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Abstract. Biconservative surfaces of Riemannian 3-space forms N3(ρ), are either con-

stant mean curvature (CMC) surfaces or rotational linear Weingarten surfaces verifying

the relation 3κ1 +κ2 = 0 between their principal curvatures κ1 and κ2. We characterise

the profile curves of the non-CMC biconservative surfaces as the critical curves for a

suitable curvature energy. Moreover, using this characterisation, we prove the existence

of a discrete biparametric family of closed, i.e. compact without boundary, non-CMC

biconservative surfaces in the round 3-sphere, S3(ρ). However, none of these closed

surfaces is embedded in S3(ρ).

1. Introduction

A hypersurface Mn−1 in a n-dimensional Riemannian manifold Nn is called biconser-
vative if

2Sη(gradH) + (n− 1)H gradH − 2H Ricci(η)> = 0

where η is a unit normal vector field, Sη is the shape operator, H = traceSη/(n−1) is the
mean curvature function and Ricci(η)> is the tangent component of the Ricci curvature
of N in the direction of η.

The notion of biconservative hypersurfaces was introduced in [7], as we shall detail
in the next section, where the authors classify, locally, biconservative surfaces into 3-
dimensional space forms (see also [14]). More precisely, in [7], it was proved that a
biconservative surface of a 3-space form, N3(ρ), is either a CMC surface or a rotational
surface. Moreover, in the same paper, a relation between the Gaussian curvature, K, and
the mean curvature, H, of the non-CMC biconservative surfaces of N3(ρ) was stated.
Indeed, these rotational surfaces verify

(1) K = −3H2 + ρ .

Throughout this paper, we are going to understand a Weingarten surface as a surface of
N3(ρ) where the two principal curvatures κ1 and κ2 satisfy a certain relation Φ(κ1, κ2) =
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0. These surfaces were introduced by Weingarten in [34] and its study occupies an
important role in classical Differential Geometry.

The simplest relation Φ(κ1, κ2) = 0 is the pure linear relation, that is,

(2) κ1 = aκ2 , a ∈ R .

Rotational surfaces in Riemannian 3-space forms verifying the relation (2) between their
principal curvatures were geometrically described by Barros and Garay in [5] where they
gave a variational characterisation of the parallels. On the other hand, in [21], the profile
curve of rotational linear Weingarten surfaces of R3 was characterised as a critical curve
for a curvature energy problem.

In our case, relation (1) implies that non-CMC biconservative surfaces are linear Wein-
garten surfaces for a = −1/3 in (2), as it was first pointed by Fu and Li in [15]. Thus,
we have the following description.

Proposition 1.1. The non-CMC biconservative surfaces of a 3-dimensional space form
N3(ρ) are rotational linear Weingarten surfaces verifying

(3) 3κ1 + κ2 = 0 ,

where κ1 = −κ is minus the curvature of the profile curve. Moreover, let S ⊂ N3(ρ) be
a rotational linear Weingarten surface verifying (3), then S is a biconservative surface.

Throughout this paper, we are going to consider the following bending-type energy
problem. More precisely, we consider the curvature energy functional given by

(4) Θ(γ) :=

∫
γ

κ1/4 ,

acting on the space of arc-length parametrized non-geodesic curves γ : I → N , where I
is a real interval. Here, κ denotes the curvature of γ. In the Euclidean 3-space, R3, this
functional has been studied in [16], where its critical curves have been used to produce
solutions of a generalized Ermakov-Milne-Pinney equation. On the other hand, in the
unit round 3-sphere, S3(1), it was analysed in [1]. For more details about this functional
see §3.

The first main result of the paper is the following characterisation.

Theorem 1.2. Let S be a non-CMC biconservative surface of a 3-dimensional space
form N3(ρ). Then, locally, S is a rotational surface whose profile curve verifies the
Euler-Lagrange equations for the functional (4).

A converse of Theorem 1.2 is also true and gives us a way of constructing all non-CMC
biconservative surfaces of 3-space forms, as it will be explained in Theorem 4.2.

A natural problem is to investigate, using the variational characterisation, the existence
of closed (i.e. compact without boundary) non-CMC biconservative surfaces into N3(ρ).
This problem was raised for the first time in [27] and then in [10, 11]. In §5 we tackle
this problem and solve it. We first prove, in Proposition 5.2, that there are no closed
non-CMC biconservative surfaces in 3-space forms, N3(ρ), with ρ ≤ 0. While, for the
case of S3(ρ), we prove the following existence result.
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Theorem 1.3. There exists a discrete biparametric family of closed non-CMC bicon-
servative surfaces in the round 3-sphere, S3(ρ). However, there are no closed non-CMC
biconservative surfaces embedded in S3(ρ).

2. Biharmonic Maps and Biconservative Immersions

Harmonic maps ϕ : (M, g) → (N, h) between Riemannian manifolds are the critical
points of the energy functional

E(ϕ) =
1

2

∫
M

|dϕ|2vg .

Their corresponding Euler-Lagrange equation is given by the vanishing of the tension
field

(5) τ(ϕ) = trace∇dϕ .

In [9], Eells and Sampson suggested to study biharmonic maps, which are the critical
points of the bienergy functional

(6) E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2vg .

The first variation formula of the bienergy was derived by Jiang, [19]. Moreover, he
showed that the Euler-Lagrange equation for E2 is

(7) τ2(ϕ) = −J(τ(ϕ)) = −∆τ(ϕ)− traceRN(dϕ, τ(ϕ))dϕ = 0 ,

where J is the Jacobi operator of ϕ. The curvature operator of (N, h) is denoted by RN

and it can be computed as

RN(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] ,

for any vector fields X and Y in N , where ∇ denotes the Levi-Civita connection. Finally,
the symbol ∆ in (7) represents the rough Laplacian on sections ϕ−1(TN), which, for a
local orthonormal frame {ei}mi=1 on M , is defined by

∆ = −
m∑
i=1

(
∇ϕ
ei
∇ϕ
ei
−∇ϕ

∇Mei ei

)
.

The equation τ2(ϕ) = 0 is called the biharmonic equation. Since the Jacobi operator J is
linear, it is easy to check that harmonic maps are always biharmonic.

If ϕ : M → N is an isometric immersion the decomposition of the bitension field
with respect to its normal and tangent components was obtained with contributions of
[6, 8, 22, 31] and for hypersurfaces it can be summarised in the following theorem.

Theorem 2.1. Let ϕ : Mn−1 → Nn be an isometric immersion with unit normal vector
field η and mean curvature vector field H = Hη. Then, the normal and tangential
components of τ2(ϕ) = 0 are respectively

∆H +H|Sη|2 −H Ricci(η, η) = 0 ,

2Sη(gradH) + (n− 1)H gradH − 2H Ricci(η)T = 0 ,

where Sη is the shape operator and Ricci(η)T is the tangent component of the Ricci cur-
vature of N in the direction of the vector field η.
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Remark 2.2. Let γ : I → N be an arc-length parametrized curve from an open interval
I ⊂ R to a Riemannian manifold N . In this case, putting T = γ′, the bienergy functional,
(6), reduces to

(8) E2(γ) =

∫
γ

κ2 .

Then, the Euler-Lagrange equation for the bienergy when it acts on the space of all maps
between I and N , can be written as

(9) τ2(γ) = ∇3
TT +R(∇TT, T )T = 0 ,

and its solutions are called biharmonic curves. Take into account that harmonic curves,
that is, arc-length parametrized solutions of the tension field τ(γ), (5), are just geodesics.
Moreover, as mentioned before, harmonic maps are also biharmonic maps and, therefore,
biharmonic curves represent a generalization of geodesics.

One can also study the bienergy functional E2, (8), acting on the space of curves
immersed in N . That is, in this case, the problem consists of seeking critical curves among
arc-length parametrized curves and it is usually referred as bending energy problem, while
its critical curves are called elastic curves.

We point out that the Euler-Lagrange equation for this last variational problem over
curves is

∇3
TT +

3

2
∇T

(
κ2T

)
−R(∇TT, T )T = 0 ,

which, in principle, is different from (9). However, geodesics are also elastic curves, which
means that this is another way of generalizing the notion of a geodesic.

2.1. Biconservative Immersions. As described by Hilbert in [17], the stress-energy
tensor associated with a variational problem is a symmetric 2-covariant tensor S which
is conservative at critical points, that is, with divS = 0.

In the context of harmonic maps ϕ : (M, g)→ (N, h) between two Riemannian mani-
folds the stress-energy tensor was studied in detail by Baird and Eells in [3] (see also [4]
and [33]). Indeed, the tensor

S =
1

2
|dϕ|2g − ϕ∗h

satisfies divS = −〈τ(ϕ), dϕ〉, where τ(ϕ) is given by (5). Therefore, we have that divS =
0 when the map is harmonic. Moreover, when ϕ is any isometric immersion, the condition
divS = 0 is always satisfied, since the tension field τ(ϕ) is normal to the submanifold.

The study of the stress-energy tensor for the bienergy (6) was initiated in [18] and
afterwards developed in [23]. Its expression is

S2(X, Y ) =
1

2
|τ(ϕ)|2〈X, Y 〉+ 〈dϕ,∇τ(ϕ)〉〈X, Y 〉−〈dϕ(X),∇Y τ(ϕ)〉−〈dϕ(Y ),∇Xτ(ϕ)〉,

and it satisfies the condition

(10) divS2 = −〈τ2(ϕ), dϕ〉,

where τ2(ϕ) is the bitension field given in (7). Due to (10), we have that S2 is conforming
to the principle of a stress-energy tensor for the bienergy.
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Now, if ϕ is an isometric immersion, (10) reads

(11) (divS2)] = −τ2(ϕ)T ,

where ] denotes the musical isomorphism sharp.

An isometric immersion is biconservative if the corresponding stress-energy tensor S2

is conservative, that is, if divS2 = 0. From (11), biconservative isometric immersions
correspond to immersions with vanishing tangential part of the corresponding bitension
field, that is, using Theorem 2.1, an isometric immersion ϕ : Mn−1 → Nn is biconservative
if and only if ϕ satisfies the condition

(12) 2Sη(gradH) + (n− 1)H gradH − 2H Ricci(η)T = 0 .

An hypersurface Mn−1 immersed in this way is usually called a biconservative hypersur-
face.

Notice that, in the particular case when the ambient space is any space form of di-
mension n and constant sectional curvature ρ, Nn(ρ), the tangential part of the Ricci
curvature vanishes, and therefore equation (12) simplifies to

2Sη(gradH) + (n− 1)H gradH = 0 .

The theory of biconservative hypersurfaces is developing very rapidly and we refer the
reader to the papers [12, 13, 24, 25, 26] and the references therein.

2.2. Invariant Surfaces. We end this section recalling that a surface S intoN3(ρ) is said
to be an invariant surface if it stays invariant under the action of a one-parameter group
of isometries of N3(ρ). The one-parameter group of isometries of N3(ρ) is determined
by the flow of a Killing vector field of N3(ρ). Take Φ ∈ Isom+ (N3(ρ)) an orientation
preserving isometry of N3(ρ) and assume that Φ is a rotation whose axis is a given
geodesic ζ. The group of all isometries in Isom+ (N3(ρ)) with the same axis is isomorphic
to SO(2) w S1 and acts naturally on N3(ρ). A rotational surface, S ⊂ N3(ρ), is an
SO(2)-invariant surface, where SO(2) is considered to be the subgroup of isometries,
Isom+ (N3(ρ)), acting as explained before. The group SO(2) fixes all the points of the
rotation axis ζ and rotates an everywhere orthogonal curve γ (the profile curve) around
ζ sweeping out a rotational surface which will be denoted by Sγ from now on.

3. Bending-Type Curvature Energy

Let us denote by γ an arc-length parametrized curve immersed in N3(ρ). If γ(s) is a
unit speed non-geodesic smooth curve immersed in N3(ρ), then γ(s) is a Frenet curve of
rank 2 or 3 and the standard Frenet frame along γ(s) is given by {T,N,B}(s), where N
and B are the unit normal and unit binormal to the curve, respectively, and B is chosen
so that det(T,N,B) = 1. Then the Frenet equations

∇TT (s) = κ(s)N(s) ,(13)

∇TN(s) = −κ(s)T (s) + τ(s)B(s) ,(14)

∇TB(s) = −τ(s)N(s) ,(15)

define the curvature, κ(s) (we will always consider κ(s) ≥ 0), and torsion, τ(s), along
γ(s) (do not confuse the notation with the tension field τ(ϕ) defined in (5)).
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In a Riemannian 3-space form any local geometrical scalar defined along Frenet curves
can always be expressed as a function of their curvatures and derivatives. Notice that,
even if the rank of γ is 2 (i.e, τ = 0), the binormal B = T × N is still well defined and
above formulas (13)-(15) still make sense. Moreover, in a 3-space form, N3(ρ), a curve
verifying τ = 0 can be assumed to lie in a totally geodesic surface N2(ρ). Curves whose
torsion vanishes are called planar curves. From now on, we are going to deal with planar
curves, unless the opposite is said.

Let us consider the following curvature energy functional (4)

Θ(γ) =

∫
γ

κ1/4 =

∫ L

0

κ1/4(s) ds ,

where, as usual, the arc-length or natural parameter is represented by s ∈ [0, L], L being
the length of γ. Then, we consider Θ acting on the following spaces of curves, satisfying
given boundary conditions in (N2(ρ), 〈·, ·〉). We shall denote by Ωρ

pop1
the space of smooth

immersed curves of N2(ρ), joining two given points of it, that is:

Ωρ
pop1

= {δ : [0, 1]→ N2(ρ) ; δ(i) = pi, i ∈ {0, 1},
dδ

dt
(t) 6= 0,∀t ∈ [0, 1]},

where pi ∈ N2(ρ), i ∈ {0, 1}, are arbitrary given points of N2(ρ).

For a curve γ : [0, 1]→ N2(ρ), we take a variation of γ, Γ = Γ(t, t̄) : [0, 1]× (−ε, ε)→
N2(ρ) with Γ(t, 0) = γ(t). Associated to this variation we have the vector field W =
W (t) = ∂Γ

∂t̄
(t, 0) along the curve γ(t). We also write V = V (t, t̄) = ∂Γ

∂t
(t, t̄), W = W (t, t̄),

v = v(t, t̄) = |V (t, t̄)|, T = T (t, t̄), N = N(t, t̄), B = B(t, t̄), etc., with the obvious
meanings and put V (s, t̄), W (s, t̄) etc., for the corresponding reparametrizations by arc-
length. Then, the following general formulas for the variations of v and κ in γ, in the
direction of the variation vector field W can be obtained using standard computations
that involve the Frenet equations (13)-(15) (see, [2], [20] and references therein)

W (v) = v〈∇TW,T 〉,(16)

W (κ) = 〈∇2
TW,N〉 − 2κ〈∇TW,T 〉+ ρ〈W,N〉.(17)

Next, after a standard computation involving integration by parts and formulae (16) and
(17), the First Variation Formula is obtained:

d

dν
Θ(ν)|ν=o =

∫ L

0

〈E(γ),W 〉ds+ B [W, γ]L0 .

Here, E(γ) and B [W, γ]L0 denote the Euler-Lagrange operator and boundary term, respec-
tively. These are given by

E(γ) = ∇TJ −R(K, T )T = ∇TJ + ρK ,
B [W, γ]L0 = [〈K,∇TW 〉 − 〈J ,W 〉]L0 ,

where

K(γ) =
1

4κ3/4
N ,(18)

J (γ) = ∇TK −
1

2
κ1/4 T .(19)

We will call critical curve or extremal curve to any curve γ ⊂ Ωρ
pop1

such that E(γ) = 0.
Notice that this is an abuse of notation, since proper criticality depends on the boundary
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conditions, as it is clear from the First Variation Formula. However, under suitable
boundary conditions, curves verifying E(γ) = 0 are going to be proper critical curves.
Therefore, since for our purposes we just need to consider curves satisfying E(γ) = 0,
for the sake of simplicity, from now on, we are going to use the name critical curve (or,
extremal curve) to denote any curve γ ⊂ Ωρ

pop1
verifying E(γ) = 0.

Now, using the Frenet equations (13)-(15), we can see that E(γ) has no component in
T , nor in B, while its normal component can be expressed in terms of the curvature of
γ. Thus, after long straightforward computations, E(γ) = 0 reduces to

κ3/4 d
2

ds2

(
1

κ3/4

)
− 3κ2 + ρ = 0 ,(20)

which is the Euler-Lagrange equation for the curvature energy functional Θ, (4), acting
on Ωρ

pop1
and agrees with formula (30) of [7].

Non-geodesic critical curves with constant curvature are given by the only planar curves
(up to isometries) whose curvature verifies

(21) κ2 = κ2
o =

ρ

3
,

which is only possible in the case of the round 2-sphere, that is, if N2(ρ) = S2(ρ).

On the other hand, for critical curves with non-constant curvature, let us now define
the following vector field I along γ

I = T ×K ,

where × denotes the cross product and K is defined in (18). Combining the Frenet
equations (13)-(15) and (18), we see that I is given by

(22) I = T ×K =
1

4κ3/4
B .

Then, a direct long computation using the Frenet equations (13)-(15), formulas (18) and
(19), and the Euler-Lagrange equation, (20), shows that the derivative of the function
〈J ,J 〉+ ρ 〈I, I〉 along the critical curve is zero. Thus,

〈J ,J 〉+ ρ 〈I, I〉 = d,(23)

with d a real constant, represents a first integral of (20). Notice that substituting the
values of J , (19), and I, (22), in above formula we get

(24) κ2
s =

16

9
κ2
(
16 d κ3/2 − 9κ2 − ρ

)
.

We point out that, in principle, the constant d may be arbitrary. However, as we will
see later, for our purposes it will be restricted to be positive.

Finally, to end this section, we are going to see that critical curves for Θ, (4), have
a distinguished vector field along them. A vector field W along γ, which infinitesimally
preserves unit speed parametrization, is said to be a Killing vector field along γ (in the
sense of [20]) if γ evolves in the direction of W without changing shape, only position.
In other words, the following equations must hold

W (v)(s, 0) = W (κ)(s, 0) = 0 ,

(v = |γ′| = |dγ
ds
| being the speed of γ) for any variation of γ having W as variation field.
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It turns out that extremals of Θ, (4), have a naturally associated Killing vector field
defined along them, as we summarise in the following proposition (for a proof, see [2] and
[20])

Proposition 3.1. Assume that γ is an immersed curve in N2(ρ) which is an extremal
of Θ, (4). Consider the vector field (22)

I =
1

4κ3/4
B ,

defined on γ, B being its Frenet binormal vector field. Then I is a Killing vector field
along γ.

4. Characterisation of Profile Curves as Bending-Type Energy
Extremals

Throughout this section we are going to assume that S is a non-CMC biconservative
surface of a Riemannian 3-space form, N3(ρ). Then, as mentioned in §2, S is locally
rotational. We denote by γ the curve everywhere orthogonal to the rotation, then S can
be locally parametrized as

(25) x(s, t) = φt(γ(s)),

where φt denotes the one-parameter group of rotations. Usually, γ is called the profile
curve of Sγ ⊂ S.

Profile curves of rotational surfaces are planar and, furthermore in this case, they
have a nice geometric property, as stated in Theorem 1.2. We prove this theorem in the
following subsection.

4.1. Proof of Theorem 1.2. Let S ⊂ N3(ρ) be an isometrically immersed non-CMC
biconservative surface in any Riemannian 3-space form N3(ρ) with local orientation deter-
mined by the normal vector η. Then, by Proposition 1.1, it is a rotational surface verifying
the relation (3) between its principal curvatures. We will denote by ξ the Killing vector
field which is the infinitesimal generator of the rotation that leaves S invariant. Then,
locally on S, we can choose Fermi geodesic coordinates (U, x), x : U → S, x(s, t), so
that ξ = ∂

∂t
and s measures the arc-length along geodesics orthogonal to ξ. Thus, calling

γ(s) := x(s, 0), we have that x(U) := Sγ ⊂ S is parametrized by (25) where φt ∈ Gξ, the
one-parameter group of isometries generated by ξ. Observe that γ(s) and all its copies
by the action of Gξ, γt(s) := φt(γ(s)), t ∈ R, are arc-length parametrized geodesics of Sγ
which are orthogonal to ξ, so that Sγ is foliated by geodesics having κ(s, t) as curvature
in N3(ρ). Furthermore, they all have vanishing torsion. If γt(s) were also geodesics in
N3(ρ), ∀t, then Sγ would be foliated by geodesics of the ambient space what would make
it a ruled surface. In this case, we have that from relation (3), Sγ is minimal, since
κ1 = −κ(s) = 0, which is not possible. Hence, we assume that the orthogonal curves to
the Killing field ξ, γt(s), are not geodesics of the ambient space. Then, γt(s) are Frenet
curves and defined over them we have a Frenet frame {T (s, t), N(s, t), B(s, t)} satisfying
(13)-(15).
At this point, after long straightforward computations, one can see that the Gauss and
Weingarten formulae and the simplicity of the curvature tensor in N3(ρ), lead to a PDE
system to be satisfied (see, for instance, [2]). The compatibility conditions for this system
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are given by the Gauss-Codazzi equations, which in our case, since φt are isometries, can
be shown to boil down just to

0 =

(
1

κ

(
Gss +G(κ2 + ρ)

))
s

− κsG ,(26)

where G is the length of the Killing vector field ξ, that is, G2(s) = 〈xt, xt〉. Moreover,
not only G(s), but also all the involved functions depend only on s. Now, κ1(s) = −κ(s)
and κ2(s) = h22(s), the second coefficient of the second fundamental form given by (for
details, see [2])

h22 =
1

κ

(
Gss

G
+ ρ

)
,

and, therefore, the relation (3) becomes

Gss = G
(
3κ2 − ρ

)
.(27)

Let us assume first that γ has constant curvature κ(s) = κo in N3(ρ). We combine (26)
and (27) to obtain that G(s) must be a positive constant and, therefore, Sγ should be a
flat isoparametric surface which contradicts the fact that S has non-CMC. Consequently,
it is out of our consideration. Even though, in this case, equation (27) implies that

3κ2
o = ρ ,

that is, γ is also a critical curve with constant curvature for Θ, (4), (see formula (21)).

Finally, suppose that κ is not constant. Locally, by the Inverse Function Theorem we can
suppose that s is a function of κ and calling G(κ) = Ṗ (κ), where the upper dot denotes
derivative with respect to κ, we have that (26) and (27) can be expressed in the following
way

Ṗss + Ṗ
(
κ2 + ρ

)
− κ (P + λ) = 0 ,(28)

Ṗss − Ṗ
(
3κ2 − ρ

)
= 0 ,(29)

for some λ ∈ R. Now, equation (28) is the Euler-Lagrange equation for
∫
γ
(P (κ)+λ)ds in

N3(ρ) (see for instance, [2]). Moreover, substituting it in equation (29) we get an ODE
in P which can be solved obtaining

P (κ) = κ1/4 − λ .

Thus, γ must be a critical curve for Θ, (4), proving the result. �

In fact, as mentioned in the introduction, the converse of Theorem 1.2 is also true and
gives us a way of constructing all non-CMC biconservative surfaces of 3-space forms after
binormal evolution of extremal curves, as we will explain in what follows.

From Proposition 3.1, we know that the vector field along γ, I, (22), is a Killing vector
field along the curve. Therefore, using an argument similar to that of [20] we can extend
I to a Killing vector field on the whole N3(ρ). Let us denote it by I again. Since N3(ρ)
is complete, we can consider the one-parameter group of isometries determined by the
flow of I, {φt ; t ∈ R}, and define the surface Sγ := {φt(γ(s))} obtained as the evolution
of γ under the I-flow. Observe that Sγ is an I-invariant surface, which is foliated by
congruent copies of γ, γt(s) := φt(γ(s)).

9



Moreover, since φt are isometries of N3(ρ), we have

xt(s, t) =
1

4κ3/4
B(s, t) ,

κ(s) being the curvature of γ(s), and B(s, t) the unit Frenet binormals of γt(s). Thus,
Sγ obtained as the flow evolution of γ, x(s, t) = φt(γ(s)), is a binormal evolution surface

with velocity V (s) := 〈xt, xt〉
1
2 = 〈I, I〉 1

2 (for more details see, [2]).

Now, if Sγ denotes a binormal evolution surface all whose filaments satisfy τ = 0, then,
as proved in [2], the fibers of Sγ have constant curvature and zero torsion (if they are
not geodesics) in N3(ρ). In particular, if the curvature of the filaments, κ(s, t), is also
constant, then Sγ is a flat isoparametric surface.

For the case where the filaments have non-constant curvature, the following proposition
was proved in [2].

Proposition 4.1. Let Sγ ⊂ N3(ρ) be a binormal evolution surface all whose filaments
have zero torsion. Then, if they also have non-constant curvature, Sγ is a rotational
surface.

Thus, using these facts together with equation (3), we can prove the converse of The-
orem 1.2.

Theorem 4.2. Let γ be a planar extremal curve with non-constant curvature of the
energy Θ(γ) =

∫
γ
κ1/4 and let Sγ denote the I-invariant surface in N3(ρ) obtained by

evolving γ under the flow of the Killing field I which extends (22) to N3(ρ). Then, Sγ is
a rotational linear Weingarten surface of N3(ρ) verifying (3), that is, Sγ is a non-CMC
biconservative surface.

Proof. Take any planar extremal curve of Θ, (4), then as explained above, we can locally
define the I-invariant surface Sγ = {φt(γ(s)}, where {φt ; t ∈ R} is the one-parameter
group of isometries determined by I. Furthermore, the square of the length of the Killing
vector field I is given by

(30) V 2(s) = 〈I, I〉 =
1

16κ3/2
.

Then, as the evolution is made by isometries, γ and all its congruent copies are planar
extremals of Θ, (4). Now, from Proposition 4.1 we have that Sγ is a rotational surface.
Finally, any γt verifies the Euler-Lagrange equation (20), which is, using (30), equivalent
to

Vss
V

= 3κ2 + ρ .

Thus, using that κ1 = −κ and κ2 = h22 we get 3κ1 + κ2 = 0. That is, Sγ is a rotational
linear Weingarten surface verifying (3). �

Notice that Theorem 4.2 gives a way of constructing non-CMC biconservative surfaces
of N3(ρ). In fact, together with Theorem 1.2, it characterises non-CMC biconservative
surfaces as the binormal evolution surfaces generated by a planar extremal of Θ, (4).
This characterisation also allows us to analyse global properties of the binormal evolution
surfaces based on topological facts about the profile curves. In [27], [28] and [29], the
existence of complete non-CMC biconservative surfaces has been proved for both R3 and
S3(ρ). Moreover, in [5], the authors have proved the existence of complete non-compact
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rotational surfaces verifying the linear relation (3) between their principal curvatures
when ρ ≤ 0. In §5, making use of our characterisation of the profile curve, we are going
to study the existence of non-CMC closed biconservative surfaces.

5. Closed Non-CMC Biconservative Surfaces of 3-Space Forms

The main purpose of this section is to study the existence of closed (compact without
boundary) non-CMC biconservative surfaces in 3-space forms. To fulfill this objective,
we are going to use the characterisation introduced in the previous section. First of all,
we need the orbits of the rotation to be closed, that is, euclidean circles. Notice that the
value of the constant of integration d plays an essential role, as proved in [2]. In fact, the
orbits of the rotation are euclidean circles if and only if d is positive. Therefore, we need
to constraint the constant of integration and, after that, we have two options in order
to obtain closed surfaces. On one hand, if the critical curve cuts the axis of rotation
sufficiently many times, then the rotational surface will be closed. On the other hand,
closed critical curves also give rise to closed surfaces.

Observe that a critical curve γ is completely determined (up to rigid motions) by its
curvature, κ(s), which must be a solution of the first integral of the Euler-Lagrange
equation (24). Now, we need the right hand side of equation (24) to be positive. For
notation convenience we write u = κ1/2 and, therefore, equation (24) reads

(31) u2
s =

4

9
u2
(
16 d u3 − 9u4 − ρ

)
.

Then, the following polynomial must be positive for some values of u

(32) Q(u) = 16 d u3 − 9u4 − ρ > 0 .

We have that Q(u) tends to −∞, whenever u tends to either +∞ or −∞. Moreover,
u = 4d/3 represents a (local) maximum for Q(u). Therefore, condition (32) is verified
for some values of u if and only if Q(4d/3) > 0, which gives an extra constraint on the
parameter d.

-0.5 0.5 1.0 1.5

-5

5

Figure 1. Plot of the polynomial Q(u) for ρ = 1 and d = 1.

To be more precise, this extra constraint only appears when ρ > 0 (since for ρ ≤ 0 is
always true), and in this case we have

(33) d > d∗ =
(27 ρ)

1
4

4
.
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Notice that this argument also shows the existence of just two roots of Q(u) (see
Figure 1). Let us call α and β these roots, where β < α. Reversing the change of variable
u = κ1/2, they will become the maximum and minimum curvatures of the profile curve
γ, respectively. Indeed, we have β < u < α for any u that verifies (32).

If the profile curve γ happens to cut the axis of rotation, then there will be some fixed
points in the evolution under the I-flow. However, from Proposition 3.1, we have that
the I-flow has fixed points along γ if and only if the curvature, κ(s), tends to infinity,
which is not possible since u (and, therefore, the curvature) is bounded. Thus, the only
option to find closed surfaces is that the profile curve is closed.

Observe that a necessary, not sufficient, condition for a curve to be closed is to have
periodic curvature. Let us assume for a moment that there exist critical curves for Θ, (4),
with periodic curvature, then we can obtain conditions for both γ and Sγ to be closed.
Indeed, adapting the computations of [1], if we define the function

(34) Λ(d) = 12

∫ %

o

κ7/4

16 d κ3/2 − ρ
ds ,

where % is the period of κ(s) and d > 0 is the constant of integration given by (23), we
have the following sufficient condition.

Proposition 5.1. Let γ ⊂ N3(ρ) be a planar critical curve for Θ, (4), with periodic
curvature κ(s), then γ(s) is closed if and only if the function Λ(d), (34), vanishes for
ρ ≤ 0, or it is equal to 2nπ

m
√
ρ d

, for some integers n and m, when ρ > 0.

Now, making use of Proposition 5.1, the following result is clear, since, for ρ ≤ 0, the
integrand of (34) is always positive and, therefore, Λ(d) never vanishes.

Proposition 5.2. There are no closed non-CMC biconservative surfaces in 3-space forms,
N3(ρ), with ρ ≤ 0.

We point out that Proposition 5.2 can be also deduced from [30] by using a different
approach.

If N3(ρ) = S3(ρ), we will prove the existence of closed non-CMC biconservative sur-
faces. We begin by checking that there are critical curves of Θ, (4), in S2(ρ) whose
curvature is periodic. What is more, we have the following proposition.

Proposition 5.3. When defined in the whole real line, all critical curves for Θ, (4), in
S2(ρ) have periodic curvature.

Proof. Let γ(s) be a critical curve for Θ, (4). Then, the non-constant curvature of γ(s)
must be a solution of the first integral of the Euler-Lagrange equation (24), where d > d∗,
see (33). To simplify notations we put x = u = κ1/2 and y = xs. Then, (24) can be
rewritten as (see (31))

y2 =
4

9
x2
(
16dx3 − 9x4 − ρ

)
=

4

9
x2Q(x).

This is an algebraic curve which, by the standard square root method of algebraic geom-
etry and above analysis of the polynomial Q(x) (see Figure 1), it is closed for any d > d∗.
Thus, the curve c(s) = (x(s), y(s)) is included in the trace of the compact regular curve

12



y2 = (4/9)x2Q(x) and it can be thought as a bounded integral curve of the smooth vector
field

X(κ, z) =

(
z,

1√
κ

[
5

2
z2 +

2

3
ρκ− 2κ3

])
defined in {(κ, z) ∈ R2 : κ > 0}. This implies that c(s) is smooth and defined on the
whole R. Finally, since the vector field X(κ, z) has no zeros along the curve c(s) when
d > d∗, we conclude, applying the Poincare-Bendixon Theorem, that c(s) is a periodic
curve. �

Remark 5.4. Of course, since the profile curve has periodic curvature, the binormal
evolution surface generated by it is complete. Moreover, using the differential equation
(31) satisfied by u = κ1/2, it is easy to check that when u = α or u = β the vector field J
has only component in T , that is, the profile curve γ is parallel to the integral curves of
the Killing vector field J in that points. Therefore, our curve is bounded between those
parallels. What is more, in those points the length of J is never zero, since, both α and
β are positive. This means that γ does not cross over the pole of the parametrization. In
fact, since the component in T of the Killing vector field J is a non-zero multiple of u1/2

and u is always positive (it varies from α to β, which are, in the spherical case, positive
since Q(0) < 0), we get that γ is never orthogonal to the integral curves of J , that is, γ is
always going forward. Consequently, it does not cut itself in one period of its curvature,
unless it gives more than one round in that period.

Now, in order to assure closure, we have seen that a binormal evolution surface of
S3(ρ) whose profile curve γ has periodic curvature, κ(s), and vanishing torsion is a closed
surface if and only if the function Λ(d), (34), verifies

(35) Λ(d) = 12

∫ %

o

κ7/4

16 d κ3/2 − ρ
ds =

2nπ

m
√
ρ d

,

for some d > 0 and some integers m and n with gcd(m,n) = 1. The integer n represents
the number of rounds the curve gives around the pole in order to close up, while m is
the number of lobes the curve has, that is, the number of periods of the curvature. In
particular, a closed curve γ is simple if and only if it closes up in one round, that is, if it
verifies the closure condition for n = 1.

To check the closure condition (35), we need to study the image of the function I(d) =√
ρ dΛ(d) as d varies in the domain (33). For this purpose, first we are going to state the

following technical lemma (for the proof see §6).

Lemma 5.5. The function I(d) =
√
ρ dΛ(d) is strictly decreasing in d. Furthermore, for

any d ∈ (d∗,+∞), it is bounded by

π < I(d) =
√
ρ dΛ(d) <

√
2π .

Summarising our findings we obtain the proof of Theorem 1.3 as mentioned in the
introduction.

5.1. Proof of Theorem 1.3. Let m and n be two integers such that gcd(m,n) = 1 and
m < 2n <

√
2m. Then

π <
2nπ

m
<
√

2π .

13



Now, from Lemma 5.5, the function I(d) =
√
ρ dΛ(d) varies from π to

√
2π as d decreases

from +∞ to d∗. Thus, there exists a dm,n > d∗, such that the relation (35) is verified
and, therefore, the corresponding associated non-CMC biconservative surface is closed.

Furthermore, the corresponding surface is embedded if the profile curve is simple. Now,
using Remark 5.4, the profile curve is simple if and only if it closes up in one round.
Therefore, when n = 1, we need that the closure condition is satisfied for some integer
m. That is, we need the existence of an integer m such that

π <
2π

m
<
√

2π .

However, the above relation is not possible and, therefore, there are not closed non-CMC
biconservative surfaces embedded in S3(ρ), as stated. �

From the proof of Theorem 1.3 we deduce that there exists a discrete biparametric
family of closed non-CMC biconservative surfaces in S3(ρ). In fact, we have a closed non-
CMC biconservative surface for any couple of integersm and n such thatm < 2n <

√
2m.

The first one corresponds to n = 2 and m = 3, that is, the binormal evolution surface
with initial condition a critical curve for Θ, (4), which has 3 lobes and needs 2 rounds
around the pole to close up. We explain this in Figure 2. The green part of the curve
corresponds with the part of the critical curve covered in one period of the curvature.
Notice that, as the curvature is the same for each period of it, our critical curve is nothing
but congruent copies of the green part, that is, the whole curve can be constructed by
gluing smoothly m copies (in these particular cases m = 3 and m = 5 copies, respectively)
of the trace covered in one period of the curvature.

Figure 2. Closed critical curves for Θ, (4), in S2(ρ) for m = 3 and n = 2
(Left) and m = 5 and n = 3 (Right).

Furthermore, as proved in previous sections, all non-CMC biconservative surfaces are
binormal evolution surfaces with initial condition a planar critical curve for Θ, (4). In
the round 3-sphere, these binormal evolution surfaces Sγ ⊂ S3(ρ) can be parametrized,
up to an isometry of the ambient sphere, as:

x(s, φ) =
1

4
√
ρ d κ

3
4

(
√
ρ cosφ,

√
ρ sinφ,

√
16 d κ

3
2 − ρ sinψ(s),

√
16 d κ

3
2 − ρ cosψ(s)

)
,
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where κ(s) represents the curvature of γ, which is a solution of the Euler-Lagrange equa-
tion (20), and ψ(s) is given by

ψ(s) = −12
√
ρ d

∫
κ7/4

16 d κ3/2 − ρ
ds .

Finally, notice that γ(s) = x(s, 0) is a parametrization of the profile curve. In Figure 3,
by using the above parametrization we show a plot of the stereographic projection of the
closed non-CMC biconservative surface in S3(ρ) for m = 3 and n = 2.

Figure 3. Stereographic projection of the closed non-CMC biconservative
surface in S3(ρ) for m = 3 and n = 2.

Remark 5.6. Note that, from (3), we deduce immediately that the mean curvature H of
Sγ, along the profile curve γ, coincides with the curvature κ. Moreover, the parametriza-
tion x(s, φ) is obtained by the action on γ(s) = x(s, 0) of the one-parameter group of

isometries generated by the Killing vector field of S3(ρ) given by I =
√
d(y∂/∂x−x∂/∂y).

Then a point γ(so) = x(so, 0) generates a geodesic orbit of Sγ, under the action of I, if
so satisfies Vs(so) = 0 where V (s) is the norm of I along γ(s). A straightforward com-
putation gives Vs(s) = −3κs/(16κ7/4). We conclude that the points where the derivative
of the curvature of the profile curve γ vanishes determine closed geodesics on the surface
and gradH vanishes along those geodesics.

6. Proof of Lemma 5.5

Throughout this section we will prove Lemma 5.5. For this end, observe that, with the
notation introduced in previous section and taking into account the symmetry, Λ(d) can
be written as

Λ(d) = 24

∫ %/2

o

u7/2

16 d u3 − ρ
ds ,

Now, since in a half period of the curvature the function u is increasing, we can use
equation (31) to make a change of variable, obtaining that

(36) Λ(d) = 36

∫ α

β

u5/2

(16 d u3 − ρ)
√

16 d u3 − 9u4 − ρ
du .

At this point, we divide our proof in three different parts.
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6.1. Part (i). We begin by considering the limit of I(d) =
√
ρ dΛ(d) when d tends to

d∗ (see the definition in (33)). We will compute this limit with the aid of the Dirac’s
delta, δ(u − $), since the limit of the integrand is zero everywhere but at u = 4d∗/3,
where it goes to infinity. This suggests that the integrand is a multiple of δ(u−$) with
$ = 4d∗/3. Therefore, we first recall that any general Dirac’s delta δ(u − $) can be
represented by the limit

δ(u−$) = lim
ε→0

ε

π ((u−$)2 + ε2)
.

Let us multiply and divide the integrand of Λ(d), (36), by this limit for ε = d− d∗. That
is,

lim
d→d∗

I(d) = lim
d→d∗

√
ρ dΛ(d) = 36 lim

d→d∗

∫ α

β

√
ρ d u

5
2

(16 d u3 − ρ)
√

16 d u3 − 9u4 − ρ
du

= 36

∫
R

lim
d→d∗

π
√
ρ d u

5
2χ(β,α)(u)

((
u−

(
ρ
3

) 1
4

)2

+ (d− d∗)2

)
(d− d∗) (16 d u3 − ρ)

√
16 d u3 − 9u4 − ρ

δ

(
u−

(ρ
3

) 1
4

)
du

Moreover, we recall that a nice property of these distributions that will be essential in
this first part of the proof is the following∫

R
f(u) δ(u−$) du = f($) ,

for any function f and any constant $. Notice that since we have taken ε = d− d∗, the
limit ε → 0 changes to d → d∗. Indeed, this is quite convenience, since whenever d is

close to d∗, α and β converge linearly in d to (ρ/3)1/4, that is, precisely to 4d∗/3. Thus,
by using this property we have

lim
d→d∗

I(d) = 36 lim
d→d∗

π
√
ρ d
(
ρ
3

) 5
8(

16 d
(
ρ
3

) 3
4 − ρ

)√
9
(
ρ
3

) 1
2 +
√

3 ρ
(

1 + 2
(
ρ
3

) 1
4

) =
√

2 π .

This limit can also be computed using Lemma 4.1 of [32]. For our particular case,
when d = d∗, the only root of the polynomial Q(u), (32), is u = 4d∗/3. Furthermore, as
explained before, 4d∗/3 is a local maximum of Q(u) for d = d∗. Therefore, the result of
this lemma can be summarised as follows

lim
d→d∗

I(d) =
36
√
ρ d∗

(
ρ
3

)5/8
π(

16 d∗
(
ρ
3

)3/4 − ρ
)√
−1

2
Q′′
((

ρ
3

)1/4
) =

√
2π ,

obtaining the desired result.

6.2. Part (ii). Let us now consider the limit of I(d) =
√
ρ dΛ(d) when d goes to infinity.

For this purpose, we need to work in the complex plane C. We begin by defining the
complex function

h(z) = −i
(√
−z
)5

(α− z)

√
z − β
α− z

√
(z − ω1) (z − ω̄1)

where ω1 and ω̄1 are the two pure complex roots of Q(u), and the square root symbol
denotes the principal branch of it.
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If U1 = {x + i y ∈ C ; y = 0, β < x < α}, then the Moebius transformation z−β
α−z maps

U1 to the set of positive real numbers R+. Now, U2 = {x + i y ∈ C ; y = 0, x < 0} and

we obtain that
√
−z is well-defined and analytic in C− U2. Finally,

√
(z − ω1) (z − ω̄1)

is also analytic far from ω1 and ω̄1. That is, the complex function

(37) f(z) =
36
√
ρ d z5

(16 d z3 − ρ)h(z)
,

is well-defined and holomorphic for any z ∈ C− (U1 ∪ U2 ∪ {0, β, α, ω1, ω̄1, ω2, ω̄2}) where
ω2 and ω̄2 represent the pure complex roots of 16dz3 − ρ.

Moreover, notice that we have the following limits

lim
ε→0

√
− (x+ i ε)

√
(x+ i ε− ω1) (x+ i ε− ω̄1) = i

√
x
√

(x− ω1) (x− ω̄1) ,

lim
ε→0+

√
x+ i ε− β
α− x− i ε

=

√
x− β
α− x

,

lim
ε→0−

√
x+ i ε− β
α− x− i ε

= −
√
x− β
α− x

.

And, therefore,

lim
ε→0+

h(x+ i ε) =
(√

x
)5√

Q(x) ,

lim
ε→0−

h(x+ i ε) = −
(√

x
)5√

Q(x) .

Now, we define the curve σ such that it surrounds all the singularities of the function
f(z), (37), and having the shape of a big enough square being sufficiently close to the
imaginary axis (see the green curve in Figure 4). We are going to denote by σω the circle

of radius ε around ω, where ω may be either uo = 1
2

(
ρ
2d

)1/3
, ω1, ω̄1, ω2 or ω̄2 (see the

blue paths in Figure 4). Finally, σ∗ is the curve that surrounds β and α such that it is
formed by two parts of circles of radius ε centered at β and α, respectively; together with
the segments joining them (see the red curve in Figure 4). We can assume that all the
curves are positively oriented. Then, due to previous limits it is easy to check that

I(d) = −1

2
lim
ε→0

∫
σ∗

f(z) dz .

Re

Im

Figure 4. Representation of the curves σ (in green), σω for each ω (in
blue) and σ∗ that surrounds the singularities β and α (in red).
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If we call U to the region whose boundary is σ, σ−∗ and σ−ω for all ω as above (the
enclosed region, see Figure 4) we have that f(z) is holomorphic in U and, as a consequence,∫

σ

f(z) dz =

∫
σ∗∪σuo∪σω1∪σω̄1∪σω2∪σω̄2

f(z) dz .

Moreover, denoting g(z) = (z − uo) f(z) we have that in the region surrounded by σuo ,
g(z) is analytic. Thus, we apply Cauchy’s Integral Formula to compute∫

σuo

f(z) dz = 2π i

(
1

2π i

∫
σuo

g(z)

z − uo
dz

)
= 2π i g(uo) = 2 π i Resz=uo f(z) = 2 π .

Furthermore, arguing similarly we can check that the sum of the following path integrals
vanishes ∫

σω2

f(z) dz +

∫
σω̄2

f(z) dz = 2π i (Resz=ω2 f(z) + Resz=ω̄2 f(z)) = 0 .

On the other hand, by applying the Cauchy’s Integral Formula once more, we get∫
σω1

f(z) dz =

∫
σω̄1

f(z) dz = 0 .

That is, we conclude that ∫
σ∗

f(z) dz =

∫
σ

f(z) dz − 2π .

Finally, observe that along σ, f(z)→ 0 whenever d goes to infinity, therefore,

lim
d→∞

∫
σ∗

f(z) dz = lim
d→∞

(∫
σ

f(z) dz − 2 π

)
=

∫
σ

lim
d→∞

f(z) dz − 2π = −2π .

Then, considering ε going to zero we get,

lim
ε→0

lim
d→∞

∫
σ∗

f(z) dz = −2 lim
d→∞

I(d) = −2π .

That is, limd→∞ I(d) = π, which finishes the second part of the proof.

6.3. Part (iii). Finally, in this last part, we will prove that the function I(d) =
√
ρ dΛ(d)

is monotonically decreasing on d. Let us consider the extension to the complex plane
introduced in part (ii), (37). Then, we know that

I(d) = −1

2
lim
ε→0

∫
σ∗

f(z) dz = −1

2
lim
ε→0

(∫
σ

f(z) dz − 2 π

)
.

Thus, if we differentiate above equation we get,

I ′(d) = −1

2
lim
ε→0

(
∂

∂d

∫
σ

f(z) dz

)
= −1

2
lim
ε→0

∫
σ

fd(z) dz

where

fd(z) =
∂f

∂d
(z) =

18
√
ρ z5 (16 d z6 (9z − 32d) + ρ z3 (16d+ 9z) + ρ2)
√
d (16 d z3 − ρ)2 h(z) (−9z4 + 16 d z3 − ρ)

.

Moreover, by a similar argument to that of part (ii) and using Cauchy’s Integral Formula
again we have that ∫

σ

fd(z) dz =

∫
σ∗

fd(z) dz .
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That is, combining everything, we obtain that

I ′(d) = −1

2
lim
ε→0

∫
σ

fd(z) dz = −1

2
lim
ε→0

∫
σ∗

fd(z) dz =

∫ α

β

fd(u) du < 0 ,

where last inequality comes from the fact that

16d (32d− 9u)u6 − ρ (16d+ 9u)u3 − ρ2 > 16d (32d− 9u)u6 − 32ρ du3 =

= 16du3
(
−9u4 + 32du3 − 2ρ

)
> 144du7 > 0 .

That is, I(d) =
√
ρ dΛ(d) decreases monotonically.

In conclusion, combining parts (i) to (iii) we have that the function I(d) =
√
ρ dΛ(d)

monotonically decreases from
√

2π (obtained when d→ d∗) to π (which corresponds with
d→∞). This concludes the proof of Lemma 5.5.
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