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Abstract
Ultrasound is a readily available, non-invasive and low-cost screening for the identification of endometriosis lesions, but its

diagnostic specificity strongly depends on the experience of the operator. For this reason, computer-aided diagnosis tools

based on Artificial Intelligence techniques can provide significant help to the clinical staff, both in terms of workload

reduction and in increasing the overall accuracy of this type of examination and its outcome. However, although these

techniques are spreading rapidly in a variety of domains, their application to endometriosis is still very limited. To fill this

gap, we propose and evaluate a novel multi-scale ensemble approach for the automatic segmentation of endometriosis

lesions from transvaginal ultrasounds. The peculiarity of the method lies in its high discrimination capability, obtained by

combining, in a fusion fashion, multiple Convolutional Neural Networks trained on data at different granularity. The

experimental validation carried out shows that: (i) the proposed method allows to significantly improve the performance of

the individual neural networks, even in the presence of a limited training set; (ii) with a Dice coefficient of 82%, it

represents a valid solution to increase the diagnostic efficacy of the ultrasound examination against such a pathology.
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1 Introduction

Endometriosis is defined as a chronic benign inflammatory

disease of the female genitalia and pelvic peritoneum,

characterized by the abnormal presence of endometrial-like

tissue outside the uterus. It affects approximately 10% of

reproductive-age women worldwide [1]. Currently, there

are no ways to prevent the onset of the disease, nor is there

a definitive cure for endometriosis; existing treatments aim

to control the symptoms.

The gold standard for the diagnosis of endometriosis is

laparoscopy, a micro-invasive surgical method capable of

accurately identifying the signs of the disease by direct

visualization of the tissue, which allows obtaining histo-

logical diagnosis. However, the early diagnostic suspicion

is based on a careful analysis of patients’ symptoms, often

associated with non-invasive examination techniques,

including Transvaginal Ultrasound (TVUS) and Magnetic

Resonance Imaging (MRI) [2]. While non-invasive tech-

niques lack in accuracy compared to laparoscopy, in cases

where the patient has developed cysts (i.e.,
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endometriomas), adhesions or deep nodule forms, TVUS

and MRI are effective in their detection [3].

In particular, whereas MRI may have some limitations

related to costs and accessibility, medical ultrasonography

is a risk-free and low-cost ultrasound-based procedure,

whose main drawback is due to the high dependence

between its diagnostic effectiveness and the expertise of

the involved clinical staff. It is used: (i) as a supporting

examination in suspected cases; (ii) to monitor the progress

of the disease and the response to medical treatments; and,

(iii) for adequate preparation for laparoscopy. Unfortu-

nately, the use of such procedure by the hand of not suf-

ficiently experienced professionals can result in 3–11 years

of delay in the diagnosis of this condition [4].

To overcome these limitations, in this study, we propose

a novel solution based on Artificial Intelligence techniques,

to implement a decision support system (DSS) for the

analysis of transvaginal ultrasound and to improve the

diagnostic efficacy of this method.

Specifically, the proposed approach exploits the possi-

bilities offered by Deep Learning and Computer Vision to

define a multi-scale ensemble of Convolutional Neural

Networks (CNNs), able to recognize and segment

endometriosis lesions detected in ultrasound images. Its

underlying idea lies in the findings of [5], according to

which the optimal selection of the image resolution has the

potential to enhance the performance of neural models in

several radiology-based machine learning tasks. However,

the choice of the best value is not trivial: higher resolutions

often allow to improve the segmentation accuracy, partic-

ularly for lesion edges; conversely, an excessive level of

detail may not necessarily help the networks’ ability to

discern between lesions and healthy tissue [5, 6]. Hence,

through the proposed approach, we aimed to capture and

combine the different peculiarities that can be extracted

from multiple resolutions of the treated images, leveraging

evidence that aggregating contextual information may

improve segmentation accuracy [7]. The results obtained

through the experimental validation confirm the validity of

this intuition.

In light of the above, the main contributions of this work

can be summarized as follows:

1. we propose a novel and pioneering Convolutional

Neural Network ensemble-based approach for the

automatic identification and segmentation of

endometriotic lesions in transvaginal ultrasounds;

notably, to the best of our knowledge, this is the first

scientific work to tackle this task through Deep

Learning and Computer Vision techniques;

2. we experimentally demonstrate that training and

applying the models—in a fusion fashion—on multiple

resolutions of the input images, through the proposed

multi-scale approach, allows for significant improve-

ment in the accuracy of the obtained segmentation; in

particular, this behavior is observed for all the types of

neural networks considered;

3. we test the proposed method on a dataset annotated by

experienced medical staff, showing how not only the

results achieved in the automatic segmentation task are

satisfactory even in the presence of a limited training

set, but that both in quantitative and qualitative terms

they confirm the goodness of this approach for the

prospective development of a Computer-Aided Diag-

nosis (CAD) system specifically dedicated to the

endometriosis pathology.

The remainder of this manuscript is structured as follows.

In Sect. 2, we explore the related work, with a specific

focus on the existing solutions for the analysis of ultra-

sound images in the gynecological field. Then, in Sect. 3,

we illustrate in detail the proposed multi-scale ensemble-

based approach, while in Sect. 4, we describe the experi-

mental setup adopted, with particular attention to the

employed dataset and the augmentation and optimization

techniques adopted. Results are shown and thoroughly

discussed in Sect. 5. Finally, Sect. 6 concludes the work

and outlines the most promising future research directions.

2 Related work

Ultrasound (US) serves as a non-invasive imaging tech-

nique for the examinations of the human body and internal

structures. On the other hand, medical image segmentation

aims to facilitate the differentiation and localization of

anatomical changes in medical images, including ultra-

sound ones. Considering its impact on computer-aided

systems, medical image segmentation stands out as a

deeply explored problem in literature, where many

methodologies tailored to diverse pathologies have been

proposed. Among the most exploited techniques in the past

decade have been thresholding [8], clustering [9], water-

shed [10], active contour models [11], and neural networks

[12]. Neural networks represent a truly breakthrough in the

field, and almost all of the recent literature is devoted to

exploring and improving such technologies. Zhao et al.

[13] take advantage of a U-net-like architecture for Nerve

segmentation in ultrasound images, reaching a mean dice

score of 65%. The authors in [14] explored segmentation of

brachial plexus nerves from ultrasound images using dif-

ferent Deep Convolutional Neural Networks (Deep CNNs)

combined with a preprocessing strategy to reduce speckle

noise. Their best configuration consisted of a M-Net with a

Prewitt edge filter that reached a Dice score of 88%. Xue

et al. [15] developed a global guidance network (i.e., GG-
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Net) for breast lesion segmentation. Podda, et al. [16]

devised an end-to-end, fully automatic pipeline for the

classification and segmentation of breast lesions introduc-

ing a cyclic mutual optimization strategy, which iteratively

and reciprocally exploits the contribution of the classifi-

cation step to improve the segmentation step, and vice

versa. Similarly, Lei et al. [17] proposed a deep learning-

based method for male pelvic multi-organ segmentation on

transrectal ultrasound images. They developed an anchor-

free Mask CNN-based architecture to segment prostate,

bladder, rectum, and urethra simultaneously. Their method

obtained a dice coefficient of 75% for the bladder, 93% for

the prostate, 90% for the rectum, and 86% for the urethra.

Furthermore, [18] introduces a novel Multi Expert fusion

(MXF) framework to segment 3D transrectal ultrasound

images of the prostate where three different CNNs are

trained in parallel on a specific slice viewing and final

segmentation volume is obtained through a specialized

fusion network.

Despite the fact, however, that endometriosis is a fairly

common gynecological condition, to the best of our

knowledge, this work is the first in the literature to

specifically address the problem of automatically seg-

menting endometriosis lesions from transvaginal ultra-

sounds. For the above reason, the remainder of this section

is focused on relevant approaches applied to correlated

challenges.

In this context, a seminal work is represented by the one

proposed by Singhal et al. [19]; here, the authors introduce

a fully automated method to assess the endometrium

thickness from 3D transvaginal ultrasound. Their method

combines Deep Learning techniques with level set seg-

mentation, embedding the output feature map of a Con-

volutional Neural Network in the segmentation energy

function of a hybrid variational curve propagation model.

Similarly, an automatic approach for the endometrium

thickness measurement from 2D ultrasound has been pro-

posed by Hu et al. [20]. Their pipeline involves an initial

step of segmentation of the endometrium, employing a

VGG-based U-Net, and a second step of endometrial

thickness estimation through a medial axis transformation.

Within the same scope, Park et al. [21] developed a

novel framework that provides robust endometrium seg-

mentation against ambiguous boundaries and heteroge-

neous textures of TVUS images. The authors identified

four key points, i.e., meaningful zones that are related to

the characteristics of the endometrial morphology, to guide

a discriminator network in distinguishing a predicted seg-

mentation map from a ground-truth segmentation map.

Such a key-point discriminator improved the baseline

performance. On the other hand, Thampi et al. [22] focused

on the automatic segmentation of endometrial cancer from

ultrasounds images, through level set and Otsu’s

thresholding methods. From a broader perspective, Usha

et al. [23] investigate the automatic measurement of the

ovarian size and its shape parameters assessment to help

experts make a quick diagnosis. In contrast, Jin et al. [24]

analyze the accuracy of segmentation algorithms based on

multiple U-net models, applied to ultrasound images, in

patients with ovarian cancer.

3 Materials and methods

Building on the results obtained from existing work, this

study addresses the problem of automatically and robustly

identifying and segmenting endometriosis lesions from

transvaginal ultrasound images. Such an approach mainly

exploits Deep Ensemble Learning and Computer Vision

techniques, and explores the impact of the input TVUS

image resolutions on the segmentation performance, to

combine a set of individual models to improve the overall

method effectiveness and accuracy.

3.1 CNN-based segmentation

The backbone of the proposed method is built upon U-net

[25], a novel architecture of Convolutional Neural Network

(CNN), originally proposed in 2015 and specifically

designed to tackle image segmentation tasks in the

biomedical field. Its success depends on the ability of such

an architecture to return an output with: (i) a size similar to

the input; and, (ii) a high spatial resolution, making it ideal

for cases in which we aim to generate a mask that faithfully

reproduces the shape of the target to be identified. To the

best of our knowledge, this work is the first to propose the

use of U-net for the automatic segmentation of

endometriotic lesions.

The U-net architecture, depicted in Fig. 1, is composed

of two parts. The first, namely the contraction phase,

shares the typical encoder-based structure of many CNN

classifiers: input is processed by the convolutional layers to

extract the image features, while dimensions are down-

sampled by the pooling layers. To recover the spatial

information lost during the contraction phase, a second

phase makes use of skip connections to concatenate feature

maps with the same dimensions (shown as gray arrows in

Fig. 1), acting as a decoder. These two phases give the

layout of the architecture a typical U-shape, from which

this network takes its name.

3.2 Multi-scale ensemble of U-nets

Analyzing the performance of U-net on a preliminary

subset of TVUS images, we noticed a significant degree of

variability in the segmentation performance obtained. This
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behavior might depend on the considerable heterogeneity

of endometriotic lesions, whose sizes, shapes, edge

roughness, and surrounding tissues tend to differ markedly

from one patient to another, similar to what has been

observed in related medical tasks [26, 27]. However, since

the goal of the proposed tool is to support the clinical staff

in the identification and diagnosis of endometriosis, an

essential requirement is to ensure the robustness and sta-

bility of the obtained predictions, thus minimizing the

variance of the method.

To overcome this limitation, in this study, we propose a

multi-scale ensemble of convolutional neural networks,

where a single U-net architecture is trained multiple times

with different input resolutions, in order to generate sepa-

rate models capable of better capturing the characteristics

of ultrasound images at different granularity. The proposed

strategy is partially inspired by the bagging predictors [28],

in which a set of identical models are trained in parallel on

different random portions of the dataset and then aggre-

gated through some voting process. In particular, bagging

has been proven to be effective on unstable learning

algorithms [28], i.e., those in which small variations in the

training set may result in large variations in predictions.

Neural networks are an example of unstable learning

algorithms [29].

The basic idea is to obtain a set of complementary

models: those trained on lower resolutions, thanks to a

lower presence of details in the image, may be more suit-

able to identify the number and location of lesions; on the

other hand, those trained on higher resolutions, having a

deeper level of detail, are able to segment more accurately

the existing lesions, although at the expense of potential

exposure to a greater number of false positives. Through

the use of appropriate fusion and ensemble techniques, the

objective is then to balance the specificities of the different

models obtained.

3.3 Fusion strategy

To achieve the aforementioned purposes, we trained dif-

ferent U-net models with 64 � 64, 128 � 128,

224 � 224 and 256 � 256 resolution images, respec-

tively; then, we compared the segmentation performance of

the models obtained for each of these resolutions.

In order to make the method more robust, reducing the

variance of the results obtained, the proposed fusion

strategy leverages on an ensemble strategy in which,

basically, the single-scale model that shows the highest

accuracy in the validation set is denoted as a strong learner

(SL), whereas the remaining configurations are marked as

weak learners (WL). The motivation behind this choice lies

in the fact that, from an aprioristic point of view, the strong

learner shows superior performances in comparison with

the other (weaker) models; consequently, unifying all the

predictions through a flat voting policy may degrade such a

result. On the contrary, enhancing the outputs of the weak

models in a fusion fashion allow to correct the possible

imperfections of the strong learner prediction and thus

improve the general accuracy of the method. Note that this

hypothesis has been experimentally verified through some

preliminary tests. These experiments showed that the pro-

posed fusion method performed systematically better, for

all the backbone architectures considered, than a peer

learners approach (i.e., an approach where all the single-

scale models have equal voting dignity), in both a soft-

voting and a hard voting context—note that such tech-

niques have, besides, led to very similar results. We also

tested the possibility of selecting the strong learner

according to different criteria than electing the model with

the best performance in validation (e.g., the single-scale

model with the higher input resolution, or a randomly

determined model, or a pair of two SLs instead of one only).

In all these attempts, the proposed fusion method proved to

be significantly more accurate (with an improvement

[ 2% in every considered scenario), and therefore, we

decided to continue on this path.

Fig. 1 Schematic diagram of the U-net architecture
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Figure 2 graphically illustrates the proposed pipeline.

The adopted procedure is as follows: the weak learners’

candidate segmentations are combined into a single better

segmentation mask through hard voting (i.e., a majority

voting that assigns equal weights to each candidate and

designates each pixel with the label that the most seg-

mentations agree on). Since the segmentation masks

returned by U-net are probability maps, while the final

mask we want to obtain is binary, a threshold t is applied

(we set t ¼ 0:5). Hence, pixels with probability values

above this threshold are considered in foreground (i.e., part

of the endometriosis lesion), while the others are labeled as

background.

As we employ three WL models, each pixel receives

three votes. Hence, we consider such pixel as belonging to

a lesion if it receives at least two votes (i.e., the majority).

This pixel-wise ensemble decision can be formalized as

follows:

ŷ ¼ max
C

j¼1

XT

t¼1

vt;j ð1Þ

where C represents the number of classes (background and

foreground, in our case), T is the number of ensemble

models, and the summation
PT

t¼1 vt;j indicates the sum of

the votes assigned from the models fWL0; ::WLtg to each

class j.

The ensemble of weak learners, that for sake of clarity

we hereafter denote as WEns, is then combined—in our

pipeline—with the prediction of the strong learner by fol-

lowing a more sophisticated strategy.

We thus generate two new images, indicated with I and

U. The first one is obtained as the intersection between the

segmentation masks Ma ¼ maskWEns
and Mb ¼ maskWEns

produced, respectively, by the weak learners’ ensemble and

the strong learner (i.e., I ¼ Ma \Mb), that considers only

the region of interest common to both masks. The above

solution is employed to reduce the probability of consid-

ering regions that do not really belong to a lesion.

In an analogous way, the second image U is determined

as the union between the mask generated by the weak

learners’ ensemble and the mask produced by the strong

learner, respectively (i.e., U ¼ Ma [Mb). It contains all the

regions identified by the two models, including those not in

common. The newly generated images I and U are then

finally merged through morphological reconstruction. This

process can be conceptually summarized as an iterative

combination of the mathematical procedures of dilation

and erosion to refine an image, called marker, until its

contours fit under a second image, called mask [30]. In our

pipeline, the marker is the image resulting from the inter-

section (I), while the mask image is the result of the union

(U). With this procedure, our method aims to better iden-

tify the area of interest that most likely belongs to the

lesion and, subsequently, to reconstruct the lesion shape of

the lesion which can be lost after the image intersection.

To sum up, the proposed ensemble consists of two

phases: (i) a first step where masks generated by a set of

weak learners are fused through a hard-voting policy; and

(ii) a second stage to combine, by means of the morpho-

logical reconstruction, the image obtained from the previ-

ous step and the mask generated by the strong learner, to

capture the peculiarities of each.

4 Experimental setup

The proposed solution was developed in Python 3.8 lan-

guage, equipped with the OpenCV 4.5.1, scikit-

image 0.18.1, scikit-learn 0.24.2, Numpy

1.19.5, Keras 2.6.0 and Tensorflow 2.6.0

libraries.

We ran the experiments on a desktop computer with

4.10 GHz CPU, 32GB RAM, and a NVIDIA GeForce GTX

1060 Max-Q graphic card with 6GB dedicated DDR5

RAM and 1280 CUDA Cores.

Fig. 2 Schema of the proposed multi-scale strategy, based on four

parallel CNN models. The best performing network (at the validation

stage) is denoted as strong learner (SL), while the rest serve as weak

learners (WLs) whose predicted masks are fused by a hard voting.

The result is then combined with the SL’s output through morpho-

logical reconstruction to produce a robust final prediction
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4.1 Dataset collection and annotation

The dataset used has been collected and anonymized by the

personnel of the ‘‘Duilio Casula‘‘ Hospital of Cagliari,

Italy, and kindly granted for the purposes of this study. It

includes 75 transvaginal ultrasound images acquired from

patients with endometriosis, including, in particular, bowel

deep endometriotic lesions. Notably, all the samples have

been manually annotated by expert medical operators, i.e.,

each image is accompanied by a pixel-wise annotation

which represents its ground-truth segmentation mask.

For the annotation phase, we provided Hasty,1 a free in-

browser tool, to the medical operators. It allows to easily

annotate data to train models for artificial intelligence

tasks. In particular, it shows to be effective for the visual

marking of elements of interest in image data, as for the

endometriosis lesions of our case. Figure 3 illustrates the

main screen of a Hasty project. The left panel features both

automatic and manual tools; the first ones exploit AI-driven

algorithms to facilitate the marking process. For the pur-

pose of this study, the annotation has been done with

manual tools only, such as the brush and the polygon area

selector.

Although limited in size, the endometriosis dataset

collected and annotated using the aforementioned proce-

dure is, to our knowledge, the first in the literature based on

ultrasound images. However, a similar dataset collected by

Leibetseder et al. [31] is available, which provides seg-

mentation and bounding box masks, but whose images are

extracted from video sequences during laparoscopic

procedures.

4.2 Data augmentation

To overcome the size limitations of the dataset, we adopted

a preliminary step of data augmentation. Instead of the

canonical augmentation methods offered by the Keras

library, we opted for those provided by the Albumen-

tation one [32], which implements a larger variety of

transformations. More precisely, we applied some aug-

mentation techniques to the sample in the training set only,

to increase the variability of the data and improve the

generalization capabilities of the model. For a fair pre-

sentation of the results, these augmentation techniques

were applied identically to all models used, including the

state-of-the-art competitor methods considered in the

remainder of this work. Conversely, no transformation

aimed at improving the quality of the ultrasound images is

applied at inference time.

Hence, for the training set only, we generated no. 5 new

transformed images for every original one: each new

sample is the result of several transformations applied in

combination, according to a given probability. Specifically,

our augmentation pipeline consists of the following trans-

formations: (i) horizontal flip, (ii) ISO and multiplicative

noise, (iii) random zoom, (iv) transposition, (v) grid dis-

tortion, and (vi) contrast limited adaptive histogram

equalization (CLAHE).

4.3 Metrics

To evaluate the results obtained by the proposed method,

we employ two metrics commonly used in the context of

segmentation tasks in several application domains. The first

is the Dice coefficient (Dice), defined as:

Dice ¼ 2 � kA \ Bk
kAk þ kBk ¼ 2TP

2TPþ FPþ FN
ð2Þ

while the second is the Jaccard similarity coefficient (Jac),

sometimes referred also as Intersection over Union (IoU)

and expressed as:

Jac ¼ Intersection Area

Union Area
¼ kA \ Bk

kA [ Bk ¼ TP

TPþ FPþ FN

ð3Þ

Moreover, to determine how many lesions are actually

correctly identified, we adopted a detection system based

on the overlap criterion, according to which a lesion is

correctly identified only if the obtained mask is not empty

and its Jaccard similarity coefficient is greater than 0.5.

Thus, based on the generated labels, we calculate the de-

tection accuracy (dACC), with the prefix d denoting the

dependence on the detection system chosen. Its equation is

then defined as it follows:

dACC ¼ TPþ TN

TPþ TN þ FPþ FN
ð4Þ

4.4 Training hyperparameters

The neural networks involved in this work were all trained

by adopting the following parameters, selected within the

validation set: the batch size is set to 16, the optimizer is

Adam [33] and the maximum number of training epochs is

fixed to 100. However, an early stopping strategy with 30

epochs patience is employed (i.e., the training is inter-

rupted if the validation Dice coefficient has not improved

in the last 30 epochs). We also tested several loss functions

commonly adopted in segmentation tasks, like the region-

based Dice Loss [34] and the Tversky loss [35], although

the best results were obtained by using the distribution-

based Binary Cross-Entropy loss, defined as:

1 https://app.hasty.ai/.
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BCE ¼ � 1

c

Xc

i¼1

yi � log ŷi þ ð1� yiÞ � log ð1� ŷiÞ

where yi denotes the pixel label (i.e., class 1 for fore-

ground/lesion and class 0 for background/normal tissue), ŷi
indicates the predicted probability of the pixel belonging to

class 1, and (1-ŷi) is the probability of the same pixel

belonging to class 0. Finally, in order to preserve the

heterogeneity of information arising from the multi-scale

approach, we kept the same parameters for the models

trained on all the input resolutions.

5 Results and discussion

We evaluated our method over three different U-net

architectures. Two of them employ a state-of-the-art net-

work backbone for the contraction phase, i.e., DenseNet121

and VGG19 [36, 37]. The third one consists instead of an

architecture built from scratch as part of this study. Table 1

reports a brief summary of the employed networks and

training hyperparameters. As described in detail later in

this section, where we analyze the performance of the

proposed method, all the aforementioned architectures

showed significant improvement employing the proposed

ensemble approach.

5.1 Quantitative comparison

To evaluate our method, a fivefold cross-validation was

adopted to provide statistical significance. Specifically,

80% of the samples were used for the training and vali-

dation steps (split into 70 and 10%, respectively), with the

remaining 20% used as the test set. The final results are

obtained by averaging all folds.

In Table 2, we report the results returned by our pipe-

line, implemented with the DenseNet, VGG, and custom

backbone network, respectively, by first considering the

four single scales and, subsequently, the proposed ensem-

ble performance (which exploits all the aforementioned

resolutions in combination). First, it can be observed that

each of the evaluated architectures has different behavior

depending on the input resolution used. In particular, the

DenseNet121-based U-net performs significantly better

with the 224 � 224 scale, achieving a 67.8% in terms of

Jaccard similarity and a 79.3% of Dice coefficient. On the

other hand, the VGG19-based network reaches its best

result with the 128 � 128 scale (71.6% of Dice), while

our custom implementation tends to show a fairly

stable performance across the different resolutions. Over-

all, however, the DenseNet121 architecture performs on

average better than the others when considering all the

scales.

The same Table 2, last row, also shows the results

obtained by applying the proposed multi-scale ensemble

approach to each of the three examined architectures. We

can state that although the training set contained an

Fig. 3 Lesion marked with the Hasty annotation tool
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exiguous number of images our method achieved excellent

generalization capabilities. Ultrasound images are more

difficult to interpret respect to other radiological images,

they are disturbed by the typical speckle noise and the

shadow produced by the probe could be mistaken for a

lesion, for which normally many more images would be

needed to avoid such mistakes. It is possible to observe that

all of them achieved a remarkable increase in performance,

not only with respect to the average value observed with

the corresponding single-scale approach, but also in rela-

tion to their best resolution configuration. DenseNet121 has

improved by � 3% its best Jaccard and Dice results

obtained with the 224 � 224 scale (also showing a

þ7=8% compared to its average behavior). It also outper-

formed a detection accuracy of 90%, which implies that

more than 9 out of 10 predictions generated with such an

ensemble have a Jaccard similarity coefficient [ 0:5.

Similarly, VGG19 and the custom architecture show a

significant boost, both with improvements of over 6% in

terms of the Jaccard and Dice metrics.

5.2 Comparison against state-of-the-art models

To evaluate and compare the performance of our method

with other state-of-the-art methods that exploit variable

object scales for semantic segmentation, we proceeded to

train DeepLabV3? [38] and MSUnet [39]. DeepLabV3?

improves the popular segmentation network DeepLabV3

introducing an encoder-decoder structure where the

encoder module encodes multi-scale contextual informa-

tion by applying atrous convolution at multiple scales,

while the decoder module refines the segmentation results

along object boundaries. MSUnet replaces the original

U-net convolution blocks with multi-scale blocks that are

composed of multiple convolution sequences with different

receptive fields. This enables the network to extract more

semantic features from the images and generate more

detailed feature maps. The experiments were conducted by

applying the same experimental setting used with the net-

works described in our manuscript; the dataset images were

instead resized to 256px per side. The results obtained

reported in Table 3 show that these networks are still not

superior to our ensemble performance, and while MSUnet

manages to have generalization capabilities similar to the

Densenet121-U-net used in this work, DeepLabV3?

Table 1 Summary of the architectures and parameters adopted

Backbone Year Encoding layers # of Trainable

params (M)

Training hyperparameters*

DenseNet121 2017 117x Conv, 3x

Transition

16 batch_size = 16; loss = binary cross-entropy; optimizer =

Adam; max_epochs = 100

VGG19 2014 16x Conv, 3x Dense, 5x

MaxPool

33

Custom – 7x Conv, 3x MaxPool 4

�The reported values are the same for all the architectures

Table 2 Comparison between

single scales and ensemble
InputSize DenseNet121 U-net VGG19 U-net Custom U-net

Jac Dice dAcc Jac Dice dAcc Jac Dice dAcc

64 � 64 0.592 0.716 0.773 0.568 0.699 0.706 0.582 0.709 0.679

128 � 128 0.617 0.731 0.800 0.594 0.716 0.720 0.580 0.703 0.706

224 � 224 0.678 0.793 0.867 0.503 0.622 0.600 0.585 0.709 0.693

256 � 256 0.647 0.759 0.853 0.502 0.627 0.559 0.588 0.705 0.706

Average 0.633 0.750 0.823 0.542 0.666 0.646 0.584 0.706 0.696

Ensemble 0.712 0.818 0.906 0.638 0.758 0.800 0.650 0.767 0.773

Bold values represent the best results for each corresponding metric

Table 3 Performance comparison of our best configuration against

literature models that exploit multi-scale features based on single-

network architectures

Method Jac Dice dAcc

MSUneta [39] 0.685 0.796 0.866

DeepLabv3?b [38] 0.557 0.683 0.680

Proposed multi-scale ensemble 0.712 0.818 0.906

Bold values represent the best results for each corresponding metric
ahttps://github.com/CN-zdy/MSU_Net

bhttps://keras.io/examples/vision/deeplabv3_plus/
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behaves more like VGG19-U-net, sometimes failing to

converge to an optimal solution. Our multi-scale ensemble

yields competitive results compared with the state-of-the-

art.

5.3 Qualitative evaluation

In order to better explain the contribution of our method,

Fig. 4 shows a graphical comparison of the performance of

a single-scale configuration and its corresponding multi-

scale ensemble pipeline, both based on the VGG19 back-

bone. The comparison highlights some relevant instances

where the prediction of the single-scale model exhibit

imperfections and inconsistencies that the ensemble was

able to compensate effectively, e.g., by clearing back-

ground regions improperly classified as lesions (Fig. 4a) or

by better defining the shape and edges of an existing lesion

that is not well segmented by the model that employs the

single resolution (Fig. 4b–d).

In this regard, Fig. 5 better outlines how the choice of

the input resolution may impact the behavior of the neural

networks, by means of a visual representation of the neu-

ronal activation generated through the popular Gradient-

weighted Class Activation Mapping (GradCam) [40] tech-

nique. Basically, GradCam employs the gradients of any

target concept (a lesion area, in our case) flowing into the

final convolutional layer to produce a coarse localization

map that highlights the important regions in the image used

for predicting the concept.

For the considered samples, we notice that the resolu-

tions 128 � 128 and 224 � 224 present areas charac-

terized by poor or wrong neuronal activations, resulting in

incorrect or incomplete predictions. Vice versa, a better

localization of the lesion is observed by adopting the

lowest resolution (64 � 64), where the heatmap correctly

emphasizes the area corresponding to the endometriosis

lesion in all four ultrasound images.

The aforementioned evidences allows us to consolidate

some significant assumptions underlying the proposed

method: (i) choosing the best resolution represents a non-

trivial task and depends on both the profile of the input and

the considered model; (ii) higher resolutions are not

Fig. 4 Graphic comparison between the performance of the VGG19-based U-net in single-scale mode and with the proposed multi-scale

ensemble (Jaccard’s similarity reported in the lower right corner)
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necessarily more effective in achieving the final result, as

the higher level of detail may make the differentiation

between lesion and healthy tissue less precise; (iii) the

proposed multi-scale ensemble is quantitatively and qual-

itatively effective in capturing and combining the speci-

ficities of the different resolutions, allowing for more

stable, accurate and robust results even in the presence of

limited and highly heterogeneous training sets.

5.4 Limitations

While exhibiting encouraging results, such an experimental

validation presents some limitations. Specifically, the data-

set utilized is not only limited in size but also exclusively

comprises ultrasound images featuring the presence of

lesions (i.e., true positives). This is because such datasets

come from a clinical study where selected patients had

already been diagnosed with endometriosis or showed a

strong suspicion of symptomatology of such a pathology.

Thus, our study aimed to investigate a useful solution for the

detection and segmentation of lesions in already established

or strongly suspected cases of endometriosis. However, we

investigated whether our method would perform with non-

pathological lesion-free images. Since we could not obtain

images of patients without endometriosis, we conducted an

exploratory analysis of the ability of ourmodels to avert false

positives in healthy tissue images. For this purpose, we

therefore attempted to emulate images of healthy tissue by

synthetically generating them using photo editing software

and AI tools. We clarify that to do so we have reserved a few

images for each fold to be used as a test set (for a total number

of 10 items), modifying them appropriately before running

the prediction engine. This ensured that the model had never

observed in previous training samples the portions of healthy

tissue used to generate the synthetic test images. Figure 6

shows a visual outcome of such an experiment. In the figure,

the first column shows the original image, the second column

presents the synthetically generated image (after removing

the endometriosis lesion), while the third column contains

the prediction generated by our model. From such an

exploratory experiment, we observe that our proposed

approach, despite being trained only on images having

lesions, seems able to generalize to images where the lesion

is not present, predicting an empty mask 7 times out of 10. In

Fig. 5 Gradcam heatmaps of

lesions. It highlights the regions

identified by the single-scale

models at different resolutions,

to show how the choice of the

ideal input size is not trivial and
might significantly affect the

final output
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addition, even for the false positives, the mask generated is

very circumscribed. This lets us argue that our proposed

model is also promising in diagnostic settings in which

transvaginal ultrasound is performed solely for preventive

purposes, i.e., there is a possibility of obtaining true nega-

tives (lesion-free images). Hence, in the event that such

images will be available for training purposes in the future,

we expect further improvements in such results.

5.5 Solution impact

To speculate on the possible impact of the proposed solution

in a real-world scenario, we first remark on how the training

and experience of human operators may condition the

accuracy of ultrasound diagnosis of endometriosis [41].

Clinical studies show that only in the hands of experienced

operators (with more than 10 years of experience in ultra-

sound gynecology), the accuracy in the diagnosis of some

endometriotic lesions is high [42, 43]. For example, an

average sensitivity of 78.5% emerged from meta-analyses

about the diagnosis of deep endometriosis with transvaginal

ultrasound performed by experienced operators [43]. This

value, although not directly comparable, can still be related

to themetricdAcc (detection accuracy) reported in previous

Sect. 5.1, which shows a value of 90.6% for the best con-

figuration of our approach. Such evidence consolidates the

motivation of our work and the goodness of the results

obtained and further highlights how aid methods based on

machine/deep learning techniques would be useful tools

especially for less experienced sonographers to identify and

delineate endometriosis lesions.

6 Conclusions

Transvaginal ultrasound is a safe and low-cost method for

the diagnosis of gynecological diseases and reproductive

health, whose accuracy, however, is highly dependent on

Fig. 6 Qualitative results of the

prediction test performed on

synthetically generated lesion-

free images
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clinician operator experience. It has been estimated that the

learning curve to reach an acceptable ability to recognize

deep endometriosis lesions requires at least 100–150 cases,

with great individual variability [44]. Since, for the above

reasons, tools capable of improving the diagnostic ability

of ultrasound are of great interest in research in the field of

endometriosis, in this work, we proposed the first automatic

segmentation method—based on a multi-scale ensemble

pipeline of convolutional neural networks—to support the

clinical staff in establishing the diagnosis of such a disease

from ultrasound images.

The experiments carried out confirmed the robustness

and reliability of the method, showing, in the best config-

uration, an accuracy of 71% in terms of Jaccard’s similarity

and a 82% in terms of Dice coefficient. In addition, the

deployment of the multi-scale approach proved decisive in

boosting the performance of single resolution models, with

improvements averaging more than 5% for all the consid-

ered architectures.

However, despite promising results, this work stands as

pioneering in the field of Computer-Aided Diagnosis

applied to endometriosis pathology and therefore still has

limitations: in particular, the employed dataset, besides

being constrained in size, included only ultrasound images

characterized by the presence of lesions (i.e., true posi-

tives), so the performance of the system in classifying

between healthy and diseased tissue was not evaluated.

Second, the study focused on the analysis of two-dimen-

sional ultrasound scans, but the increasing prevalence of

3D ultrasound equipment requires generalizing the method

to this type of imaging. Nevertheless, we believe that the

proposed method and the presented results provide a solid

basis for future research in this field.
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