]), we determined the
time evolution of the scattering data associated with the matrix Schrödinger equation
−ψxx+Qψ = λ2ψ , where Q = Q2+Qx+μ2 I2 andλ = √

k2 + μ2 is the conformal
mapping defined for all complex k cut along [−iμ, iμ] and satisfying λ ∼ k at infinity.
Since this conformal mapping k �→ λ is 1, 1 for k in the upper half-planeC+ cut along
(i0, iμ] and λ ∈ C

+, this has led to a great simplification compared to the treatment
based on the Zakharov–Shabat system vx = (−ikσ3 + Q)v given in [9, 10, 14].

In this article we restrict ourselves to solving the initial-value problem for the
1+ 1 focusing NLS equation. The advantage of this restriction is that the potential Q
satisfies the symmetry relation

Q∗ = σ2Qσ2, (1.4)

where the asterisk denotes complex conjugationwithout transposition andσ2 = (
0 −i
i 0

)
is the second Pauli matrix. Using the algebra isomorphism between the algebra � of
complex 2×2matrices S satisfying S∗ = σ2Sσ2 and the division ringH of quaternions
[23], we can reduce the resolution of the Marchenko integral equations to solve the
inverse scattering problem for the matrix Schrödinger equation −ψxx + Qψ = λ2ψ

to calculations involving quaternions.
In this article we rely significantly on the direct and inverse scattering theory for

the matrix Schrödinger equation developed for Q† = Q, in [3, 5, 6] on the half-
line and in [4, 31, 38] on the full line, albeit with some modifications due to the
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symmetry relation (1.4). For technical reasons we assume throughout this article that
the integral

∫∞
−∞ dx (1 + |x |)‖Q(x)‖ converges. For the various applications of the

matrix Schrödinger equation with selfadjoint potential we refer to [6].
Let us discuss the contents of this article. In Sect. 2 we review the direct and

inverse scattering theory of the matrix Schrödinger equation with symmetry relation
(1.4), where we essentially rely on the more general scattering theory given in [16,
17]. In Sect. 3 we discuss the time evolution of the scattering theory. In Sect. 4 we
discuss matrices having quaternion elements and their isomorphic images of double
matrix order. Here we rely on the seminal monograph on quaternionic matrices by
Rodman [34]. Section5 is devoted to the multisoliton solutions of the AKNS system
with nonvanishing boundary conditions parametrized by choosing minimal triplets of
quaternionic matrices. Results on the invertibility of the Sylvester solutions Pr and
P l appearing in the multisoliton solutions are relegated to Appendix A.

2 Direct and inverse scattering

In this article we discuss the direct and inverse scattering theory for the matrix Schrö-
dinger equation

− ψxx + Qψ = λ2ψ, (2.1)

where the complex 2 × 2 potential Q satisfies the symmetry relation

Q∗ = σ2Qσ2 (2.2)

and hence belongs to the algebra � =
{(

S1 −S∗
2

S2 S∗
1

)
: S1, S2 ∈ C

}
. Then this potential

Q also satisfies the more restrictive adjoint symmetry relation

Q† = σ3Qσ3, (2.3)

where σ3 = (
1 0
0 −1

)
is the third Pauli matrix. Hence, by virtue of (2.3), all of the results

on the direct and inverse scattering theory of (2.1) developed in [16, 17] go though in
the present situation, although we need to discuss the impact of the more restrictive
symmetry relation (2.2) on the results separately.

Let us define the Jost solution from the left Fl(x, λ) and the Jost solution from
the right Fr (x, λ) as those solutions of the matrix Schrödinger equation (2.1) which
satisfy the asymptotic conditions

Fl(x, λ) = eiλx [I2 + o(1)] , x → +∞, (2.4a)

Fr (x, λ) = e−iλx [I2 + o(1)] , x → −∞. (2.4b)
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Calling ml(x, λ) = e−iλx Fl(x, λ) and mr (x, λ) = eiλx Fr (x, λ) Faddeev functions,
we easily define them as the unique solutions of the Volterra integral equations

ml(x, λ) = I2 +
∫ ∞

x
dy

e2iλ(y−x) − 1

2iλ
Q(y)ml(y, λ), (2.5a)

mr (x, λ) = I2 +
∫ x

−∞
dy

e2iλ(x−y) − 1

2iλ
Q(y)mr (y, λ). (2.5b)

Then, for each x ∈ R, ml(x, λ) and mr (x, λ) are continuous in λ ∈ C
+ ∪ R, are

analytic in λ ∈ C
+, and tend to I2 as λ → ∞ from within C

+ ∪ R. For 0 
= λ ∈ R

we can reshuffle (2.5) and arrive at the asymptotic relations

Fl(x, λ) = eiλx Al(λ) + e−iλx Bl(λ) + o(1), x → −∞, (2.6a)

Fr (x, λ) = e−iλx Ar (λ) + eiλx Br (λ) + o(1), x → +∞, (2.6b)

where

Ar ,l(λ) = I2 − 1

2iλ

∫ ∞

−∞
dy Q(y)mr ,l(y, λ), (2.7a)

Br ,l(λ) = 1

2iλ

∫ ∞

−∞
dy e∓2iλy Q(y)mr ,l(y, λ). (2.7b)

Then Ar ,l(λ) is continuous in 0 
= λ ∈ C
+ ∪ R, is analytic in λ ∈ C

+, and tends
to I2 as λ → ∞ from within C

+ ∪ R, while 2iλ[I2 − Ar ,l(λ)] has the finite limit
−�r ,l = ∫∞

−∞ dy Q(y)mr ,l(y, λ) as λ → 0 from within C
+ ∪ R. By the same

token, Br ,l(λ) is continuous in 0 
= λ ∈ R, vanishes as λ → ±∞, and satisfies
2iλBr ,l(λ) → −�r ,l as λ → 0 along the real λ-axis.

Using the transformation F(x, λ) �→ F(x,−λ∗)∗ in the matrix Schrödinger
equation (2.1), we easily prove the symmetry relations

Fl(x, λ) = σ2Fl(x,−λ∗)∗σ2, Fr (x, λ) = σ2Fr (x,−λ∗)∗σ2. (2.8)

With the help of (2.6) we then obtain the symmetry relations

Al(λ) = σ2Al(−λ∗)∗σ2, Ar (λ) = σ2Ar (−λ∗)∗σ2, 0 
= λ ∈ C
+ ∪ R, (2.9a)

Bl(λ) = σ2Bl(−λ)∗σ2, Br (λ) = σ2Br (−λ)∗σ2, 0 
= λ ∈ R. (2.9b)

Introducing the reflection coefficients

Rl,r (λ) = Bl,r (λ)Al,r (λ)−1 = −Ar ,l(λ)−1Br ,l(−λ), (2.10)

we easily obtain the symmetry relations

Rl(λ) = σ2Rl(−λ)∗σ2, Rr (λ) = σ2Rr (−λ)∗σ2, 0 
= λ ∈ R, (2.11)
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provided det Al,r (λ) 
= 0.
Above we have defined �l,r as follows:

�l,r = lim
λ→0

2iλAl,r (λ) = lim
λ→0± 2iλBl,r (λ),

where the first limit may be taken from the closed upper half-plane. Then the matrices
�l,r have the same determinant. If�l,r is nonsingular, we are said to be in the generic
case; if instead �l,r is singular, we are said to be in the exceptional case (cf. [4]).
We are said to be in the superexceptional case if �l,r = 02×2 and Al,r (λ) tends to a
nonsingular matrix, Al,r (0) say, as λ → 0 from within C+ ∪R. It is clear that �l,r =
σ2�

∗
l,rσ2. Throughout this article (aswell as in [17])we assume the absence of spectral

singularities, i.e., the absence of nonzero real λ for which det Al,r (λ) = 0. Under this
condition the reflection coefficients Rl,r (λ) are continuous in 0 
= λ ∈ R. For general
potentials Q satisfying (2.2) or (2.3) there may very well be spectral singularities (see
[8, 30] for focusing AKNS examples), even though spectral singularities do not occur
if Q† = Q [6, 17, 30].

The Jost solutions allow the triangular representations

Fl(x, λ) = eiλx I2 +
∫ ∞

x
dy eiλy K (x, y), (2.12a)

Fr (x, λ) = e−iλx I2 +
∫ x

−∞
dy e−iλy J (x, y), (2.12b)

where for every x ∈ R

∫ ∞

x
dy ‖K (x, y)‖ +

∫ x

−∞
dy ‖J (x, y)‖ < +∞.

Then the potential Q(x) can be found from the auxiliary functions K (x, y) and J (x, y)
as follows:

K (x, x) = 1

2

∫ ∞

x
dy Q(y), J (x, x) = 1

2

∫ x

−∞
dy Q(y). (2.13)

Equations (2.8) and (2.12) imply the symmetry relations

K (x, y) = σ2K (x, y)∗σ2, J (x, y) = σ2 J (x, y)∗σ2. (2.14)

Thus the auxiliary functions K (x, y) and J (x, y) belong to the algebra �.
Let us write the reflection coefficients in the form

Rl(λ) =
∫ ∞

−∞
dα eiλα R̂l(α), Rr (λ) =

∫ ∞

−∞
dα e−iλα R̂r (α), (2.15)

where R̂l,r ∈ L1(R)2×2. Although this Fourier representation has only been proved
under the absence of spectral singularities assumption and in the generic case (for
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Q ∈ L1(R; (1 + |x |)dx)2×2) and in the superexceptional case (for Q ∈ L1(R; (1 +
|x |)2dx)2×2) [16], we assume it to be also true in the most general exceptional case.
We then easily prove the symmetry relations

R̂l(α) = σ2 R̂l(α)∗σ2, R̂r (α) = σ2 R̂r (α)∗σ2. (2.16)

Thus the functions R̂l(α) and R̂r (α) belong to the algebra �.
So far we have only discussed the direct scattering problem for (2.1). The inverse

scattering problem can be solved by computing one of the auxiliary functions K (x, y)
or J (x, y) as the solutions of one of the Marchenko integral equations

K (x, y) + �r (x + y) +
∫ ∞

x
dz K (x, z)�r (z + y) = 02×2, (2.17a)

J (x, y) + �l(x + y) +
∫ x

−∞
dz J (x, z)�l(z + y) = 02×2, (2.17b)

followed by an application of one of (2.13). Here the Marchenko integral kernels
�l,r (w) are given by

�r (w) = R̂r (w) +
N∑

s=1

eiλswNr;s, (2.18a)

�l(w) = R̂l(w) +
N∑

s=1

e−iλswNl;s, (2.18b)

where we assume the poles λs (s = 1, . . . , N ) of the transmission coefficients
Al,r (λ)−1 to be simple; in that case the so-called norming constants Nr;s and Nl;s
are defined by

Fr (x, λs)τr;s = i Fl(x, λs)Nr;s, (2.19a)

Fl(x, λs)τl;s = i Fr (x, λs)Nl;s, (2.19b)

where τr;s and τl;s are the residues of Ar (λ)−1 and Al(λ)−1 at the simple pole λs ∈ C
+

(s = 1, . . . , N ). If there exist multiple poles of Al,r (λ)−1 in C+, then the expressions
for �r ,l(w) − R̂r ,l(w) can be derived in a straightforward way as a finite sum of
polynomials times exponentials which obviously are entire analytic functions of x .
We can then prove the symmetry relations

�r (w) = σ2�r (w)∗σ2, �l(w) = σ2�l(w)∗σ2. (2.20)

Thus the Marchenko kernels �r (w) and �l(w) belong to the algebra �. The proof
can be based on (a) the unique solvability of the Marchenko equations (for �r ,l as
unknowns with the auxiliary functions assumed to be known) for large enough ±x ,
(b) the symmetry relations (2.16), and (c) the analyticity of the functions �r ,l(w) −
R̂r ,l(w) in x ∈ R. We refer to [15] for the rather technical details.
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3 Time evolution

Straightforward calculations imply [17]

iσ3Qt + Qxx − 2QQx − 2Qx Q = (iσ3Qt + Qxx − 2Q3 − 2μ2Q)Q
− Q(iσ3Qt + Qxx − 2Q3 − 2μ2Q)

+ (iσ3Qt + Qxx − 2Q3 − 2μ2Q)x . (3.1)

Thus any solution of thematrixNLS-like equation (1.3) with nonvanishing time invari-
ant limits Qr ,l for Q(x; t) as x → ±∞ is a solution of the nonlinear evolution
equation

iσ3Qt + Qxx − 2QQx − 2Qx Q = 02×2, (3.2)

where Qx = 1
2 (Q − σ3Qσ3).

The pair of 4 × 4 matrices (X, T ), where

X(x, t, λ) =
(

02×2 I2
Q(x; t) − λ2 I2 02×2

)
, (3.3a)

T (x, t, λ) =
(

iσ3(Q − 2λ2 I2) −2iσ3Q
iσ3(Qx − 2QQ + 2λ2Q) iσ3(Q − 2λ2 I2 − 2Qx )

)
, (3.3b)

is an AKNS pair for the nonlinear evolution equation (3.2) in the sense that the zero
curvature condition

X t − T x + XT − TX = 04×4

is satisfied iff Q satisfies (3.2) (see [17]). Then it is easily verified that T (x, t, λ) tends
to the limits

T±∞ =
(−2iλ2σ3 −2iσ3Qr ,l

2iσ3Qr ,l −2iλ2σ3

)
(3.4)

as x → ±∞. Note that det T±∞ = 16(λ4 + μ2)2.
Following [17],we introduce the Jost solutions Fr ,l(x, λ; t)of the first order system

(
V
V ′
)′

=
(

0n×n In
Q(x) − λ2 In 0n×n

)(
V
V ′
)

defined by

Fl(x, λ) =
(
Fl(x,−λ) Fl(x, λ)

F ′
l (x,−λ) F ′

l (x, λ)

)
, Fr (x, λ) =

(
Fr (x, λ) Fr (x,−λ)

F ′
r (x, λ) F ′

r (x,−λ)

)
,
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where the prime denotes differentiation with respect to x . Letting V (x, λ; t) be a
nonsingular 4 × 4 matrix solution of the pair of first order equations

V x = XV , V t = TV , (3.5)

the fact that Fr ,l(x, λ; t) satisfies the first of (3.5) implies the existence of nonsingular
matrices CFr ,l (λ; t) not depending on x such that

Fr ,l(x, λ; t) = V (x, λ; t)CFr ,l (λ; t)−1.

Then a simple differentiation yields

[
CFr ,l (λ; t)]t CFr ,l (λ; t)−1 = F−1

r ,l T Fr ,l − F−1
r ,l [Fr ,l ]t ,

where the left-hand side does not depend on x and hence equals the limits of the
right-hand side as x → ±∞. Using (3.4) we easily get

[
CFr ,l (λ; t)]t CFr ,l (λ; t)−1 =

(−	
up
r ,l(λ) 02×2

02×2 −	dn
r ,l(λ)

)
, (3.6)

where

	
up
r ,l(λ) = 2iλ2σ3 + 2λσ3Qr ,l , (3.7a)

	dn
r ,l(λ) = 2iλ2σ3 − 2λσ3Qr ,l , (3.7b)

are time invariant. Then we easily verify the symmetry relations

	
up
r ,l(λ) = σ2	

up
r ,l(−λ∗)∗σ2, 	dn

r ,l(λ) = σ2	
dn
r ,l(−λ∗)∗σ2. (3.8)

Using that

Fr (x, λ; t) = Fl(x, λ; t)Ar (λ; t), Fl(x, λ; t) = Fr (x, λ; t)Al(λ; t),

where

Ar (λ; t) =
(
Ar (λ; t) Br (−λ; t)
Br (λ; t) Ar (−λ; t)

)
, Al(λ; t) =

(
Al(−λ; t) Bl(λ; t)
Bl(−λ; t) Al(λ; t)

)
,

for 0 
= λ ∈ R we easily compute

[Ar ,l ]t = Ar ,l(λ; t)
(

	
up
r ,l(λ) 02×2

02×2 	dn
r ,l(λ)

)
−
(

	
up
l,r (λ) 02×2

02×2 	dn
l,r (λ)

)
Ar ,l(λ; t). (3.9)

Then the reflection coefficients satisfy

[Rr ]t = Rr (λ; t)	up
l (λ) − 	dn

l (λ)Rr (λ; t), (3.10a)
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[Rl ]t = Rl(λ; t)	dn
r (λ) − 	

up
r (λ)Rl(λ; t). (3.10b)

Defining R̂r ,l(α; t) by (2.15), we easily derive the PDEs

[R̂r ]t = −2i
(
[R̂r ]αασ3 − σ3[R̂r ]αα + [R̂r ]ασ3Ql − Qlσ3[R̂r ]α

)
, (3.11a)

[R̂l ]t = −2i
(
[R̂l ]αασ3 − σ3[R̂l ]αα + [R̂l ]ασ3Qr − Qrσ3[R̂l ]α

)
, (3.11b)

provided
∫∞
−∞ dα (1 + α2)‖R̂r ,l(α; t)‖ converges for every t ∈ R. Using (3.11) and

time evolution properties of the norming constants [17, (4.4)] we obtain

[�r ]t = −2i ([�r ]wwσ3 − σ3[�r ]ww + [�r ]wσ3Ql − Qlσ3[�r ]w) , (3.12a)

[�l ]t = −2i ([�l ]wwσ3 − σ3[�l ]ww + [�l ]wσ3Qr − Qrσ3[�l ]w) . (3.12b)

Hence, the reflection kernels R̂r ,l(α; t) and the Marchenko integral kernels �r ,l(w; t)
satisfy the same PDEs. We have also seen before that R̂r ,l(α; t) and �r ,l(w; t) belong
to the algebra �.

4 Quaternionic matrix algebra

Let � stand for the (noncommutative) division ring of complex 2 × 2 matrices S
satisfying S∗ = σ2Sσ2. Then it is easily verified [34] that � is isomorphic (as a real
unital algebra) to the noncommutative division ring of quaternionsH by means of the
isomorphism

S =
(
S1 −S∗

2
S2 S∗

1

)
= (Re S1)I2 + i(Im S1)σ3 − i(Re S2)σ2 + i(Im S2)σ1

ϕ−→ (Re S1)1 + (Im S1)i − (Re S2) j + (Im S2)k, (4.1)

where {1, i, j , k} is the standard quaternion basis. Thus, letting σ1 = (
0 1
1 0

)
stand

for the first Pauli matrix, we see that {I2, iσ3, iσ2, iσ1} is the basis of the real vector
space � that corresponds to the quaternion basis {1, i, j , k} by means of ϕ. If x =
a1 + bi + c j + dk ∈ H for a, b, c, d ∈ R, then the quaternion squared length is

defined by |x |2 = a2 + b2 + c2 + d2. Thus, for each S =
(
S1 −S∗

2
S2 S∗

1

)
∈ � we see that

det S coincides with the squared quaternion length of ϕ(S).
The map ϕ has a natural extension as a real algebra isomorphism from � p×p onto

H
p×p, the algebras of p× pmatrices with entries in� andH, respectively. For p 
= r

there also exists a natural extension from the real linear subspace � p×r onto H
p×r .

For later use we introduce the similarity orbit of S =
(
S1 −S∗

2
S2 S∗

1

)
∈ � as the set [34,

Thm. 2.2.6]
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Sim(S) =
{
X−1SX : 02×2 
= X ∈ �

}

=
{(

T1 −T ∗
2

T2 T ∗
1

)
: Re S1 = Re T1 and (Im S1)

2 + |S2|2 = (Im T1)
2 + |T2|2

}
.

(4.2)

4.1 Determinants and quaternionic linear algebra

Since multiplication of quaternion numbers is noncommutative, there is no obvious
way to define the determinant of square quaternion matrices. Fortunately, the map ϕ

allows one to define the determinant of a quaternion p × p matrix M ∈ H
p×p as the

determinant of the complex 2p × 2p matrix ϕ−1(M) (cf. [34, Ch. 5]). For alternative
ways to define determinants of square quaternionic matrices we refer to [12, 18, 36]
and references therein.

The following theorem has been proved byRodman [34, Th. 5.9.2] using the quater-
nionic Jordan normal form. Below we present an independent proof based on Schur
complements (cf. [19, Sec. 1.7] and references therein).

Theorem 4.1 For p = 1, 2, 3, . . . the matrices S ∈ � p×p have a nonnegative
determinant.

Proof For p = 1 the theorem is obviously true. For p ≥ 2 we define the Schur
complement

S =
⎛
⎜⎝
S22 . . . S2p
...

...

Sp2 . . . Spp

⎞
⎟⎠ −

⎛
⎜⎝
S21
...

Sp1

⎞
⎟⎠ S−1

11

(
S12 . . . S1p

)
, (4.3)

provided det(S11) = ‖S11‖2 > 0. Then

det(S) = ‖S11‖2 det S. (4.4)

Under the induction hypothesis that all matrices S ∈ �(p−1)×(p−1) have a nonnegative
determinant, we see from (4.4) that any matrix S ∈ � p×p satisfying ‖S11‖ > 0 has a
nonnegative determinant. If one of ‖S j1‖ > 0, we switch the first and j-th double rows
without changing the determinant and repeat the above Schur complement argument
to conclude that det(S) ≥ 0. If ‖S11‖ = · · · = ‖Sp1‖ = 0, then obviously det(S) = 0.

��

4.2 Jordan normal form andmatrix triplets

The following theorem can be obtained from [34, Thm. 5.5.3] upon application of
ϕ−1.
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Theorem 4.2 For every S ∈ � p×p there exist positive integers m1, . . . ,mk adding up
to p and matrices A[1], . . . , A[k] ∈ � such that S is similar to the direct sum

Jm1(A
[1]) ⊕ . . . ⊕ Jmk (A

[k]) (4.5)

by means of a similarity transformation belonging to � p×p. The �-Jordan normal
form (4.5) is unique up to changing the order in the direct sum and replacing the
matrices A[1], . . . , A[k] by matrices in the same similarity orbit.

It should be noted that the �-Jordan normal form (or: the quaternionic Jordan
normal form discussed at length in [34]) differs from the usual complex Jordan normal

form. Since A =
(

A1 −A∗
2

A2 A∗
1

)
is a diagonalizable 2×2 matrix with eigenvalues Re A1±

i
√

(Im A1)2 + |A2|2, the corresponding complex Jordan normal form is obtained from
(4.5) below as follows:

1. If A[s] is the diagonal matrix
(
Re A[s]

1

)
I2, we replace Jms (A

[s]) by the direct sum
of Jordan blocks Jms (Re A1) ⊕ Jms (Re A1).

2. If A[s] is not a real multiple of I2, we replace Jms (A
[s]) by the direct sum of

the Jordan blocks of order ms at the complex conjugate eigenvalues Re A1 ±
i
√

(Im A1)2 + |A2|2.
Let (A, B,C) be a triplet consisting of the p × p matrix A with entries in �, the

p × 1 matrix B with entries in �, and the 1 × p matrix C with entries in �. Then
this matrix triplet is called minimal if the matrix order of A is minimal among all
triplets for which Ce−zAB is the same �-valued function of z ∈ R. According to
Theorem 4.2, given a minimal triple (A, B,C) of matrices with entries in � there
exists an invertible S ∈ � p×p such that SAS−1 has the Jordan normal form (4.5) and
the triplet (SAS−1, SB,CS−1) is minimal.

Theorem 4.3 Suppose (A, B,C) is a triplet of size compatible matrices with entries of
�, where the eigenvalues of A all have positive real part. Let us assume that A has been
brought to the �-Jordan normal form (4.5). Then no pair of matrices A[1], . . . , A[k]
belongs to the same similarity orbit and among the �-entries B[ j]

s of B and C [ j]
s of

C ( j = 1, . . . , k, s = 1, . . . ,m j the �-entries B[ j]
m j and C [ j]

1 ( j = 1, 2, . . . , k) are
nontrivial matrices.

Proof Consider the matrix triplet (Jm(A), B,C), where A ∈ � is not the zero
matrix, B is the column with entries B1, . . . , Bm ∈ � and C is the row with entries
C1, . . . ,Cm ∈ �. Then for n = 0, 1, 2, . . . we get

[
Jm(A)n

]
j,l =

⎧⎪⎨
⎪⎩

An, j = l,( n
l− j

)
An+ j−l , j < l ≤ min(m − 1, n + j),

02×2, j > l or l > min(m − 1, n + j),

which is an upper triangular Toeplitz matrix with entries in�. Letting X be the column
with entries X1, . . . , Xm ∈ �, the identity

C Jm(A)nX = 02×2, n = 0, 1, . . . ,m − 1,
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allows a solution X with X1 
= 02×2 if C1 = 02×2. Thus assuming C1 
= 02×2 in �,
we get the equality

m∑
j=1

C j

⎛
⎝AnX j +

min(m−1,n+1)∑
l= j+1

(
n

l − j

)
An+ j−l Xl

⎞
⎠ = 02×2, n = 0, 1, 2, . . . ,

allowing us to express each X j into X j+1, . . . , Xm ( j = 1, 2, . . . ,m − 1) linearly
and to conclude that Xm = 02×2. Thus X1 = · · · = Xm = 02×2. In other words, if
C1 
= 02×2, then

m−1⋂
n=0

Ker (C Jm(A)n) = (02×2).

In the same way we prove that

m−1∨
n=0

Im (Jm(A)nB) = C
2m

if Bm 
= 02×2. ��

5 Soliton solutions usingmatrix triplets

Let us now solve the right and left Marchenko equations (2.17a) and (2.17b) for
reflectionlessMarchenko kernels (2.18a) and (2.18b), where the reflection coefficients
Rr ,l(λ; t) vanish.

5.1 Minimal matrix triplet representations

Since the Marchenko kernels�l,r (w; t) are finite linear combinations of the exponen-
tials e±iλsw (n = 1, 2, . . . , N ) and polynomials of w multiplied by such exponentials
with time dependent coefficients, there exist a square matrix A of even order 2pwhose
eigenvalues have positive real parts, 2p × 2 matrices Br and Bl , 2 × 2p matrices Cr

and Cl , and a 2p × 2p matrix H commuting with A such that

�r (z, t) = Cr e
−zAetH Br , �l(z, t) = Cl e

zAetH Bl . (5.1)

The representations (5.1) are chosen in such a way that the order of the complexmatrix
A is minimal among all representations (5.1) for the sameMarchenko kernels�r (z, t)
and �l(z, t). In that case 2p coincides with the sum of the algebraic multiplicities of
the discrete eigenvalues inC+ (which is N if the discrete eigenvalues are algebraically
simple, as assumed so far). Moreover, for any pair of minimal representations (5.1)
[where the matrices in the second pair carry a prime or double prime, respectively],
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there exist unique nonsingular 2p×2p complex matrices S and S such that [7, Ch. 1]

A′ = SAS−1, B′
r = SBr , C ′

r = Cr S−1, H ′ = SHS−1, (5.2a)

A′′ = SAS
−1

, B′′
l = SBl , C ′′

l = Cl S
−1

, H ′′ = SHS
−1

. (5.2b)

In other words, choosing the primed and double primed matrix quadruplets to be
(A∗, B∗

r ,lσ2, σ2C
∗
r ,l , H

∗), the symmetry relations (2.20) for the Marchenko kernels

imply the existence of unique nonsingular 2p × 2p matrices S and S such that

A∗ = SAS−1, B∗
r σ2 = SBr , σ2C∗

r = Cr S−1, H∗ = SHS−1, (5.3a)

A∗ = SAS
−1

, B∗
l σ2 = SBl , σ2C∗

l = Cl S
−1

, H∗ = SHS
−1

. (5.3b)

Taking complex conjugates we get

{
A∗ = S∗−1AS∗, B∗

r σ2 = −S∗−1Br ,

σ2C∗
r = −Cr S∗, H∗ = S∗−1HS∗,

(5.4a)

{
A∗ = S

∗−1
AS

∗
, B∗

l σ2 = −S
∗−1

Bl ,

σ2C∗
l = −Cl S

∗
, H∗ = S

∗−1
HS

∗
.

(5.4b)

The uniqueness of the similarity transformations S and S then implies that

S∗ = −S−1, S
∗ = −S

−1
. (5.5)

We observe that the minimal matrix triplets (Ar , Br ,Cr ) and (Al , Bl ,Cl) need not
consist of matrices having their entries in �, even though the expressions Cr e−zAr Br

and Cl ezAl Bl belong to � for each z ∈ R.
Let us now apply a similarity transformation to the triplets (Ar , Br ,Cr ) and

(Al , Bl ,Cl) such that the newly found triplets consist of matrices having their entries
in �. Indeed, letting T = λ−1(�2 + λ2S∗) where �2 is the direct sum of p copies of
σ2, |λ| = 1, and �2 + λ2S∗ is nonsingular, we obtain

ST�2 = λ−1S + λSS∗�2 = λ−1S − λ�2 = (λ−1�2 + λS∗)∗ = T∗,

and hence S = T∗�2T−1 (see [37] for a similar argument involving the Ansatz
S∗ = S−1). Substituting the latter into (5.4a) we get

⎧⎪⎨
⎪⎩

(T−1AT )∗ = �2(T−1AT )�2,

(T−1B)∗ = �2(T−1B)σ2,

(CT )∗ = σ2(CT )�2,
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where we have omitted the subscripts r and l. Hence, the matrix triplet
(T−1AT , T−1B,CT ) consists of matrices having their entries in �. In the same
way, by replacing H with T−1HT we arrive at a matrix belonging to � p×p.

Since the Zakharov–Shabat system vx = (−ikσ3 + Q)v is 1 + 1, every discrete
eigenvalue ks ∈ C

+ is geometrically simple. Because the conformal mapping k �→
λ = √

k2 + μ2 is 1, 1 on C
+ cut along the segment (i0+, iμ], the eigenvalues λs of

thematrix Schrödinger equation (2.1) inC+ are geometrically simple. Thus thematrix
Ar ,l in the minimal representations (5.1) has a �-Jordan structure with exactly two
Jordan blocks of the same order per positive eigenvalue, one Jordan block per complex
eigenvaluewith positive real part, and Jordan blocks of the sameorder corresponding to
complex conjugate eigenvalues (which have positive real part). As a result, there exist
quadruplets (Ar , Br ,Cr , Hr ) and (Al , Bl ,Cl , H l) consisting of matrices having
their entries in � such that Ar and Al have the above �-Jordan normal form and have
minimal matrix order among all quadruplets leading to the same Marchenko integral
kernels (5.1).

5.2 Inverse scattering implemented

Let us depart from the representations (5.1) of the Marchenko integral kernels, where
the quadruplets (Ar , Br ,Cr , Hr ) and (Al , Bl ,Cl , H l) consist of matrices having
their entries in � such that Ar and Al have the above �-Jordan normal form and have
minimal matrix order among all quadruplets leading to the same Marchenko integral
kernels (5.1).

Substituting the first of (5.1) into the right Marchenko equation (2.17a), we obtain
using the commutativity of A and H

K (x, y; t) = −
[
Cr e

−x A +
∫ ∞

x
ds K (x, s; t)Cr e

−sA
]
e−yAetH Br

= −W r (x; t)e−yAetH Br , (5.6)

where W r (x; t) = Cr e−x A − W r (x; t)e−x AetH Pr e−x A and

Pr =
∫ ∞

0
ds e−sABrCr e

−sA (5.7)

is the unique solution of the Sylvester equation APr + Pr A = BrCr . Hence,

K (x, y; t) = −Cr e
−x A

[
I2p + e−x AetH Pr e

−x A
]−1

e−yAetH Br , (5.8)

provided the inverse matrix exists. Then Theorem A.1 implies that Pr is invertible.
Moreover, Theorem A.3 implies that the inverse matrix in (5.8) exists for all but
finitelymany x ∈ R. Similarly, substituting the second of (5.1) into the leftMarchenko
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equation (2.17b), we obtain

J (x, y; t) = −
[
Cl e

x A +
∫ x

−∞
ds J (x, s; t)Cl e

sA
]
eyAetH Bl

= −W l(x; t)eyAetH Bl , (5.9)

where W l(x; t) = Cl ex A − W l(x; t)ex AetH P l ex A and

P l =
∫ ∞

0
ds e−sABlCl e

−sA (5.10)

is the unique solution of the Sylvester equation AP l + P l A = BlCl . Then Theorem
A.1 implies that P l is invertible. Analogously,

J (x, y; t) = −Cl e
x A

[
I2p + ex AetH P l e

x A
]−1

eyAetH Bl , (5.11)

provided the inverse matrix exists. Moreover, Theorem A.3 implies that the inverse
matrix in (5.11) exists for all but finitely many x ∈ R. Furthermore, Pr and P l belong
to � p×p.

Using (2.13) in (5.8) and (5.11) and differentiating with respect to x we obtain

Q(x; t) = −4Cr

[
e2x Ae−tH + Pr

]−1
Ae2x Ae−tH

[
e2x Ae−tH + Pr

]−1
Br ,

(5.12a)

Q(x; t) = −4Cl

[
e−2x Ae−tH + P l

]−1
Ae−2x Ae−tH

[
e−2x Ae−tH + P l

]−1
Bl .

(5.12b)

Since Pr and P l are nonsingular, these expressions are exponentially decaying as

x → ±∞. Writing Br = (
Br ,1 Br ,2

)
and Cr =

(
Cr ,1
Cr ,2

)
and similarly for Bl and Cl ,

we obtain the following expressions relating the potentials to the asymptotic potentials
qr and ql

q(x, t) = qr + 2Cr ,1

[
e2x Ae−tH + Pr

]−1
Br ,2

= ql − 2Cl,1

[
e−2x Ae−tH + P l

]−1
Bl,2, (5.13a)

q∗(x, t) = q∗
r + 2Cr ,2

[
e2x Ae−tH + Pr

]−1
Br ,1

= q∗
l − 2Cl,2

[
e−2x Ae−tH + P l

]−1
Br ,1, (5.13b)

provided e±2x AetH + Pr ,l (for each x ∈ R) are nonsingular matrices. Since Pr ,l are
nonsingular, we get

ql = qr + 2Cr ,1P−1
r Br ,2, qr = ql − 2Cl,1P

−1
l Bl,2, (5.14a)
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q∗
l = q∗

r + 2Cr ,2P−1
r Br ,1, q∗

r = q∗
l − 2Cl,2P

−1
l Br ,1. (5.14b)

Since μ = |ql | = |qr |, the right and left matrix triplets cannot be chosen arbitrarily.
The first of (5.14a) implies that

Cr ,1P−1
r Br ,2 = 1

2μ(eiθl − eiθr ).

Since |eiθl − eiθr | ≤ 2, we see that the matrix triplet is to satisfy

|Cr ,1P−1
r Br ,2| = μ

∣∣sin[ 12 (θr − θl)]
∣∣ ≤ μ, (5.15)

where ei(θl−θr ) and hence eiθl can be evaluated from known μ and eiθr . This means
that the triplet and μ are not independent. Once μ has been chosen to satisfy μ ≥
|Cr ,1P−1

r Br ,2|, it is possible to determine θl uniquely up to an additive multiple of
2π . Moreover, we have established the following

Proposition 5.1 If 0 < μ < |Cr ,1P−1
r Br ,2|, no soliton solution exists.

The matrix H commuting with A is easily seen to be given by

H = 1

2π i

∮



dλ [2iλ
√

λ2 − μ2 − iμ2](λI2p − i A)−1, (5.16)

where k(λ) = √
λ2 − μ2 is the conformal mapping from C

+ onto C
+ satisfying

k(λ) ∼ λ at infinity and  is a closed rectifiable Jordan contour in the upper half-plane
which has winding number +1 with respect to each eigenvalue of i A. Then

etH = 1

2π i

∮



dλ ei[2λ
√

λ2−μ2−μ2]t (λI2p − i A)−1. (5.17)

Let us finally derive the expressions for the transmission coefficients. Substituting
(5.8) into (2.12a) and (5.9) into (2.12b) we get

Fl(x, λ; t) = eiλx
(
I2 − iCr

[
e2x Ae−tH + Pr

]−1
(λI2p + i A)−1Br

)
,

Fr (x, λ; t) = e−iλx
(
I2 − iCl

[
e−2x AetH + P l

]−1
(λI2p + i A)−1Bl

)
.

Dividing by e±iλx , taking the limits of the resulting equalities as x → ∓∞, and using
(2.6a) and (2.6b) we arrive at the identities

Al(λ) = I2 − iCr P−1
r (λI2p + i A)−1Br , (5.18a)

Ar (λ) = I2 − iCl P
−1
l (λI2p + i A)−1Bl , (5.18b)
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where we have used the nonsingularity of Pr ,l . Using the Sylvester equations for Pr ,l

we obtain the transmission coeffients

Al(λ)−1 = I2 + iCr (λI2p − i A)−1P−1
r Br , (5.19a)

Ar (λ)−1 = I2 + iCl(λI2p − i A)−1P−1
l Bl . (5.19b)

Observe that the transmission coefficients are time-invariant. Using the Sherman-
Morrison-Woodbury formula det(I − T S) = det(I − ST ) [cf. [22]] and the Sylvester
equations for Pr ,l we easily obtain

det[Al,r (λ)−1] = det(λI2p + i A)

det(λI2p − i A)
.

6 Examples

In this section we work out various examples of multisoliton solutions based on
the minimal quadruplet (A, B,C, H), where H = φ(A) for some function φ

that is analytic in a neighborhood of the eigenvalues of A. In fact [cf. (5.17)],
φ(λ) = i[2λ√λ2 − μ2 − μ2], where k(λ) = √

λ2 − μ2 is the conformal mapping
from C

+ onto C
+ satisfying k(λ) ∼ λ at infinity.

Example 6.1 (One-soliton solution with real eigenvalue) Consider the minimal triplet

A =
(
a 0
0 a

)
, B =

(
b1 −b∗

2
b2 b∗

1

)
, C =

(
c1 −c∗

2
c2 c∗

1

)
,

where a > 0 and B and C have positive determinants. Then

P = 1

2a
BC = 1

2a

(
d1 −d∗

2
d2 d∗

1

)
,

where d1 = b1c1 − b∗
2c2 and d2 = b2c1 + b∗

1c2. Then (5.8) implies that

K (x, y; t) = −e−a(x+y)etφ(a)

(
c1 −c∗

2
c2 c∗

1

)
×

×
(
1 + 1

2a e
−2axetφ(a)d1 − 1

2a e
−2axetφ(a)d∗

2
1
2a e

−2axetφ(a)d2 1 + 1
2a e

−2axetφ(a)d∗
1

)−1 (
b1 −b∗

2
b2 b∗

1

)
,

where for any x ∈ R the matrix to be inverted has the nonnegative determinant

D(x; t) =
∣∣∣1 + 1

2a e
−2axetφ(a)d1

∣∣∣
2 +

∣∣∣ 1
2a e

−2axetφ(a)d2
∣∣∣
2
.

Weassume this determinant to be positive for each (x, t) ∈ R
2. In fact, the determinant

D(x; t) vanishes at some x ∈ R for given t ∈ R [namely, at x = 1
2a ln(− d1

2a e
tφ(a))]

123



F. Demontis, C. van der Mee

iff d1 < 0 and d2 = 0, i.e., iff BC is a negative multiple of I2. Therefore,

K (x, y; t) = −e−a(x+y)etφ(a)

D(x; t)
(
c1 −c∗

2
c2 c∗

1

)

×
(
1 + 1

2a e
−2axetφ(a)d∗

1
1
2a e

−2axetφ(a)d∗
2

− 1
2a e

−2axetφ(a)d2 1 + 1
2a e

−2axetφ(a)d1

)(
b1 −b∗

2
b2 b∗

1

)
.

Consequently,

q(x) = qr + 2
e−2axetφ(a)

D(x; t)
(
c1 −c∗

2

)

×
(
1 + 1

2a e
−2axetφ(a)d∗

1
1
2a e

−2axetφ(a)d∗
2

− 1
2a e

−2axetφ(a)d2 1 + 1
2a e

−2axetφ(a)d1

)(−b∗
2

b∗
1

)

= qr + 2

D(x; t)
[
−(c1b

∗
2 + c∗

2b
∗
1)e

−2axetφ(a)

+ 1

2a
e−4axe2tφ(a)

(−c1d
∗
1b

∗
2 + c1d

∗
2b

∗
1 − c∗

2d2b
∗
2 − c∗

2d1b
∗
1

)]
.

Thus,

ql = qr + 4a

|d1|2 + |d2|2
(
c1 −c∗

2

) ( d∗
1 d∗

2−d2 d1

)(−b∗
2

b∗
1

)
= qr .

Since P = 1
2a BC with B and C nonsingular, we see that

ql − qr = 4a
(
1 0

)
C(BC)−1B

(
0
1

)
= 0,

thus conferming our preceding result.

Example 6.2 (one-soliton solution with conjugate eigenvalues) Consider the minimal
triplet

A =
(

a ω

−ω a

)
, B =

(
b1 −b∗

2
b2 b∗

1

)
, C =

(
c1 −c∗

2
c2 c∗

1

)
,

where a > 0, 0 
= ω ∈ R, and B and C have positive determinants. Then

e−x A = e−ax
(

cos(ωx) sin(ωx)
− sin(ωx) cos(ωx)

)
.
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Using
∫∞
0 dx e−2ax cos(2ωx) = a

2(a2+ω2)
and

∫∞
0 dx e−2ax sin(2ωx) = ω

2(a2+ω2)
, we

get the Sylvester solution

P =
⎛
⎜⎝

d1−d∗
1

4a + a(d1+d∗
1 )

4(a2+ω2)
+ ω(d2+d∗

2 )

4(a2+ω2)

d2−d∗
2

4a − a(d2+d∗
2 )

4(a2+ω2)
+ ω(d1+d∗

1 )

4(a2+ω2)

d2−d∗
2

4a + a(d2+d∗
2 )

4(a2+ω2)
− ω(d1+d∗

1 )

4(a2+ω2)
− d1−d∗

1
4a + a(d1+d∗

1 )

4(a2+ω2)
+ ω(d2+d∗

2 )

4(a2+ω2)

⎞
⎟⎠ ,

where d1 = b1c1 − b∗
2c2 and d2 = b2c1 + b∗

1c2. Note that

det P =
[
a(d1 + d∗

1 )

4(a2 + ω2)
+ ω(d2 + d∗

2 )

4(a2 + ω2)

]2
+
[
d1 − d∗

1

4ia

]2

+
[
a(d2 + d∗

2 )

4(a2 + ω2)
− ω(d1 + d∗

1 )

4(a2 + ω2)

]2
+
[
d2 − d∗

2

4ia

]2

= (d1 + d∗
1 )2 + (d2 + d∗

2 )2

16(a2 + ω2)
− (d1 − d∗

1 )2 + (d2 − d∗
2 )2

16a2

is positive. Therefore,

ql = qr + 2
(
c1 −c∗

2

)

det P

×
⎛
⎝− d1−d∗

1
4a + a(d1+d∗

1 )

4(a2+ω2)
+ ω(d2+d∗

2 )

4(a2+ω2)
− d2−d∗

2
4a + a(d2+d∗

2 )

4(a2+ω2)
− ω(d1+d∗

1 )

4(a2+ω2)

− d2−d∗
2

4a − a(d2+d∗
2 )

4(a2+ω2)
+ ω(d1+d∗

1 )

4(a2+ω2)

d1−d∗
1

4a + a(d1+d∗
1 )

4(a2+ω2)
+ ω(d2+d∗

2 )

4(a2+ω2)

⎞
⎠
(−b∗

2
b∗
1

)
.
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A Invertibility of the Sylvester solutions

Given a matrix triplet (A, B,C), where A is a 2p × 2p matrix whose eigenvalues
have positive real parts, B is a 2p × r matrix, and C is an r × 2p matrix, we define
the controllability subspace and the observability subspace of C2p as follows:

Im(A, B) =
∞∨
j=0

Im(A j B), (A.1a)

Ker(C, A) =
∞⋂
j=0

Ker(CA j ), (A.1b)

where Im T andKer T stand for the range and the null space of amatrix T , respectively.
The V -symbol in (A.1a) denotes the set of finite linear combinations of vectors in
the union of Im (A j B) ( j = 0, 1, 2, . . .) and the intersection in (A.1b) is finite.
We observe that Im(A, B) is the smallest A-invariant subspace containing Im B and
Ker(C, A) is the largest A-invariant subspace contained in KerC . We call the matrix
pair (A, B) controllable if Im(A, B) = C

2p.Wecall thematrix pair (C, A)observable
if Ker(C, A) is the zero subspace. The matrix triplet (A, B,C) is called minimal if
(A, B) is controllable and (C, A) is observable [or: if A has minimal matrix order
among the triplets (A, B,C) leading to the same�(z) = Ce−zAB]. A comprehensive
account of controllability and observability can be found in any textbook on linear
control theory [7, 13, 28].

For the above matrix triplets we obviously have in mind (A, Br ,Cr ) and
(A, Bl ,Cl). In most of this subsection we drop the subscripts r and l and consider the
triplets (A, BC, I2p) and (A, I2p, BC) with r = 2p as well.

The next result relies on arguments provided byHearon [27] for triplets (A, B,C)of
complex matrices. Here Hearon’s arguments are adapted to matrix triplets (A, B,C),
where A ∈ � p×p, B ∈ � p×1, and C ∈ �1×p.

Theorem A.1 Let (A, B,C) be amatrix triplet, where A ∈ � p×p only has eigenvalues
with positive real part, B ∈ � p×1, and C ∈ �1×p. Then the following statements are
equivalent:

(a) The unique solution P of the Sylvester equation

AP + P A = BC (A.2)

is invertible.
(b) The pair (A, BC) is controllable.
(c) The pair (BC, A) is observable.

Proof Let us first prove that Im (BC) is contained in Im P iff Im P is A-invariant.
Indeed, if Im P is A-invariant, then for each h ∈ C

2p there exists k ∈ C
2p such

that APh = Pk; then, using (A.2), we get BCh = P(k + Ah), thus proving that
Im (BC) is contained in Im P . Conversely, if Im (BC) is contained in Im P , then for
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each h ∈ C
2p there exists k ∈ C

2p such that BCh = Pk; then, using (A.2), we get
APh = P(k − Ah), thus proving that Im P is A-invariant.

Next, we prove that Ker (BC) contains Ker P iff Ker P is A-invariant. Indeed, if
Ker P is contained in Ker (BC), then for each h ∈ C

2p such that Ph = 0 we have
BCh = 0, which implies that P Ah = BCh − APh = 0. Conversely, if Ker P is
A-invariant, then for each h ∈ C

2p such that Ph = 0, we have P Ah = 0 and hence
BCh = APh + P Ah = 0.

(b)⇒(a). Let q be a p × 1 matrix with entries in � such that Pq = 0. Then
P Aq = BCq. Then there are two options:

(i) Cq = 0 whenever Pq = 0, or
(ii) Cq 
= 0 for some q satisfying Pq = 0.

In the first case, we see that P Aq = BCq − APq = 0 and hence the kernel of P is
A-invariant. If we then also assume that (BC, A) is observable, then Im P contains
the smallest A-invariant subspace containing Im (BC) and hence the controllability
of (A, BC) implies that P is invertible. In the second case we see that the �-vector
B belongs to the range of P , implying that the range of BC is contained in the range
of P so that the range of P is A-invariant. If we then also assume that (A, BC) is
controllable and hence the smallest A-invariant subspace containing the range of BC
is all of � p×1, then P is invertible. In either case we conclude that P is invertible.

(c)⇒(a). Using the arguments of the preceding paragraph, we see that the
controllability of (A†,C†B†) implies the invertibility of P†.

(a)⇒[(b)+(c)] Let us first assume P to be invertible. To prove the controllability of
the pair (A, BC), we take a vector h ∈ C

2p orthogonal to the controllability subspace
Im (A, BC). Then

(A j BCP−1k, h) = 0, k ∈ C
2p, j = 0, 1, 2, . . . .

Therefore, using the identity [cf. (A.2)]

A = BCP−1 − P AP−1, (A.3)

for arbitrary k ∈ C
2p and j = 0, 1, 2, . . . we have

(A j+1k, h) = (A j BCP−1k, h) − (A j P AP−1k, h)

= −(A j P AP−1k, h).

By the arbitrariness of k we get

A† j+1
h = −P†−1

A†P†A† jh. (A.4)

Repeated application of (A.4) yields

A† jh = −P†−1
A†P†A† j−1

h = (P†−1
A†P†)2A† j−2

h

= · · · = (−P†−1
A†P†) jh = P†−1

(−A†) j P†h,
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which implies that

q(A†)h = P†−1
q(−A†)P†h

for any polynomial q(z). If we take q(z) = det(z I2p − A†) [the characteristic poly-
nomial of A†], we obtain q(A†) = 0 by the Cayley-Hamilton theorem [21]. Using
that A† and −A† do not have common eigenvalues [and hence q(z) and q(−z) do not
have common zeros], we obtain the invertibility of q(−A†). Consequently, h = 0. As
a result, Im (A, BC) = C

2p, yielding the controllability of the pair (A, BC). Finally,
using the invertibility of P†, we prove the controllability of the pair (A†,C†B†) and
hence the observability of the pair (BC, A). ��
Corollary A.2 Thematrices Pr defined by (5.7) and P l defined by (5.10) are invertible.

Theorem A.3 For each x ∈ R except at finitely many values, the matrices e2x A + Pr

and e−2x A + P l are invertible.

Example 6.1 contains a triplet where det(e2x A + Pr ) = 0 for some x ∈ R.

Proof In Theorem 4.1 above we have proved the nonnegativity of the determinants
of Pr ,l and e±2x Ae−tH + Pr ,l for each x ∈ R. Since for each t ∈ R the function
det(e±2x Ae−tH + Pr ,l) is entire analytic in x , is nonnegative on the real x-line, tends
to +∞ as x → ±∞ along the real line, and tends to det Pr ,l > 0 as x → ∓∞,
there are at most finitely values of x ∈ R for which the matrix e±2x Ae−tH + Pr ,l is
singular. ��
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