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Abstract. COVID-19, an infectious coronavirus disease, triggered a
pandemic that resulted in countless deaths. Since its inception, clinical
institutions have used computed tomography as a supplemental screening
method to reverse transcription-polymerase chain reaction. Deep learn-
ing approaches have shown promising results in addressing the problem;
however, less computationally expensive techniques, such as those based
on handcrafted descriptors and shallow classifiers, may be equally capa-
ble of detecting COVID-19 based on medical images of patients. This
work proposes an initial investigation of several handcrafted descriptors
well known in the computer vision literature already been exploited for
similar tasks. The goal is to discriminate tomographic images belong-
ing to three classes, COVID-19, pneumonia, and normal conditions, and
present in a large public dataset. The results show that kNN and en-
sembles trained with texture descriptors achieve outstanding accuracy
in this task, reaching accuracy and F-measure of 93.05% and 89.63%,
respectively. Although it did not exceed state of the art, it achieved
satisfactory performance with only 36 features, enabling the potential
to achieve remarkable improvements from a computational complexity
perspective.
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1 Introduction

COVID-19 is a disease caused by the SARS-CoV-2 virus, declared a pandemic
by the World Health Organisation on 11 March 2020. At the time of writing,
COVID-19 has more than 458 million confirmed cases and has caused more than
six million deaths [24]. The infection starts in the throat’s mucous membranes
and spreads to the lungs through the respiratory tract. COVID-19 is a highly
contagious disease; therefore, rapid screening is essential for timely diagnosis
and treatment. Diagnosis of COVID-19 infection by imaging-based methods has
been reported to give accurate results, both for screening and quantifying the
amount of damage [7]. At the same time, attempts are being made to develop
rapid diagnostic techniques for detecting COVID-19 using chest X-ray (CXR)
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and chest computed tomography (CT) images that radiologists frequently ana-
lyze. Like many other types, manual diagnosis of COVID-19 is time-consuming,
prone to human error, and requires the help of a competent radiologist. The
presence of an experienced radiologist is also necessary because abnormalities in
the early stages of COVID-19 may resemble other lung diseases such as severe
acute respiratory syndrome (SARS) or viral pneumonia (VP), which may delay
the diagnosis and treatment of COVID.

In particular, CXR is the most easily accessible and fastest form of imaging
with the fewest side effects on the human body. CXR imaging has traditionally
been used for the detection of pneumonia and cancer. Although it can detect
COVID-19 infection, it fails to provide fine-order details of infected lungs. CT
is a more sophisticated technique for assessing is used to evaluate the level of
infection. CXR imaging can be used to detect COVID-19; however, to assess the
level of severity of infection, a CT scan is mandatory [1].

For these reasons, any automated solution designed to diagnose COVID-19
should also consider other respiratory disorders to develop a more comprehensive
and robust diagnostic system [28].

In this manuscript, our focus is on computed tomography from a machine and
deep learning point of view. CT is a widely explored medical imaging technique
that allows non-invasive visualisation of the interior of an object [8,2,33,32,15]
and is widely used in many applications, such as medical imaging for clinical
purposes [18,30,14,23].

Two CT scans of COVID-19 and non-COVID-19 are shown in fig. 1.

Fig. 1: (a) represents a CT of the lungs of a patient with COVID-19, in which there
are traces of ground glass opacity indicated by red arrows. (b) shows a CT of the lungs
of a non-COVID-19 patient with diffuse opacity in the outer parts of the lungs. These
images are courtesy of [35].

The main target of this study is an early investigation regarding the extent to
which two types of handcrafted (HC) features can be beneficial for the classifica-
tion of the CTs of patients. We focus our work on invariant moments and texture
features, which are widely employed in the context of MR and CT imaging[26],
to train several shallow classifiers.

We performed a three-class classification on the public COVIDx CT-2A
dataset, divided explicitly into COVID-19, pneumonia, and healthy cases; we
investigated the robustness of the descriptors analyzed through five different
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machine learning classifiers; we aim to demonstrate how this task can be faced
employing HC features, even with low-end devices, for a real-time diagnosis.

Moreover, several works in the context of COVID-19 diagnostics have consid-
ered small or private datasets or lacked rigorous experimental methods, poten-
tially leading to overfitting and overestimation of performance [29,28]. For this
reason, we carefully selected an extended dataset composed of multi-source CT
images on which to conduct the experiments described. Roberts et al. [28] have
recently shown that most of the datasets used in the literature for the diagnosis
or prognosis of COVID-19 suffer from duplication and quality problems. It has
already been provided with train, validation, and testing splits.

Our proposed approach achieves promising results on COVID-19 identifi-
cation, although it is only a preliminary analysis that does not consider deep
learning methods, for example.

The rest of the manuscript is organized as follows. section 2 illustrates the
dataset, our approach, and the setup. In section 3 the experimental results are
given and discussed. Finally, in section 4 we draw the findings and directions for
future works.

2 Materials and Methods

A publicly available dataset has been used in this study, as detailed in section 2.1,
while the evaluation metrics are described in section 2.4.

2.1 Dataset: COVIDx CT-2A

COVIDx CT-2A [9] is an open-access dataset. At the time of writing, it consisted
of 194,922 CT images of 3745 patients from 15 different countries, aged 0-93 years
(median age 51), belonging to a particular class clinically verified by experienced
pathologists.

Specifically, the classes are COVID-19, indicating CT images of COVID-19
positive patients, pneumonia, and patients in a normal condition.

The countries involved are part of a multinational cohort that consists of
patient cases collected by the following organizations and initiatives from around
the world:

1. China National Center for Bioinformation (CNCB) [34] (China);
2. National Institutes of Health Intramural Targeted Anti-COVID-19 (ITAC)

Program (hosted by TCIA [12], countries unknown);
3. Negin Radiology Medical Center [27] (Iran);
4. Union Hospital and Liyuan Hospital of the Huazhong University of Science

and Technology [20] (China);
5. COVID-19 CT Lung and Infection Segmentation initiative annotated and

verified by Nanjing Drum Tower Hospital [17] (Iran, Italy, Turkey, Ukraine,
Belgium, some countries unknown);

6. Lung Image Database Consortium (LIDC) and Image Database Resource
Initiative (IDRI) [4] (countries unknown);
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Fig. 2: Sample CT images from the COVIDx CT dataset. From top to bottom, the
images in (1) represent coronavirus pneumonia due to SARS-CoV-2 infection (NCP),
(2) are common pneumonia (CP), and (3) are healthy lungs. Images are courtesy
of [10].

7. Radiopaedia collection [5] (Iran, Italy, Australia, Afghanistan, Scotland,
Lebanon, England, Algeria, Peru, Azerbaijan, some countries unknown).

Figure 2 shows some sample images taken from the dataset.

2.2 Feature extraction

We evaluated two different feature sets: invariant moments and texture features.

The invariant moments computed were the Hu[13] and Zernike moments.
The former are invariant to changes in scale, translation, and rotation, while the
latter are orthogonal and represent image properties without redundancy[22].
The order of the Zernike moments is 6, as higher orders would reduce the system’s
performance by adding features representing irrelevant details or noise[6].

As texture features, the rotationally invariant Gray Level Co-occurrence Ma-
trix (GLCM), as proposed in [25], and the rotationally invariant LBP features[21]
have been computed. In both cases, we focused on the finest textures, so we com-
puted four GLCMs with d = 1 and θ = [0◦, 45◦, 90◦, 135◦] and the LBP map
in the neighborhood identified by r and n equal to 1 and 8, respectively. From
the GLCMs we extracted 26 features [11] and converted them to the rotation-
ally invariant features Harri[25]). The LBP map is converted to a rotationally
invariant one, and its histogram is used as the feature vector LBPri [21].



A shallow learning investigation for COVID-19 classification 5

2.3 Shallow classifiers

The classification algorithms considered in this study were as follows: kNN
(k-Nearest Neighbors) (kNN), Decision Tree (DT), Naive Bayes (NB), En-
semble (Ens), and Support Vector Machine (SVM).

To ensure the heterogeneity of the training set, we trained each classifier with
stratified 10-fold cross-validation to ensure that the proportion of positive and
negative examples is respected in all folds. For each case, we selected the model
with the largest area under the ROC curve (AUC).

The hyperparameters characterizing each classifier were not fine-tuned. Our
goal for this study was not to obtain the best absolute performance but only
to understand the extent to which the descriptors used were feasible for analy-
sis. Furthermore, several authors have empirically observed that in many cases,
the use of tuned parameters cannot significantly exceed the default values of a
classifier[3,31].

However, to make the results reproducible, we specify the values of the hy-
perparameters chosen. For the kNN classifier, the distance metric adopted was
the euclidean, and the number of nearest neighbors is 3, with an inverse squared
distance weighting function. For the Decision Tree classifier, the maximum num-
ber of splits to control the depth of the trees is 50. The distribution chosen to
model the data is normal for the Naive Bayes classifier with a normal kernel. The
ensemble classifier was Random Undersampling Boosting (RUSBoost), the stu-
dents were decision trees. Finally, for the SVM classifier, we used a linear kernel.

2.4 Metrics

The performance measures used to quantify the performance are the accuracy
(A), precision (P), specificity (SP), sensitivity (SE), F1-score (F1) as following
defined:

accuracy =
TP + TN

TP + TF + FP + FN
, (1)

precision =
TP

TP + FP
, (2)

specificity =
TN

FP + TN
, (3)

recall =
TP

TP + FN
, (4)

F1 =
2 ∗ precision ∗ recall
precision+ recall

=
2 ∗ TP

2 ∗ TP + FP + FN
. (5)

Accuracy measures the number of correctly labeled items belonging to the
positive class divided by the items correctly or incorrectly labeled as belonging
to the same class. Specificity measures the proportion of correctly identified
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negatives (the true negative rate), while sensitivity measures the proportion
of correctly identified positives (the true positive rate). The fourth measure is
accuracy, defined as the ratio of correctly labeled instances to the entire pool of
cases. The last is the F1 score, which conveys the balance between precision and
recall.

2.5 Experimental Setup

The images were not preprocessed or augmented because this work is used as
a basis for further investigation. We retained the dataset splits provided by
the authors and did not use any randomization approach to make the studies
repeatable.

In addition, COVIDx CT-2A has already been divided by the authors accord-
ing to the following percentages: 70%, 20%, and 10% for training, validation,
and testing, respectively. For the sake of reproducibility, we left this division
unchanged.

Finally, all the experiments have been conducted on a single machine with
the following configuration: Intel(R) Core(TM) i9-8950HK @ 2.90GHz CPU with
32 GB RAM and NVIDIA GTX1050 Ti 4GB GPU.

3 Experimental Results and Discussion

Three main results obtained from the experiments are reported. In particu-
lar, fig. 3 and fig. 4 show the general behavior of the four sets of descriptors
with two different metrics, accuracy, and F-measure, respectively. We give a
general indication of the descriptors’ effectiveness for the task.

Next, we analyze the performance class by class, remembering that the prob-
lem is divided into three classes. fig. 5 show the performance of the accuracy and
F-measure computed for the best combination of descriptor and classifier.

Figure 4 shows that the configuration based on the kNN classifier trained
with LBP features can achieve the highest performance, with 93.05% accuracy
and 89.63% F-measure. Overall, it seems clear that texture outperformed the
moment features in this scenario, as both HAR and LBP achieved the highest
performance with every classifier except SVM.

Although the DT and Ensemble strategies achieved interesting results, kNN
seems the most suitable for this task, especially when trained with LBP descrip-
tors, being the only one above 89% on both metrics.

In general, looking at accuracy, there are no distinct performance differences
between the texture descriptors to justify one over the other. In the case of SVM,
the accuracy achieved with HAR as a descriptor is even higher than LBP.

However, the scenario changes when looking at the results of multiclass clas-
sification performance evaluated using both metrics computed for all classes.
In particular, fig. 4 shows that the F-measure values are generally lower than
the accuracy. However, the texture descriptors helped keep the performance high,
especially LBP, which reached 89.63% with the kNN classifier.
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Fig. 3: Accuracy trends with the different classifiers adopted.

As a general rule, on the one hand, the results provided by the numerous
experiments conducted seem to show that the kNN trained with LBP features
can perform the multiclass classification task with performance that outperforms
any other combination of descriptors and classifier analyzed. Moreover, as repre-
sented by fig. 5, this solution seems to be the most robust, achieving the highest
results in each comparative test.

A final statement concerns the number of features extracted from each de-
scriptor. More specifically, 36 features were extracted from the LBP descriptor,
while HAR, ZM, and HM had 26, 10, and 7, respectively. If we consider the
number of discriminating features, the results obtained with LBP features can
be considered satisfactory in a low-resource environment, even compared to the
computational cost of using a CNN, and open the way for possible combinations
of heterogeneous features.

The behavior expressed by texture features and LBP, in particular, is due to
their high representation power in MR and CT imaging, even for fine-grained
analysis[19]. However, the accuracy metric does not represent the detail of the
multiclass problem addressed in this work. For this reason, we adopted the F-
measure to have a more unambiguous indication of which features are best suited
for the task. Figure 4 confirms that, in terms of F-measure, the kNN and en-
semble classifiers benefit from texture features in general and LBP in particular,
outperforming all the rest.
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Fig. 4: F-measure trends with the different classifiers adopted.
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Fig. 5: Classwise F-measure computed from the best model: kNN with LBP features.

Furthermore, table 1 shows the metrics computed with all the classifiers and
descriptors. As can be seen, the LBP descriptors are the best and second-best
performing, with kNN and ensemble, respectively. It is also notable the result
obtained with the same classifiers trained with HARri features, clearly being
the second-best descriptor. It must be noted that with only 36 and 26 features,
the mentioned classifiers can achieve more than 90% accuracy.

As presented in table 2, these results cannot outperform the 98.87% accuracy
obtained in a previous work that employed only CNNs for the same task[16], and
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Classifier Descriptor Size A P SP SE F1

DT

HM 7 63.73 52.56 48.97 74.55 45.85
HARri 26 83.43 76.06 74.44 86.52 75.10
LBP 36 85.30 77.48 78.70 88.42 77.75
ZM 10 70.61 56.50 56.09 78.54 54.54

Naive
Bayes

HM 7 65.95 44.52 35.47 68.24 26.71
HARri 26 76.38 65.39 65.13 81.27 64.37
LBP 36 69.90 54.80 57.84 77.14 55.33
ZM 10 62.54 51.44 46.03 73.85 43.26

SVM

HM 7 51.20 27.88 25.63 62.25 25.90
HARri 26 86.23 79.41 79.80 88.85 79.38
LBP 36 83.29 74.81 76.14 86.70 75.11
ZM 10 67.76 53.95 54.33 76.76 51.50

Ensemble

HM 7 67.77 56.66 53.43 77.20 51.00
HARri 26 90.75 86.15 86.37 92.52 86.25
LBP 36 92.43 88.57 88.97 93.89 88.75
ZM 10 81.30 71.10 70.83 86.58 69.77

kNN

HM 7 66.18 52.55 50.45 75.81 48.56
HARri 26 89.07 83.50 83.66 91.17 83.56
LBP 36 93.05 89.66 89.63 94.33 89.63
ZM 10 76.45 63.87 63.39 82.97 61.89

Table 1: Weighted average performance computed using the five different shallow clas-
sifiers trained with each of the four descriptors. The best results is in black bold, while
red indicates the second-best.

Method Accuracy N. features

COVID-Net CT-1 [10] 94.5% > 1, 000
COVID-Net CT-2 L [10] 98.1% > 1, 000
COVID-Net CT-2 S [10] 97.9% > 1, 000
Bit-M [36] 99.2% > 1, 000
Loddo [16] 98.87% 1,024
This work 93.05% 36

Table 2: Comparison of this work with the state of the art on COVIDx CT-2A.

others using deep learning strategies. However, a satisfactory accuracy has been
obtained with an enormously smaller quantity of features (only 36 for LBP)
compared to that works. It opens the field to further improvements, e.g., , with
features combination or by using this indicator to realize attention mechanisms
to drive CNNs towards the right portions of the images needed to perform a
correct diagnosis.
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4 Conclusions

In this study, we have investigated the performance of some handcrafted features,
invariant moments, and texture for a three-class classification of CT images. In
particular, we have performed an early investigation of the feature feasibility for
the classification task that involves COVID-19 and pneumonia classes.

This investigation can be considered a novel, rapid and lightweight approach
for the diagnosis of COVID-19 to address the problem of faster diagnosis and
patient prioritization. It can potentially also confirm the severity. The task is
faced with five different shallow classification methods, each one trained with
four different categories of handcrafted descriptors.

We worked on a dataset composed of 194,922 images, of which about 19,000
have been exploited in testing the mentioned descriptors. Among all the experi-
ments, the kNN classifier trained with LBP features reached a weighted accuracy
of 93.05% and an F-measure of 89.63%, being the best performer. In any case,
the texture features generally demonstrated high representative power with both
kNN and ensemble strategies.

These results show significant and promising results regarding the state of
the art, even though we planned several further investigations. First of all, we
aim to propose a system able to combine the potential of CNNs, expressed in[16],
with the features presented in this work. To cite some examples, they can be
combined, even with the ones extracted from CNNs, or their indicators can even
be used to realize attention-based mechanisms to drive CNNs towards the right
portions of the images to perform a correct diagnosis. Secondly, we plan to extend
this work to generalize it to different diseases and conditions. Finally, we aim
to further study these methods to test their robustness across multiple datasets
and assess their feasibility in clinical practice.
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