
Information and Software Technology 158 (2023) 107187

A
0

F
F
M
a

b

c

A

K
F
L
M

1

d
o
e
c
f
r

a
s
s
D
o
s
(

t

d

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ault-insertion and fault-fixing behavioural patterns in Apache Software
oundation Projects
arco Ortu a, Giuseppe Destefanis b,∗, Tracy Hall c, David Bowes c

University of Cagliari, Italy
Brunel University London, UK
Lancaster University, UK

R T I C L E I N F O

eywords:
aults analysis
DA
ining software repositories

A B S T R A C T

Background: Developers inevitably make human errors while coding. These errors can lead to faults in code,
some of which may result in system failures. It is important to reduce the faults inserted by developers as well
as fix any that slip through.
Aim: To investigate the fault insertion and fault fixing activities of developers. We identify developers who
insert and fix faults, ask whether code topic ‘experts’ insert fewer faults, and experts fix more faults and
whether patterns of insertion and fixing change over time.
Methods: We perform a time-based analysis of developer activity on twelve Apache projects using Latent
Dirichlet Allocation (LDA), Network Analysis and Topic Modelling. We also build three models (using Petri-
net, Markov Chain and Hawkes Processes) which describe and simulate developers’ bug-introduction and fixing
behaviour.
Results: We show that: the majority of the projects we analysed have developers who dominate in the insertion
and fixing of faults; Faults are less likely to be inserted by developers with code topic expertise; Different
projects have different patterns of fault inserting and fixing over time.
Conclusions: We recommend that projects identify the code topic expertise of developers and use expertise
information to inform the assignment of project work.
. Introduction

Software code remains predominantly a handmade product, pro-
uced by human developers, and as such, it is prone to error. The result
f this developer error can be faults in code and as the world demands
ver larger and more complex software systems, controlling faults in
ode becomes more difficult but increasingly necessary. Understanding
ault insertion and fault fixing is crucial to enabling the effective
eduction of faults in software systems.

Previous studies have looked at a variety of aspects of fault insertion
nd fixing, however, this previous work is fragmented, with individual
tudies looking at elements of insertion and fixing in isolation. Previous
tudies focus on analysing fault fixing for a variety of potential uses.
eveloper experience has previously been investigated with the aim
f matching developers to job vacancies (e.g. [1]), to identifying who
hould review code (e.g. [2]) as well as to enable effective bug triaging
e.g. [3,4]).

Developer experience has been reported as related to fault inser-
ion [5] but measuring developer experience is not straightforward,

∗ Corresponding author.
E-mail addresses: marco.ortu@unica.it (M. Ortu), giuseppe.destefanis@brunel.ac.uk (G. Destefanis), tracy.hall@lancaster.ac.uk (T. Hall),

.h.bowes@lancaster.ac.uk (D. Bowes).

with conflicting reports of whether time spent coding is a valuable ex-
perience metric (e.g., [6,7]). Eyolfson et al. [5], for example, considered
experience as the amount of time since a developer’s first commit to a
project. Eyolfson et al. [5] reported that experience is related to fault in-
sertion. Studies increasingly suggest that additional context information
must be considered alongside time spent coding [8]. Expertise seems
an important enabler to reduced fault insertion and improved fault
fixing. Expertise has been previously studied in software engineering
with Baltes & Diehl [9] recently developing a theory of expertise in
software development. The impact of developer code ownership [10]
on fault insertion has been studied extensively. Low code ownership
(i.e. code that has been touched by many different developers) is widely
reported as more likely to be faulty than code with high ownership
(e.g. [10,11]). Most previous studies consider only snapshots of de-
veloper fault insertion and fixing. Very few studies account for the
impact project experience over time is likely to have on developer fault
inserting and fixing. Kini & Tosun [12] is an exception to this, using
developer experience metrics over time to improve defect prediction
models.
vailable online 24 February 2023
950-5849/© 2023 The Authors. Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2023.107187
eceived 16 March 2022; Received in revised form 5 January 2023; Accepted 20 F
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ebruary 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:marco.ortu@unica.it
mailto:giuseppe.destefanis@brunel.ac.uk
mailto:tracy.hall@lancaster.ac.uk
mailto:d.h.bowes@lancaster.ac.uk
https://doi.org/10.1016/j.infsof.2023.107187
https://doi.org/10.1016/j.infsof.2023.107187
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107187&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Information and Software Technology 158 (2023) 107187M. Ortu et al.
In this study, we look across a variety of aspects of developer
fault insertion and fixing in an attempt to identify specific patterns
of activity for particular systems. We consider the intensity of fault
insertion and fixing by developers to highlight influential fault inserters
and fixers in projects. We simulate the coding expertise of developers by
analysing the code topics with which developers have most experience.
We investigate the relationship between these code topics and the fault
insertions and fixes made by individual developers. We also analyse
fault insertion and fixing within the context of code complexity, over
time, to establish whether developers’ fault insertion and fixing changes
as their experience over time increases.

This paper is an extended version of earlier work by the same
authors [13]. We added six new systems to the original corpus analysed
in [13] and one new research question (RQ4).

Our study takes a multi dimensional approach to understanding
(I) fault insertion and fixing by considering the impact of developer
expertise via familiarity with code topics, (II) developer insertion and
fixing over time and (III) the complexity of the code being touched
by developers during fault insertion and fixing over time. Our study
attempts to pull together and build on previous research to understand
more comprehensively fault insertion and fault fixing. We move to-
wards building a more comprehensive time-based understanding that
could help to enable better organised software teams who are more
able to effectively deploy developers to minimise shipped faults and
also underpin the development of tools to support the minimisation of
faults during development.

Our study analyses the repositories of twelve Apache projects with
data extracted from Github and Jira. We extracted fault fix and fault
insertion git commits and collected information about code authors
and committers. With the aim of investigating how code complexity
changes over time, we also calculated the cyclomatic complexity for
all fault insertion and fault commits and linked this information to
the developers who authored the code changes. To represent the fault
insertion and fault fixing process, we used a network analysis tech-
nique to build developer network graphs, and we used topic modelling
to identify code topics from the issues submitted to each project’s
repository (for example, the topic ‘Files and Resources’ emerged from
the Camel project) and understand the expertise of the developers in
relation to those code topics. Finally, we built and evaluated three
Stochastic models (Petri Nets, Markov chains and Hawkes models) to
provide an overview of the activities performed by the developers.

Stochastic models are a way of representing a phenomenon which
varies over time in a random manner. For example, the number of
people crossing a bridge, number of faults fixed, the position of an
aircraft during a flight, the number of packets travelling in a network.
A stochastic process can be described by a set of random variables in
which the sequence of values is a consequence of random factors. In
building stochastic models it is necessary to start specifying the random
variables and their associated probability density. Stochastic models
describe the probabilistic law associated with the evolution over time
of a physical phenomenon. In this work, we build stochastic models of
the insertion and fixing behaviour of developers in our subset of Apache
projects (simply speaking, our models provide a picture showing how
a team is currently working). The goal of building such models is to
understand the way developers behave, and to simulate their devel-
opment activity over time. Having an understanding of, for example,
what the probability is of a fault being fixed by a certain developer,
can provide crucial information on the workload distribution among
developers, and could help managers in taking informed decisions
related to both the composition of a team and its productivity (for
example redistributing more active developers into different teams).

We provide a replications package of our analysis containing a full
set of scripts and raw data.1

1 https://bitbucket.org/giuseppedestefanis/ist_paper.
2

We aim to understand fault insertion and fixing by answering the
following research questions:

RQ1: Can we identify those developers most likely to insert
and fix faults in code? If we can identify who is most likely to insert
faults, it may become easier to manage the deployment of developers
effectively. Similarly, if we can identify who is likely to fix faults,
assigning tasks to developers could become easier. We find in each
project examples of developers who are very active in all activities as
well as developers who seem to predominately insert faults and also
developers who predominately fix faults inserted by other developers.

RQ2: Does expertise impact developers’ fault insertion and fix-
ing? We try to understand whether it is important that developers have
expertise in the code that they touch. We analyse whether developers
with topic expertise insert and fix faults. We suspect that it is likely that
developers with topic expertise insert fewer faults and make more fixes
than developers without expertise in the code topic. We find that faults
appear to be inserted by developers with low expertise in the code topic
of the fault. We also find that fault fixers have slightly more expertise
in the topic of the fault, but less expertise than we expected.

RQ3: Does experience over time on projects impact developers’
fault insertion and fixing? Developers’ experience changes over time
and it is likely that developers’ fault insertion and fixing also changes as
time goes on. Understanding the relationship between experience over
time on the project and fault insertion and fixing will help to deploy
tasks to developers in line with their project experience. To mitigate
the impact of increasing code complexity over time, we analyse the
complexity of files touched by developers. We find that there is a
complex pattern of developer activity over time with no clear patterns
of fault insertion and fixing across the projects studied. Similarly the
evolution of code complexity varies across projects.

RQ4: Can we model developers’ activities with Stochastic mod-
els? To try and understand the implications of our findings from RQ1,
RQ2 and RQ3 for the future activities of projects we built a range of
stochastic models. We built three stochastic models using Petri-nets,
Markov chains and Hawkes processes so that we could understand
project activities from a variety of points of view and to identify
whether any of these three modelling techniques were particularly use-
ful to gaining an understanding of project activities. All three models
model developers’ commit activities and make predictions on project
behaviour of the developers in the future.

The rest of the paper is structured as follows: Section 2 summarises
previous related work on fault insertion and fixing. Section 3 details
the methodology of our analyses and is followed by Section 4 which
presents the results of our analyses in response to the research questions
we pose. Section 5 discusses our results, while Section 6 outlines the
threats to validity of our study. Section 7 concludes the paper and
suggests future work.

2. Background

The fault insertion and fixing behaviours of developers have been
investigated for a variety of purposes using a range of methods and
measurements. We summarise this previous work.

Many previous studies use code ownership to describe the familiar-
ity developers have with units of code. Code ownership is often used
to indirectly measure developer expertise. Mockus and Herbsleb [14]
were some of the first to measure the frequency with which developers
work with specific pieces of code and to associate code expertise with
this measure.

Code ownership has also been analysed in terms of faults inserted
into code. Matsumoto et al. [15] reported that code touched by many
different developers was more likely to be faulty. Bird et al. [10]
used code authorship metrics to identify the developer who originated
problems in code and also to identify developers to whom fault fixes
should be assigned. Bird et al. divided developers into two groups:
Minor Developers (those who have contributed less than 5% of code

https://bitbucket.org/giuseppedestefanis/ist_paper


Information and Software Technology 158 (2023) 107187M. Ortu et al.

l
t
w
e
s
t
p
c
d
d
b
a
T
l
c
t

D
d
b
d
f
m
i
i
s

f
a
r
C
d
K
i
o
t
p
(
l
e

s
t
h

in a component) and Major Developers (those who have contributed
more than 5% of code in a component). Bird et al. report that faulty
code is more likely to have been written by Minor developers.

Bird et al.’s findings were further supported in Greiler et al.’s [11]
replication study and Foucault et al.’s [16] larger study of code author-
ship in open source systems. Businge et al. [17] also report a similar
relationship between authorship and faults in Android applications.
Overall, there seems to be growing empirical evidence that authors
who are actively involved with a piece of code insert fewer faults into
that code. Fritz et al.’s [18] model of code base knowledge confirms
the importance of code authorship. Fritz et al.’s experimental study
suggests that developers have more knowledge about code that they
author. Fritz et al. show a direct link between effort spent by developers
on code and knowledge about that code.

Rahman et al. [19] studied ownership and experience at the level
of files and modules and found that implicated code is more strongly
associated with a single developer’s contribution. The results of the
study also indicate that an author’s specialised experience in the target
file is more important than general experience. The authors suggested
that quality control efforts could be profitably targeted at changes made
by single developers with limited prior experience on that file.

Hokka et al. [20] analysed 500 C++ repositories to study corre-
ations between developer experience and lambda use. The goal of
he study is to understand whether the usage of lambdas correlates
ith programming experience. The results suggest that the developer
xperience positively correlates with lambda usage. Zhu et al. [21]
tudied how the authorship of code affects bug-fixing commits using
he SStuBs dataset, a collection of single-statement bug fix changes in
opular Java Maven projects. The authors studied the differences in
haracteristics between simple bug fixes by the original author (the
eveloper who submitted the bug-inducing commit), and by different
evelopers, i.e., non-authors. The results shows that 44.3% of simple
ugs are fixed by a different developer. Fixes by the original author
nd by different developers differed qualitatively and quantitatively.
he authors found that bug-fixing commits by authors tended to be

arger in size and scope, and address multiple issues, whereas bug-fixing
ommits by other developers tended to be smaller and more focused on
he bug itself.

More recently Wang et al.’s [22] preliminary work used Latent
irichlet Allocation (LDA) modelling [23] to identify the expertise of
evelopers. Wang et al. automatically measured developer expertise
ased on code quantity, code quality, skills and contribution; embed-
ing this understanding in an on-line tool. Wang et al. are among the
ew previous studies that take into account a variety of factors when
easuring the quality of code produced by developers, including faults

nserted, vulnerabilities introduced, code complexity and code smells
ntroduced. Wang et al.’s study is preliminary work based on a small
ample of data.

Developer expertise is likely to be influential to fault insertion and
ault fixing. Measuring expertise directly is challenging as it is an
bstract and multi dimensional concept [14]. Previous studies have
esorted to a range of diverse indirect measures of developer expertise.
onstantine and Kapitsaki [24] proposed an approach to analysing
evelopment activity to identify developer expertise. Constantine and
apitsaki tracked the continuity of code contributions made by approx-

mately 150 active Github developers to understand the development
f programming language expertise across Github projects in relation to
he size of projects. Length of project participation is the most common
roxy for measuring expertise and is used particularly in studies of OSS
e.g. Vasilescu et al. [25]). Recent studies suggest that the impact that
ength of project participation has on productivity and quality [8] and
xpertise [9] is not conclusive.

A more sophisticated understanding of developer expertise now
eems to be emerging with Baltes & Diehl [9] recently developing a
heory of software development expertise. Specific aspects of expertise
3

ave also recently been investigated. Dieste et al. [8] investigated the
relationship between years of programming experience and program-
mer performance. Their quasi experiments with 56 students and 70
professional developers revealed that years of industry experience did
not directly influence programmer performance. Other task specific
skills were more influential to programmer performance (e.g. skills
in specific frameworks). Vasilescu et al. [25] report that a combina-
tion of knowledge, perspectives and experience are good predictors of
productivity and project success.

Developer use of specific tools and techniques has also been re-
ported as an indirect measure of expertise. Montandon et al. [26]
analysed library and framework use by Github developers to identify
evidence of expertise. Montandon et al. reported that expertise was
related to intensity of coding activity (i.e. low expertise is related to few
contributions to projects). Montandon et al. triangulated their findings
using other sources (e.g. Linkedin) to identify Github developers with
high levels of expertise.

High developer turnover is also reported to increase code faults.
This is because overall knowledge of the code base diminishes as
developers leave. Foucault et al.’s [16] study of five large projects
suggested that new developers lack project expertise and have different
activity levels because of their reduced code-base knowledge. Rigby
et al. [27] further confirms the relationship between high turnover and
lower code knowledge. Foucault et al. [16] report that projects with
high developer turnover exhibit lower productivity levels and higher
numbers of faults.

In this study we investigate coding authorship by developers over
time, not only in terms of the intensity of fault insertion, but also fault
fixing, taking into account their sustained contributions and topic ex-
pertise in a particular project. We contextualise this developer activity
by considering the complexity of code that developers are working
with. We go further than the snapshot analysis predominately used
previously by analysing changes in developer fault insertion and fixing
over time.

3. Methods

3.1. Open source projects analysed

We selected twelve open source systems detailed in Table 1. All
projects were selected from the Apache community. We chose Apache
projects as they follow the same development guidelines which re-
duces the variability that arises when analysing datasets from different
sources, and also because we were interested in analysing ‘‘The Apache
Way’’,2 defined as the interpretation of one’s experience with the Apache
community-led development process. As stated on the Apache website,
Apache projects and their communities are unique, diverse, and focused on
the activities needed at a particular stage of the project’s lifetime, including
nurturing communities, developing great code, and building awareness. The
key elements of The Apache Way are the following:

– Earned Authority;
– Community of Peers;
– Open Communications;
– Consensus Decision Making;
– Responsible Oversight;
– Independence;
– Community Over Code;

In addition, the projects use the git versioning system and JIRA fault
database which are linked using the JIRA ID. This allowed us to extract
faults in code. Bissyandé et al. [28] have raised concerns about the
quality of the process for linking bug reports and code changes since
the links are missing for many software projects as the bug tracking
and version control systems are often maintained separately. In order

2 https://www.apache.org/theapacheway/index.html.

https://www.apache.org/theapacheway/index.html


Information and Software Technology 158 (2023) 107187M. Ortu et al.

o

Table 1
Summary of the twelve Apache projects.

Project # commits # FI # FF # bugs # committers # authors First commit Last commit

hadoop hdfs 1 134 856 927 817 25 25 2009-05-19 2011-06-12
camel 44 020 19 607 12 446 6 623 213 673 2007-03-19 2019-12-18
derby 8 269 4 235 5 889 3 267 37 37 2005-01-24 2019-08-18
hadoop common 10 509 5 314 2 408 2 070 83 83 2009-05-19 2014-08-22
hive 14 247 11 060 13 104 12 290 120 324 2008-09-09 2020-01-14
hbase 17 424 12 580 15 023 22 133 138 458 2007-04-19 2020-01-11
Commons CLI 1 005 15 30 32 47 57 2002-06-10 2021-04-19
Commons CSV 1 556 33 62 63 30 43 2005-12-17 2021-04-19
Commons Math 6 622 25 60 92 69 79 2003-05-12 2021-04-13
Commons Codec 2 117 13 28 47 44 49 2003-04-25 2021-04-22
Commons JXPath 601 3 6 14 25 27 2001-08-23 2020-05-26
Commons Collections 3 569 54 137 66 68 95 2001-04-14 2021-04-26
t
c
d
f

w
i

3

m
s
d
a

n
w
s
t
a
r
a

a
i
d
c
t

to avoid possible issues with the linkage, we manually analysed 500
random commits from the projects, verifying that each commit message
contains the issue key (e.g., ‘‘MATH-1541: Loop early exit.’’) which
allows us to verify that the association issue/commit is correct.

We extracted data for each project from the beginning of the repos-
itory found on Github until April 2021.

The first column of Table 1 is the project name. The # bugs repre-
sents the reported bugs. The # commits column shows the total number
f commits for the project at the time we collected the data. The #FI

and #FF columns represent the total number of fault insertion and
fault fix commits, respectively. The same fault can be fixed in multiple
commits which is why some projects have more fault fix than fault
insertion commits. The last two columns represent the total number of
project contributors throughout the project’s history. In derby, hadoop
hdfs and hadoop common the number of authors and committers is
the same suggesting that all authors are allowed to contribute to the
project.

3.2. Data extraction

We extracted a range of data from each project’s Github and JIRA
repositories. From Github we obtained the following information: com-
mit hash, commit author, commit date. The data was collected for each
commit on the master branch throughout each of the project’s history.
To collect the Github data we used a script which is provided in the
replication package. From JIRA we obtained the following information:
fault ids, fault titles, fault description, fault comments and fault report dates.
Similar to Github data, we obtained all the fault reports throughout the
projects’ history. The script for collecting the JIRA data is available in
the replication package.

We used BugVis [29] to extract fault fix and fault insertion git
commits from the twelve systems. BugVis implements the SZZ algo-
rithm [30] for initially linking fault reports to fault fixes and back-
tracking to identify the fault insertion commits. From the fix commit,
the SZZ algorithm then identifies which code snippets were faulty
and tracks those back to their insertion points. The SZZ algorithm
has been widely used in previous studies (e.g.[31]). The tool we used
improved the original SZZ algorithm [30] by linking deleted as well
as modified lines and using advanced diff commands which follow
blocks of code being moved. These changes improved linkage from fault
fix to insertion point [32]. BugVis is an interactive tool which allows
developers/researchers to select individual lines and see where they
came from and where they go to. The interactive ability of the tool
allows us to investigate code which may be surrounding fault changes.
From fault fix and insertion data we extracted the developer, git hashes
and files involved in the fault fix/insertion. In addition, information
about author and committer for each git commit was collected. We used
author/committer information to attribute each change to the author of
a commit, rather than the committer. This is because only committers
have the right to commit changes but may do this on behalf of other
4

authors.
Finally, we collected the cyclomatic complexity metrics for all fault
insertion and fault fix commits. We used JHawk3 to collect this data.
Metrics were collected at class level. We recorded the commit hash next
o each class for which the metrics were collected. We then linked these
ommit hashes to the developers who authored the code changes. This
ata enabled us to investigate how code complexity changed over time
or individual developers.

The data collected enables us to identify who inserted a fault,
ho fixed that fault and the complexity of the files being changed at

nsertion and fix.

.3. Data cleaning and analysis

We performed a series of cleaning steps on our data. First, we
erged all developer activity representing the same developer into one

et, as several developers were contributing to a project using slightly
ifferent names or email addresses. We then ensured that all data was
nonymised.

Alias resolution (developer matching and identity resolution) is a
on-trivial problem well-studied in the literature [33–35]. In our study,
e measured the percentage of aliases counting those developers with

ame name and surname and different email address. We found that
he percentage of aliases was, on average, 8.86%, taking into account
ll the projects. We decided to merge those aliases considering that the
eal error would be lower than 8%, because some of the aliases are
ctually different people.

All identifiable information about developers such as their names
nd emails were replaced. We also associated the numbers of fault
nsertion and fault fix commits to each developer. Finally, we used the
ata about authors and committers of git commits to correctly attribute
hanges made by developers. For all of our extracted data we ensured
hat the metrics are mapped to the author of a commit, rather than the
committer.

We used the following techniques to analyse our data. Latent Dirich-
let Allocation (LDA) was used for cluster analysis of issue topics as
described in Section 3.5. We used the Gensim4 package to perform the
LDA analysis with Python. The gephi tool5 was used for network anal-
ysis to identify the contributions of individual developers on a project
and to visualise developer activity in terms of who introduces and
fixes faults (as described in Section 3.4). Finally, we used static code
metrics to demonstrate how the complexity of code that developers
touch changes over time.

3.4. Network analysis

We built developer network graphs for the twelve systems we
analysed. These graphs represent the team of developers working on

3 http://www.virtualmachinery.com/jhawkprod.htm.
4 https://radimrehurek.com/gensim/.
5
 https://gephi.org version 0.9.2.

http://www.virtualmachinery.com/jhawkprod.htm
https://radimrehurek.com/gensim/
https://gephi.org


Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 1. Example of network graph.

a system and the connections between developers. Such network graph
structures have previously been used in various analysis of open source
projects (e.g. [36,37]).

For each system we generated a direct network graph showing
insertion and fixing activity of developers. We built our developer
network graph using Gephi, an interactive network visualisation and
exploration tool. Fig. 1 provides an example network graph. Each
developer is represented by a node and an edge between two nodes
means that the two developers are interacting. If developer A fixes an
issue generated by developer B, there is a direct link between node A
and node B, with an in-link from A to B. The size of the nodes are
proportional to the number of out-links (which represents the number
of fixed issues by a developer) in the graphs showing fixing activities. In
Fig. 1 node A has two out-links, while node B has no out-links. The size
of node A is bigger than the size of node B. If there is a link going from
node A to node B, this means that developer A fixed an issue introduced
by developer B. The ‘‘self-link’’ exiting from node A and entering node
A indicates that developer A both introduced and fixed a fault.

We also computed the Betweenness Centrality network metric to
obtain a deeper understanding of the developer network structure, and
the interactions of developers in the project. Betweenness Centrality is
a statistical property of a network used to find influential people in a
social network. The Betweenness Centrality of a node is an indicator
of its importance in the network and is defined as the number of
shortest paths that pass through the node [38]. A node with higher
Betweenness Centrality has an important role over the network, since
more information will pass through that node.

3.5. Topic modelling

We use topic modelling to identify the code topics in projects and to
understand the topic ‘expertise’ of developers. Topic modelling involves
using statistical models to automatically discover themes occurring
within a corpus of text documents. The aim of topic modelling is to find
a distribution of words in each topic and the distribution of topics in
each document. A topic can be considered as a probability distribution
over a collection of words, e.g. a topic relating to football is more
likely to contain the words goal and offside than a topic relating to
cricket. Since its introduction in 2003 [23], LDA has become a popular
unsupervised learning technique for topic modelling. LDA assumes each
document contains multiple topics to different extents. The generative
process by which LDA assumes each document originates is described
below:

Algorithm 1 LDA’s Algorithm
Require:
1: Choose 𝑁 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜖)
2: Choose 𝜃 ∼ Dir(𝛼)
for each: 𝑁 ∈ Words 𝑊𝑛
3: Choose a topic ∼ Multinomial(𝜃).
4: Choose a word 𝑊𝑛 from 𝑝(𝑊𝑛|𝑍𝑛, 𝛽), a multinominal probability

conditioned on the topic 𝑍𝑛.
5

Considering each document, the number N of words to generate is
chosen (1). The algorithm randomly chooses a distribution of words
over the topics, 𝜎 (2). For each word to be generated in the document,
the algorithm randomly chooses a topic, from the distribution of topics
(3), and then, from the topic selected, chooses a word using the
distribution of words in the topic (4). The algorithm focuses on the
distribution of topic in document and the distribution of words in topic
as variables. The aim is to find latent (hidden) parameters that can be
estimated via inference for retrieval of per-document topic distributions
and per-topic word distributions. We applied LDA to model developers’
topic ‘expertise’ in issues (faults) considering the title and description
as a textual representation of the issue — which is common in topic
modelling [39,40] applied to social content and user generated content.
We aggregated issues by assignee (namely the developer assigned to
the issue) allowing us to create a corpus of documents (where each
document represents an issue) and to apply LDA to obtain the high level
topics on which developers are grouped based on the dominant topic
of issues assigned to developers. We chose 10 as the number of topics
after applying a coherence model (using the U-Mass metric) [41] to all
projects and obtaining 10 Topics as the best fit. The final value of 10
topics is a trade-off between the goodness of the coherence model and
the interpretability of the topics. Higher number of topics would lead to
less interpretable topics, while lower number would lead to overlapping
topics.

3.6. Petri-nets

Petri Nets allow the modelling of dynamic systems and have been
widely used in, for example, the modelling of manufacturing systems.
The use of Petri Nets allows us to formally model the behaviour of
individual developers’ fault insertion and fixing in the wider context
of the project in which they are working. Furthermore, Petri Nets can
simulate the behaviour of the system, predicting expected behaviour in
the long term (usually called Steady State Analysis) which allows us
to understand, given the current state, development behaviour in the
future.

A Petri-net PT (Place/Transition) is an oriented graph with two
types of nodes, places and transitions, connected by direct arcs. The
places are represented graphically by circles and the transitions by
rectangles.

An arc can only join nodes of different types, so there can be arcs
between places and transitions, but not between places or between
transitions. A place from which an arc starts (to end to a transition)
is called the transition input place; a place where an arc arrives (from
a transition) is called the transition output place.

Places can contain several tokens. A distribution of tokens over
all the places in the network is called marking. Transitions act on
incoming tokens according to a rule, called firing rule. A transition
is enabled if it can be triggered (e.g., if there are tokens in each input
place). When a transition fires, it consumes tokens from its input places,
performs tasks, and places a specified number of tokens in each of
its output places. This happens automatically, for example, in a single
non-preemptive step.

The execution of Petri nets is non-deterministic:

– if multiple transitions are enabled at the same time, any of them
can be triggered;

– it is not guaranteed that an enabled transition is going to trigger.
An enabled transition can be triggered immediately, after any
waiting time (as long as it remains enabled), or not be triggered
at all.

Since the triggering of a transition is not predictable a priori, Petri
nets are suitable for modelling a concurrent system’s behaviour. Petri
nets have the following characteristics:



Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 2. Example of multivariate Hawkes process.
– they are easily modifiable (addition of other variables, modifi-
cation of the set of values that can be assumed by one or more
variables), without the need to start over and without ‘‘explosion’’
of complexity;

– they are modular, buildable by ‘‘assembling’’ submodels related
to parts of the system;

– easy to interpret in terms of evolution of the state of the indi-
vidual parts of the system (the state has a local meaning, being
distributed in the network);

– they can represent infinite-state systems with a finite number of
nodes of a graph.

Stochastic Petri nets are a form of Petri net where the transitions
fire after a probabilistic delay determined by a random variable. We
modelled the random variable that fires the transitions using the expo-
nential random variable, which is modelled using the commits’ activity
of projects in our experiments. The probability density function (pdf)
of an exponential distribution is showed in Eq. (1).

𝑓 (𝑥; 𝜆) = 𝜆𝑒−(𝜆𝑥) (1)

A stochastic Petri net is a five-tuple 𝑆𝑃𝑁 = (𝑃 , 𝑇 , 𝐹 ,𝑀0, 𝛥) where:

– 𝑃 is a set of states, called places.
– 𝑇 is a set of transitions.
– 𝐹 where 𝐹 ⊂ (𝑃 × 𝑇 )

⋃

(𝑇 × 𝑃 ) is a set of flow relations called
‘‘arcs’’ between places and transitions (and between transitions
and places).

– 𝑀0 is the initial marking.
– 𝛥 is the array of firing rates 𝜆 associated with the transitions. The

firing rate, a random variable, can also be a function 𝜆(𝑀) of the
current marking.

3.7. Hawkes models

The Hawkes process is a point process class [42], also known as a
self-exciting counting process, in which the impulse response function
explicitly depends on past events [43]. In this type of process, the
observation of an event causes the increase of the process impulse
function. From a mathematical point of view, a point process is a
Hawkes process if the impulse function 𝜆

(

𝑡|𝐻𝑡
)

of the process takes the
form of (2).

𝜆
(

𝑡|𝐻𝑡
)

= 𝜆0(𝑡) +
∑

𝜙
(

𝑡 − 𝑡𝑖
)

(2)
6

𝑖∶𝑡𝑖<𝑡
In Eq. (2) 𝐻𝑡 represents the history of given past events, 𝜆0(𝑡) is
a positive function that determines the basic intensity of the process
and 𝜙 is another positive function known as memory kernel, since it
depends on past events occurred before time 𝑡. Hawkes models can
be used to identify the dynamics of interactions between a group of
𝐾 processes. The occurrence of an event on a particular process can
cause an impulse response on that process (self-excitation), determining
an increase of the likelihood of further events, and on other processes
(mutual-excitation). Given a set of events occurring on a number of
processes, a Hawkes model can be used to quantify previously hidden
connections between the processes.

Fig. 2 illustrates an explanatory example of a multivariate Hawkes
process with two flows of events: 𝜆(𝑡)0 and 𝜆(𝑡)1. In this example, the
event flows have been constructed so that 𝜆(𝑡)0 is not influenced by
other flows, but only by events that happen in its own flow (self-
exciting effect) otherwise, events in the same 𝜆(𝑡)0 can have effects in
𝜆(𝑡)1 (mutual-exciting effect).

3.8. Markov chain model

A Markov chain consists of X states and is a discrete-time stochastic
process, a process that occurs in a series of time-steps in each of which a
random choice is made. A Markov chain can be represented with graphs
and/or matrices. The states can be represented with circles (nodes or
vertices) and directed edges (links) connecting node 𝑖 and node 𝑗 if
𝑝𝑖𝑗 > 0.

From each node (or vertice) there is at least an out-coming edge:
some nodes have links connecting to themselves, some nodes cannot
be connected with each other, while some can be connected through
bidirectional links. A probability 𝑝𝑖𝑗 is associated to each connection
𝑖 → 𝑗, defined as the transition probability from state 𝑖 to 𝑗. The
following properties need to be satisfied for 𝑝𝑖𝑗 values:

𝑝𝑖𝑗 ∈ [0, 1],
∑

𝑗
𝑝𝑖𝑗 = 1 ∀𝑖

A (square) transition matrix P contains only positive elements, with
sum equal to 1 for each row.

𝑝11 indicates the probability of staying in the state 1, 𝑝12 indicates
the probability of moving from state 1 to state 2 and 𝑝1𝑛 indicates the
probability of moving from state 1 to state n.

We built a MC modelling three different states:

– Development commit
– Fault Introduction commit
– Fault Fix commit



Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 3. Fault Insertion Vs. Fault fixing. The orange bar represents the percentage of bugs where the developer that introduced the bug is not the same developer that fixed the
issue and blue otherwise.
4. Results

RQ1: Can we identify those developers most likely to insert and fix faults in
code?

To put fault insertion and fault fixing into context we first looked
at whether developers fixed faults that they themselves or other devel-
opers had inserted into the code. Fig. 3 shows in blue the percentage
of faults where the developer who inserted the fault and the developer
who fixed the fault are the same, in orange the percentage of faults
where the inserter and the fixer are different developers. Fig. 3 shows
that for six of the twelve projects between 40%–60% of faults are fixed
by developers who did not insert the fault. The Camel and Commons
JXPaths projects are outliers in much of our analysis, which we never-
theless include throughout to avoid appearing to cherry pick results, as
well as to show that there are always a range of heterogeneous projects,
each with their own proclivities.

To provide a more detailed understanding of the dynamics within
each project’s development community, and to identify any developers
who are most actively inserting and fixing faults, we built a network of
insertion and fixing activities and apply network analysis (as described
in the previous section).

A developer active in a project, from the point of view of the
network graphs we built, can perform one or more of the following
actions over time:

– fix a previous fault they inserted;
– fix a fault inserted by an other developer.

Figs. 4–6 present directed graphs showing developers who are most
actively inserting and fixing faults. Developer activity levels are pro-
portionate to the size of nodes in the graphs. Nodes with bigger size
indicate increased developer activity. Where a developer fixes a fault
they inserted, a self-loop is added to the node in the network which
represents that developer. When a developer fixes a fault inserted by
another developer, a direct link will connect the two nodes representing
the developers, with the arrow pointing at the developer who inserted
the fault. The colour of the nodes is related to the value of Betweenness
Centrality, the darker the colour, the higher the value. Tables 2 and
3 provide examples of the underlying data related to the Hadoop
HDFS and Derby directed graphs. Table 2 shows that developer 1 has
the highest out-degree value (449) in the project. This means that
developer 1 is represented by the biggest node for Hadoop HDFS in
Fig. 4 showing that this developer performed the most fixes. Tables 2
and 3 show that for Hadoop HDFS and Derby developer 1 also has
7

Table 2
Network analysis (Hadoop HDFS).

Dev Id Out-degree In-degree Degree B-cent

1 449 176 625 56.25
2 188 116 304 15.46
3 167 158 325 11.85
4 165 112 277 8.83
5 133 20 153 0.03
6 118 60 178 1.15
7 61 32 93 1.06
8 38 313 351 34.4
9 15 12 27 0
10 14 65 79 0.29
11 12 56 68 0
12 9 83 92 3.69
13 7 71 78 0
14 4 13 17 0
15 3 39 42 0
16 3 18 21 0
17 0 42 42 0

Table 3
Network analysis (Derby).

Dev Id Out-degree In-degree Degree B-cent

1 1469 492 1961 85.19
2 512 241 753 1.91
3 441 203 644 5.67
4 331 1307 1638 72.6
5 276 166 442 8.76
6 138 176 314 8.61
7 118 183 301 3.01
8 111 264 375 1.09
9 55 82 137 0.03
10 48 30 78 0
11 46 27 73 0
12 37 86 123 0.11
13 21 45 66 0
14 7 9 16 0.003
15 7 19 26 0
16 5 113 118 0.01
17 3 12 15 0
18 2 170 172 0
19 2 4 6 0

the highest Betweenness Centrality value resulting in Node 1 shown
as darkest in both Figs. 4 and 5.

The project networks shown in Figs. 4–6 suggest that some develop-
ers predominately fix faults inserted by other developers. Figs. 4–6 also



Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 4. Hadoop HDFS network.

Fig. 5. Derby network.

show that the most active fault fixing developers have a high number
of self-loops, meaning that they introduce and fix their own faults. We
previously identified a relatively high level of self-fixing in Fig. 3. To
explore further the activities of these self-fixing developers we built the
networks both with and without self-loops and found minimal change
in the network. Fig. 7 shows the network built for Derby without self-
loops. Compared with Fig. 5 (containing self-loops) the structure of the
Derby network remains the same, but the size of the nodes is reduced
(as a smaller number of out-links are included). This suggests that the
larger nodes in each network represents the most active developers in
projects. Each project has a small number of highly active developers
who fix many of their own and other developers’ faults.

The results obtained from the directed graphs show that it is pos-
sible to identify specific types of developers in most of the twelve
projects. We describe these types of developers as:
8

– Super-developers: most active in the project who insert and fix
their own faults and those of other developers;

– Fixers: less active in the project who predominately fix faults
inserted by other developers;

– Inserters: less active in the project who predominately fix their
own faults.

A relatively large number of inserters and fixers seem active in most
of the twelve projects. Whereas a small number of super-developers
are active in all twelve projects. Each type of developer is important
to identify as each type is likely to impact differently on project
success. More stringent reviews of code contributed by inserters would
probably benefit projects. Whereas more active use of fixers would also
probably benefit projects. Super-developers are likely to have excellent
knowledge of the project and could be deployed to more difficult tasks
with less stringent code review. Fig. 8 shows an example of fixing
in Derby. As the figure shows, the fix is not complicated, but in this
case was performed by a super-developer. Having the possibility of
understanding how to allocate the required fixes, would improve the
productivity of the teams. The structure of networks vary across the
twelve projects. This variation suggests slightly different insertion and
fixing activity across projects. Such variability is to be expected as most
projects have specific ways of working and it is important to understand
the normal patterns for each project so that anomalies can be identified
quickly.

The analysis we provide in response to Research Question 1 is
an aggregated picture of the entire time-frame we analysed for each
project. It is likely that developer activity evolves over time as new
developers join a project and gain experience. To investigate this
evolution we present a time-based analysis of developer activity in
response to Research Question 3.

RQ2: Does expertise impact developers’ fault insertion and fixing?

Fig. 9 presents the topic modelling clusters, considering all kind of
issues (e.g. bugs, enhancements etc.), for the twelve projects and shows
that for all projects there are distinct topic clusters. These are clusters
of issues sharing similar content produced using LDA (as described in
the previous section). We used the concept of document, which consists
of a mixture of topics in different percentages. The notion of dominant
topic is the following: ‘‘the topic with the highest percentage for a given
document’’. Code topics are obtained aggregating together all issues
assigned to a developer, in order to obtain a single text document.
Therefore, topics are identified based on the types of issues that de-
velopers are assigned to. We then apply the LDA to all documents (one
document per developer with all issues assigned to them) and we assign
a dominant topic to each document (where a document represents
a single developer) which is the code topic. We used the t-distributed
stochastic neighbour embedding (T-SNE) to reduce the dimensionality of
the topics and to be able to represent the clusters in two dimensions, the
algorithm models the points so that close objects in the original space
released close in the reduced-dimensional space, and distant objects far
away, trying to preserve the local structure. This suggests that the issues
on which developers work cover a range of different topics and that
some of these topics are likely to benefit from specific expertise during
development activities.

Fig. 10 looks in more detail at the topics for the HBase project
(similar detail for all projects is available in our replication package).
The figure on the left represents the size and dimensional spacing
among the ten topics, the dimension of the circle represents the number
of issues belonging to that cluster. These circles show that there is
little overlap between topics meaning that, in general, the topics are
well defined for HBase. On the right of Fig. 10 are the top 30 most
important keywords of the first topic (represented by circle 1). We
manually analysed each topic for each project to confirm that these
topics make sense, representing for example topics such as ‘‘compute,



Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 6. Networks for all the remaining projects.
Fig. 7. Derby network (without self-loops).

thread, save etc’’ for concurrent issues or ‘‘connection, pool, jdbc,
driver’’ for database related issues.

Clustering issues into topics allowed us to assign a dominant topic
to each developer, i.e. to identify the most frequent topic in the
issues that each developer has worked on. For example, if developer
A worked most often on issues related to concurrency, developer A’s
dominant topic would be the topic containing keywords representing
9

concurrency. In the remainder of this study we considered only issues
related to fault (e.g. bugs) and link topics to faults by assigning a topic
to the issue report for that fault. We then compute the percentage of
issues where the fixer is an expert, i.e. the dominant topic of the fixer and
the fault are the same. For example, a fault related to ‘‘concurrency’’ is
reported and an issue assigned to a developer. The topic ‘‘concurrency’’
is assigned to the fault, we then compare the topic with the dominant
topics of the fixer.

We analysed the expertise of developers who insert and fix faults
(i.e. whether a developer’s dominant topic matches that of the fault
at insertion and fix). Fig. 11 shows this expertise analysis for each
project broken down into four quadrants (Q1: the fault inserter is an
expert; Q2: the fault inserter is not an expert; Q3: the fault fixer is
an expert; Q4: the fault fixer is not an expert). For ten out of 12
projects, in most cases the developer who inserted the fault is not
an expert in the fault topic (27% to 93% of faults are introduced by
developers whose dominant expertise is not in the topic). This is an
important finding as lack of developer expertise could be the cause of
some of these faults. Camel has a different profile with only 6.5% faults
introduced by non-experts. More research is needed to understand why
Camel and Commons JXPath seem to be such outlier projects, and to
investigate further whether this result could be related to the relatively
high number of authors and committers, all of whom seem to fix their
own faults.

Fig. 11 also shows that the expertise of fault fixers is slightly better
aligned to the topic of the fault. This alignment is not as strong as
we might expect, but may be mitigated by the presence of ’super-
developers’. Such developers are likely to have wide expertise of the
project and so are able to tackle a range of fault topics rather than
faults only related to their dominant topic.

RQ3: Does experience over time on projects impact developers’ fault insertion
and fixing?

We analyse the impact of time on fault insertion and fixing. We
investigate whether developers introduce fewer faults and fix more



Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 8. Example of fix in Derby.
faults as time goes by. We also investigate whether the code tackled
by developers gets more complex over time and developers gain more
project experience and how code expertise changes during the lifetime
of a project. We first analysed the activity levels of developers in
relation to the complexity of files touched by developers over time.
This analysis allowed us to identify how the complexity of the code
developers were working on evolved in the context of activity intensity.
Fig. 12 plots the cyclomatic complexity of the files changed during a
fault insertion or fix in each project over time by individual developers.

Fig. 12 shows that each project has a unique pattern of developer ac-
tivity over time. Such differences in projects are commonly reported in
empirical investigations (e.g. [44]) and very few empirical studies are
able to convincingly report findings that hold across all projects, even
when the projects appear to have much in common. Fig. 12 suggests
that developer contributions over time vary between projects, with
sustained project contributions from some developers and bursts of
intense contributions from other developers. Some projects (e.g. HBase)
seem to have many developers who come and go from the project.
Other projects (e.g. Derby) seem to have fewer but more long lasting
project developers. Patterns of developer retention and contribution
intensity are likely to affect developer expertise and underpin patterns
of fault insertion and fault fixing. However the exact relationship is
difficult to understand given the complexity of activities across projects
(in which Fig. 12 provides some insight).

Fig. 12 also shows that projects vary in terms of the evolution
of code complexity. Some projects seem to increase in complexity as
time goes on, e.g. Hive (Fig. 12(e)) appears to be stable for about
4 years during which time there are relatively few developers working
on the system, after 2014, the number of developers increases and the
files worked on become more complex. In other projects complexity
seems to remain fairly stable, e.g. Hadoop Common. Whereas some
projects start highly complex but steeply reduce in complexity over
time (e.g. Derby).

Fig. 13 shows the fault fixing and fault insertion activities by the
20 most active developers over time. The blue area shows the density
of fault inserting changes and the pink shows the density of fault
fixing changes. It is not possible for a fault fix to occur before a fault
insertion, therefore it is expected that the density of fault insertion
activity appears before fault fixes. Fig. 13 shows that peaks of fault
insertion are followed by peaks of sustained fault fixing activity. For
10
Derby and the Hadoop projects, there is a peak of fault insertion near
the start of the project. Fig. 13 also shows the activity of the most
frequent committer to each project. The most active committers also
show periods of fault insertion followed by fault fixing. The density of
fault fixing for frequent committers seems more sustained over time
compared to other developers. In most projects the introduction of
faults by the most frequent committer drops as a proportion of faults
fixed over time.

RQ4: Can we model developers’ activities with stochastic models?

We analysed fault insertion/fix behaviour during the development
process using three different statistical models:

– Petri Nets
– Markov Chains
– Hawkes Processes

In the next subsection we provide the formal definition of the three
models followed by a validation section where the models are applied
to three different time windows. To validate our models, we considered
three time windows of three months, each time window is further
divided in two months for training our models and the last month of
each time window is used for the validation of the models’ prediction.

4.1. Petri nets

We modelled developers’ activities using Stochastic Petri nets as
shown in Fig. 14. This model represents a particular state of a devel-
oper’s activity such as bug fixing or normal development activity and
transitions are triggered based on commit activities.

– 𝑃 = [𝑝0, 𝑝1, 𝑝2, 𝑝3].
– 𝑇 = [𝑡0, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6].
– 𝑀0 = [1, 0, 0, 0] is the initial marking
– 𝛥 = [𝜆0, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5]

The meaning of the places is:

– 𝑃0: Represents the Idle state, the developer is waiting for a new
activity.



Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 9. Topic clusters for issues.
– 𝑃1: Represents the Development state, the developer is working on
a normal development activity.

– 𝑃2: Represents the Fault-Fixing state, the developer is fixing a
fault.

– 𝑃3: Represents the Fault-Insertion state, the developer during nor-
mal development activity or fault-fixing activity has a probability
to insert a new fault.

The transitions meaning derives directly from the places defini-
tion. In particular the transitions sequence [𝑡0, 𝑡1] represents a normal
development activity. The transitions sequence [𝑡2, 𝑡3] represents the
fault-fixing activity while the sequences [𝑡0, 𝑡4] and [𝑡2, 𝑡5] represents a
fault insertion occurring during normal development activity or during
a fault fix. Finally transition 𝑡6 is fired right after 𝑡4 or 𝑡5 to go in Idle
state where the developer is ready for a new activity.

We modelled each developer through the 𝛥 array of 𝜆 parameters.
These 𝜆 parameters have been empirically calculated from the com-
mit activities. Table 4 shows the 𝜆 parameters evaluated for all 12
projects as an average of the developers’ 𝜆 parameters. In particular,
we considered 𝑡 as direct transitions to model the fact that a fault
11

6

insertion is something that happens during a generic development
activity, transaction 𝜆1 and 𝜆3 are respectively the complementary of
𝜆4, 𝜆3 (𝜆4 = 1-𝜆1 and 𝜆5 = 1-𝜆3) as from place 𝑝1 and 𝑝2 we modelled
the developer behaviour to be either going back to idle state (𝑝0) or
introduce a bug (𝑝1).

Table 5 shows the result of the steady state analysis of the Petri’s
Nets for all the projects. We simulate the project’s Petri Nets in order
to obtain the steady state probabilities of the places which can be
interpreted and the average time spent in a particular state over time.

Table 5 shows that the idle state (𝑝0) has the highest probability,
this does not mean that most of the time developers are in an idle state,
but reflect instead the behavioural model behind the Petri Net. In fact,
transitions are modelled based on commit activities over times, and we
are interested in capturing the different behaviours in terms of fault
introduction/fixing against normal development activities showed by
the steady state probabilities of Fault-Fixing state (𝑝2 place) and Devel-
opment state (𝑝1 place). The probability of fault insertion and fault fix
(𝑝2 and 𝑝3) can be directly interpreted as an estimation of the fault fix
effort, these probability values show a plethora of different behaviours
across different projects. Table 5 refers to the whole project history



Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 10. HBase topic clusters for issues and top 30 keywords.
Table 4
Lambdas parameters for all 12 Apache projects.

Project 𝜆0 𝜆4 − 𝜆5 𝜆2
Camel 0.479 0.354 0.167
Derby 0.133 0.364 0.503
Hadoop Common 0.348 0.428 0.224
Hadoop HDFS 0.003 0.496 0.500
HBase 0.064 0.299 0.637
Hive 0.068 0.344 0.589
Commons CLI 0.812 0.040 0.147
Commons CSV 0.675 0.073 0.252
Commons Math 0.901 0.016 0.083
Commons Codec 0.863 0.026 0.111
Commons JXPath 0.946 0.010 0.044
Commons Collections 0.676 0.084 0.240

Table 5
Places probabilities for all the projects.

Project 𝑃0 𝑃1 𝑃2 𝑃3

Camel 0.533 0.256 0.089 0.122
Derby 0.535 0.071 0.269 0.124
Hadoop Common 0.55 0.192 0.123 0.135
Hadoop HDFS 0.571 0.002 0.285 0.142
HBase 0.523 0.033 0.333 0.11
Hive 0.531 0.036 0.313 0.12
Commons CLI 0.501 0.407 0.074 0.019
Commons CSV 0.501 0.338 0.126 0.034
Commons Math 0.5 0.451 0.042 0.008
Commons Codec 0.5 0.432 0.056 0.013
Commons JXPath 0.5 0.437 0.022 0.005
Commons Collections 0.502 0.339 0.012 0.039

but in general the same analysis can be conducted at different levels,
for example at single developer level or at a particular time window
(such as pre-release or post-release) providing an estimation of fault
introduction/fixing behaviour in the near future of the development
system evolution.

The Petri Net model could be used by managers to evaluate the
impact of the developers’ activity while introducing and fixing faults,
in particular giving an estimation of the percentage of time spent in
fixing and introducing faults.
12
4.2. Markov Chain model

Markov Chains (MC) have been used to model behavioural aspects
in social sciences [45,46]. Markov Chains provide a unique represen-
tation where the transitions between the different states of Sentiment,
Politeness and Emotion, extracted from developers comments, can be
modelled; it implicitly assumes ‘‘memorylessness’’ (through the Markov
property) and this simplifies our analysis. Furthermore the models al-
low a straightforward determination of probability transitions between
development, fault insertion and fix activities; this is crucial in deter-
mining how developer behaviour is influenced by other developers.
We used Discrete Time Markov Chains considering the time series of
commits, categorising each commit as:

– Normal Development Commit
– Fault Insertion Commit
– Fault Fix Commit

We then modelled the Markov Chain with three states: (i) Develop-
ment (DEV) (ii) Fault Insertion (FI) (iii) Fault Fix (FF). The transition
probability from one state to another, i.e. 𝐷𝐸𝑉 ←←→ 𝐹𝐼 , represents
the probability that the next commit is a Fault Insertion Commit given
that the current commit is a Normal Development Commit. Given the
sequence of commits we evaluated the adjacency matrix for each
project, this matrix can be directly represented by a directed graph.
Fig. 15 represents the MC graphs for all considered project where the
states are represented by ovals and transition by arrows.

These MCs are directly obtained using all data and represents the
final model for each project and can be used to simulate the percent-
age of development, fault introduction and fix commits in the next
𝑛 discrete events, which can be interpreted as an estimation of the
development, fault introduction and fix effort.

In Section 4.4 we describe a real case scenario where these MCs are
exploited to estimate the number of development, fault insertion and fix
commits in the next 𝑛 commits (which covers approximately a month
of activities) and can be directly interpreted by project managers for
decision support.



Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 11. Fault insertion vs. fault fixing when inserter and fixer are topic experts or not.
4.3. Hawkes Model

In order to build the Hawkes Model used in this study, we consid-
ered the following flows of events:

– 𝜆(𝑡)0: as the number of faults inserted/fixed by top 5 developers.
– 𝜆(𝑡)1: as the number of faults inserted/fixed by the rest of the

developers.

To explain how we interpreted the model we introduce the fol-
lowing example which helps to understand how the Hakews’ pro-
cesses are capable of modelling the many events happening during the
development process.

In our case we considered the interaction and relationship among
top-5 fault inserters, top-5 fault fixers and the rest of developers.
Hawkes processes help decipher the role of top-n fault inserters/fixers
with respect to the other developers.

Once the Hawkes model is fitted on data, it will contain some
weights (in a matrix fashion) representing the directional strength of
any interaction between processes interpreted as the expected number
of events on a specific process resulting from an event on another
process.

Fig. 16 represents the Hawkes coefficient matrix, fitted with the
hypothetical data from the our example. This matrix represents the
13
coefficients of the fitted model: along the diagonal we have the coef-
ficients for the self-excitation and the coefficients outside the diagonal
represent the mutual-excitation. We used the right arrow symbol ‘‘←←→’’ to
highlight the direction of the relationship, i.e. 𝜆(𝑡)1 ←←→ 𝜆(𝑡)2 coefficient
represents the strength of the relationship of 𝜆(𝑡)1 events on 𝜆(𝑡)2 and
𝜆(𝑡)2 ←←→ 𝜆(𝑡)1 viceversa.

Figs. 17 and 18 represents the fitted model for all projects consider-
ing the fault insertion in Fig. 17 and fault fixes in Fig. 18. We can see a
variety of different behaviours, let us consider for example Fig. 18(a).
This Hawkes coefficient matrix highlights a general self-excitement re-
lationship of fault insertion considering the developers (non top-5 fault
inserters, right bottom corner) meaning that, considering the whole
time of analysis, super fault-inserters do not influence the fault insertion
behaviour of other developers. On the other hand for the Derby project,
left top corner of Fig. 17(e) shows, on the contrary, that there is a
self-excitement of fault insertion among super fault-inserters.

4.4. Validation

We validate the three models proposed with a real case based on the
Camel project. We selected this project as it is a long running project
providing enough data to train our models. We considered a training
period of two months to build the three stochastic models: (i) Petri net
(ii) Markov Chain and (iii) Hawkes Model, then we used the trained
model to predict the next month of activities to evaluate the accuracy of



Information and Software Technology 158 (2023) 107187

14

M. Ortu et al.

Fig. 12. Scatter-plots of average cyclomatic complexity of files touched. Each symbol represents a different developer. Each point represents the average complexity of a file being
changed.

Fig. 13. Plots of fault inserting and fixing activity of the 20 most active committers in each project. Dotted blue is for fault insertion and solid pink is for fault fixing (including
the most active committer). Lines with no colour below them are the density of the activity for the most active committer during the project. ∗Derby has a very active start, the
most frequent committer reaches a peak density of 6 at the start of the project.



Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 14. Development commits activity model using stochastic Petri Nets.
Table 6
Lambda parameters for Camel.

Training period 𝜆0 𝜆4 − 𝜆5 𝜆2
2016-03-01–2016-04-30 0.213 0.59 0.197
2016-06-01–2016-07-31 0.109 0.656 0.235
2016-09-01–2016-10-31 0.1 0.59 0.31

the predictions. All the three models proposed provide different insights
and different points of view regarding fault insertion/fix behaviour.

4.4.1. Petri Nets
Table 6 shows the lambda parameters for the Petri Net model

estimated for the first two months of each validation period. These
lambda parameters are then used for the steady state analysis of the
last month.

Table 7 shows the transient analysis for the three periods considered
which gives the corresponding probabilities of being in a particular
state for the last month of each period, these probabilities are then
compared with the actual percentages, columns Predicted and Actual
respectively in Table 7.

We can see that the predictions are close to the actual values,
suggesting that in the short term these predictions can be used by
managers for decision support.

4.4.2. Markov Chains
We again considered the same three periods of validation in build-

ing Markov Chains. In this case we considered all commits in the first
two months of each period to build the MC and then we simulated the
probabilities of being in each state after one month. Fig. 19 shows the
results of the simulation for each period.

We used the two months trained model (first row of Fig. 19) to
simulate the last month of each period (second row of Fig. 19) and
compare the probabilities of being in a particular state with the actual
percentages (last row of Fig. 19) of development, fault insertion and fix
commits.

In this case we can see that the predictions are less accurate (looking
at the difference between actual and predicted) compared to the Petri
Net model. This is probably due to the fact that MC are a simpler model
compared to Petri Net, nevertheless they provide an estimation of the
actual percentages that can help decision support and the monitoring
of the development process.
15
4.4.3. Hawkes Model
We evaluated the Hawkes model considering the whole simulation

period. In this case we fitted the model using all the data to highlight
relationships between top-5 fault inserter/fixer developers and other
developers. Fig. 20 shows the coefficients provided by the fitted model.
We can see that the insertion/fix of faults by top-5 inserters/fixers
has a negative effect on insertion/introduction of bugs due to other
developers (top right on coefficient in Fig. 20).

The fault insertion by other developers has a negative self-excitement
(bottom left coefficient Fig. 20(a)) meaning that an insertion of fault
from the other developers is likely to decrease the number of future
fault insertion by other developers. 20(b) shows the four Hawkes
coefficients for the fault fix, along the diagonal we can see that there
is self-excitements effect on both the fix of fault by top developers and
other developers. While there is no mutual-excitement between top 5
developers and the other developers (left bottom corner of 20(b)), we
can clearly see that there is a significant negative effect on fault fix
caused by top 5 developers on the other developers (top right corner
of 20(b)), namely the fault fix of top 5 developers is likely to decrease
the fault fix of other developers (vice versa is not true).

5. Discussion

Software development is usually done in complex socio-technical
teams [47]. Several types of software development teams exist rang-
ing from the historical Chief Programmer teams [48] to the agile
teams [49] that are now very common. Costa et al.’s [50] recent
systematic literature review suggests that, regardless of team type, the
technical attributes of an individual developer are most commonly
used to select team members. Costa et al.’s [50] results confirm the
importance of individual expertise in software development teams. In
addition, Faraj and Sproull’s [51] analysis of 69 software development
teams suggests that: (1) it is important to have a range of expertise on
teams (2) there is knowledge within the team of the available expertise
and (3) expertise in the team should to be effectively coordinated. It
is clear that expertise in software development teams is an important
factor.

The aim of our study was to understand better the role of exper-
tise in the fault insertion and fault fixing behaviour of developers.
Such improved understanding could enable development activities to
be planned and managed more effectively both in terms of resource



Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 15. Markov chains.
Table 7
Probabilities for the three periods considered.
Testing period 𝑃0 𝑃1 𝑃2 𝑃3

Predicted Actual Predicted Actual Predicted Actual Predicted Actual

2016-05-01–2016-05-31 0.635 0.608 0.074 0.132 0.147 0.114 0.144 0.146
2016-08-01–2016-08-31 0.579 0.603 0.131 0.115 0.145 0.135 0.144 0.146
2016-11-01–2016-11-30 0.611 0.615 0.102 0.056 0.141 0.183 0.146 0.146
16



Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 16. Example of Hawkes coefficient matrix.

planning and reduced faults in delivered software. Poor planning and
latent faults in delivered software continue to be at the root of many
software development failures.6 All 70 failed software projects analysed
by Verna et al. [52] suffered from poor project management. Given the
scale of the problem, any small improvements that our approach makes
towards enabling better project management, could make a significant
overall difference to the success of delivered software systems.

Understanding fault fixing and fault insertion behaviour could en-
able teams to be composed more effectively (with the right developers
at the right time in the development process). In addition, the overall
expertise relevant to the needs of the project could also be optimised.
Sablis et al.’s [53] analysis of developer opinions in nine teams suggests
that coordination is needed between teams to ensure the right mix
of expertise is available at any point in time for a specific project.
However, there are many variations of what constitutes an effective
team. Sawyer [47] suggests a variety of hybrid variations on team
types. Project managers need to understand the nature of their team
so that developer expertise information can be used effectively to
enable improved software development outcomes. Expertise is not the
only factor that should be taken into account when forming a team.
For example, the diversity of the team is important [25,54] as is the
effectiveness of team communication [55].

We tried to understand whether it is important that developers have
expertise in the code that they touch. We measure expertise using
topic analysis, which helps to summarise the description of the issues
written by developers. Clustering issues into topics allowed us to assign
a dominant topic to each developer. We have been able to identify the
most frequent topic in the issues that each developer has worked on.
Our findings suggest that faults appear to be inserted by developers
with low expertise in the code topic of the fault. We also find that fault
fixers have slightly more expertise in the topic of the fault, but less
expertise than we expected. Our results provide quantitative support for
Sablis et al.’s [53] findings on the importance of coordinating expertise
within project teams.

We also considered that experience changes over time: both the
experience of a single developer and the general experience of a team
(e.g., new developers could join, and even with a high level of expertise,
they will still have to understand what the team is doing and what
the problems are). Since developers’ experience changes over time,
it is likely that developers’ fault insertion and fixing also changes as
time goes on. We think that discovering how experience changes over
time and the impact on fault insertion and fixing patterns could help
organise the team and the tasks in relation to developers on the project.

We built models of developers’ activities using three different
Stochastic Models: (i) Petri Net, (ii) Markov Chains and (iii) Hawkes
Models. Each of these three modelling approaches offers different
insights into the behaviour of developers. Petri Nets enabled us to

6 https://www.computerworld.com/article/3412197/top-software-failures-
in-recent-history.html.
17
simulate a team of developers (and their fault fixing/insertion pat-
terns). These simulations could allow project managers to predict the
outcome of changes introduced in the team configuration (e.g., new
members joining, different task allocations, etc.). Using Petri Nets in
this way could offer project managers additional insight to complement
the defect prediction models previously presented (e.g. by [12]). Using
Markov Chains it was possible to simulate and predict the percentages
of fault insertion and fixing commits, from which we were able to esti-
mate short term fault fixing behaviour. Finally using the Hawkes Model
we were able to highlight hidden relationships in fault insertion/fixing
behaviour. For example, between the top-n fault inserters and fixers
and the other developers to identify the role of the super-introducers
and super-fixers during the development process. In the future we plan
to evaluate the insight offered by our suite of models with project
managers.

To answer our initial Research Questions:
RQ1: Can we identify those developers most likely to insert and

fix faults in code? Yes, using network analysis techniques it is possible
to characterise developers’ behaviour and identify those most likely to
insert and fix faults. We hope our results can help managers to better
distribute the workload in a team and potentially identify weaknesses
in the development process.

RQ2: Does expertise impact developers’ fault insertion and
fixing? Yes, the expertise of fault fixers is better aligned to the topic of
the fault, and in most cases the developer who inserts the fault is not
an expert in the fault topic (27% to 93% of faults are introduced by
developers whose dominant expertise is not in the topic).

RQ3: Does experience over time on projects impact developers’
fault insertion and fixing? Our results show that the most active
committers show periods of fault insertion followed by fault fixing. The
density of fault fixing for frequent committers seems more sustained
over time compared to other developers. In most projects the introduc-
tion of faults by the most frequent committer drops as a proportion of
faults fixed over time. Specific patterns of activity vary from one project
to another.

RQ4: Can we model developers’ activities with Stochastic mod-
els? Yes, we modelled developers activities in terms of the fault in-
sertion, fault fixing and normal development activities using three
stochastic models: (i) Petri Net (ii) Markov Chains and (iii) Hawkes
models. Using these models, we were able to estimate development
effort.

Our analysis is based on the historical analysis of developer be-
haviour in code bases. As with all such historical analysis it is increas-
ingly obvious that care must be taken in the interpretation of the results
to prevent counterproductive actions, this is especially important given
our work is focused on individual developers and their expertise. Tozun
et al. [56] present a compelling analysis of the dangers that blindly
relying only on historical data can bring. For example, in our data,
project managers must be aware that an analysis of historical behaviour
by individuals may mask recent skills development that would result
in different future behaviours. Similarly, project managers must also
be mindful of measuring the performance of individual developers via
their expertise to avoid the age-old dangers previously associated with
measuring developer productivity without the full context in which the
developer is working [57].

6. Threats to validity & reliability

Internal Validity. Threats to internal validity concern confounding
factors that can influence the obtained results. Based on empirical
evidence, we assume a causal relationship between the topic modelling
of developers and what they write in their discussion.

External Validity. Threats to external validity correspond to the
generalisation of experimental results. In this study, we used several
empirical approaches to evaluate the collaboration network of twelve
Apache projects from GitHub repositories. As the results of the Camel

https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history.html
https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history.html


Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 17. Hawkes process for fault inserters.
Fig. 18. Hawkes process for fault fix.
and Commons JXPath projects suggest, our approach may not always
hold across all open source or close source projects. Projects from
other open source communities may demonstrate different behaviours.
Replications on commercial and other open source projects are needed
to confirm or extend our results. We provide all scripts and data for
other research to replicate this work.

Construct Validity. Developer expertise is a multi faceted challeng-
ing concept to measure. Numerous factors, such as project participation
and use of libraries and frameworks, can proxy developer expertise. It
is unlikely that a single factor exists to measure developer expertise.
We considered the fault insertions and fixes of developers over time, as
well as the complexity of the code they touch. We enhanced this data
by considering experience working on specific code topics. We believe
that, together, this data gives a reasonable approximation of developer
expertise.

After visual inspection we assumed that the network graphs used
for analysing developer activities are not random. This assumption was
on the basis that all the nodes representing the developers in networks
are not fixing all the faults introduced by all the other nodes in the
network.
18
7. Conclusions and future work

We performed a multi-dimensional study to identify patterns of de-
veloper activity over time. We considered the fault insertion and fixing
activity of developers, the familiarity of developers with code topics,
alongside code complexity. Our time-based analysis was performed
throughout the history of twelve Apache projects.

Our findings suggest that analysing developer activity over time
provides insightful information about fault insertion and fixing. In each
of the analysed projects we identify patterns that suggest that certain
developers insert and fix more faults than others as well as developers
who are highly active across the project. Our results also imply that
developers who lack topic expertise are likely to insert more faults
compared to those with more code topic expertise. Our results also
suggest that developers who fix a fault have only marginally more
expertise in the topic of the fault. The impact of code complexity on
fault insertions and fixes over time is not clear.

We plan to extend our analysis to more Open Source projects as
well as to validate our findings on closed source systems. We intend
to implement a dashboard to provide an accessible tool to aid the
management of development activities for the reduction of faults.



Information and Software Technology 158 (2023) 107187M. Ortu et al.
Fig. 19. Validation simulation.
Fig. 20. Hawkes model coefficients from 2016-04-01 To 2016-10-31.
Future analysis will be focused also in better understanding why certain
developers contribute to fault fixing (and fault insertion) more in
certain project than others, and studying the change in requirements
to analyse if there are relationship with faults introduction.

CRediT authorship contribution statement

Marco Ortu: Conceptualization, Methodology, Software, Data cura-
tion, Writing – original draft. Giuseppe Destefanis: Conceptualization,
Methodology, Software, Data curation, Writing – original draft. Tracy
19
Hall: Conceptualization, Methodology, Software, Data curation, Writ-
ing – original draft. David Bowes: Conceptualization, Methodology,
Software, Data curation, Writing – original draft.

Declaration of competing interest

One or more of the authors of this paper have disclosed potential or
pertinent conflicts of interest, which may include receipt of payment,
either direct or indirect, institutional support, or association with an
entity in the biomedical field which may be perceived to have potential



Information and Software Technology 158 (2023) 107187M. Ortu et al.
conflict of interest with this work. For full disclosure statements re-
fer to https://doi.org/10.1016/j.infsof.2023.107187. Tracy Hall, David
Bowes reports that this work is partly funded by grants from the UK’s
Engineering and Physical Sciences Research Council (EP/S005730/1
and EP/S005749/2).

Data availability

Data are available.

Acknowledgements

This work is partly funded by grants from the UK’s Engineering
and Physical Sciences Research Council (EP/S005730/1 and EP/S00
5749/2).

References

[1] C. Hauff, G. Gousios, Matching GitHub developer profiles to job advertisements,
in: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
IEEE, Florence, 2015, pp. 362–366.

[2] P. Thongtanunam, C. Tantithamthavorn, R.G. Kula, N. Yoshida, H. Iida, K.
Matsumoto, Who should review my code? A file location-based code-reviewer
recommendation approach for Modern Code Review, in: 2015 IEEE 22nd
International Conference on Software Analysis, Evolution, and Reengineering,
SANER, IEEE, Montreal, 2015, pp. 141–150.

[3] A. Yadav, S.K. Singh, J.S. Suri, Ranking of software developers based on expertise
score for bug triaging, Inf. Softw. Technol. 112 (2019) 1–17.

[4] G. Catolino, F. Palomba, A. Zaidman, F. Ferrucci, Not all bugs are the same:
Understanding, characterizing, and classifying bug types, J. Syst. Softw. 152
(2019) 165–181.

[5] J. Eyolfson, L. Tan, P. Lam, Do time of day and developer experience af-
fect commit bugginess? in: Proceedings of the 8th Working Conference on
Mining Software Repositories, MSR ’11, Association for Computing Machinery,
New York, NY, USA, 2011, pp. 153–162, http://dx.doi.org/10.1145/1985441.
1985464.

[6] Y. Qiu, W. Zhang, W. Zou, J. Liu, Q. Liu, An empirical study of developer
quality, in: 2015 IEEE International Conference on Software Quality, Reliability
and Security-Companion, IEEE, 2015, pp. 202–209.

[7] M. Zhou, A. Mockus, Developer fluency: Achieving true mastery in soft-
ware projects, in: Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010, pp. 137–146.

[8] O. Dieste, A.M. Aranda, F. Uyaguari, B. Turhan, A. Tosun, D. Fucci, M. Oivo,
N. Juristo, Empirical evaluation of the effects of experience on code quality and
programmer productivity: an exploratory study, Empir. Softw. Eng. 22 (5) (2017)
2457–2542.

[9] S. Baltes, S. Diehl, Towards a theory of software development expertise, in: Pro-
ceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ACM,
NY, USA, 2018, pp. 187–200.

[10] C. Bird, N. Nagappan, B. Murphy, H. Gall, P. Devanbu, Don’t touch my code!
Examining the effects of ownership on software quality, in: Proceedings of
the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ACM, NY, USA, 2011, pp. 4–14.

[11] M. Greiler, K. Herzig, J. Czerwonka, Code ownership and software quality: A
replication study, in: Proceedings of the 12th Working Conference on Mining
Software Repositories, IEEE, Florence, 2015, pp. 2–12.

[12] S. Ozcan Kini, A. Tosun, Periodic developer metrics in software defect prediction,
in: 2018 IEEE 18th International Working Conference on Source Code Analysis
and Manipulation, IEEE, Madrid, 2018, pp. 72–81.

[13] D. Bowes, G. Destefanis, T. Hall, J. Petric, M. Ortu, Fault-insertion and fault-
fixing: analysing developer activity over time, in: Proceedings of the 16th ACM
International Conference on Predictive Models and Data Analytics in Software
Engineering, 2020, pp. 41–50.

[14] A. Mockus, J.D. Herbsleb, Expertise browser: a quantitative approach to identi-
fying expertise, in: Proceedings of the 24th International Conference on Software
Engineering., IEEE, Orlando, 2002, pp. 503–512.

[15] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, M. Nakamura, An analysis
of developer metrics for fault prediction, in: Proceedings of the 6th International
Conference on Predictive Models in Software Engineering, ACM, NY, USA, 2010.

[16] M. Foucault, M. Palyart, X. Blanc, G.C. Murphy, J.-R. Falleri, Impact of developer
turnover on quality in open-source software, in: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ACM, NY, USA, 2015,
pp. 829–841.
20
[17] J. Businge, S. Kawuma, E. Bainomugisha, F. Khomh, E. Nabaasa, Code authorship
and fault-proneness of open-source android applications: An empirical study, in:
Proceedings of the 13th International Conference on Predictive Models and Data
Analytics in Software Engineering, ACM, NY, USA, 2017, pp. 33–42.

[18] T. Fritz, G.C. Murphy, E. Hill, Does a programmer’s activity indicate knowledge
of code? in: Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ACM, NY, USA, 2007, pp. 341–350.

[19] F. Rahman, P. Devanbu, Ownership, experience and defects: a fine-grained study
of authorship, in: Proceedings of the 33rd International Conference on Software
Engineering, 2011, pp. 491–500.

[20] H. Hokka, F. Dobslaw, J. Bengtsson, Linking developer experience to coding style
in open-source repositories, in: 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER, IEEE, 2021, pp. 516–520.

[21] W. Zhu, M.W. Godfrey, Mea culpa: How developers fix their own simple
bugs differently from other developers, in: 2021 2021 IEEE/ACM 18th In-
ternational Conference on Mining Software Repositories (MSR), MSR, IEEE
Computer Society, Los Alamitos, CA, USA, 2021, pp. 515–519, http://dx.doi.org/
10.1109/MSR52588.2021.00065, https://doi.ieeecomputersociety.org/10.1109/
MSR52588.2021.00065.

[22] J. Wang, X. Meng, H. Wang, H. Sun, An online developer profiling tool based
on analysis of GitLab repositories, in: Y. Sun, T. Lu, Z. Yu, H. Fan, L. Gao
(Eds.), Computer Supported Cooperative Work and Social Computing, Springer
Singapore, Singapore, 2019, pp. 408–417.

[23] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation, J. Mach. Learn. Res.
3 (Jan) (2003) 993–1022.

[24] E. Constantinou, G.M. Kapitsaki, Identifying developers’ expertise in social coding
platforms, in: 2016 42th Euromicro Conference on Software Engineering and
Advanced Applications, IEEE, Limassol, 2016, pp. 63–67.

[25] B. Vasilescu, D. Posnett, B. Ray, M.G. van den Brand, A. Serebrenik, P. Devanbu,
V. Filkov, Gender and tenure diversity in GitHub teams, in: Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems, ACM,
NY, USA, 2015, pp. 3789–3798.

[26] J.E. Montandon, L.L. Silva, M.T. Valente, Identifying experts in software libraries
and frameworks among GitHub users, in: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories, IEEE, Montreal, 2019, pp. 276–287.

[27] P.C. Rigby, Y.C. Zhu, S.M. Donadelli, A. Mockus, Quantifying and mitigating
turnover-induced knowledge loss: Case studies of chrome and a project at avaya,
in: 2016 IEEE/ACM 38th International Conference on Software Engineering,
IEEE, Austin, 2016, pp. 1006–1016.

[28] T.F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang, L. Reveillere, Empirical
evaluation of bug linking, in: 2013 17th European Conference on Software
Maintenance and Reengineering, IEEE, 2013, pp. 89–98.

[29] D. Bowes, J. Petrić, T. Hall, BugVis: Commit slicing for fault visualisation, in:
Proceedings of the 28th International Conference on Program Comprehension,
2020, pp. 436–440.

[30] J. Sliwerski, T. Zimmermann, A. Zeller, When do changes induce fixes? in: Pro-
ceedings of the 2005 International Workshop on Mining Software Repositories,
ACM, NY, USA, 2005, pp. 1–5.

[31] G. Rodríguez-Pérez, G. Robles, J.M. González-Barahona, Reproducibility and
credibility in empirical software engineering: A case study based on a systematic
literature review of the use of the SZZ algorithm, Inf. Softw. Technol. 99 (2018)
164–176.

[32] D. Bowes, S. Counsell, T. Hall, J. Petric, T. Shippey, Getting defect prediction
into industrial practice: the elff tool, in: 2017 IEEE International Symposium on
Software Reliability Engineering Workshops, ISSREW, IEEE, 2017, pp. 44–47.

[33] E. Kouters, B. Vasilescu, A. Serebrenik, M.G. Van Den Brand, Who’s who
in Gnome: Using LSA to merge software repository identities, in: 2012 28th
IEEE International Conference on Software Maintenance, ICSM, IEEE, 2012, pp.
592–595.

[34] T. Fry, T. Dey, A. Karnauch, A. Mockus, A dataset and an approach for identity
resolution of 38 million author ids extracted from 2b git commits, in: Proceedings
of the 17th International Conference on Mining Software Repositories, 2020, pp.
518–522.

[35] I.S. Wiese, J.T. Da Silva, I. Steinmacher, C. Treude, M.A. Gerosa, Who is who
in the mailing list? Comparing six disambiguation heuristics to identify multiple
addresses of a participant, in: 2016 IEEE International Conference on Software
Maintenance and Evolution, ICSME, IEEE, 2016, pp. 345–355.

[36] A. Meneely, L. Williams, W. Snipes, J. Osborne, Predicting failures with developer
networks and social network analysis, in: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ACM, Atlanta,
2008, pp. 13–23.

[37] F. Thung, T.F. Bissyande, D. Lo, L. Jiang, Network structure of social coding
in github, in: 2013 17th European Conference on Software Maintenance and
Reengineering, IEEE, Genova, 2013, pp. 323–326.

[38] U. Brandes, A faster algorithm for betweenness centrality, J. Math. Sociol. 25
(2) (2001) 163–177.

[39] D.M. Blei, J.D. Lafferty, Dynamic topic models, in: Proceedings of the 23rd
International Conference on Machine Learning, ACM, NY, USA, 2006, pp.
113–120.

https://doi.org/10.1016/j.infsof.2023.107187
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb1
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb1
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb1
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb1
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb1
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb2
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb2
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb2
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb2
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb2
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb2
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb2
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb2
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb2
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb3
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb3
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb3
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb4
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb4
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb4
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb4
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb4
http://dx.doi.org/10.1145/1985441.1985464
http://dx.doi.org/10.1145/1985441.1985464
http://dx.doi.org/10.1145/1985441.1985464
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb6
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb6
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb6
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb6
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb6
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb7
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb7
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb7
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb7
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb7
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb8
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb8
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb8
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb8
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb8
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb8
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb8
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb9
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb9
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb9
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb9
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb9
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb9
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb9
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb10
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb10
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb10
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb10
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb10
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb10
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb10
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb11
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb11
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb11
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb11
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb11
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb12
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb12
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb12
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb12
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb12
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb13
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb13
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb13
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb13
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb13
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb13
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb13
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb14
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb14
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb14
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb14
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb14
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb15
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb15
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb15
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb15
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb15
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb16
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb16
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb16
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb16
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb16
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb16
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb16
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb17
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb17
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb17
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb17
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb17
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb17
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb17
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb18
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb18
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb18
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb18
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb18
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb18
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb18
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb19
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb19
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb19
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb19
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb19
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb20
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb20
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb20
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb20
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb20
http://dx.doi.org/10.1109/MSR52588.2021.00065
http://dx.doi.org/10.1109/MSR52588.2021.00065
http://dx.doi.org/10.1109/MSR52588.2021.00065
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00065
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00065
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00065
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb22
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb22
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb22
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb22
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb22
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb22
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb22
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb23
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb23
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb23
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb24
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb24
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb24
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb24
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb24
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb25
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb25
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb25
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb25
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb25
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb25
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb25
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb26
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb26
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb26
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb26
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb26
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb27
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb27
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb27
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb27
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb27
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb27
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb27
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb28
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb28
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb28
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb28
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb28
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb29
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb29
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb29
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb29
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb29
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb30
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb30
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb30
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb30
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb30
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb31
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb31
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb31
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb31
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb31
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb31
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb31
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb32
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb32
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb32
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb32
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb32
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb33
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb33
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb33
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb33
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb33
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb33
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb33
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb34
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb34
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb34
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb34
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb34
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb34
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb34
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb35
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb35
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb35
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb35
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb35
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb35
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb35
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb36
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb36
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb36
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb36
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb36
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb36
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb36
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb37
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb37
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb37
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb37
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb37
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb38
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb38
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb38
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb39
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb39
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb39
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb39
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb39


Information and Software Technology 158 (2023) 107187M. Ortu et al.
[40] Y.B. Kim, J. Lee, N. Park, J. Choo, J.-H. Kim, C.H. Kim, When Bitcoin encounters
information in an online forum: Using text mining to analyse user opinions and
predict value fluctuation, PLoS One 12 (5) (2017) 1–14.

[41] M. Röder, A. Both, A. Hinneburg, Exploring the space of topic coherence
measures, in: Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining, 2015, pp. 399–408.

[42] M.F. Neuts, A versatile Markovian point process, J. Appl. Probab. (1979)
764–779.

[43] A. Hawkes, Spectra of some self-exciting and mutually exciting point processes,
Biometrika (1971).

[44] T. Shippey, D. Bowes, T. Hall, Automatically identifying code features for
software defect prediction: Using AST N-grams, Inf. Softw. Technol. 106 (2019)
142–160.

[45] M.I. Jordan, Learning in Graphical Models:[Proceedings of the NATO Advanced
Study Institute: Ettore Mairona Center, Erice, Italy, September 27-October 7,
1996], Vol. 89, Springer Science & Business Media, 1998.

[46] T.A. Snijders, The statistical evaluation of social network dynamics, Sociol.
Methodol. 31 (1) (2001) 361–395.

[47] S. Sawyer, Software development teams, Commun. ACM 47 (12) (2004) 95–99.
[48] F.T. Baker, Chief programmer team management of production programming, in:

Classics in Software Engineering, Yourdon Press, USA, 1979, pp. 63–82.
[49] A. Cockburn, J. Highsmith, Agile software development, the people factor,

Computer 34 (11) (2001) 131–133.
21
[50] A. Costa, F. Ramos, M. Perkusich, E. Dantas, E. Dilorenzo, F. Chagas, A. Meireles,
D. Albuquerque, L. Silva, H. Almeida, A. Perkusich, Team formation in software
engineering: A systematic mapping study, IEEE Access 8 (2020) 145687–145712,
http://dx.doi.org/10.1109/ACCESS.2020.3015017.

[51] S. Faraj, L. Sproull, Coordinating expertise in software development teams,
Manage. Sci. 46 (12) (2000) 1554–1568.

[52] J. Verner, J. Sampson, N. Cerpa, What factors lead to software project failure? in:
2008 Second International Conference on Research Challenges in Information
Science, 2008, pp. 71–80, http://dx.doi.org/10.1109/RCIS.2008.4632095.

[53] A. Sablis, D. Smite, N. Moe, Team-external coordination in large-scale
software development projects, J. Softw.: Evol. Process 33 (3) (2021) e2297,
http://dx.doi.org/10.1002/smr.2297, https://onlinelibrary.wiley.com/doi/abs/
10.1002/smr.2297, e2297 smr.2297.

[54] M. Ortu, G. Destefanis, S. Counsell, S. Swift, R. Tonelli, M. Marchesi, How diverse
is your team? Investigating gender and nationality diversity in GitHub teams, J.
Softw. Eng. Res. Dev. 5 (1) (2017) 1–18.

[55] E. Bjarnason, B. Gislason Bern, L. Svedberg, Inter-team communication in large-
scale co-located software engineering: a case study, Empir. Softw. Eng. 27 (2)
(2022) 1–43.

[56] E. Tüzün, H. Erdogmus, M.T. Baldassarre, M. Felderer, R. Feldt, B. Turhan,
Ground truth deficiencies in software engineering: when codifying the past can
be counterproductive, IEEE Softw. (2021).

[57] C. Jaspan, C. Sadowski, No single metric captures productivity, in: Rethinking
Productivity in Software Engineering, Springer, 2019, pp. 13–20.

http://refhub.elsevier.com/S0950-5849(23)00041-1/sb40
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb40
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb40
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb40
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb40
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb41
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb41
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb41
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb41
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb41
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb42
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb42
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb42
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb43
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb43
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb43
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb44
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb44
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb44
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb44
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb44
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb45
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb45
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb45
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb45
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb45
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb46
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb46
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb46
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb47
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb48
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb48
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb48
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb49
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb49
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb49
http://dx.doi.org/10.1109/ACCESS.2020.3015017
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb51
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb51
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb51
http://dx.doi.org/10.1109/RCIS.2008.4632095
http://dx.doi.org/10.1002/smr.2297
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2297
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2297
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2297
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb54
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb54
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb54
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb54
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb54
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb55
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb55
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb55
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb55
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb55
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb56
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb56
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb56
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb56
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb56
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb57
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb57
http://refhub.elsevier.com/S0950-5849(23)00041-1/sb57

	Fault-insertion and fault-fixing behavioural patterns in Apache Software Foundation Projects
	Introduction
	Background
	Methods
	Open Source Projects Analysed
	Data Extraction
	Data Cleaning and Analysis
	Network Analysis
	Topic Modelling
	Petri-nets
	Hawkes Models
	Markov Chain Model

	Results
	RQ1: Can we identify those developers most likely to insert and fix faults in code?
	RQ2: Does expertise impact developers' fault insertion and fixing?
	RQ3: Does experience over time on projects impact developers' fault insertion and fixing?
	RQ4: Can we model developers' activities with Stochastic models?
	Petri nets
	Markov Chain Model
	Hawkes Model
	Validation
	Petri Nets
	Markov Chains
	Hawkes Model


	Discussion
	Threats to Validity & Reliability
	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


